Start: n_f22
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: B_P, C_P, D_P, F_P, H_P, J_P, K_P, L_P, M_P, NoDet0, NoDet1
Locations: n_f17___3, n_f17___4, n_f18___5, n_f18___6, n_f20___1, n_f20___2, n_f22
Transitions:
0:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 1+Arg_1<=Arg_0 && 0<=Arg_3 && 0<=C_P && Arg_2<=C_P && C_P<=Arg_2
1:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_3 && 0<=C_P && 1+Arg_0<=Arg_1 && Arg_2<=C_P && C_P<=Arg_2
2:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f20___1(Arg_0,Arg_0,C_P,D_P,Arg_4,Arg_5,NoDet0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 0<=D_P && 0<=C_P && Arg_3<=D_P && D_P<=Arg_3 && Arg_2<=C_P && C_P<=Arg_2 && Arg_0<=Arg_1 && Arg_1<=Arg_0
3:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_0 && 0<=Arg_3 && 0<=C_P && Arg_2<=C_P && C_P<=Arg_2
4:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 0<=Arg_3 && 0<=C_P && 1+Arg_0<=Arg_1 && Arg_2<=C_P && C_P<=Arg_2
5:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f20___2(Arg_0,Arg_0,C_P,D_P,Arg_4,Arg_5,NoDet0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 0<=D_P && 0<=C_P && Arg_3<=D_P && D_P<=Arg_3 && Arg_2<=C_P && C_P<=Arg_2 && Arg_0<=Arg_1 && Arg_1<=Arg_0
6:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___4(Arg_0,NoDet0,Arg_2,1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1+Arg_0<=Arg_1 && 0<=Arg_5 && Arg_14<=0 && 0<=Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_9<=Arg_10 && Arg_10<=Arg_9 && Arg_8<=2 && 2<=Arg_8 && 0<=Arg_5 && 1+Arg_0<=Arg_1
7:n_f18___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___4(Arg_0,NoDet0,Arg_2,1,NoDet1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:0<=Arg_5 && 1+Arg_1<=Arg_0 && Arg_14<=0 && 0<=Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_8<=2 && 2<=Arg_8 && Arg_9<=Arg_10 && Arg_10<=Arg_9 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && 1+Arg_1<=Arg_0 && 0<=Arg_5
8:n_f22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f18___5(Arg_0,B_P,Arg_2,Arg_3,Arg_4,F_P,NoDet0,H_P,2,J_P,K_P,L_P,M_P,3,0):|:1+Arg_0<=B_P && 0<=F_P && J_P<=K_P && K_P<=J_P && J_P<=M_P && M_P<=J_P && B_P<=H_P && H_P<=B_P && Arg_7<=B_P && B_P<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && J_P<=L_P && L_P<=J_P
9:n_f22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f18___6(Arg_0,B_P,Arg_2,Arg_3,Arg_4,F_P,NoDet0,H_P,2,J_P,K_P,L_P,M_P,3,0):|:0<=F_P && 1+B_P<=Arg_0 && J_P<=K_P && K_P<=J_P && J_P<=L_P && L_P<=J_P && B_P<=H_P && H_P<=B_P && Arg_7<=B_P && B_P<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && J_P<=M_P && M_P<=J_P
Eliminate variables {NoDet1,Arg_4,Arg_6} that do not contribute to the problem
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_1<=Arg_7 && 0<=Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 1+Arg_1<=Arg_0 for location n_f18___6
