Initial Problem
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12
Temp_Vars: C_P, E_P, G_P, H_P, J_P, NoDet0
Locations: n_f0, n_f15___4, n_f15___46, n_f15___49, n_f15___6, n_f19___2, n_f19___3, n_f19___45, n_f19___47, n_f19___48, n_f19___5, n_f33___1, n_f33___19, n_f33___20, n_f33___28, n_f33___36, n_f33___44, n_f36___23, n_f36___24, n_f36___30, n_f36___34, n_f36___41, n_f36___43, n_f41___25, n_f41___31, n_f41___32, n_f50___21, n_f50___22, n_f50___26, n_f50___29, n_f50___37, n_f50___40, n_f54___27, n_f54___35, n_f54___38, n_f54___39, n_f66___15, n_f66___33, n_f66___42, n_f70___14, n_f70___16, n_f70___18, n_f80___13, n_f80___17, n_f80___9, n_f84___10, n_f84___12, n_f84___8, n_f96___11, n_f96___7
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f15___49(50,5,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
1:n_f15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___2(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_1<=0 && Arg_1<=0 && 1+Arg_1<=Arg_4 && Arg_2<=Arg_1
2:n_f15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0):|:1+Arg_1<=0 && Arg_1<=0 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_2
3:n_f15___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0):|:1+Arg_1<=Arg_2 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
4:n_f15___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___48(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=50 && 50<=Arg_0 && Arg_1<=5 && 5<=Arg_1 && Arg_2<=Arg_1 && Arg_2<=Arg_1
5:n_f15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___5(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_2<=Arg_1
6:n_f19___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f15___4(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_1<=Arg_4 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_4
7:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
8:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P
9:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f15___6(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4
10:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
11:n_f19___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f15___46(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4
12:n_f19___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_1 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
13:n_f19___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P
14:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f15___4(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_4
15:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
16:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
17:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P
18:n_f33___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_5<=Arg_6 && Arg_5<=0 && Arg_5<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1+Arg_1<=Arg_2 && Arg_5<=Arg_6
19:n_f33___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_5<=Arg_6 && 1+Arg_5<=Arg_7 && Arg_5<=Arg_6 && Arg_5<=Arg_6
20:n_f33___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1<=Arg_6 && 0<=Arg_6 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_7 && Arg_5<=Arg_6 && Arg_5<=Arg_6
21:n_f33___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_5<=Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_7 && Arg_5<=Arg_6 && Arg_5<=Arg_6
22:n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7 && 1+Arg_6<=Arg_5
23:n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7 && Arg_5<=Arg_6
24:n_f33___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1+Arg_1<=Arg_2 && 1+Arg_6<=Arg_5
25:n_f33___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1+Arg_1<=Arg_2 && Arg_5<=Arg_6
26:n_f36___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_6<=Arg_9 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
27:n_f36___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_6<=Arg_9 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7
28:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
29:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
30:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9 && 1+G_P<=0 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
31:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
32:n_f36___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && Arg_6<=Arg_9 && 1+G_P<=0 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
33:n_f36___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
34:n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && 1+Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
35:n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && 1+Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
36:n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && 1+Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && 1+G_P<=0 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
37:n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
38:n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7
39:n_f36___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
40:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_9<=Arg_6 && Arg_6<=Arg_9
41:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,J_P,Arg_10,Arg_11,Arg_12):|:Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
42:n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,J_P,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_6 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1<=Arg_6 && 1+Arg_9<=Arg_6 && Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
43:n_f41___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f36___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9 && Arg_6<=Arg_9 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1+Arg_6<=0 && Arg_6<=Arg_9
44:n_f50___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<=Arg_6 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1+Arg_5<=Arg_7
45:n_f50___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:0<=Arg_6 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
46:n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1+Arg_5<=Arg_7
47:n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
48:n_f50___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && 1+Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
49:n_f50___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && 1+Arg_6<=Arg_9 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
50:n_f50___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1+Arg_5<=Arg_7
51:n_f50___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
52:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
53:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_9 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
54:n_f50___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,0,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && 0<=Arg_6 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
55:n_f54___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_9 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_9 && 1+Arg_6<=Arg_9
56:n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_9
57:n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,J_P,Arg_10,Arg_11,Arg_12):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
58:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_9<=1+Arg_6 && 1+Arg_6<=Arg_9
59:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,J_P,Arg_10,Arg_11,Arg_12):|:Arg_9<=1+Arg_6 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
60:n_f54___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,J_P,Arg_10,Arg_11,Arg_12):|:Arg_9<=Arg_6 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && Arg_9<=Arg_6 && Arg_9<=1+Arg_6 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
61:n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,0,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=1+Arg_7 && G_P<=Arg_5 && Arg_6<=G_P && G_P<=Arg_6
62:n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f80___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=1+Arg_7 && 1+Arg_5<=Arg_6
63:n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f70___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,0,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:1<=Arg_6 && Arg_6<=1 && 1<=Arg_6 && G_P<=Arg_5 && Arg_6<=G_P && G_P<=Arg_6
64:n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f80___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1<=Arg_6 && Arg_6<=1 && 1<=Arg_6 && 1+Arg_5<=Arg_6
65:n_f66___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f80___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1<=Arg_6 && 1+Arg_5<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_6<=1 && 1<=Arg_6 && 1+Arg_5<=Arg_6
66:n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_7
67:n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
68:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_6 && Arg_6<=Arg_7
69:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_6 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
70:n_f70___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_7<=Arg_6 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_7<=Arg_6 && Arg_7<=Arg_6 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
71:n_f80___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f84___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1+Arg_6<=Arg_5 && 0<=G_P && G_P+1<=H_P && H_P<=1+G_P && Arg_6<=G_P && G_P<=Arg_6
72:n_f80___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f96___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,0,Arg_12):|:1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1+Arg_6<=Arg_5 && 1+Arg_6<=0
73:n_f80___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f96___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,0,Arg_12):|:1+Arg_6<=Arg_5 && 1+Arg_6<=0 && Arg_5<=1+Arg_6 && 1+Arg_6<=Arg_5 && 1+Arg_6<=0
74:n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7 && 0<=G_P && G_P+1<=H_P && H_P<=1+G_P && Arg_6<=G_P && G_P<=Arg_6
75:n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f96___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,0,Arg_12):|:1+Arg_5<=Arg_7 && 1+Arg_6<=0
76:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7
77:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
78:n_f84___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && Arg_7<=Arg_5 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
79:n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && 1+Arg_5<=Arg_7
80:n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
Preprocessing
Eliminate variables {Arg_8,Arg_10,Arg_11} that do not contribute to the problem
Found invariant Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f41___25
