Initial Problem

Start: n_evalfstart
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars:
Locations: n_evalfbb1in___16, n_evalfbb1in___7, n_evalfbb2in___10, n_evalfbb2in___13, n_evalfbb3in___11, n_evalfbb3in___14, n_evalfbb4in___12, n_evalfbb4in___9, n_evalfbb5in___18, n_evalfbb5in___4, n_evalfbb5in___8, n_evalfbb6in___15, n_evalfbb6in___6, n_evalfbb7in___19, n_evalfbb7in___5, n_evalfentryin___20, n_evalfreturnin___17, n_evalfreturnin___3, n_evalfstart, n_evalfstop___1, n_evalfstop___2
Transitions:
0:n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_1<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1
1:n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_4<=Arg_2
2:n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=Arg_3+Arg_4
3:n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=Arg_3 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3
4:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3+Arg_4
5:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_3+Arg_4<=Arg_5
6:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && Arg_5<=Arg_3+Arg_4
7:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && 1+Arg_3+Arg_4<=Arg_5
8:n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:1+2*Arg_4<=0 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3
9:n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:1+Arg_3+Arg_4<=Arg_5
10:n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && Arg_4<=Arg_2
11:n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_4
12:n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_4 && 1+Arg_2<=Arg_4
13:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2
14:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<=Arg_4
15:n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:1+Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1
16:n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:1+Arg_2<=Arg_4
17:n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:Arg_3<=Arg_0
18:n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfreturnin___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3
19:n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:1+Arg_2<=Arg_1 && Arg_3<=Arg_0
20:n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfreturnin___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<=Arg_1 && 1+Arg_0<=Arg_3
21:n_evalfentryin___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___19(Arg_1,Arg_2,Arg_3,Arg_0,Arg_4,Arg_5)
22:n_evalfreturnin___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfstop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3
23:n_evalfreturnin___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfstop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1
24:n_evalfstart(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfentryin___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

Preprocessing

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb2in___13

Found invariant Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 for location n_evalfbb5in___4

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb4in___12

Found invariant Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 for location n_evalfbb5in___18

Found invariant Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 for location n_evalfbb6in___15

Found invariant Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 for location n_evalfstop___2

Found invariant Arg_4<=Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_2 for location n_evalfbb1in___7

Found invariant 1+Arg_0<=Arg_3 for location n_evalfstop___1

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb3in___14

Found invariant Arg_4<=1+Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb5in___8

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb4in___9

Found invariant Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 for location n_evalfreturnin___3

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb2in___10

Found invariant 1+Arg_0<=Arg_3 for location n_evalfreturnin___17

Found invariant Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb1in___16

Found invariant Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb6in___6

Found invariant Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 for location n_evalfbb3in___11

Found invariant Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=Arg_1 for location n_evalfbb7in___5

Problem after Preprocessing

Start: n_evalfstart
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars:
Locations: n_evalfbb1in___16, n_evalfbb1in___7, n_evalfbb2in___10, n_evalfbb2in___13, n_evalfbb3in___11, n_evalfbb3in___14, n_evalfbb4in___12, n_evalfbb4in___9, n_evalfbb5in___18, n_evalfbb5in___4, n_evalfbb5in___8, n_evalfbb6in___15, n_evalfbb6in___6, n_evalfbb7in___19, n_evalfbb7in___5, n_evalfentryin___20, n_evalfreturnin___17, n_evalfreturnin___3, n_evalfstart, n_evalfstop___1, n_evalfstop___2
Transitions:
0:n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1
1:n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_4<=Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_4<=Arg_2
2:n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3+Arg_4
3:n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3
4:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3+Arg_4
5:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3+Arg_4<=Arg_5
6:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && Arg_5<=Arg_3+Arg_4
7:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && 1+Arg_3+Arg_4<=Arg_5
8:n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+2*Arg_4<=0 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3
9:n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3+Arg_4<=Arg_5
10:n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && Arg_4<=Arg_2
11:n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_4
12:n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_4 && 1+Arg_2<=Arg_4
13:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_4<=Arg_2
14:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_2<=Arg_4
15:n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1
16:n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_2<=Arg_4
17:n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:Arg_3<=Arg_0
18:n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfreturnin___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3
19:n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_3<=Arg_0
20:n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfreturnin___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && 1+Arg_0<=Arg_3
21:n_evalfentryin___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___19(Arg_1,Arg_2,Arg_3,Arg_0,Arg_4,Arg_5)
22:n_evalfreturnin___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfstop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3
23:n_evalfreturnin___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfstop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1
24:n_evalfstart(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfentryin___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