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=Arg_3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 4<=Arg_3+Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 2<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_14+Arg_3 && 2+Arg_14<=Arg_3 && 5<=Arg_13+Arg_3 && Arg_13<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f20___1
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 0<=Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 1+Arg_0<=Arg_1 for location n_f18___5
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=Arg_3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 4<=Arg_3+Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 2<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_14+Arg_3 && 2+Arg_14<=Arg_3 && 5<=Arg_13+Arg_3 && Arg_13<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 for location n_f17___3
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=1+Arg_3 && Arg_3+Arg_8<=3 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 3<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_14 && Arg_14+Arg_3<=1 && 2+Arg_3<=Arg_13 && Arg_13+Arg_3<=4 && 1<=Arg_3 && 1<=Arg_14+Arg_3 && 1+Arg_14<=Arg_3 && 4<=Arg_13+Arg_3 && Arg_13<=2+Arg_3 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 for location n_f17___4
Found invariant Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=1+Arg_3 && Arg_3+Arg_8<=3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 3<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_14 && Arg_14+Arg_3<=1 && 2+Arg_3<=Arg_13 && Arg_13+Arg_3<=4 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_14+Arg_3 && 1+Arg_14<=Arg_3 && 4<=Arg_13+Arg_3 && Arg_13<=2+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f20___2
Start: n_f22
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_5, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: B_P, C_P, D_P, F_P, H_P, J_P, K_P, L_P, M_P, NoDet0
Locations: n_f17___3, n_f17___4, n_f18___5, n_f18___6, n_f20___1, n_f20___2, n_f22
Transitions:
19:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=Arg_3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 4<=Arg_3+Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 2<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_14+Arg_3 && 2+Arg_14<=Arg_3 && 5<=Arg_13+Arg_3 && Arg_13<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 1+Arg_1<=Arg_0 && 0<=Arg_3 && 0<=C_P && Arg_2<=C_P && C_P<=Arg_2
20:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=Arg_3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 4<=Arg_3+Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 2<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_14+Arg_3 && 2+Arg_14<=Arg_3 && 5<=Arg_13+Arg_3 && Arg_13<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_3 && 0<=C_P && 1+Arg_0<=Arg_1 && Arg_2<=C_P && C_P<=Arg_2