Found invariant Arg_9<=5 && Arg_9<=5+Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 5<=Arg_7+Arg_9 && 5+Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_6 && Arg_6+Arg_7<=5 && 5+Arg_7<=Arg_5 && Arg_5+Arg_7<=5 && 6+Arg_7<=Arg_4 && Arg_4+Arg_7<=6 && 6+Arg_7<=Arg_2 && Arg_2+Arg_7<=6 && 50+Arg_7<=Arg_12 && Arg_12+Arg_7<=50 && 5+Arg_7<=Arg_1 && Arg_1+Arg_7<=5 && 50+Arg_7<=Arg_0 && Arg_0+Arg_7<=50 && 0<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_4+Arg_7 && Arg_4<=6+Arg_7 && 6<=Arg_2+Arg_7 && Arg_2<=6+Arg_7 && 50<=Arg_12+Arg_7 && Arg_12<=50+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && 50<=Arg_0+Arg_7 && Arg_0<=50+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f70___14
Found invariant Arg_9<=5 && Arg_9<=5+Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=6 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 5<=Arg_7+Arg_9 && 5+Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=0 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=1 && 5+Arg_7<=Arg_5 && Arg_5+Arg_7<=5 && 6+Arg_7<=Arg_4 && Arg_4+Arg_7<=6 && 6+Arg_7<=Arg_2 && Arg_2+Arg_7<=6 && 50+Arg_7<=Arg_12 && Arg_12+Arg_7<=50 && 5+Arg_7<=Arg_1 && Arg_1+Arg_7<=5 && 50+Arg_7<=Arg_0 && Arg_0+Arg_7<=50 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_4+Arg_7 && Arg_4<=6+Arg_7 && 6<=Arg_2+Arg_7 && Arg_2<=6+Arg_7 && 50<=Arg_12+Arg_7 && Arg_12<=50+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && 50<=Arg_0+Arg_7 && Arg_0<=50+Arg_7 && Arg_6<=1 && 4+Arg_6<=Arg_5 && Arg_5+Arg_6<=6 && 5+Arg_6<=Arg_4 && Arg_4+Arg_6<=7 && 5+Arg_6<=Arg_2 && Arg_2+Arg_6<=7 && 49+Arg_6<=Arg_12 && Arg_12+Arg_6<=51 && 4+Arg_6<=Arg_1 && Arg_1+Arg_6<=6 && 49+Arg_6<=Arg_0 && Arg_0+Arg_6<=51 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f70___18
Found invariant Arg_9<=4 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 4<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 8<=Arg_5+Arg_7 && Arg_5<=2+Arg_7 && 9<=Arg_4+Arg_7 && Arg_4<=3+Arg_7 && 9<=Arg_2+Arg_7 && Arg_2<=3+Arg_7 && 53<=Arg_12+Arg_7 && Arg_12<=47+Arg_7 && 8<=Arg_1+Arg_7 && Arg_1<=2+Arg_7 && 53<=Arg_0+Arg_7 && Arg_0<=47+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f36___24
Found invariant Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=4+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f70___16
Found invariant Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && 1+Arg_4<=Arg_2 && Arg_2+Arg_4<=5 && 5+Arg_4<=Arg_1 && Arg_1+Arg_4<=5 && 50+Arg_4<=Arg_0 && Arg_0+Arg_4<=50 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=5+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 50<=Arg_0+Arg_4 && Arg_0<=50+Arg_4 && Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_2+Arg_3<=5 && 5+Arg_3<=Arg_1 && Arg_1+Arg_3<=5 && 50+Arg_3<=Arg_0 && Arg_0+Arg_3<=50 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=5+Arg_3 && 5<=Arg_1+Arg_3 && Arg_1<=5+Arg_3 && 50<=Arg_0+Arg_3 && Arg_0<=50+Arg_3 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f19___5
Found invariant Arg_9<=0 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=1 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f54___39
Found invariant Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 10<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 9<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 5<=Arg_7 && 9<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 11<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 11<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && 55<=Arg_12+Arg_7 && Arg_12<=45+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 55<=Arg_0+Arg_7 && Arg_0<=45+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 4<=Arg_6 && 9<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=2+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=2+Arg_6 && 54<=Arg_12+Arg_6 && Arg_12<=46+Arg_6 && 9<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 54<=Arg_0+Arg_6 && Arg_0<=46+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f80___13
Found invariant Arg_9<=5 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 5<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f84___10
Found invariant Arg_4<=5 && Arg_4<=Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 45+Arg_4<=Arg_0 && Arg_0+Arg_4<=55 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=4+Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f19___3
Found invariant Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f50___40
Found invariant Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=6+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 4<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=7+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 5<=Arg_6+Arg_7 && 3+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_4+Arg_6 && Arg_4<=7+Arg_6 && 5<=Arg_2+Arg_6 && Arg_2<=7+Arg_6 && 49<=Arg_12+Arg_6 && Arg_12<=51+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && 49<=Arg_0+Arg_6 && Arg_0<=51+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f80___9
Found invariant 1<=0 for location n_f33___19
Found invariant Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f54___35
Found invariant Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f15___46
Found invariant Arg_4<=6 && Arg_4<=5+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 7<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f15___6
Found invariant Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f33___44
Found invariant Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && Arg_1<=3+Arg_4 && 52<=Arg_0+Arg_4 && Arg_0<=48+Arg_4 && Arg_2<=4 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=9 && 46+Arg_2<=Arg_0 && Arg_0+Arg_2<=54 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f19___45
Found invariant 1<=0 for location n_f50___29
Found invariant Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f50___37
Found invariant 1<=0 for location n_f80___17
Found invariant Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 5<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=4 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=7 && 1+Arg_7<=Arg_5 && Arg_5+Arg_7<=9 && 2+Arg_7<=Arg_4 && Arg_4+Arg_7<=10 && 2+Arg_7<=Arg_2 && Arg_2+Arg_7<=10 && 46+Arg_7<=Arg_12 && Arg_12+Arg_7<=54 && 1+Arg_7<=Arg_1 && Arg_1+Arg_7<=9 && 46+Arg_7<=Arg_0 && Arg_0+Arg_7<=54 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f84___8
Found invariant 1<=0 for location n_f33___20
Found invariant 1<=0 for location n_f33___28
Found invariant 1<=0 for location n_f54___27
Found invariant 1<=0 for location n_f96___11
Found invariant Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 5+Arg_4<=Arg_1 && Arg_1+Arg_4<=5 && 50+Arg_4<=Arg_0 && Arg_0+Arg_4<=50 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 50<=Arg_0+Arg_4 && Arg_0<=50+Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 5+Arg_3<=Arg_1 && Arg_1+Arg_3<=5 && 50+Arg_3<=Arg_0 && Arg_0+Arg_3<=50 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && Arg_1<=5+Arg_3 && 50<=Arg_0+Arg_3 && Arg_0<=50+Arg_3 && Arg_2<=0 && 5+Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && 50+Arg_2<=Arg_0 && Arg_0+Arg_2<=50 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f19___48
Found invariant Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=6 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f36___41
Found invariant 1<=0 for location n_f50___21
Found invariant Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f50___22
Found invariant 1<=0 for location n_f33___1
Found invariant 1<=0 for location n_f36___30
Found invariant Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=11 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=1+Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_4 && Arg_4+Arg_6<=12 && Arg_6<=Arg_2 && Arg_2+Arg_6<=12 && 44+Arg_6<=Arg_12 && Arg_12+Arg_6<=56 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 44+Arg_6<=Arg_0 && Arg_0+Arg_6<=56 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f66___15
Found invariant 1<=0 for location n_f66___42
Found invariant Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 10<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 9<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 5<=Arg_7 && 9<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 11<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 11<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && 55<=Arg_12+Arg_7 && Arg_12<=45+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 55<=Arg_0+Arg_7 && Arg_0<=45+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 4<=Arg_6 && 9<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=2+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=2+Arg_6 && 54<=Arg_12+Arg_6 && Arg_12<=46+Arg_6 && 9<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 54<=Arg_0+Arg_6 && Arg_0<=46+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f84___12
Found invariant Arg_4<=6 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f19___47
Found invariant Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f36___43
Found invariant Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=6 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 6<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=7 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 5+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=1 && 4+Arg_6<=Arg_5 && Arg_5+Arg_6<=6 && 5+Arg_6<=Arg_4 && Arg_4+Arg_6<=7 && 5+Arg_6<=Arg_2 && Arg_2+Arg_6<=7 && 49+Arg_6<=Arg_12 && Arg_12+Arg_6<=51 && 4+Arg_6<=Arg_1 && Arg_1+Arg_6<=6 && 49+Arg_6<=Arg_0 && Arg_0+Arg_6<=51 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f66___33
Found invariant Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f54___38
Found invariant 1<=0 for location n_f19___2
Found invariant 1<=0 for location n_f41___32
Found invariant 1<=0 for location n_f50___26
Found invariant 1<=0 for location n_f36___23
Found invariant Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f36___34
Found invariant 1<=0 for location n_f15___4
Found invariant Arg_2<=0 && 5+Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && 50+Arg_2<=Arg_0 && Arg_0+Arg_2<=50 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f15___49
Found invariant Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f33___36
Found invariant Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && 1+Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f41___31
Found invariant Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=6+Arg_6 && Arg_6+Arg_9<=4 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 4<=Arg_6+Arg_9 && 6+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=7+Arg_6 && Arg_6+Arg_7<=5 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 5<=Arg_6+Arg_7 && 7+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && 1+Arg_6<=0 && 6+Arg_6<=Arg_5 && Arg_5+Arg_6<=4 && 7+Arg_6<=Arg_4 && Arg_4+Arg_6<=5 && 7+Arg_6<=Arg_2 && Arg_2+Arg_6<=5 && 51+Arg_6<=Arg_12 && Arg_12+Arg_6<=49 && 6+Arg_6<=Arg_1 && Arg_1+Arg_6<=4 && 51+Arg_6<=Arg_0 && Arg_0+Arg_6<=49 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_4+Arg_6 && Arg_4<=7+Arg_6 && 5<=Arg_2+Arg_6 && Arg_2<=7+Arg_6 && 49<=Arg_12+Arg_6 && Arg_12<=51+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && 49<=Arg_0+Arg_6 && Arg_0<=51+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 for location n_f96___7