MPRF for transition 0:n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1 of depth 1:

new bound:

Arg_0+Arg_1+1 {O(n)}

MPRF:

n_evalfbb2in___10 [Arg_0-Arg_3 ]
n_evalfbb3in___11 [Arg_0-Arg_3 ]
n_evalfbb2in___13 [Arg_0-Arg_4-Arg_5 ]
n_evalfbb3in___14 [Arg_0-Arg_4-Arg_5 ]
n_evalfbb4in___12 [Arg_0-Arg_3 ]
n_evalfbb4in___9 [Arg_0-Arg_3 ]
n_evalfbb1in___16 [Arg_0+1-Arg_3 ]
n_evalfbb1in___7 [Arg_0-Arg_3 ]
n_evalfbb5in___8 [Arg_0-Arg_3 ]
n_evalfbb6in___6 [Arg_0-Arg_3 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]
n_evalfbb5in___18 [Arg_0+1-Arg_3 ]

MPRF for transition 10:n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && Arg_4<=Arg_2 of depth 1:

new bound:

Arg_0+Arg_1+1 {O(n)}

MPRF:

n_evalfbb2in___10 [Arg_0-Arg_3 ]
n_evalfbb3in___11 [Arg_0-Arg_3 ]
n_evalfbb2in___13 [Arg_0-Arg_3 ]
n_evalfbb3in___14 [Arg_0-Arg_4-Arg_5 ]
n_evalfbb4in___12 [Arg_0-Arg_3 ]
n_evalfbb4in___9 [Arg_0-Arg_3 ]
n_evalfbb1in___16 [Arg_0-Arg_3 ]
n_evalfbb1in___7 [Arg_0-Arg_3 ]
n_evalfbb5in___8 [Arg_0-Arg_3 ]
n_evalfbb6in___6 [Arg_0-Arg_3 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]
n_evalfbb5in___18 [Arg_0+1-Arg_3 ]

MPRF for transition 14:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_2<=Arg_4 of depth 1:

new bound:

Arg_0+Arg_1+1 {O(n)}

MPRF:

n_evalfbb2in___10 [Arg_0+1-Arg_3 ]
n_evalfbb3in___11 [Arg_0+1-Arg_3 ]
n_evalfbb2in___13 [Arg_0+2*Arg_4+2*Arg_5+1-3*Arg_3 ]
n_evalfbb3in___14 [Arg_0+2*Arg_4+2*Arg_5+1-3*Arg_3 ]
n_evalfbb4in___12 [Arg_0+1-Arg_3 ]
n_evalfbb4in___9 [Arg_0+1-Arg_3 ]
n_evalfbb1in___16 [Arg_0+1-Arg_3 ]
n_evalfbb1in___7 [Arg_0+1-Arg_3 ]
n_evalfbb5in___8 [Arg_0+1-Arg_3 ]
n_evalfbb6in___6 [Arg_0-Arg_3 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]
n_evalfbb5in___18 [Arg_0+1-Arg_3 ]

MPRF for transition 16:n_evalfbb6in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_2<=Arg_4 of depth 1:

new bound:

Arg_0+Arg_1+1 {O(n)}

MPRF:

n_evalfbb2in___10 [Arg_0+1-Arg_3 ]
n_evalfbb3in___11 [Arg_0+1-Arg_3 ]
n_evalfbb2in___13 [Arg_0+1-Arg_3 ]
n_evalfbb3in___14 [Arg_0+1-Arg_3 ]
n_evalfbb4in___12 [Arg_0+1-Arg_3 ]
n_evalfbb4in___9 [Arg_0+1-Arg_3 ]
n_evalfbb1in___16 [Arg_0+1-Arg_3 ]
n_evalfbb1in___7 [Arg_0+1-Arg_3 ]
n_evalfbb5in___8 [Arg_0+1-Arg_3 ]
n_evalfbb6in___6 [Arg_0+1-Arg_3 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]
n_evalfbb5in___18 [Arg_0+1-Arg_3 ]