21:n_f17___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f20___1(Arg_0,Arg_0,C_P,D_P,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=Arg_3 && Arg_8<=2+Arg_2 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 4<=Arg_3+Arg_8 && 2<=Arg_2+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 2<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_14+Arg_3 && 2+Arg_14<=Arg_3 && 5<=Arg_13+Arg_3 && Arg_13<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_14<=Arg_2 && 3<=Arg_13+Arg_2 && Arg_13<=3+Arg_2 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && 0<=Arg_2 && 0<=Arg_2 && 1<=Arg_3 && 0<=Arg_2 && 1<=Arg_3 && 0<=D_P && 0<=C_P && Arg_3<=D_P && D_P<=Arg_3 && Arg_2<=C_P && C_P<=Arg_2 && Arg_0<=Arg_1 && Arg_1<=Arg_0
22:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=1+Arg_3 && Arg_3+Arg_8<=3 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 3<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_14 && Arg_14+Arg_3<=1 && 2+Arg_3<=Arg_13 && Arg_13+Arg_3<=4 && 1<=Arg_3 && 1<=Arg_14+Arg_3 && 1+Arg_14<=Arg_3 && 4<=Arg_13+Arg_3 && Arg_13<=2+Arg_3 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_0 && 0<=Arg_3 && 0<=C_P && Arg_2<=C_P && C_P<=Arg_2
23:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___3(Arg_0,NoDet0,C_P,Arg_3+1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=1+Arg_3 && Arg_3+Arg_8<=3 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 3<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_14 && Arg_14+Arg_3<=1 && 2+Arg_3<=Arg_13 && Arg_13+Arg_3<=4 && 1<=Arg_3 && 1<=Arg_14+Arg_3 && 1+Arg_14<=Arg_3 && 4<=Arg_13+Arg_3 && Arg_13<=2+Arg_3 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 0<=Arg_3 && 0<=C_P && 1+Arg_0<=Arg_1 && Arg_2<=C_P && C_P<=Arg_2
24:n_f17___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f20___2(Arg_0,Arg_0,C_P,D_P,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=1+Arg_3 && Arg_3+Arg_8<=3 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 3<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_14 && Arg_14+Arg_3<=1 && 2+Arg_3<=Arg_13 && Arg_13+Arg_3<=4 && 1<=Arg_3 && 1<=Arg_14+Arg_3 && 1+Arg_14<=Arg_3 && 4<=Arg_13+Arg_3 && Arg_13<=2+Arg_3 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 0<=Arg_3 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && Arg_3<=1 && 1<=Arg_3 && 0<=Arg_5 && 0<=D_P && 0<=C_P && Arg_3<=D_P && D_P<=Arg_3 && Arg_2<=C_P && C_P<=Arg_2 && Arg_0<=Arg_1 && Arg_1<=Arg_0
25:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___4(Arg_0,NoDet0,Arg_2,1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 0<=Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 0<=Arg_5 && Arg_14<=0 && 0<=Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_9<=Arg_10 && Arg_10<=Arg_9 && Arg_8<=2 && 2<=Arg_8 && 0<=Arg_5 && 1+Arg_0<=Arg_1