Cut unsatisfiable transition 163: n_f15___4->n_f19___2
Cut unsatisfiable transition 164: n_f15___4->n_f33___1
Cut unsatisfiable transition 168: n_f19___2->n_f15___4
Cut unsatisfiable transition 176: n_f19___5->n_f15___4
Cut unsatisfiable transition 178: n_f19___5->n_f19___45
Cut unsatisfiable transition 179: n_f19___5->n_f19___47
Cut unsatisfiable transition 180: n_f33___1->n_f66___42
Cut unsatisfiable transition 181: n_f33___19->n_f66___33
Cut unsatisfiable transition 182: n_f33___20->n_f66___33
Cut unsatisfiable transition 183: n_f33___28->n_f66___42
Cut unsatisfiable transition 187: n_f33___44->n_f66___42
Cut unsatisfiable transition 188: n_f36___23->n_f36___23
Cut unsatisfiable transition 189: n_f36___23->n_f50___21
Cut unsatisfiable transition 190: n_f36___24->n_f36___23
Cut unsatisfiable transition 192: n_f36___24->n_f41___32
Cut unsatisfiable transition 194: n_f36___30->n_f41___32
Cut unsatisfiable transition 195: n_f36___30->n_f50___29
Cut unsatisfiable transition 196: n_f36___34->n_f36___41
Cut unsatisfiable transition 198: n_f36___34->n_f41___32
Cut unsatisfiable transition 205: n_f41___32->n_f36___30
Cut unsatisfiable transition 206: n_f50___21->n_f33___20
Cut unsatisfiable transition 207: n_f50___21->n_f54___39
Cut unsatisfiable transition 208: n_f50___22->n_f33___19
Cut unsatisfiable transition 210: n_f50___26->n_f33___36
Cut unsatisfiable transition 211: n_f50___26->n_f54___27
Cut unsatisfiable transition 212: n_f50___29->n_f33___28
Cut unsatisfiable transition 213: n_f50___29->n_f54___27
Cut unsatisfiable transition 217: n_f54___27->n_f50___26
Cut unsatisfiable transition 218: n_f54___35->n_f50___26
Cut unsatisfiable transition 226: n_f66___33->n_f80___17
Cut unsatisfiable transition 227: n_f66___42->n_f80___17
Cut unsatisfiable transition 228: n_f70___14->n_f66___15
Cut unsatisfiable transition 234: n_f80___13->n_f96___11
Cut unsatisfiable transition 235: n_f80___17->n_f96___11
Cut unsatisfiable transition 241: n_f84___8->n_f80___9
Cut unreachable locations [n_f15___4; n_f19___2; n_f33___1; n_f33___19; n_f33___20; n_f33___28; n_f36___23; n_f36___30; n_f41___32; n_f50___21; n_f50___26; n_f50___29; n_f54___27; n_f66___42; n_f80___17; n_f96___11] from the program graph
Problem after Preprocessing
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_9, Arg_12
Temp_Vars: C_P, E_P, G_P, H_P, J_P, NoDet0
Locations: n_f0, n_f15___46, n_f15___49, n_f15___6, n_f19___3, n_f19___45, n_f19___47, n_f19___48, n_f19___5, n_f33___36, n_f33___44, n_f36___24, n_f36___34, n_f36___41, n_f36___43, n_f41___25, n_f41___31, n_f50___22, n_f50___37, n_f50___40, n_f54___35, n_f54___38, n_f54___39, n_f66___15, n_f66___33, n_f70___14, n_f70___16, n_f70___18, n_f80___13, n_f80___9, n_f84___10, n_f84___12, n_f84___8, n_f96___7
Transitions:
162:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f15___49(50,5,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12)
165:n_f15___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f33___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,0,Arg_7,Arg_9,Arg_0):|:Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_1<=Arg_2 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
166:n_f15___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___48(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_2<=0 && 5+Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && 50+Arg_2<=Arg_0 && Arg_0+Arg_2<=50 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_2<=Arg_1 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=50 && 50<=Arg_0 && Arg_1<=5 && 5<=Arg_1 && Arg_2<=Arg_1 && Arg_2<=Arg_1
167:n_f15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___5(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=5+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 7<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_2<=Arg_1 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_2<=Arg_1
169:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=5 && Arg_4<=Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 45+Arg_4<=Arg_0 && Arg_0+Arg_4<=55 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=4+Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
170:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=5 && Arg_4<=Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 45+Arg_4<=Arg_0 && Arg_0+Arg_4<=55 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=4+Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P
171:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f15___6(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && Arg_1<=3+Arg_4 && 52<=Arg_0+Arg_4 && Arg_0<=48+Arg_4 && Arg_2<=4 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=9 && 46+Arg_2<=Arg_0 && Arg_0+Arg_2<=54 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4
172:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && Arg_1<=3+Arg_4 && 52<=Arg_0+Arg_4 && Arg_0<=48+Arg_4 && Arg_2<=4 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=9 && 46+Arg_2<=Arg_0 && Arg_0+Arg_2<=54 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
173:n_f19___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f15___46(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4
174:n_f19___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_1 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
175:n_f19___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 5+Arg_4<=Arg_1 && Arg_1+Arg_4<=5 && 50+Arg_4<=Arg_0 && Arg_0+Arg_4<=50 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 50<=Arg_0+Arg_4 && Arg_0<=50+Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 5+Arg_3<=Arg_1 && Arg_1+Arg_3<=5 && 50+Arg_3<=Arg_0 && Arg_0+Arg_3<=50 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && Arg_1<=5+Arg_3 && 50<=Arg_0+Arg_3 && Arg_0<=50+Arg_3 && Arg_2<=0 && 5+Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && 50+Arg_2<=Arg_0 && Arg_0+Arg_2<=50 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P
177:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && 1+Arg_4<=Arg_2 && Arg_2+Arg_4<=5 && 5+Arg_4<=Arg_1 && Arg_1+Arg_4<=5 && 50+Arg_4<=Arg_0 && Arg_0+Arg_4<=50 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=5+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 50<=Arg_0+Arg_4 && Arg_0<=50+Arg_4 && Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_2+Arg_3<=5 && 5+Arg_3<=Arg_1 && Arg_1+Arg_3<=5 && 50+Arg_3<=Arg_0 && Arg_0+Arg_3<=50 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=5+Arg_3 && 5<=Arg_1+Arg_3 && Arg_1<=5+Arg_3 && 50<=Arg_0+Arg_3 && Arg_0<=50+Arg_3 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2
184:n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && 1+Arg_6<=Arg_5
185:n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && Arg_5<=Arg_6
186:n_f33___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1+Arg_1<=Arg_2 && 1+Arg_6<=Arg_5
191:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,0,Arg_12):|:Arg_9<=4 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 4<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 8<=Arg_5+Arg_7 && Arg_5<=2+Arg_7 && 9<=Arg_4+Arg_7 && Arg_4<=3+Arg_7 && 9<=Arg_2+Arg_7 && Arg_2<=3+Arg_7 && 53<=Arg_12+Arg_7 && Arg_12<=47+Arg_7 && 8<=Arg_1+Arg_7 && Arg_1<=2+Arg_7 && 53<=Arg_0+Arg_7 && Arg_0<=47+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=Arg_9 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
193:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_9<=4 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 4<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 8<=Arg_5+Arg_7 && Arg_5<=2+Arg_7 && 9<=Arg_4+Arg_7 && Arg_4<=3+Arg_7 && 9<=Arg_2+Arg_7 && Arg_2<=3+Arg_7 && 53<=Arg_12+Arg_7 && Arg_12<=47+Arg_7 && 8<=Arg_1+Arg_7 && Arg_1<=2+Arg_7 && 53<=Arg_0+Arg_7 && Arg_0<=47+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
197:n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,0,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6
199:n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,Arg_9,Arg_12):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=6 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
200:n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f50___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=6 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7
201:n_f36___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,Arg_9,Arg_12):|:Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6
202:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=Arg_6 && Arg_6<=Arg_9
203:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
204:n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && 1+Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_9<=Arg_6 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1<=Arg_6 && 1+Arg_9<=Arg_6 && Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
209:n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,0,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
214:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_9 && 1+Arg_5<=Arg_7
215:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,0,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_9 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
216:n_f50___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,0,Arg_12):|:Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_5 && 0<=Arg_6 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7
219:n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
220:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=1+Arg_6 && 1+Arg_6<=Arg_9
221:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=1+Arg_6 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
222:n_f54___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=0 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=1 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=1 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=1 && 4+Arg_7<=Arg_5 && Arg_5+Arg_7<=6 && 5+Arg_7<=Arg_4 && Arg_4+Arg_7<=7 && 5+Arg_7<=Arg_2 && Arg_2+Arg_7<=7 && 49+Arg_7<=Arg_12 && Arg_12+Arg_7<=51 && 4+Arg_7<=Arg_1 && Arg_1+Arg_7<=6 && 49+Arg_7<=Arg_0 && Arg_0+Arg_7<=51 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=Arg_6 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && Arg_9<=Arg_6 && Arg_9<=1+Arg_6 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9
223:n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,0,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=11 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=1+Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_4 && Arg_4+Arg_6<=12 && Arg_6<=Arg_2 && Arg_2+Arg_6<=12 && 44+Arg_6<=Arg_12 && Arg_12+Arg_6<=56 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 44+Arg_6<=Arg_0 && Arg_0+Arg_6<=56 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=1+Arg_7 && G_P<=Arg_5 && Arg_6<=G_P && G_P<=Arg_6