MPRF for transition 17:n_evalfbb7in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:Arg_3<=Arg_0 of depth 1:

new bound:

Arg_0+Arg_1+1 {O(n)}

MPRF:

n_evalfbb2in___10 [Arg_0-Arg_3 ]
n_evalfbb3in___11 [Arg_0-Arg_3 ]
n_evalfbb2in___13 [Arg_0-Arg_3 ]
n_evalfbb3in___14 [Arg_0-Arg_3 ]
n_evalfbb4in___12 [Arg_0-Arg_3 ]
n_evalfbb4in___9 [Arg_0-Arg_3 ]
n_evalfbb1in___16 [Arg_0-Arg_3 ]
n_evalfbb1in___7 [Arg_0-Arg_3 ]
n_evalfbb5in___8 [Arg_0-Arg_3 ]
n_evalfbb6in___6 [Arg_0-Arg_3 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]
n_evalfbb5in___18 [Arg_0-Arg_3 ]

MPRF for transition 1:n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3-Arg_4):|:Arg_4<=Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_4<=Arg_2 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+1-Arg_4 ]
n_evalfbb3in___11 [Arg_2+1-Arg_4 ]
n_evalfbb2in___13 [Arg_2+1-Arg_4 ]
n_evalfbb3in___14 [Arg_2+1-Arg_4 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+1-Arg_4 ]
n_evalfbb1in___16 [Arg_2+1-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 3:n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 of depth 1:

new bound:

2*Arg_0*Arg_0+2*Arg_0*Arg_2+2*Arg_1*Arg_1+2*Arg_1*Arg_2+4*Arg_0*Arg_1+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+4*Arg_0+4*Arg_1+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_0+Arg_2-Arg_3-Arg_4 ]
n_evalfbb3in___11 [Arg_0+Arg_2-Arg_3-Arg_4 ]
n_evalfbb2in___13 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb3in___14 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb4in___12 [Arg_0+Arg_2-Arg_3-Arg_4 ]
n_evalfbb4in___9 [Arg_0+Arg_2-Arg_3-Arg_4 ]
n_evalfbb5in___18 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb1in___16 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb1in___7 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb5in___8 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb6in___6 [Arg_0+Arg_2+1-Arg_3-Arg_4 ]
n_evalfbb7in___19 [Arg_0+1-Arg_3 ]

MPRF for transition 5:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3+Arg_4<=Arg_5 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+2-Arg_4 ]
n_evalfbb3in___11 [Arg_2+2-Arg_4 ]
n_evalfbb2in___13 [Arg_2+Arg_5+2-Arg_3 ]
n_evalfbb3in___14 [Arg_2+Arg_5+2-Arg_3 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+2-Arg_4 ]
n_evalfbb1in___16 [Arg_2+2-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 6:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && Arg_5<=Arg_3+Arg_4 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+1-Arg_4 ]
n_evalfbb3in___11 [Arg_2+1-Arg_4 ]
n_evalfbb2in___13 [Arg_2+1-Arg_4 ]
n_evalfbb3in___14 [Arg_2+Arg_5+2-Arg_3 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+2-Arg_4 ]
n_evalfbb1in___16 [Arg_2+2-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [1 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 7:n_evalfbb3in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 && 1+Arg_3+Arg_4<=Arg_5 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+1-Arg_4 ]
n_evalfbb3in___11 [Arg_2+1-Arg_4 ]
n_evalfbb2in___13 [Arg_2+1-Arg_4 ]
n_evalfbb3in___14 [Arg_2+2-Arg_4 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+2-Arg_4 ]
n_evalfbb1in___16 [Arg_2+2-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 8:n_evalfbb4in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+2*Arg_4<=0 && Arg_3<=Arg_4+Arg_5 && Arg_4+Arg_5<=Arg_3 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+1-Arg_4 ]
n_evalfbb3in___11 [Arg_2+1-Arg_4 ]
n_evalfbb2in___13 [Arg_2+1-Arg_4 ]
n_evalfbb3in___14 [Arg_2+2-Arg_4 ]
n_evalfbb4in___12 [Arg_2+2-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+2-Arg_4 ]
n_evalfbb1in___16 [Arg_2+2-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 9:n_evalfbb4in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3+Arg_4<=Arg_5 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+2-Arg_4 ]
n_evalfbb3in___11 [Arg_2+2-Arg_4 ]
n_evalfbb2in___13 [Arg_2+2-Arg_4 ]
n_evalfbb3in___14 [Arg_2+2-Arg_4 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+2-Arg_4 ]
n_evalfbb5in___18 [Arg_2+2-Arg_4 ]
n_evalfbb1in___16 [Arg_2+2-Arg_4 ]
n_evalfbb1in___7 [Arg_2+2-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 13:n_evalfbb5in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb1in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=1+Arg_2 && 1+Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_4<=Arg_2 of depth 1:

new bound:

2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}

MPRF:

n_evalfbb2in___10 [Arg_2+1-Arg_4 ]
n_evalfbb3in___11 [Arg_2+1-Arg_4 ]
n_evalfbb2in___13 [Arg_2+Arg_5+1-Arg_3 ]
n_evalfbb3in___14 [Arg_2+Arg_5+1-Arg_3 ]
n_evalfbb4in___12 [Arg_2+1-Arg_4 ]
n_evalfbb4in___9 [Arg_2+1-Arg_4 ]
n_evalfbb5in___18 [Arg_2+1-Arg_4 ]
n_evalfbb1in___16 [Arg_2+1-Arg_4 ]
n_evalfbb1in___7 [Arg_2+1-Arg_4 ]
n_evalfbb5in___8 [Arg_2+2-Arg_4 ]
n_evalfbb6in___6 [Arg_2+2-Arg_4 ]
n_evalfbb7in___19 [1 ]

MPRF for transition 2:n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3+Arg_4 of depth 1:

new bound:

2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+18*Arg_0*Arg_2+18*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+12*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}

MPRF:

n_evalfbb1in___7 [Arg_2+Arg_4 ]
n_evalfbb2in___10 [Arg_2+Arg_3+1-Arg_5 ]
n_evalfbb3in___11 [Arg_2+Arg_3+1-Arg_5 ]
n_evalfbb2in___13 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb3in___14 [Arg_2+Arg_4 ]
n_evalfbb4in___12 [Arg_2+Arg_4 ]
n_evalfbb4in___9 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb5in___18 [Arg_2+Arg_4 ]
n_evalfbb1in___16 [Arg_1+Arg_2 ]
n_evalfbb5in___8 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb6in___6 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb7in___19 [Arg_2+Arg_3-Arg_5-1 ]

MPRF for transition 4:n_evalfbb3in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb2in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_2 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_5<=Arg_3+Arg_4 of depth 1:

new bound:

2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+17*Arg_0*Arg_2+17*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+11*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}

MPRF:

n_evalfbb1in___7 [Arg_2+Arg_4 ]
n_evalfbb2in___10 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb3in___11 [Arg_2+Arg_3+1-Arg_5 ]
n_evalfbb2in___13 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb3in___14 [Arg_2+Arg_4 ]
n_evalfbb4in___12 [Arg_2+Arg_4 ]
n_evalfbb4in___9 [Arg_2+Arg_3-Arg_5 ]
n_evalfbb5in___18 [Arg_1+Arg_2 ]
n_evalfbb1in___16 [Arg_2+Arg_4 ]
n_evalfbb5in___8 [Arg_1+Arg_2+Arg_3-Arg_4-Arg_5 ]
n_evalfbb6in___6 [Arg_1+Arg_3-Arg_5-1 ]
n_evalfbb7in___19 [Arg_1+Arg_3-Arg_5-2 ]

MPRF for transition 12:n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_4 && 1+Arg_2<=Arg_4 of depth 1:

new bound:

2*Arg_0+2*Arg_1+1 {O(n)}

MPRF:

n_evalfbb6in___15 [Arg_0-Arg_3 ]
n_evalfbb7in___5 [Arg_0+1-Arg_3 ]
n_evalfbb5in___4 [Arg_0+1-Arg_3 ]