26:n_f18___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f17___4(Arg_0,NoDet0,Arg_2,1,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_9<=Arg_10 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_14 && Arg_14+Arg_8<=2 && 1+Arg_8<=Arg_13 && Arg_13+Arg_8<=5 && 2<=Arg_8 && 2<=Arg_5+Arg_8 && 2<=Arg_14+Arg_8 && 2+Arg_14<=Arg_8 && 5<=Arg_13+Arg_8 && Arg_13<=1+Arg_8 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_1<=Arg_7 && 0<=Arg_5 && 0<=Arg_14+Arg_5 && Arg_14<=Arg_5 && 3<=Arg_13+Arg_5 && Arg_13<=3+Arg_5 && Arg_14<=0 && 3+Arg_14<=Arg_13 && Arg_13+Arg_14<=3 && 0<=Arg_14 && 3<=Arg_13+Arg_14 && Arg_13<=3+Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_12<=Arg_11 && Arg_12<=Arg_10 && Arg_11<=Arg_12 && Arg_10<=Arg_12 && Arg_11<=Arg_10 && Arg_10<=Arg_11 && 1+Arg_1<=Arg_0 && 0<=Arg_5 && 1+Arg_1<=Arg_0 && Arg_14<=0 && 0<=Arg_14 && Arg_13<=3 && 3<=Arg_13 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_8<=2 && 2<=Arg_8 && Arg_9<=Arg_10 && Arg_10<=Arg_9 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && 1+Arg_1<=Arg_0 && 0<=Arg_5
27:n_f22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f18___5(Arg_0,B_P,Arg_2,Arg_3,F_P,H_P,2,J_P,K_P,L_P,M_P,3,0):|:1+Arg_0<=B_P && 0<=F_P && J_P<=K_P && K_P<=J_P && J_P<=M_P && M_P<=J_P && B_P<=H_P && H_P<=B_P && Arg_7<=B_P && B_P<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && J_P<=L_P && L_P<=J_P
28:n_f22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f18___6(Arg_0,B_P,Arg_2,Arg_3,F_P,H_P,2,J_P,K_P,L_P,M_P,3,0):|:0<=F_P && 1+B_P<=Arg_0 && J_P<=K_P && K_P<=J_P && J_P<=L_P && L_P<=J_P && B_P<=H_P && H_P<=B_P && Arg_7<=B_P && B_P<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && J_P<=M_P && M_P<=J_P
Overall timebound:inf {Infinity}
19: n_f17___3->n_f17___3: inf {Infinity}
20: n_f17___3->n_f17___3: inf {Infinity}
21: n_f17___3->n_f20___1: 1 {O(1)}
22: n_f17___4->n_f17___3: 1 {O(1)}
23: n_f17___4->n_f17___3: 1 {O(1)}
24: n_f17___4->n_f20___2: 1 {O(1)}
25: n_f18___5->n_f17___4: 1 {O(1)}
26: n_f18___6->n_f17___4: 1 {O(1)}
27: n_f22->n_f18___5: 1 {O(1)}
28: n_f22->n_f18___6: 1 {O(1)}
Overall costbound: inf {Infinity}
19: n_f17___3->n_f17___3: inf {Infinity}
20: n_f17___3->n_f17___3: inf {Infinity}
21: n_f17___3->n_f20___1: 1 {O(1)}
22: n_f17___4->n_f17___3: 1 {O(1)}
23: n_f17___4->n_f17___3: 1 {O(1)}
24: n_f17___4->n_f20___2: 1 {O(1)}
25: n_f18___5->n_f17___4: 1 {O(1)}
26: n_f18___6->n_f17___4: 1 {O(1)}
27: n_f22->n_f18___5: 1 {O(1)}
28: n_f22->n_f18___6: 1 {O(1)}
19: n_f17___3->n_f17___3, Arg_0: 8*Arg_0 {O(n)}
19: n_f17___3->n_f17___3, Arg_2: 8*Arg_2 {O(n)}
19: n_f17___3->n_f17___3, Arg_5: 8*Arg_5 {O(n)}
19: n_f17___3->n_f17___3, Arg_7: 8*Arg_7 {O(n)}
19: n_f17___3->n_f17___3, Arg_8: 2 {O(1)}
19: n_f17___3->n_f17___3, Arg_13: 3 {O(1)}
19: n_f17___3->n_f17___3, Arg_14: 0 {O(1)}
20: n_f17___3->n_f17___3, Arg_0: 8*Arg_0 {O(n)}
20: n_f17___3->n_f17___3, Arg_2: 8*Arg_2 {O(n)}
20: n_f17___3->n_f17___3, Arg_5: 8*Arg_5 {O(n)}
20: n_f17___3->n_f17___3, Arg_7: 8*Arg_7 {O(n)}
20: n_f17___3->n_f17___3, Arg_8: 2 {O(1)}
20: n_f17___3->n_f17___3, Arg_13: 3 {O(1)}
20: n_f17___3->n_f17___3, Arg_14: 0 {O(1)}