224:n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f80___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=11 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=1+Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_4 && Arg_4+Arg_6<=12 && Arg_6<=Arg_2 && Arg_2+Arg_6<=12 && 44+Arg_6<=Arg_12 && Arg_12+Arg_6<=56 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 44+Arg_6<=Arg_0 && Arg_0+Arg_6<=56 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=1+Arg_7 && 1+Arg_5<=Arg_6
225:n_f66___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,0,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=6 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 6<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=7 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 5+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=1 && 4+Arg_6<=Arg_5 && Arg_5+Arg_6<=6 && 5+Arg_6<=Arg_4 && Arg_4+Arg_6<=7 && 5+Arg_6<=Arg_2 && Arg_2+Arg_6<=7 && 49+Arg_6<=Arg_12 && Arg_12+Arg_6<=51 && 4+Arg_6<=Arg_1 && Arg_1+Arg_6<=6 && 49+Arg_6<=Arg_0 && Arg_0+Arg_6<=51 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1<=Arg_6 && Arg_6<=1 && 1<=Arg_6 && G_P<=Arg_5 && Arg_6<=G_P && G_P<=Arg_6
229:n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=5+Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 5<=Arg_7+Arg_9 && 5+Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_6 && Arg_6+Arg_7<=5 && 5+Arg_7<=Arg_5 && Arg_5+Arg_7<=5 && 6+Arg_7<=Arg_4 && Arg_4+Arg_7<=6 && 6+Arg_7<=Arg_2 && Arg_2+Arg_7<=6 && 50+Arg_7<=Arg_12 && Arg_12+Arg_7<=50 && 5+Arg_7<=Arg_1 && Arg_1+Arg_7<=5 && 50+Arg_7<=Arg_0 && Arg_0+Arg_7<=50 && 0<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_4+Arg_7 && Arg_4<=6+Arg_7 && 6<=Arg_2+Arg_7 && Arg_2<=6+Arg_7 && 50<=Arg_12+Arg_7 && Arg_12<=50+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && 50<=Arg_0+Arg_7 && Arg_0<=50+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
230:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=4+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_6 && Arg_6<=Arg_7
231:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=4+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_6 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
232:n_f70___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=5+Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=6 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 5<=Arg_7+Arg_9 && 5+Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=0 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=1 && 5+Arg_7<=Arg_5 && Arg_5+Arg_7<=5 && 6+Arg_7<=Arg_4 && Arg_4+Arg_7<=6 && 6+Arg_7<=Arg_2 && Arg_2+Arg_7<=6 && 50+Arg_7<=Arg_12 && Arg_12+Arg_7<=50 && 5+Arg_7<=Arg_1 && Arg_1+Arg_7<=5 && 50+Arg_7<=Arg_0 && Arg_0+Arg_7<=50 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_4+Arg_7 && Arg_4<=6+Arg_7 && 6<=Arg_2+Arg_7 && Arg_2<=6+Arg_7 && 50<=Arg_12+Arg_7 && Arg_12<=50+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && 50<=Arg_0+Arg_7 && Arg_0<=50+Arg_7 && Arg_6<=1 && 4+Arg_6<=Arg_5 && Arg_5+Arg_6<=6 && 5+Arg_6<=Arg_4 && Arg_4+Arg_6<=7 && 5+Arg_6<=Arg_2 && Arg_2+Arg_6<=7 && 49+Arg_6<=Arg_12 && Arg_12+Arg_6<=51 && 4+Arg_6<=Arg_1 && Arg_1+Arg_6<=6 && 49+Arg_6<=Arg_0 && Arg_0+Arg_6<=51 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_7<=Arg_6 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_7<=Arg_6 && Arg_7<=Arg_6 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7
233:n_f80___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 10<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 9<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 5<=Arg_7 && 9<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 11<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 11<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && 55<=Arg_12+Arg_7 && Arg_12<=45+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 55<=Arg_0+Arg_7 && Arg_0<=45+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 4<=Arg_6 && 9<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=2+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=2+Arg_6 && 54<=Arg_12+Arg_6 && Arg_12<=46+Arg_6 && 9<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 54<=Arg_0+Arg_6 && Arg_0<=46+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1+Arg_6<=Arg_5 && 0<=G_P && G_P+1<=H_P && H_P<=1+G_P && Arg_6<=G_P && G_P<=Arg_6
236:n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=6+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 4<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=7+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 5<=Arg_6+Arg_7 && 3+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_4+Arg_6 && Arg_4<=7+Arg_6 && 5<=Arg_2+Arg_6 && Arg_2<=7+Arg_6 && 49<=Arg_12+Arg_6 && Arg_12<=51+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && 49<=Arg_0+Arg_6 && Arg_0<=51+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && 0<=G_P && G_P+1<=H_P && H_P<=1+G_P && Arg_6<=G_P && G_P<=Arg_6
237:n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f96___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=6+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 4<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=7+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 5<=Arg_6+Arg_7 && 3+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_4+Arg_6 && Arg_4<=7+Arg_6 && 5<=Arg_2+Arg_6 && Arg_2<=7+Arg_6 && 49<=Arg_12+Arg_6 && Arg_12<=51+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && 49<=Arg_0+Arg_6 && Arg_0<=51+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && 1+Arg_6<=0
238:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 5<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7
239:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 5<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
240:n_f84___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 10<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 9<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 5<=Arg_7 && 9<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 11<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 11<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && 55<=Arg_12+Arg_7 && Arg_12<=45+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 55<=Arg_0+Arg_7 && Arg_0<=45+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 4<=Arg_6 && 9<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=2+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=2+Arg_6 && 54<=Arg_12+Arg_6 && Arg_12<=46+Arg_6 && 9<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 54<=Arg_0+Arg_6 && Arg_0<=46+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && Arg_7<=Arg_5 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
242:n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 5<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=4 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=7 && 1+Arg_7<=Arg_5 && Arg_5+Arg_7<=9 && 2+Arg_7<=Arg_4 && Arg_4+Arg_7<=10 && 2+Arg_7<=Arg_2 && Arg_2+Arg_7<=10 && 46+Arg_7<=Arg_12 && Arg_12+Arg_7<=54 && 1+Arg_7<=Arg_1 && Arg_1+Arg_7<=9 && 46+Arg_7<=Arg_0 && Arg_0+Arg_7<=54 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7
MPRF for transition 167:n_f15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___5(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=5+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 7<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_2<=Arg_1 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_2<=Arg_1 of depth 1:
new bound:
5 {O(1)}
MPRF:
n_f15___6 [Arg_1+1-Arg_2 ]
n_f19___47 [Arg_1-Arg_2 ]
n_f19___45 [Arg_1-Arg_2 ]
n_f19___5 [Arg_1-Arg_2 ]
n_f19___3 [Arg_1-Arg_2 ]
MPRF for transition 169:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=5 && Arg_4<=Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 45+Arg_4<=Arg_0 && Arg_0+Arg_4<=55 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=4+Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2 of depth 1:
new bound:
1050 {O(1)}
MPRF:
n_f15___6 [20*Arg_0-150*Arg_2 ]
n_f19___47 [200*Arg_1+50-200*Arg_2 ]
n_f19___45 [200*Arg_1+50-200*Arg_2 ]
n_f19___5 [1000-150*Arg_2-50*Arg_4 ]
n_f19___3 [200*Arg_1+50-150*Arg_2-50*Arg_4 ]
MPRF for transition 170:n_f19___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___47(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=5 && Arg_4<=Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 45+Arg_4<=Arg_0 && Arg_0+Arg_4<=55 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=4+Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_4<=Arg_1 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && Arg_4<=Arg_2 && C_P<=Arg_1 && Arg_4<=C_P && C_P<=Arg_4 && Arg_2<=C_P && C_P<=Arg_2 && C_P+1<=E_P && E_P<=1+C_P of depth 1:
new bound:
90 {O(1)}
MPRF:
n_f15___6 [2*Arg_0-10*Arg_2 ]
n_f19___47 [90-10*Arg_2 ]
n_f19___45 [2*Arg_0-10*Arg_2-10 ]
n_f19___5 [2*Arg_0-10*Arg_2 ]
n_f19___3 [100-10*Arg_2 ]
MPRF for transition 171:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f15___6(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && Arg_1<=3+Arg_4 && 52<=Arg_0+Arg_4 && Arg_0<=48+Arg_4 && Arg_2<=4 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=9 && 46+Arg_2<=Arg_0 && Arg_0+Arg_2<=54 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 of depth 1:
new bound:
25 {O(1)}
MPRF:
n_f15___6 [25-5*Arg_2 ]
n_f19___47 [5*Arg_1-5*Arg_2 ]
n_f19___45 [25-5*Arg_2 ]
n_f19___5 [5*Arg_1-5*Arg_2 ]
n_f19___3 [5*Arg_1-5*Arg_2 ]
MPRF for transition 172:n_f19___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && Arg_1<=3+Arg_4 && 52<=Arg_0+Arg_4 && Arg_0<=48+Arg_4 && Arg_2<=4 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=9 && 46+Arg_2<=Arg_0 && Arg_0+Arg_2<=54 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && Arg_4<=1+Arg_1 && 2+Arg_2<=Arg_4 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2 of depth 1:
new bound:
320 {O(1)}
MPRF:
n_f15___6 [34*Arg_1-4*Arg_2-25*Arg_4 ]
n_f19___47 [34*Arg_1-4*Arg_2-150 ]
n_f19___45 [3*Arg_1+7-3*Arg_2-Arg_4 ]
n_f19___5 [34*Arg_1-4*Arg_2-150 ]
n_f19___3 [34*Arg_1-4*Arg_2-150 ]
MPRF for transition 174:n_f19___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___45(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=6 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=11 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && Arg_1<=4+Arg_4 && 51<=Arg_0+Arg_4 && Arg_0<=49+Arg_4 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && 50<=Arg_0+Arg_2 && Arg_0<=50+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_1 && 2+C_P<=E_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2 of depth 1:
new bound:
11 {O(1)}
MPRF:
n_f15___6 [Arg_1+Arg_4-Arg_2 ]
n_f19___47 [Arg_1+6-Arg_2 ]
n_f19___45 [Arg_1+5-Arg_2 ]
n_f19___5 [Arg_1+6-Arg_2 ]
n_f19___3 [Arg_1+6-Arg_2 ]