MPRF for transition 15:n_evalfbb6in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_4 && Arg_4<=Arg_1 of depth 1:

new bound:

2*Arg_0+2*Arg_1+2 {O(n)}

MPRF:

n_evalfbb6in___15 [Arg_0+1-Arg_3 ]
n_evalfbb7in___5 [Arg_0+1-Arg_3 ]
n_evalfbb5in___4 [Arg_0+1-Arg_3 ]

MPRF for transition 19:n_evalfbb7in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_evalfbb5in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5):|:Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_3<=Arg_0 of depth 1:

new bound:

2*Arg_0+2*Arg_1+1 {O(n)}

MPRF:

n_evalfbb6in___15 [Arg_0-Arg_3 ]
n_evalfbb7in___5 [Arg_0+1-Arg_3 ]
n_evalfbb5in___4 [Arg_0-Arg_3 ]

All Bounds

Timebounds

Overall timebound:16*Arg_0*Arg_1*Arg_2*Arg_2+16*Arg_0*Arg_1*Arg_2*Arg_3+2*Arg_0*Arg_0*Arg_3*Arg_3+2*Arg_1*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_1*Arg_3*Arg_3+8*Arg_0*Arg_0*Arg_2*Arg_2+8*Arg_0*Arg_0*Arg_2*Arg_3+8*Arg_1*Arg_1*Arg_2*Arg_2+8*Arg_1*Arg_1*Arg_2*Arg_3+12*Arg_0*Arg_0*Arg_2+12*Arg_0*Arg_1*Arg_3+12*Arg_1*Arg_1*Arg_2+24*Arg_0*Arg_1*Arg_2+28*Arg_0*Arg_2*Arg_3+28*Arg_1*Arg_2*Arg_3+32*Arg_0*Arg_2*Arg_2+32*Arg_1*Arg_2*Arg_2+6*Arg_0*Arg_0*Arg_3+6*Arg_0*Arg_3*Arg_3+6*Arg_1*Arg_1*Arg_3+6*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1+20*Arg_2*Arg_3+24*Arg_0*Arg_3+24*Arg_1*Arg_3+24*Arg_2*Arg_2+4*Arg_3*Arg_3+51*Arg_0*Arg_2+51*Arg_1*Arg_2+6*Arg_0*Arg_0+6*Arg_1*Arg_1+18*Arg_3+35*Arg_0+35*Arg_1+39*Arg_2+34 {O(n^4)}
0: n_evalfbb1in___16->n_evalfbb3in___14: Arg_0+Arg_1+1 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}
2: n_evalfbb2in___10->n_evalfbb3in___11: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+18*Arg_0*Arg_2+18*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+12*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}
3: n_evalfbb2in___13->n_evalfbb3in___11: 2*Arg_0*Arg_0+2*Arg_0*Arg_2+2*Arg_1*Arg_1+2*Arg_1*Arg_2+4*Arg_0*Arg_1+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+4*Arg_0+4*Arg_1+Arg_3+2 {O(n^2)}
4: n_evalfbb3in___11->n_evalfbb2in___10: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+17*Arg_0*Arg_2+17*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+11*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}
5: n_evalfbb3in___11->n_evalfbb4in___9: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
6: n_evalfbb3in___14->n_evalfbb2in___13: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
7: n_evalfbb3in___14->n_evalfbb4in___12: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
8: n_evalfbb4in___12->n_evalfbb5in___8: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
9: n_evalfbb4in___9->n_evalfbb5in___8: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
10: n_evalfbb5in___18->n_evalfbb1in___16: Arg_0+Arg_1+1 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15: 1 {O(1)}
12: n_evalfbb5in___4->n_evalfbb6in___15: 2*Arg_0+2*Arg_1+1 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}
14: n_evalfbb5in___8->n_evalfbb6in___6: Arg_0+Arg_1+1 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5: 2*Arg_0+2*Arg_1+2 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19: Arg_0+Arg_1+1 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18: Arg_0+Arg_1+1 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17: 1 {O(1)}
19: n_evalfbb7in___5->n_evalfbb5in___4: 2*Arg_0+2*Arg_1+1 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3: 1 {O(1)}
21: n_evalfentryin___20->n_evalfbb7in___19: 1 {O(1)}
22: n_evalfreturnin___17->n_evalfstop___1: 1 {O(1)}
23: n_evalfreturnin___3->n_evalfstop___2: 1 {O(1)}
24: n_evalfstart->n_evalfentryin___20: 1 {O(1)}