21: n_f17___3->n_f20___1, Arg_0: 20*Arg_0 {O(n)}
21: n_f17___3->n_f20___1, Arg_1: 20*Arg_0 {O(n)}
21: n_f17___3->n_f20___1, Arg_2: 20*Arg_2 {O(n)}
21: n_f17___3->n_f20___1, Arg_5: 20*Arg_5 {O(n)}
21: n_f17___3->n_f20___1, Arg_7: 20*Arg_7 {O(n)}
21: n_f17___3->n_f20___1, Arg_8: 2 {O(1)}
21: n_f17___3->n_f20___1, Arg_13: 3 {O(1)}
21: n_f17___3->n_f20___1, Arg_14: 0 {O(1)}
22: n_f17___4->n_f17___3, Arg_0: 2*Arg_0 {O(n)}
22: n_f17___4->n_f17___3, Arg_2: 2*Arg_2 {O(n)}
22: n_f17___4->n_f17___3, Arg_3: 2 {O(1)}
22: n_f17___4->n_f17___3, Arg_5: 2*Arg_5 {O(n)}
22: n_f17___4->n_f17___3, Arg_7: 2*Arg_7 {O(n)}
22: n_f17___4->n_f17___3, Arg_8: 2 {O(1)}
22: n_f17___4->n_f17___3, Arg_13: 3 {O(1)}
22: n_f17___4->n_f17___3, Arg_14: 0 {O(1)}
23: n_f17___4->n_f17___3, Arg_0: 2*Arg_0 {O(n)}
23: n_f17___4->n_f17___3, Arg_2: 2*Arg_2 {O(n)}
23: n_f17___4->n_f17___3, Arg_3: 2 {O(1)}
23: n_f17___4->n_f17___3, Arg_5: 2*Arg_5 {O(n)}
23: n_f17___4->n_f17___3, Arg_7: 2*Arg_7 {O(n)}
23: n_f17___4->n_f17___3, Arg_8: 2 {O(1)}
23: n_f17___4->n_f17___3, Arg_13: 3 {O(1)}
23: n_f17___4->n_f17___3, Arg_14: 0 {O(1)}
24: n_f17___4->n_f20___2, Arg_0: 2*Arg_0 {O(n)}
24: n_f17___4->n_f20___2, Arg_1: 2*Arg_0 {O(n)}
24: n_f17___4->n_f20___2, Arg_2: 2*Arg_2 {O(n)}
24: n_f17___4->n_f20___2, Arg_3: 1 {O(1)}
24: n_f17___4->n_f20___2, Arg_5: 2*Arg_5 {O(n)}
24: n_f17___4->n_f20___2, Arg_7: 2*Arg_7 {O(n)}
24: n_f17___4->n_f20___2, Arg_8: 2 {O(1)}
24: n_f17___4->n_f20___2, Arg_13: 3 {O(1)}
24: n_f17___4->n_f20___2, Arg_14: 0 {O(1)}
25: n_f18___5->n_f17___4, Arg_0: Arg_0 {O(n)}
25: n_f18___5->n_f17___4, Arg_2: Arg_2 {O(n)}
25: n_f18___5->n_f17___4, Arg_3: 1 {O(1)}
25: n_f18___5->n_f17___4, Arg_5: Arg_5 {O(n)}
25: n_f18___5->n_f17___4, Arg_7: Arg_7 {O(n)}
25: n_f18___5->n_f17___4, Arg_8: 2 {O(1)}
25: n_f18___5->n_f17___4, Arg_13: 3 {O(1)}
25: n_f18___5->n_f17___4, Arg_14: 0 {O(1)}
26: n_f18___6->n_f17___4, Arg_0: Arg_0 {O(n)}
26: n_f18___6->n_f17___4, Arg_2: Arg_2 {O(n)}
26: n_f18___6->n_f17___4, Arg_3: 1 {O(1)}
26: n_f18___6->n_f17___4, Arg_5: Arg_5 {O(n)}
26: n_f18___6->n_f17___4, Arg_7: Arg_7 {O(n)}
26: n_f18___6->n_f17___4, Arg_8: 2 {O(1)}
26: n_f18___6->n_f17___4, Arg_13: 3 {O(1)}
26: n_f18___6->n_f17___4, Arg_14: 0 {O(1)}
27: n_f22->n_f18___5, Arg_0: Arg_0 {O(n)}
27: n_f22->n_f18___5, Arg_2: Arg_2 {O(n)}
27: n_f22->n_f18___5, Arg_3: Arg_3 {O(n)}
27: n_f22->n_f18___5, Arg_5: Arg_5 {O(n)}
27: n_f22->n_f18___5, Arg_7: Arg_7 {O(n)}
27: n_f22->n_f18___5, Arg_8: 2 {O(1)}
27: n_f22->n_f18___5, Arg_13: 3 {O(1)}
27: n_f22->n_f18___5, Arg_14: 0 {O(1)}
28: n_f22->n_f18___6, Arg_0: Arg_0 {O(n)}
28: n_f22->n_f18___6, Arg_2: Arg_2 {O(n)}
28: n_f22->n_f18___6, Arg_3: Arg_3 {O(n)}
28: n_f22->n_f18___6, Arg_5: Arg_5 {O(n)}
28: n_f22->n_f18___6, Arg_7: Arg_7 {O(n)}
28: n_f22->n_f18___6, Arg_8: 2 {O(1)}
28: n_f22->n_f18___6, Arg_13: 3 {O(1)}
28: n_f22->n_f18___6, Arg_14: 0 {O(1)}