MPRF for transition 177:n_f19___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f19___3(Arg_0,Arg_1,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12):|:Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && 1+Arg_4<=Arg_2 && Arg_2+Arg_4<=5 && 5+Arg_4<=Arg_1 && Arg_1+Arg_4<=5 && 50+Arg_4<=Arg_0 && Arg_0+Arg_4<=50 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=5+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 50<=Arg_0+Arg_4 && Arg_0<=50+Arg_4 && Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_2+Arg_3<=5 && 5+Arg_3<=Arg_1 && Arg_1+Arg_3<=5 && 50+Arg_3<=Arg_0 && Arg_0+Arg_3<=50 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=5+Arg_3 && 5<=Arg_1+Arg_3 && Arg_1<=5+Arg_3 && 50<=Arg_0+Arg_3 && Arg_0<=50+Arg_3 && Arg_2<=5 && Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 45+Arg_2<=Arg_0 && Arg_0+Arg_2<=55 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=4+Arg_2 && 51<=Arg_0+Arg_2 && Arg_0<=49+Arg_2 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_1 && E_P<=C_P && E_P<=1+Arg_1 && Arg_4+1<=E_P && E_P<=1+Arg_4 && Arg_2<=C_P && C_P<=Arg_2 of depth 1:
new bound:
5 {O(1)}
MPRF:
n_f15___6 [Arg_1+1-Arg_2 ]
n_f19___47 [Arg_1-Arg_2 ]
n_f19___45 [Arg_1-Arg_2 ]
n_f19___5 [Arg_1+1-Arg_2 ]
n_f19___3 [5-Arg_2 ]
MPRF for transition 199:n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,H_P,Arg_9,Arg_12):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=6 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=0 && 5+Arg_6<=Arg_5 && Arg_5+Arg_6<=5 && 6+Arg_6<=Arg_4 && Arg_4+Arg_6<=6 && 6+Arg_6<=Arg_2 && Arg_2+Arg_6<=6 && 50+Arg_6<=Arg_12 && Arg_12+Arg_6<=50 && 5+Arg_6<=Arg_1 && Arg_1+Arg_6<=5 && 50+Arg_6<=Arg_0 && Arg_0+Arg_6<=50 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<=Arg_6 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
9 {O(1)}
MPRF:
n_f36___41 [Arg_4+1-Arg_7 ]
MPRF for transition 184:n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 7<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && 1+Arg_6<=Arg_5 of depth 1:
new bound:
601 {O(1)}
MPRF:
n_f36___34 [97*Arg_2+14*Arg_4+3*Arg_12-Arg_0-112*Arg_9-202 ]
n_f36___24 [96*Arg_2+1-2*Arg_4-113*Arg_9 ]
n_f41___31 [Arg_0+97*Arg_2+Arg_12-2*Arg_4-113*Arg_6-105 ]
n_f41___25 [97*Arg_2+1-3*Arg_4-113*Arg_6 ]
n_f50___22 [2*Arg_2+3*Arg_12+415-2*Arg_4-113*Arg_9 ]
n_f33___36 [111*Arg_4+Arg_6-Arg_0-113*Arg_9-Arg_12-1 ]
n_f54___35 [Arg_4+3*Arg_12+451-Arg_2-149*Arg_6 ]
n_f50___37 [112*Arg_4+Arg_9+34-Arg_0-Arg_2-150*Arg_6-Arg_12 ]
n_f54___38 [4*Arg_12+401-149*Arg_6 ]
MPRF for transition 191:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,0,Arg_12):|:Arg_9<=4 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 4<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 8<=Arg_5+Arg_7 && Arg_5<=2+Arg_7 && 9<=Arg_4+Arg_7 && Arg_4<=3+Arg_7 && 9<=Arg_2+Arg_7 && Arg_2<=3+Arg_7 && 53<=Arg_12+Arg_7 && Arg_12<=47+Arg_7 && 8<=Arg_1+Arg_7 && Arg_1<=2+Arg_7 && 53<=Arg_0+Arg_7 && Arg_0<=47+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=Arg_9 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
550 {O(1)}
MPRF:
n_f36___34 [50*Arg_1+75*Arg_2-101*Arg_6-49*Arg_9 ]
n_f36___24 [50*Arg_1+550-50*Arg_7-100*Arg_9 ]
n_f41___31 [50*Arg_1+500-100*Arg_6-50*Arg_7 ]
n_f41___25 [50*Arg_1+500-100*Arg_6-50*Arg_7 ]
n_f50___22 [50*Arg_1+50*Arg_9+250-150*Arg_6 ]
n_f33___36 [50*Arg_1+75*Arg_4-150*Arg_6 ]
n_f54___35 [50*Arg_1+300-150*Arg_6 ]
n_f50___37 [6*Arg_0+50*Arg_1-150*Arg_6 ]
n_f54___38 [50*Arg_1+300-150*Arg_6 ]
MPRF for transition 193:n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9,Arg_12):|:Arg_9<=4 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 4<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 8<=Arg_5+Arg_7 && Arg_5<=2+Arg_7 && 9<=Arg_4+Arg_7 && Arg_4<=3+Arg_7 && 9<=Arg_2+Arg_7 && Arg_2<=3+Arg_7 && 53<=Arg_12+Arg_7 && Arg_12<=47+Arg_7 && 8<=Arg_1+Arg_7 && Arg_1<=2+Arg_7 && 53<=Arg_0+Arg_7 && Arg_0<=47+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=Arg_9 && 1+Arg_5<=Arg_7 of depth 1:
new bound:
215 {O(1)}
MPRF:
n_f36___34 [2*Arg_0+Arg_12-25*Arg_9 ]
n_f36___24 [25*Arg_1+25-25*Arg_9 ]
n_f41___31 [20*Arg_5+Arg_12-25*Arg_6 ]
n_f41___25 [5*Arg_1+20*Arg_5+25-25*Arg_6 ]
n_f50___22 [25*Arg_5-25*Arg_6 ]
n_f33___36 [3*Arg_12-25*Arg_9 ]
n_f54___35 [10*Arg_1+25*Arg_5-25*Arg_6-50 ]
n_f50___37 [10*Arg_1+3*Arg_12-Arg_0-25*Arg_9 ]
n_f54___38 [9*Arg_1+25*Arg_5-25*Arg_6-45 ]
MPRF for transition 197:n_f36___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,0,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_5 && 1+Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && Arg_7<=Arg_5 && 1<=G_P && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
12 {O(1)}
MPRF:
n_f36___34 [26-2*Arg_2-2*Arg_6 ]
n_f36___24 [2*Arg_4-2*Arg_9 ]
n_f41___31 [2*Arg_4-2*Arg_6 ]
n_f41___25 [2*Arg_4-2*Arg_6 ]
n_f50___22 [Arg_0+2*Arg_2-2*Arg_6-50 ]
n_f33___36 [26-2*Arg_4-2*Arg_9 ]
n_f54___35 [2*Arg_0+2*Arg_4+2*Arg_9-2*Arg_6-Arg_12-50 ]
n_f50___37 [24-2*Arg_2-2*Arg_6 ]
n_f54___38 [2*Arg_4-2*Arg_6 ]
MPRF for transition 202:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f36___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=Arg_6 && Arg_6<=Arg_9 of depth 1:
new bound:
1887 {O(1)}
MPRF:
n_f36___34 [150*Arg_4-4*Arg_9-883 ]
n_f36___24 [18-3*Arg_6-Arg_7 ]
n_f41___31 [149*Arg_1+Arg_4-3*Arg_6-Arg_7-733 ]
n_f41___25 [18-3*Arg_6-Arg_7 ]
n_f50___22 [118-Arg_0-Arg_1-4*Arg_6-Arg_12 ]
n_f33___36 [4*Arg_1+150*Arg_4+150*Arg_7-150*Arg_2-4*Arg_9-903 ]
n_f54___35 [2*Arg_0-4*Arg_6-Arg_12-37 ]
n_f50___37 [Arg_1+150*Arg_4+3*Arg_5-4*Arg_6-18*Arg_12-7 ]
n_f54___38 [180*Arg_1+Arg_12-Arg_0-4*Arg_6-887 ]
MPRF for transition 203:n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9 of depth 1:
new bound:
4550 {O(1)}
MPRF:
n_f36___34 [40*Arg_12-450*Arg_6 ]
n_f36___24 [430*Arg_5+200-350*Arg_6-150*Arg_7 ]
n_f41___31 [4*Arg_0+380*Arg_1-350*Arg_6-100*Arg_7 ]
n_f41___25 [450*Arg_5-350*Arg_6-100*Arg_7-50*Arg_9-100 ]
n_f50___22 [150*Arg_2+430*Arg_5+100*Arg_9-450*Arg_6-1600 ]
n_f33___36 [150*Arg_5+150*Arg_7+40*Arg_12-10*Arg_0-230*Arg_1-450*Arg_6 ]
n_f54___35 [150*Arg_2+430*Arg_5-450*Arg_6-1500 ]
n_f50___37 [150*Arg_4+150*Arg_5+40*Arg_12-10*Arg_0-450*Arg_6-1600 ]
n_f54___38 [150*Arg_2+430*Arg_5-450*Arg_6-1500 ]
MPRF for transition 204:n_f41___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f41___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && 1+Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_9<=Arg_6 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && 1<=Arg_6 && 1+Arg_9<=Arg_6 && Arg_9<=Arg_6 && J_P<=Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9 of depth 1:
new bound:
650 {O(1)}
MPRF:
n_f36___34 [Arg_0+912-2*Arg_4-150*Arg_6-50*Arg_7-Arg_12 ]
n_f36___24 [12*Arg_12+300-50*Arg_7-150*Arg_9 ]
n_f41___31 [900-150*Arg_6-50*Arg_7 ]
n_f41___25 [850-150*Arg_6-50*Arg_7 ]
n_f50___22 [12*Arg_12-150*Arg_9 ]
n_f33___36 [Arg_0+Arg_9+861-Arg_1-Arg_4-201*Arg_6-Arg_12 ]
n_f54___35 [Arg_5+650-Arg_1-200*Arg_6 ]
n_f50___37 [705-Arg_0-Arg_1-200*Arg_6 ]
n_f54___38 [Arg_12+600-200*Arg_6 ]
MPRF for transition 209:n_f50___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,0,Arg_12):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=10 && 2+Arg_9<=Arg_2 && Arg_2+Arg_9<=10 && 46+Arg_9<=Arg_12 && Arg_12+Arg_9<=54 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 46+Arg_9<=Arg_0 && Arg_0+Arg_9<=54 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 2<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 of depth 1:
new bound:
800 {O(1)}
MPRF:
n_f36___34 [25*Arg_2+13*Arg_12-25*Arg_4-150*Arg_6 ]
n_f36___24 [13*Arg_0-150*Arg_9 ]
n_f41___31 [13*Arg_0-150*Arg_6 ]
n_f41___25 [13*Arg_0-150*Arg_6 ]
n_f50___22 [650-150*Arg_6 ]
n_f33___36 [25*Arg_7+13*Arg_12-30*Arg_5-150*Arg_9 ]
n_f54___35 [500-150*Arg_6 ]
n_f50___37 [13*Arg_12-30*Arg_5-150*Arg_6 ]
n_f54___38 [13*Arg_0-30*Arg_5-150*Arg_6 ]
MPRF for transition 214:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f33___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_9 && 1+Arg_5<=Arg_7 of depth 1:
new bound:
205 {O(1)}
MPRF:
n_f36___34 [Arg_1-Arg_9 ]
n_f36___24 [Arg_0+5-Arg_6-Arg_12 ]
n_f41___31 [5-Arg_6 ]
n_f41___25 [Arg_0-Arg_6-45 ]
n_f50___22 [105-Arg_0-Arg_6-Arg_12 ]
n_f33___36 [5-Arg_9 ]
n_f54___35 [105-Arg_0-Arg_6-Arg_12 ]
n_f50___37 [5-Arg_6 ]
n_f54___38 [105-Arg_0-Arg_6-Arg_12 ]
MPRF for transition 215:n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,0,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_9 && H_P<=Arg_5 && Arg_7<=H_P && H_P<=Arg_7 of depth 1:
new bound:
175 {O(1)}
MPRF:
n_f36___34 [10*Arg_1+5*Arg_2-15*Arg_6 ]
n_f36___24 [92-Arg_2-Arg_4-15*Arg_6 ]
n_f41___31 [80-15*Arg_6 ]
n_f41___25 [80-15*Arg_6 ]
n_f50___22 [Arg_1+15*Arg_5-15*Arg_6 ]
n_f33___36 [10*Arg_1+5*Arg_2-15*Arg_6 ]
n_f54___35 [5*Arg_2+15*Arg_5-15*Arg_6-5*Arg_7-16*Arg_9-15 ]
n_f50___37 [15*Arg_1+5*Arg_2-15*Arg_6-5*Arg_7-10 ]
n_f54___38 [Arg_0+5*Arg_2+Arg_12-15*Arg_6-5*Arg_7-40 ]
MPRF for transition 219:n_f54___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=0 && 2+Arg_9<=Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=Arg_6 && Arg_6+Arg_9<=4 && 5+Arg_9<=Arg_5 && Arg_5+Arg_9<=5 && 6+Arg_9<=Arg_4 && Arg_4+Arg_9<=6 && 6+Arg_9<=Arg_2 && Arg_2+Arg_9<=6 && 50+Arg_9<=Arg_12 && Arg_12+Arg_9<=50 && 5+Arg_9<=Arg_1 && Arg_1+Arg_9<=5 && 50+Arg_9<=Arg_0 && Arg_0+Arg_9<=50 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_2+Arg_9 && Arg_2<=6+Arg_9 && 50<=Arg_12+Arg_9 && Arg_12<=50+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && 50<=Arg_0+Arg_9 && Arg_0<=50+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_5 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9 of depth 1:
new bound:
3450 {O(1)}
MPRF:
n_f36___34 [60*Arg_1+575*Arg_2-900*Arg_9 ]
n_f36___24 [6*Arg_0+575*Arg_2-900*Arg_9 ]
n_f41___31 [575*Arg_2+6*Arg_12-900*Arg_6 ]
n_f41___25 [575*Arg_2+50*Arg_4-900*Arg_6 ]
n_f50___22 [575*Arg_2+200*Arg_6-100*Arg_7-900*Arg_9 ]
n_f33___36 [60*Arg_1+575*Arg_2+63*Arg_12-63*Arg_0-900*Arg_9 ]
n_f54___35 [3450-700*Arg_6-100*Arg_7 ]
n_f50___37 [60*Arg_1+63*Arg_12-700*Arg_6-100*Arg_7 ]
n_f54___38 [140*Arg_5+2650-700*Arg_6-100*Arg_7 ]
MPRF for transition 220:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f50___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=1+Arg_6 && 1+Arg_6<=Arg_9 of depth 1:
new bound:
3450 {O(1)}
MPRF:
n_f36___34 [600*Arg_1+500*Arg_2-600*Arg_9-3000 ]
n_f36___24 [60*Arg_0-600*Arg_9 ]
n_f41___31 [500*Arg_4-600*Arg_6 ]
n_f41___25 [60*Arg_0+500*Arg_2-600*Arg_6-60*Arg_12 ]
n_f50___22 [60*Arg_0+500*Arg_2-600*Arg_9-60*Arg_12 ]
n_f33___36 [500*Arg_2+600*Arg_5-500*Arg_4-600*Arg_9 ]
n_f54___35 [660*Arg_1-600*Arg_6-150*Arg_7 ]
n_f50___37 [3300-600*Arg_6-150*Arg_7 ]
n_f54___38 [3300-600*Arg_6-150*Arg_7 ]
MPRF for transition 221:n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f54___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,J_P,Arg_12):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=4+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=3+Arg_9 && 6<=Arg_5+Arg_9 && Arg_5<=4+Arg_9 && 7<=Arg_4+Arg_9 && Arg_4<=5+Arg_9 && 7<=Arg_2+Arg_9 && Arg_2<=5+Arg_9 && 51<=Arg_12+Arg_9 && Arg_12<=49+Arg_9 && 6<=Arg_1+Arg_9 && Arg_1<=4+Arg_9 && 51<=Arg_0+Arg_9 && Arg_0<=49+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_9<=1+Arg_6 && J_P<=1+Arg_6 && Arg_9+1<=J_P && J_P<=1+Arg_9 of depth 1:
new bound:
1505 {O(1)}
MPRF:
n_f36___34 [652-Arg_0-Arg_1-12*Arg_6 ]
n_f36___24 [603-Arg_4-12*Arg_9 ]
n_f41___31 [647-12*Arg_6-Arg_12 ]
n_f41___25 [Arg_0+602-Arg_5-12*Arg_6-Arg_12 ]
n_f50___22 [12*Arg_0-12*Arg_6-3 ]
n_f33___36 [14*Arg_0+Arg_5-Arg_1-7*Arg_2-12*Arg_9-Arg_12-11 ]
n_f54___35 [12*Arg_12-9*Arg_6-3*Arg_7 ]
n_f50___37 [14*Arg_0+2*Arg_6-Arg_1-5*Arg_2-3*Arg_7-12*Arg_9-Arg_12 ]
n_f54___38 [9*Arg_12+601-9*Arg_0-9*Arg_6-3*Arg_7-Arg_9 ]
MPRF for transition 223:n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,0,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=11 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=1+Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && 1+Arg_7<=Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_4 && Arg_4+Arg_6<=12 && Arg_6<=Arg_2 && Arg_2+Arg_6<=12 && 44+Arg_6<=Arg_12 && Arg_12+Arg_6<=56 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 44+Arg_6<=Arg_0 && Arg_0+Arg_6<=56 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_6<=1+Arg_7 && G_P<=Arg_5 && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
21 {O(1)}
MPRF:
n_f70___14 [3*Arg_2-3*Arg_6 ]
n_f66___15 [21-3*Arg_6 ]
n_f70___16 [2*Arg_2+Arg_4-3*Arg_6 ]
MPRF for transition 229:n_f70___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=5+Arg_7 && Arg_7+Arg_9<=5 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 5<=Arg_7+Arg_9 && 5+Arg_7<=Arg_9 && 7<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_6 && Arg_6+Arg_7<=5 && 5+Arg_7<=Arg_5 && Arg_5+Arg_7<=5 && 6+Arg_7<=Arg_4 && Arg_4+Arg_7<=6 && 6+Arg_7<=Arg_2 && Arg_2+Arg_7<=6 && 50+Arg_7<=Arg_12 && Arg_12+Arg_7<=50 && 5+Arg_7<=Arg_1 && Arg_1+Arg_7<=5 && 50+Arg_7<=Arg_0 && Arg_0+Arg_7<=50 && 0<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_4+Arg_7 && Arg_4<=6+Arg_7 && 6<=Arg_2+Arg_7 && Arg_2<=6+Arg_7 && 50<=Arg_12+Arg_7 && Arg_12<=50+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && 50<=Arg_0+Arg_7 && Arg_0<=50+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 2<=Arg_6 && 7<=Arg_5+Arg_6 && Arg_5<=3+Arg_6 && 8<=Arg_4+Arg_6 && Arg_4<=4+Arg_6 && 8<=Arg_2+Arg_6 && Arg_2<=4+Arg_6 && 52<=Arg_12+Arg_6 && Arg_12<=48+Arg_6 && 7<=Arg_1+Arg_6 && Arg_1<=3+Arg_6 && 52<=Arg_0+Arg_6 && Arg_0<=48+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_5 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:
new bound:
135 {O(1)}
MPRF:
n_f70___14 [20*Arg_5+5-20*Arg_6 ]
n_f66___15 [20*Arg_5+5-20*Arg_6 ]
n_f70___16 [20*Arg_1+10-25*Arg_6 ]
MPRF for transition 230:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f66___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=4+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_6 && Arg_6<=Arg_7 of depth 1:
new bound:
56 {O(1)}
MPRF:
n_f70___14 [Arg_0+Arg_1-Arg_6 ]
n_f66___15 [Arg_1+49-Arg_7 ]
n_f70___16 [Arg_1+50-Arg_6 ]
MPRF for transition 231:n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f70___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=4+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=11 && 1+Arg_7<=Arg_2 && Arg_2+Arg_7<=11 && 45+Arg_7<=Arg_12 && Arg_12+Arg_7<=55 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 45+Arg_7<=Arg_0 && Arg_0+Arg_7<=55 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=4+Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && 1+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && 45+Arg_6<=Arg_12 && Arg_12+Arg_6<=55 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 45+Arg_6<=Arg_0 && Arg_0+Arg_6<=55 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_4+Arg_6 && Arg_4<=5+Arg_6 && 7<=Arg_2+Arg_6 && Arg_2<=5+Arg_6 && 51<=Arg_12+Arg_6 && Arg_12<=49+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && 51<=Arg_0+Arg_6 && Arg_0<=49+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=Arg_6 && H_P<=Arg_6 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:
new bound:
3650 {O(1)}
MPRF:
n_f70___14 [13*Arg_0+150*Arg_1+125*Arg_2+450*Arg_9-125*Arg_4-600*Arg_6 ]
n_f66___15 [13*Arg_0+125*Arg_2+450*Arg_9-600*Arg_6 ]
n_f70___16 [150*Arg_5+450*Arg_9+50-450*Arg_6-150*Arg_7 ]
MPRF for transition 236:n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,G_P,H_P,Arg_9,Arg_12):|:Arg_9<=5 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=6+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 11<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 4<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=7+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 6<=Arg_7 && 5<=Arg_6+Arg_7 && 3+Arg_6<=Arg_7 && 11<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 12<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 12<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 56<=Arg_12+Arg_7 && Arg_12<=44+Arg_7 && 11<=Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 56<=Arg_0+Arg_7 && Arg_0<=44+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_4+Arg_6 && Arg_4<=7+Arg_6 && 5<=Arg_2+Arg_6 && Arg_2<=7+Arg_6 && 49<=Arg_12+Arg_6 && Arg_12<=51+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && 49<=Arg_0+Arg_6 && Arg_0<=51+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_5<=Arg_7 && 0<=G_P && G_P+1<=H_P && H_P<=1+G_P && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
5 {O(1)}
MPRF:
n_f80___9 [Arg_6+2 ]
n_f84___8 [Arg_6+1 ]
n_f84___10 [Arg_6+1 ]
MPRF for transition 238:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f80___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 5<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=1+Arg_5 && 1+Arg_5<=Arg_7 of depth 1:
new bound:
54 {O(1)}
MPRF:
n_f80___9 [Arg_6+Arg_12 ]
n_f84___8 [Arg_0+Arg_6 ]
n_f84___10 [Arg_6+50 ]
MPRF for transition 239:n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=11 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 7<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 5<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_4 && Arg_4+Arg_7<=12 && Arg_7<=Arg_2 && Arg_2+Arg_7<=12 && 44+Arg_7<=Arg_12 && Arg_12+Arg_7<=56 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 44+Arg_7<=Arg_0 && Arg_0+Arg_7<=56 && 2<=Arg_7 && 2<=Arg_6+Arg_7 && 2+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_4+Arg_7 && Arg_4<=4+Arg_7 && 8<=Arg_2+Arg_7 && Arg_2<=4+Arg_7 && 52<=Arg_12+Arg_7 && Arg_12<=48+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && 52<=Arg_0+Arg_7 && Arg_0<=48+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 2+Arg_6<=Arg_2 && Arg_2+Arg_6<=10 && 46+Arg_6<=Arg_12 && Arg_12+Arg_6<=54 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 46+Arg_6<=Arg_0 && Arg_0+Arg_6<=54 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && Arg_7<=1+Arg_5 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:
new bound:
730 {O(1)}
MPRF:
n_f80___9 [100*Arg_6+66*Arg_9-Arg_0-25*Arg_7 ]
n_f84___8 [55*Arg_2+100*Arg_6+66*Arg_9-66*Arg_1-25*Arg_4-Arg_12 ]
n_f84___10 [30*Arg_4+100*Arg_6-25*Arg_7 ]
MPRF for transition 242:n_f84___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_12) -> n_f84___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,Arg_9,Arg_12):|:Arg_9<=5 && Arg_9<=4+Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=5+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=11 && 1+Arg_9<=Arg_2 && Arg_2+Arg_9<=11 && 45+Arg_9<=Arg_12 && Arg_12+Arg_9<=55 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 45+Arg_9<=Arg_0 && Arg_0+Arg_9<=55 && 5<=Arg_9 && 6<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 5<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 11<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 55<=Arg_12+Arg_9 && Arg_12<=45+Arg_9 && 10<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 55<=Arg_0+Arg_9 && Arg_0<=45+Arg_9 && Arg_7<=4 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=7 && 1+Arg_7<=Arg_5 && Arg_5+Arg_7<=9 && 2+Arg_7<=Arg_4 && Arg_4+Arg_7<=10 && 2+Arg_7<=Arg_2 && Arg_2+Arg_7<=10 && 46+Arg_7<=Arg_12 && Arg_12+Arg_7<=54 && 1+Arg_7<=Arg_1 && Arg_1+Arg_7<=9 && 46+Arg_7<=Arg_0 && Arg_0+Arg_7<=54 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_4+Arg_7 && Arg_4<=5+Arg_7 && 7<=Arg_2+Arg_7 && Arg_2<=5+Arg_7 && 51<=Arg_12+Arg_7 && Arg_12<=49+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && 51<=Arg_0+Arg_7 && Arg_0<=49+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_5+Arg_6<=8 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_2 && Arg_2+Arg_6<=9 && 47+Arg_6<=Arg_12 && Arg_12+Arg_6<=53 && 2+Arg_6<=Arg_1 && Arg_1+Arg_6<=8 && 47+Arg_6<=Arg_0 && Arg_0+Arg_6<=53 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_4+Arg_6 && Arg_4<=6+Arg_6 && 6<=Arg_2+Arg_6 && Arg_2<=6+Arg_6 && 50<=Arg_12+Arg_6 && Arg_12<=50+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && 50<=Arg_0+Arg_6 && Arg_0<=50+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=11 && 45+Arg_5<=Arg_12 && Arg_12+Arg_5<=55 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 45+Arg_5<=Arg_0 && Arg_0+Arg_5<=55 && 5<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 11<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 55<=Arg_12+Arg_5 && Arg_12<=45+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 55<=Arg_0+Arg_5 && Arg_0<=45+Arg_5 && Arg_4<=6 && Arg_4<=Arg_2 && Arg_2+Arg_4<=12 && 44+Arg_4<=Arg_12 && Arg_12+Arg_4<=56 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 44+Arg_4<=Arg_0 && Arg_0+Arg_4<=56 && 6<=Arg_4 && 12<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 56<=Arg_12+Arg_4 && Arg_12<=44+Arg_4 && 11<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 56<=Arg_0+Arg_4 && Arg_0<=44+Arg_4 && Arg_2<=6 && 44+Arg_2<=Arg_12 && Arg_12+Arg_2<=56 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=11 && 44+Arg_2<=Arg_0 && Arg_0+Arg_2<=56 && 6<=Arg_2 && 56<=Arg_12+Arg_2 && Arg_12<=44+Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 56<=Arg_0+Arg_2 && Arg_0<=44+Arg_2 && Arg_12<=50 && Arg_12<=45+Arg_1 && Arg_1+Arg_12<=55 && Arg_12<=Arg_0 && Arg_0+Arg_12<=100 && 50<=Arg_12 && 55<=Arg_1+Arg_12 && 45+Arg_1<=Arg_12 && 100<=Arg_0+Arg_12 && Arg_0<=Arg_12 && Arg_1<=5 && 45+Arg_1<=Arg_0 && Arg_0+Arg_1<=55 && 5<=Arg_1 && 55<=Arg_0+Arg_1 && Arg_0<=45+Arg_1 && Arg_0<=50 && 50<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_6 && 1<=Arg_7 && H_P<=1+Arg_5 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:
new bound:
4 {O(1)}
MPRF:
n_f80___9 [Arg_6+1 ]
n_f84___8 [Arg_7 ]
n_f84___10 [Arg_6 ]
All Bounds
Timebounds
Overall timebound:24237 {O(1)}
162: n_f0->n_f15___49: 1 {O(1)}
165: n_f15___46->n_f33___44: 1 {O(1)}
166: n_f15___49->n_f19___48: 1 {O(1)}
167: n_f15___6->n_f19___5: 5 {O(1)}
169: n_f19___3->n_f19___3: 1050 {O(1)}
170: n_f19___3->n_f19___47: 90 {O(1)}
171: n_f19___45->n_f15___6: 25 {O(1)}
172: n_f19___45->n_f19___45: 320 {O(1)}
173: n_f19___47->n_f15___46: 1 {O(1)}
174: n_f19___47->n_f19___45: 11 {O(1)}
175: n_f19___48->n_f19___47: 1 {O(1)}
177: n_f19___5->n_f19___3: 5 {O(1)}
184: n_f33___36->n_f36___34: 601 {O(1)}
185: n_f33___36->n_f66___33: 1 {O(1)}
186: n_f33___44->n_f36___43: 1 {O(1)}
191: n_f36___24->n_f41___31: 550 {O(1)}
193: n_f36___24->n_f50___22: 215 {O(1)}
197: n_f36___34->n_f41___31: 12 {O(1)}
199: n_f36___41->n_f36___41: 9 {O(1)}
200: n_f36___41->n_f50___40: 1 {O(1)}
201: n_f36___43->n_f36___41: 1 {O(1)}
202: n_f41___25->n_f36___24: 1887 {O(1)}
203: n_f41___25->n_f41___25: 4550 {O(1)}
204: n_f41___31->n_f41___25: 650 {O(1)}
209: n_f50___22->n_f54___35: 800 {O(1)}
214: n_f50___37->n_f33___36: 205 {O(1)}
215: n_f50___37->n_f54___35: 175 {O(1)}
216: n_f50___40->n_f54___39: 1 {O(1)}
219: n_f54___35->n_f54___38: 3450 {O(1)}
220: n_f54___38->n_f50___37: 3450 {O(1)}
221: n_f54___38->n_f54___38: 1505 {O(1)}
222: n_f54___39->n_f54___38: 1 {O(1)}
223: n_f66___15->n_f70___14: 21 {O(1)}
224: n_f66___15->n_f80___13: 1 {O(1)}
225: n_f66___33->n_f70___18: 1 {O(1)}
229: n_f70___14->n_f70___16: 135 {O(1)}
230: n_f70___16->n_f66___15: 56 {O(1)}
231: n_f70___16->n_f70___16: 3650 {O(1)}
232: n_f70___18->n_f70___16: 1 {O(1)}
233: n_f80___13->n_f84___12: 1 {O(1)}
236: n_f80___9->n_f84___8: 5 {O(1)}
237: n_f80___9->n_f96___7: 1 {O(1)}
238: n_f84___10->n_f80___9: 54 {O(1)}
239: n_f84___10->n_f84___10: 730 {O(1)}
240: n_f84___12->n_f84___10: 1 {O(1)}
242: n_f84___8->n_f84___10: 4 {O(1)}
Costbounds
Overall costbound: 24237 {O(1)}
162: n_f0->n_f15___49: 1 {O(1)}
165: n_f15___46->n_f33___44: 1 {O(1)}
166: n_f15___49->n_f19___48: 1 {O(1)}
167: n_f15___6->n_f19___5: 5 {O(1)}
169: n_f19___3->n_f19___3: 1050 {O(1)}
170: n_f19___3->n_f19___47: 90 {O(1)}
171: n_f19___45->n_f15___6: 25 {O(1)}
172: n_f19___45->n_f19___45: 320 {O(1)}
173: n_f19___47->n_f15___46: 1 {O(1)}
174: n_f19___47->n_f19___45: 11 {O(1)}
175: n_f19___48->n_f19___47: 1 {O(1)}
177: n_f19___5->n_f19___3: 5 {O(1)}
184: n_f33___36->n_f36___34: 601 {O(1)}
185: n_f33___36->n_f66___33: 1 {O(1)}
186: n_f33___44->n_f36___43: 1 {O(1)}
191: n_f36___24->n_f41___31: 550 {O(1)}
193: n_f36___24->n_f50___22: 215 {O(1)}
197: n_f36___34->n_f41___31: 12 {O(1)}
199: n_f36___41->n_f36___41: 9 {O(1)}
200: n_f36___41->n_f50___40: 1 {O(1)}
201: n_f36___43->n_f36___41: 1 {O(1)}
202: n_f41___25->n_f36___24: 1887 {O(1)}
203: n_f41___25->n_f41___25: 4550 {O(1)}
204: n_f41___31->n_f41___25: 650 {O(1)}
209: n_f50___22->n_f54___35: 800 {O(1)}
214: n_f50___37->n_f33___36: 205 {O(1)}
215: n_f50___37->n_f54___35: 175 {O(1)}
216: n_f50___40->n_f54___39: 1 {O(1)}
219: n_f54___35->n_f54___38: 3450 {O(1)}
220: n_f54___38->n_f50___37: 3450 {O(1)}
221: n_f54___38->n_f54___38: 1505 {O(1)}
222: n_f54___39->n_f54___38: 1 {O(1)}
223: n_f66___15->n_f70___14: 21 {O(1)}
224: n_f66___15->n_f80___13: 1 {O(1)}
225: n_f66___33->n_f70___18: 1 {O(1)}
229: n_f70___14->n_f70___16: 135 {O(1)}
230: n_f70___16->n_f66___15: 56 {O(1)}
231: n_f70___16->n_f70___16: 3650 {O(1)}
232: n_f70___18->n_f70___16: 1 {O(1)}
233: n_f80___13->n_f84___12: 1 {O(1)}
236: n_f80___9->n_f84___8: 5 {O(1)}
237: n_f80___9->n_f96___7: 1 {O(1)}
238: n_f84___10->n_f80___9: 54 {O(1)}
239: n_f84___10->n_f84___10: 730 {O(1)}
240: n_f84___12->n_f84___10: 1 {O(1)}
242: n_f84___8->n_f84___10: 4 {O(1)}
Sizebounds
162: n_f0->n_f15___49, Arg_0: 50 {O(1)}
162: n_f0->n_f15___49, Arg_1: 5 {O(1)}
162: n_f0->n_f15___49, Arg_2: 0 {O(1)}
162: n_f0->n_f15___49, Arg_3: Arg_3 {O(n)}
162: n_f0->n_f15___49, Arg_4: Arg_4 {O(n)}
162: n_f0->n_f15___49, Arg_5: Arg_5 {O(n)}
162: n_f0->n_f15___49, Arg_6: Arg_6 {O(n)}
162: n_f0->n_f15___49, Arg_7: Arg_7 {O(n)}
162: n_f0->n_f15___49, Arg_9: Arg_9 {O(n)}
162: n_f0->n_f15___49, Arg_12: Arg_12 {O(n)}
165: n_f15___46->n_f33___44, Arg_0: 50 {O(1)}
165: n_f15___46->n_f33___44, Arg_1: 5 {O(1)}
165: n_f15___46->n_f33___44, Arg_2: 6 {O(1)}
165: n_f15___46->n_f33___44, Arg_4: 6 {O(1)}
165: n_f15___46->n_f33___44, Arg_5: 5 {O(1)}
165: n_f15___46->n_f33___44, Arg_6: 0 {O(1)}
165: n_f15___46->n_f33___44, Arg_7: Arg_7 {O(n)}
165: n_f15___46->n_f33___44, Arg_9: Arg_9 {O(n)}
165: n_f15___46->n_f33___44, Arg_12: 50 {O(1)}
166: n_f15___49->n_f19___48, Arg_0: 50 {O(1)}
166: n_f15___49->n_f19___48, Arg_1: 5 {O(1)}
166: n_f15___49->n_f19___48, Arg_2: 0 {O(1)}
166: n_f15___49->n_f19___48, Arg_3: 0 {O(1)}
166: n_f15___49->n_f19___48, Arg_4: 0 {O(1)}
166: n_f15___49->n_f19___48, Arg_5: Arg_5 {O(n)}
166: n_f15___49->n_f19___48, Arg_6: Arg_6 {O(n)}
166: n_f15___49->n_f19___48, Arg_7: Arg_7 {O(n)}
166: n_f15___49->n_f19___48, Arg_9: Arg_9 {O(n)}
166: n_f15___49->n_f19___48, Arg_12: Arg_12 {O(n)}
167: n_f15___6->n_f19___5, Arg_0: 50 {O(1)}
167: n_f15___6->n_f19___5, Arg_1: 5 {O(1)}
167: n_f15___6->n_f19___5, Arg_2: 5 {O(1)}
167: n_f15___6->n_f19___5, Arg_3: 0 {O(1)}
167: n_f15___6->n_f19___5, Arg_4: 0 {O(1)}
167: n_f15___6->n_f19___5, Arg_5: Arg_5 {O(n)}
167: n_f15___6->n_f19___5, Arg_6: Arg_6 {O(n)}
167: n_f15___6->n_f19___5, Arg_7: Arg_7 {O(n)}
167: n_f15___6->n_f19___5, Arg_9: Arg_9 {O(n)}
167: n_f15___6->n_f19___5, Arg_12: Arg_12 {O(n)}
169: n_f19___3->n_f19___3, Arg_0: 50 {O(1)}
169: n_f19___3->n_f19___3, Arg_1: 5 {O(1)}
169: n_f19___3->n_f19___3, Arg_2: 5 {O(1)}
169: n_f19___3->n_f19___3, Arg_4: 5 {O(1)}
169: n_f19___3->n_f19___3, Arg_5: Arg_5 {O(n)}
169: n_f19___3->n_f19___3, Arg_6: Arg_6 {O(n)}
169: n_f19___3->n_f19___3, Arg_7: Arg_7 {O(n)}
169: n_f19___3->n_f19___3, Arg_9: Arg_9 {O(n)}
169: n_f19___3->n_f19___3, Arg_12: Arg_12 {O(n)}
170: n_f19___3->n_f19___47, Arg_0: 50 {O(1)}
170: n_f19___3->n_f19___47, Arg_1: 5 {O(1)}
170: n_f19___3->n_f19___47, Arg_2: 5 {O(1)}
170: n_f19___3->n_f19___47, Arg_4: 6 {O(1)}
170: n_f19___3->n_f19___47, Arg_5: Arg_5 {O(n)}
170: n_f19___3->n_f19___47, Arg_6: Arg_6 {O(n)}
170: n_f19___3->n_f19___47, Arg_7: Arg_7 {O(n)}
170: n_f19___3->n_f19___47, Arg_9: Arg_9 {O(n)}
170: n_f19___3->n_f19___47, Arg_12: Arg_12 {O(n)}
171: n_f19___45->n_f15___6, Arg_0: 50 {O(1)}
171: n_f19___45->n_f15___6, Arg_1: 5 {O(1)}
171: n_f19___45->n_f15___6, Arg_2: 5 {O(1)}
171: n_f19___45->n_f15___6, Arg_4: 6 {O(1)}
171: n_f19___45->n_f15___6, Arg_5: Arg_5 {O(n)}
171: n_f19___45->n_f15___6, Arg_6: Arg_6 {O(n)}
171: n_f19___45->n_f15___6, Arg_7: Arg_7 {O(n)}
171: n_f19___45->n_f15___6, Arg_9: Arg_9 {O(n)}
171: n_f19___45->n_f15___6, Arg_12: Arg_12 {O(n)}
172: n_f19___45->n_f19___45, Arg_0: 50 {O(1)}
172: n_f19___45->n_f19___45, Arg_1: 5 {O(1)}
172: n_f19___45->n_f19___45, Arg_2: 3 {O(1)}
172: n_f19___45->n_f19___45, Arg_4: 6 {O(1)}
172: n_f19___45->n_f19___45, Arg_5: Arg_5 {O(n)}
172: n_f19___45->n_f19___45, Arg_6: Arg_6 {O(n)}
172: n_f19___45->n_f19___45, Arg_7: Arg_7 {O(n)}
172: n_f19___45->n_f19___45, Arg_9: Arg_9 {O(n)}
172: n_f19___45->n_f19___45, Arg_12: Arg_12 {O(n)}
173: n_f19___47->n_f15___46, Arg_0: 50 {O(1)}
173: n_f19___47->n_f15___46, Arg_1: 5 {O(1)}
173: n_f19___47->n_f15___46, Arg_2: 6 {O(1)}
173: n_f19___47->n_f15___46, Arg_4: 6 {O(1)}
173: n_f19___47->n_f15___46, Arg_5: Arg_5 {O(n)}
173: n_f19___47->n_f15___46, Arg_6: Arg_6 {O(n)}
173: n_f19___47->n_f15___46, Arg_7: Arg_7 {O(n)}
173: n_f19___47->n_f15___46, Arg_9: Arg_9 {O(n)}
173: n_f19___47->n_f15___46, Arg_12: Arg_12 {O(n)}
174: n_f19___47->n_f19___45, Arg_0: 50 {O(1)}
174: n_f19___47->n_f19___45, Arg_1: 5 {O(1)}
174: n_f19___47->n_f19___45, Arg_2: 4 {O(1)}
174: n_f19___47->n_f19___45, Arg_4: 6 {O(1)}
174: n_f19___47->n_f19___45, Arg_5: Arg_5 {O(n)}
174: n_f19___47->n_f19___45, Arg_6: Arg_6 {O(n)}
174: n_f19___47->n_f19___45, Arg_7: Arg_7 {O(n)}
174: n_f19___47->n_f19___45, Arg_9: Arg_9 {O(n)}
174: n_f19___47->n_f19___45, Arg_12: Arg_12 {O(n)}
175: n_f19___48->n_f19___47, Arg_0: 50 {O(1)}
175: n_f19___48->n_f19___47, Arg_1: 5 {O(1)}
175: n_f19___48->n_f19___47, Arg_2: 0 {O(1)}
175: n_f19___48->n_f19___47, Arg_4: 1 {O(1)}
175: n_f19___48->n_f19___47, Arg_5: Arg_5 {O(n)}
175: n_f19___48->n_f19___47, Arg_6: Arg_6 {O(n)}
175: n_f19___48->n_f19___47, Arg_7: Arg_7 {O(n)}
175: n_f19___48->n_f19___47, Arg_9: Arg_9 {O(n)}
175: n_f19___48->n_f19___47, Arg_12: Arg_12 {O(n)}
177: n_f19___5->n_f19___3, Arg_0: 50 {O(1)}
177: n_f19___5->n_f19___3, Arg_1: 5 {O(1)}
177: n_f19___5->n_f19___3, Arg_2: 5 {O(1)}
177: n_f19___5->n_f19___3, Arg_4: 1 {O(1)}
177: n_f19___5->n_f19___3, Arg_5: Arg_5 {O(n)}
177: n_f19___5->n_f19___3, Arg_6: Arg_6 {O(n)}
177: n_f19___5->n_f19___3, Arg_7: Arg_7 {O(n)}
177: n_f19___5->n_f19___3, Arg_9: Arg_9 {O(n)}
177: n_f19___5->n_f19___3, Arg_12: Arg_12 {O(n)}
184: n_f33___36->n_f36___34, Arg_0: 50 {O(1)}
184: n_f33___36->n_f36___34, Arg_1: 5 {O(1)}
184: n_f33___36->n_f36___34, Arg_2: 6 {O(1)}
184: n_f33___36->n_f36___34, Arg_4: 6 {O(1)}
184: n_f33___36->n_f36___34, Arg_5: 5 {O(1)}
184: n_f33___36->n_f36___34, Arg_6: 4 {O(1)}
184: n_f33___36->n_f36___34, Arg_7: 5 {O(1)}
184: n_f33___36->n_f36___34, Arg_9: 4 {O(1)}
184: n_f33___36->n_f36___34, Arg_12: 50 {O(1)}
185: n_f33___36->n_f66___33, Arg_0: 50 {O(1)}
185: n_f33___36->n_f66___33, Arg_1: 5 {O(1)}
185: n_f33___36->n_f66___33, Arg_2: 6 {O(1)}
185: n_f33___36->n_f66___33, Arg_4: 6 {O(1)}
185: n_f33___36->n_f66___33, Arg_5: 5 {O(1)}
185: n_f33___36->n_f66___33, Arg_6: 1 {O(1)}
185: n_f33___36->n_f66___33, Arg_7: 6 {O(1)}
185: n_f33___36->n_f66___33, Arg_9: 5 {O(1)}
185: n_f33___36->n_f66___33, Arg_12: 50 {O(1)}
186: n_f33___44->n_f36___43, Arg_0: 50 {O(1)}
186: n_f33___44->n_f36___43, Arg_1: 5 {O(1)}
186: n_f33___44->n_f36___43, Arg_2: 6 {O(1)}
186: n_f33___44->n_f36___43, Arg_4: 6 {O(1)}
186: n_f33___44->n_f36___43, Arg_5: 5 {O(1)}
186: n_f33___44->n_f36___43, Arg_6: 0 {O(1)}
186: n_f33___44->n_f36___43, Arg_7: 1 {O(1)}
186: n_f33___44->n_f36___43, Arg_9: Arg_9 {O(n)}
186: n_f33___44->n_f36___43, Arg_12: 50 {O(1)}
191: n_f36___24->n_f41___31, Arg_0: 50 {O(1)}
191: n_f36___24->n_f41___31, Arg_1: 5 {O(1)}
191: n_f36___24->n_f41___31, Arg_2: 6 {O(1)}
191: n_f36___24->n_f41___31, Arg_4: 6 {O(1)}
191: n_f36___24->n_f41___31, Arg_5: 5 {O(1)}
191: n_f36___24->n_f41___31, Arg_6: 3 {O(1)}
191: n_f36___24->n_f41___31, Arg_7: 5 {O(1)}
191: n_f36___24->n_f41___31, Arg_9: 0 {O(1)}
191: n_f36___24->n_f41___31, Arg_12: 50 {O(1)}
193: n_f36___24->n_f50___22, Arg_0: 50 {O(1)}
193: n_f36___24->n_f50___22, Arg_1: 5 {O(1)}
193: n_f36___24->n_f50___22, Arg_2: 6 {O(1)}
193: n_f36___24->n_f50___22, Arg_4: 6 {O(1)}
193: n_f36___24->n_f50___22, Arg_5: 5 {O(1)}
193: n_f36___24->n_f50___22, Arg_6: 4 {O(1)}
193: n_f36___24->n_f50___22, Arg_7: 5 {O(1)}
193: n_f36___24->n_f50___22, Arg_9: 4 {O(1)}
193: n_f36___24->n_f50___22, Arg_12: 50 {O(1)}
197: n_f36___34->n_f41___31, Arg_0: 50 {O(1)}
197: n_f36___34->n_f41___31, Arg_1: 5 {O(1)}
197: n_f36___34->n_f41___31, Arg_2: 6 {O(1)}
197: n_f36___34->n_f41___31, Arg_4: 6 {O(1)}
197: n_f36___34->n_f41___31, Arg_5: 5 {O(1)}
197: n_f36___34->n_f41___31, Arg_6: 4 {O(1)}
197: n_f36___34->n_f41___31, Arg_7: 5 {O(1)}
197: n_f36___34->n_f41___31, Arg_9: 0 {O(1)}
197: n_f36___34->n_f41___31, Arg_12: 50 {O(1)}
199: n_f36___41->n_f36___41, Arg_0: 50 {O(1)}
199: n_f36___41->n_f36___41, Arg_1: 5 {O(1)}
199: n_f36___41->n_f36___41, Arg_2: 6 {O(1)}
199: n_f36___41->n_f36___41, Arg_4: 6 {O(1)}
199: n_f36___41->n_f36___41, Arg_5: 5 {O(1)}
199: n_f36___41->n_f36___41, Arg_6: 0 {O(1)}
199: n_f36___41->n_f36___41, Arg_7: 6 {O(1)}
199: n_f36___41->n_f36___41, Arg_9: Arg_9 {O(n)}
199: n_f36___41->n_f36___41, Arg_12: 50 {O(1)}
200: n_f36___41->n_f50___40, Arg_0: 50 {O(1)}
200: n_f36___41->n_f50___40, Arg_1: 5 {O(1)}
200: n_f36___41->n_f50___40, Arg_2: 6 {O(1)}
200: n_f36___41->n_f50___40, Arg_4: 6 {O(1)}
200: n_f36___41->n_f50___40, Arg_5: 5 {O(1)}
200: n_f36___41->n_f50___40, Arg_6: 0 {O(1)}
200: n_f36___41->n_f50___40, Arg_7: 1 {O(1)}
200: n_f36___41->n_f50___40, Arg_9: Arg_9 {O(n)}
200: n_f36___41->n_f50___40, Arg_12: 50 {O(1)}
201: n_f36___43->n_f36___41, Arg_0: 50 {O(1)}
201: n_f36___43->n_f36___41, Arg_1: 5 {O(1)}
201: n_f36___43->n_f36___41, Arg_2: 6 {O(1)}
201: n_f36___43->n_f36___41, Arg_4: 6 {O(1)}
201: n_f36___43->n_f36___41, Arg_5: 5 {O(1)}
201: n_f36___43->n_f36___41, Arg_6: 0 {O(1)}
201: n_f36___43->n_f36___41, Arg_7: 2 {O(1)}
201: n_f36___43->n_f36___41, Arg_9: Arg_9 {O(n)}
201: n_f36___43->n_f36___41, Arg_12: 50 {O(1)}
202: n_f41___25->n_f36___24, Arg_0: 50 {O(1)}
202: n_f41___25->n_f36___24, Arg_1: 5 {O(1)}
202: n_f41___25->n_f36___24, Arg_2: 6 {O(1)}
202: n_f41___25->n_f36___24, Arg_4: 6 {O(1)}
202: n_f41___25->n_f36___24, Arg_5: 5 {O(1)}
202: n_f41___25->n_f36___24, Arg_6: 4 {O(1)}
202: n_f41___25->n_f36___24, Arg_7: 6 {O(1)}
202: n_f41___25->n_f36___24, Arg_9: 4 {O(1)}
202: n_f41___25->n_f36___24, Arg_12: 50 {O(1)}
203: n_f41___25->n_f41___25, Arg_0: 50 {O(1)}
203: n_f41___25->n_f41___25, Arg_1: 5 {O(1)}
203: n_f41___25->n_f41___25, Arg_2: 6 {O(1)}
203: n_f41___25->n_f41___25, Arg_4: 6 {O(1)}
203: n_f41___25->n_f41___25, Arg_5: 5 {O(1)}
203: n_f41___25->n_f41___25, Arg_6: 4 {O(1)}
203: n_f41___25->n_f41___25, Arg_7: 5 {O(1)}
203: n_f41___25->n_f41___25, Arg_9: 4 {O(1)}
203: n_f41___25->n_f41___25, Arg_12: 50 {O(1)}
204: n_f41___31->n_f41___25, Arg_0: 50 {O(1)}
204: n_f41___31->n_f41___25, Arg_1: 5 {O(1)}
204: n_f41___31->n_f41___25, Arg_2: 6 {O(1)}
204: n_f41___31->n_f41___25, Arg_4: 6 {O(1)}
204: n_f41___31->n_f41___25, Arg_5: 5 {O(1)}
204: n_f41___31->n_f41___25, Arg_6: 4 {O(1)}
204: n_f41___31->n_f41___25, Arg_7: 5 {O(1)}
204: n_f41___31->n_f41___25, Arg_9: 1 {O(1)}
204: n_f41___31->n_f41___25, Arg_12: 50 {O(1)}
209: n_f50___22->n_f54___35, Arg_0: 50 {O(1)}
209: n_f50___22->n_f54___35, Arg_1: 5 {O(1)}
209: n_f50___22->n_f54___35, Arg_2: 6 {O(1)}
209: n_f50___22->n_f54___35, Arg_4: 6 {O(1)}
209: n_f50___22->n_f54___35, Arg_5: 5 {O(1)}
209: n_f50___22->n_f54___35, Arg_6: 4 {O(1)}
209: n_f50___22->n_f54___35, Arg_7: 5 {O(1)}
209: n_f50___22->n_f54___35, Arg_9: 0 {O(1)}
209: n_f50___22->n_f54___35, Arg_12: 50 {O(1)}
214: n_f50___37->n_f33___36, Arg_0: 50 {O(1)}
214: n_f50___37->n_f33___36, Arg_1: 5 {O(1)}
214: n_f50___37->n_f33___36, Arg_2: 6 {O(1)}
214: n_f50___37->n_f33___36, Arg_4: 6 {O(1)}
214: n_f50___37->n_f33___36, Arg_5: 5 {O(1)}
214: n_f50___37->n_f33___36, Arg_6: 5 {O(1)}
214: n_f50___37->n_f33___36, Arg_7: 6 {O(1)}
214: n_f50___37->n_f33___36, Arg_9: 5 {O(1)}
214: n_f50___37->n_f33___36, Arg_12: 50 {O(1)}
215: n_f50___37->n_f54___35, Arg_0: 50 {O(1)}
215: n_f50___37->n_f54___35, Arg_1: 5 {O(1)}
215: n_f50___37->n_f54___35, Arg_2: 6 {O(1)}
215: n_f50___37->n_f54___35, Arg_4: 6 {O(1)}
215: n_f50___37->n_f54___35, Arg_5: 5 {O(1)}
215: n_f50___37->n_f54___35, Arg_6: 3 {O(1)}
215: n_f50___37->n_f54___35, Arg_7: 5 {O(1)}
215: n_f50___37->n_f54___35, Arg_9: 0 {O(1)}
215: n_f50___37->n_f54___35, Arg_12: 50 {O(1)}
216: n_f50___40->n_f54___39, Arg_0: 50 {O(1)}
216: n_f50___40->n_f54___39, Arg_1: 5 {O(1)}
216: n_f50___40->n_f54___39, Arg_2: 6 {O(1)}
216: n_f50___40->n_f54___39, Arg_4: 6 {O(1)}
216: n_f50___40->n_f54___39, Arg_5: 5 {O(1)}
216: n_f50___40->n_f54___39, Arg_6: 0 {O(1)}
216: n_f50___40->n_f54___39, Arg_7: 1 {O(1)}
216: n_f50___40->n_f54___39, Arg_9: 0 {O(1)}
216: n_f50___40->n_f54___39, Arg_12: 50 {O(1)}
219: n_f54___35->n_f54___38, Arg_0: 50 {O(1)}
219: n_f54___35->n_f54___38, Arg_1: 5 {O(1)}
219: n_f54___35->n_f54___38, Arg_2: 6 {O(1)}
219: n_f54___35->n_f54___38, Arg_4: 6 {O(1)}
219: n_f54___35->n_f54___38, Arg_5: 5 {O(1)}
219: n_f54___35->n_f54___38, Arg_6: 4 {O(1)}
219: n_f54___35->n_f54___38, Arg_7: 5 {O(1)}
219: n_f54___35->n_f54___38, Arg_9: 1 {O(1)}
219: n_f54___35->n_f54___38, Arg_12: 50 {O(1)}
220: n_f54___38->n_f50___37, Arg_0: 50 {O(1)}
220: n_f54___38->n_f50___37, Arg_1: 5 {O(1)}
220: n_f54___38->n_f50___37, Arg_2: 6 {O(1)}
220: n_f54___38->n_f50___37, Arg_4: 6 {O(1)}
220: n_f54___38->n_f50___37, Arg_5: 5 {O(1)}
220: n_f54___38->n_f50___37, Arg_6: 4 {O(1)}
220: n_f54___38->n_f50___37, Arg_7: 6 {O(1)}
220: n_f54___38->n_f50___37, Arg_9: 5 {O(1)}
220: n_f54___38->n_f50___37, Arg_12: 50 {O(1)}
221: n_f54___38->n_f54___38, Arg_0: 50 {O(1)}
221: n_f54___38->n_f54___38, Arg_1: 5 {O(1)}
221: n_f54___38->n_f54___38, Arg_2: 6 {O(1)}
221: n_f54___38->n_f54___38, Arg_4: 6 {O(1)}
221: n_f54___38->n_f54___38, Arg_5: 5 {O(1)}
221: n_f54___38->n_f54___38, Arg_6: 4 {O(1)}
221: n_f54___38->n_f54___38, Arg_7: 5 {O(1)}
221: n_f54___38->n_f54___38, Arg_9: 5 {O(1)}
221: n_f54___38->n_f54___38, Arg_12: 50 {O(1)}
222: n_f54___39->n_f54___38, Arg_0: 50 {O(1)}
222: n_f54___39->n_f54___38, Arg_1: 5 {O(1)}
222: n_f54___39->n_f54___38, Arg_2: 6 {O(1)}
222: n_f54___39->n_f54___38, Arg_4: 6 {O(1)}
222: n_f54___39->n_f54___38, Arg_5: 5 {O(1)}
222: n_f54___39->n_f54___38, Arg_6: 0 {O(1)}
222: n_f54___39->n_f54___38, Arg_7: 1 {O(1)}
222: n_f54___39->n_f54___38, Arg_9: 1 {O(1)}
222: n_f54___39->n_f54___38, Arg_12: 50 {O(1)}
223: n_f66___15->n_f70___14, Arg_0: 50 {O(1)}
223: n_f66___15->n_f70___14, Arg_1: 5 {O(1)}
223: n_f66___15->n_f70___14, Arg_2: 6 {O(1)}
223: n_f66___15->n_f70___14, Arg_4: 6 {O(1)}
223: n_f66___15->n_f70___14, Arg_5: 5 {O(1)}
223: n_f66___15->n_f70___14, Arg_6: 5 {O(1)}
223: n_f66___15->n_f70___14, Arg_7: 0 {O(1)}
223: n_f66___15->n_f70___14, Arg_9: 5 {O(1)}
223: n_f66___15->n_f70___14, Arg_12: 50 {O(1)}
224: n_f66___15->n_f80___13, Arg_0: 50 {O(1)}
224: n_f66___15->n_f80___13, Arg_1: 5 {O(1)}
224: n_f66___15->n_f80___13, Arg_2: 6 {O(1)}
224: n_f66___15->n_f80___13, Arg_4: 6 {O(1)}
224: n_f66___15->n_f80___13, Arg_5: 5 {O(1)}
224: n_f66___15->n_f80___13, Arg_6: 4 {O(1)}
224: n_f66___15->n_f80___13, Arg_7: 5 {O(1)}
224: n_f66___15->n_f80___13, Arg_9: 5 {O(1)}
224: n_f66___15->n_f80___13, Arg_12: 50 {O(1)}
225: n_f66___33->n_f70___18, Arg_0: 50 {O(1)}
225: n_f66___33->n_f70___18, Arg_1: 5 {O(1)}
225: n_f66___33->n_f70___18, Arg_2: 6 {O(1)}
225: n_f66___33->n_f70___18, Arg_4: 6 {O(1)}
225: n_f66___33->n_f70___18, Arg_5: 5 {O(1)}
225: n_f66___33->n_f70___18, Arg_6: 1 {O(1)}
225: n_f66___33->n_f70___18, Arg_7: 0 {O(1)}
225: n_f66___33->n_f70___18, Arg_9: 5 {O(1)}
225: n_f66___33->n_f70___18, Arg_12: 50 {O(1)}
229: n_f70___14->n_f70___16, Arg_0: 50 {O(1)}
229: n_f70___14->n_f70___16, Arg_1: 5 {O(1)}
229: n_f70___14->n_f70___16, Arg_2: 6 {O(1)}
229: n_f70___14->n_f70___16, Arg_4: 6 {O(1)}
229: n_f70___14->n_f70___16, Arg_5: 5 {O(1)}
229: n_f70___14->n_f70___16, Arg_6: 5 {O(1)}
229: n_f70___14->n_f70___16, Arg_7: 1 {O(1)}
229: n_f70___14->n_f70___16, Arg_9: 5 {O(1)}
229: n_f70___14->n_f70___16, Arg_12: 50 {O(1)}
230: n_f70___16->n_f66___15, Arg_0: 50 {O(1)}
230: n_f70___16->n_f66___15, Arg_1: 5 {O(1)}
230: n_f70___16->n_f66___15, Arg_2: 6 {O(1)}
230: n_f70___16->n_f66___15, Arg_4: 6 {O(1)}
230: n_f70___16->n_f66___15, Arg_5: 5 {O(1)}
230: n_f70___16->n_f66___15, Arg_6: 6 {O(1)}
230: n_f70___16->n_f66___15, Arg_7: 5 {O(1)}
230: n_f70___16->n_f66___15, Arg_9: 5 {O(1)}
230: n_f70___16->n_f66___15, Arg_12: 50 {O(1)}
231: n_f70___16->n_f70___16, Arg_0: 50 {O(1)}
231: n_f70___16->n_f70___16, Arg_1: 5 {O(1)}
231: n_f70___16->n_f70___16, Arg_2: 6 {O(1)}
231: n_f70___16->n_f70___16, Arg_4: 6 {O(1)}
231: n_f70___16->n_f70___16, Arg_5: 5 {O(1)}
231: n_f70___16->n_f70___16, Arg_6: 5 {O(1)}
231: n_f70___16->n_f70___16, Arg_7: 5 {O(1)}
231: n_f70___16->n_f70___16, Arg_9: 5 {O(1)}
231: n_f70___16->n_f70___16, Arg_12: 50 {O(1)}
232: n_f70___18->n_f70___16, Arg_0: 50 {O(1)}
232: n_f70___18->n_f70___16, Arg_1: 5 {O(1)}
232: n_f70___18->n_f70___16, Arg_2: 6 {O(1)}
232: n_f70___18->n_f70___16, Arg_4: 6 {O(1)}
232: n_f70___18->n_f70___16, Arg_5: 5 {O(1)}
232: n_f70___18->n_f70___16, Arg_6: 1 {O(1)}
232: n_f70___18->n_f70___16, Arg_7: 1 {O(1)}
232: n_f70___18->n_f70___16, Arg_9: 5 {O(1)}
232: n_f70___18->n_f70___16, Arg_12: 50 {O(1)}
233: n_f80___13->n_f84___12, Arg_0: 50 {O(1)}
233: n_f80___13->n_f84___12, Arg_1: 5 {O(1)}
233: n_f80___13->n_f84___12, Arg_2: 6 {O(1)}
233: n_f80___13->n_f84___12, Arg_4: 6 {O(1)}
233: n_f80___13->n_f84___12, Arg_5: 5 {O(1)}
233: n_f80___13->n_f84___12, Arg_6: 4 {O(1)}
233: n_f80___13->n_f84___12, Arg_7: 5 {O(1)}
233: n_f80___13->n_f84___12, Arg_9: 5 {O(1)}
233: n_f80___13->n_f84___12, Arg_12: 50 {O(1)}
236: n_f80___9->n_f84___8, Arg_0: 50 {O(1)}
236: n_f80___9->n_f84___8, Arg_1: 5 {O(1)}
236: n_f80___9->n_f84___8, Arg_2: 6 {O(1)}
236: n_f80___9->n_f84___8, Arg_4: 6 {O(1)}
236: n_f80___9->n_f84___8, Arg_5: 5 {O(1)}
236: n_f80___9->n_f84___8, Arg_6: 3 {O(1)}
236: n_f80___9->n_f84___8, Arg_7: 4 {O(1)}
236: n_f80___9->n_f84___8, Arg_9: 5 {O(1)}
236: n_f80___9->n_f84___8, Arg_12: 50 {O(1)}
237: n_f80___9->n_f96___7, Arg_0: 50 {O(1)}
237: n_f80___9->n_f96___7, Arg_1: 5 {O(1)}
237: n_f80___9->n_f96___7, Arg_2: 6 {O(1)}
237: n_f80___9->n_f96___7, Arg_4: 6 {O(1)}
237: n_f80___9->n_f96___7, Arg_5: 5 {O(1)}
237: n_f80___9->n_f96___7, Arg_6: 1 {O(1)}
237: n_f80___9->n_f96___7, Arg_7: 6 {O(1)}
237: n_f80___9->n_f96___7, Arg_9: 5 {O(1)}
237: n_f80___9->n_f96___7, Arg_12: 50 {O(1)}
238: n_f84___10->n_f80___9, Arg_0: 50 {O(1)}
238: n_f84___10->n_f80___9, Arg_1: 5 {O(1)}
238: n_f84___10->n_f80___9, Arg_2: 6 {O(1)}
238: n_f84___10->n_f80___9, Arg_4: 6 {O(1)}
238: n_f84___10->n_f80___9, Arg_5: 5 {O(1)}
238: n_f84___10->n_f80___9, Arg_6: 3 {O(1)}
238: n_f84___10->n_f80___9, Arg_7: 6 {O(1)}
238: n_f84___10->n_f80___9, Arg_9: 5 {O(1)}
238: n_f84___10->n_f80___9, Arg_12: 50 {O(1)}
239: n_f84___10->n_f84___10, Arg_0: 50 {O(1)}
239: n_f84___10->n_f84___10, Arg_1: 5 {O(1)}
239: n_f84___10->n_f84___10, Arg_2: 6 {O(1)}
239: n_f84___10->n_f84___10, Arg_4: 6 {O(1)}
239: n_f84___10->n_f84___10, Arg_5: 5 {O(1)}
239: n_f84___10->n_f84___10, Arg_6: 3 {O(1)}
239: n_f84___10->n_f84___10, Arg_7: 6 {O(1)}
239: n_f84___10->n_f84___10, Arg_9: 5 {O(1)}
239: n_f84___10->n_f84___10, Arg_12: 50 {O(1)}
240: n_f84___12->n_f84___10, Arg_0: 50 {O(1)}
240: n_f84___12->n_f84___10, Arg_1: 5 {O(1)}
240: n_f84___12->n_f84___10, Arg_2: 6 {O(1)}
240: n_f84___12->n_f84___10, Arg_4: 6 {O(1)}
240: n_f84___12->n_f84___10, Arg_5: 5 {O(1)}
240: n_f84___12->n_f84___10, Arg_6: 4 {O(1)}
240: n_f84___12->n_f84___10, Arg_7: 6 {O(1)}
240: n_f84___12->n_f84___10, Arg_9: 5 {O(1)}
240: n_f84___12->n_f84___10, Arg_12: 50 {O(1)}
242: n_f84___8->n_f84___10, Arg_0: 50 {O(1)}
242: n_f84___8->n_f84___10, Arg_1: 5 {O(1)}
242: n_f84___8->n_f84___10, Arg_2: 6 {O(1)}
242: n_f84___8->n_f84___10, Arg_4: 6 {O(1)}
242: n_f84___8->n_f84___10, Arg_5: 5 {O(1)}
242: n_f84___8->n_f84___10, Arg_6: 3 {O(1)}
242: n_f84___8->n_f84___10, Arg_7: 5 {O(1)}
242: n_f84___8->n_f84___10, Arg_9: 5 {O(1)}
242: n_f84___8->n_f84___10, Arg_12: 50 {O(1)}