Costbounds

Overall costbound: 16*Arg_0*Arg_1*Arg_2*Arg_2+16*Arg_0*Arg_1*Arg_2*Arg_3+2*Arg_0*Arg_0*Arg_3*Arg_3+2*Arg_1*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_1*Arg_3*Arg_3+8*Arg_0*Arg_0*Arg_2*Arg_2+8*Arg_0*Arg_0*Arg_2*Arg_3+8*Arg_1*Arg_1*Arg_2*Arg_2+8*Arg_1*Arg_1*Arg_2*Arg_3+12*Arg_0*Arg_0*Arg_2+12*Arg_0*Arg_1*Arg_3+12*Arg_1*Arg_1*Arg_2+24*Arg_0*Arg_1*Arg_2+28*Arg_0*Arg_2*Arg_3+28*Arg_1*Arg_2*Arg_3+32*Arg_0*Arg_2*Arg_2+32*Arg_1*Arg_2*Arg_2+6*Arg_0*Arg_0*Arg_3+6*Arg_0*Arg_3*Arg_3+6*Arg_1*Arg_1*Arg_3+6*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1+20*Arg_2*Arg_3+24*Arg_0*Arg_3+24*Arg_1*Arg_3+24*Arg_2*Arg_2+4*Arg_3*Arg_3+51*Arg_0*Arg_2+51*Arg_1*Arg_2+6*Arg_0*Arg_0+6*Arg_1*Arg_1+18*Arg_3+35*Arg_0+35*Arg_1+39*Arg_2+34 {O(n^4)}
0: n_evalfbb1in___16->n_evalfbb3in___14: Arg_0+Arg_1+1 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}
2: n_evalfbb2in___10->n_evalfbb3in___11: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+18*Arg_0*Arg_2+18*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+12*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}
3: n_evalfbb2in___13->n_evalfbb3in___11: 2*Arg_0*Arg_0+2*Arg_0*Arg_2+2*Arg_1*Arg_1+2*Arg_1*Arg_2+4*Arg_0*Arg_1+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+4*Arg_0+4*Arg_1+Arg_3+2 {O(n^2)}
4: n_evalfbb3in___11->n_evalfbb2in___10: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+17*Arg_0*Arg_2+17*Arg_1*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+4*Arg_0*Arg_1+8*Arg_0*Arg_3+8*Arg_1*Arg_3+11*Arg_2+4*Arg_0+4*Arg_1+5*Arg_3+2 {O(n^4)}
5: n_evalfbb3in___11->n_evalfbb4in___9: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
6: n_evalfbb3in___14->n_evalfbb2in___13: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
7: n_evalfbb3in___14->n_evalfbb4in___12: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
8: n_evalfbb4in___12->n_evalfbb5in___8: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
9: n_evalfbb4in___9->n_evalfbb5in___8: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+2*Arg_2+Arg_3+2 {O(n^2)}
10: n_evalfbb5in___18->n_evalfbb1in___16: Arg_0+Arg_1+1 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15: 1 {O(1)}
12: n_evalfbb5in___4->n_evalfbb6in___15: 2*Arg_0+2*Arg_1+1 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_2+Arg_0+Arg_1+Arg_3+1 {O(n^2)}
14: n_evalfbb5in___8->n_evalfbb6in___6: Arg_0+Arg_1+1 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5: 2*Arg_0+2*Arg_1+2 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19: Arg_0+Arg_1+1 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18: Arg_0+Arg_1+1 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17: 1 {O(1)}
19: n_evalfbb7in___5->n_evalfbb5in___4: 2*Arg_0+2*Arg_1+1 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3: 1 {O(1)}
21: n_evalfentryin___20->n_evalfbb7in___19: 1 {O(1)}
22: n_evalfreturnin___17->n_evalfstop___1: 1 {O(1)}
23: n_evalfreturnin___3->n_evalfstop___2: 1 {O(1)}
24: n_evalfstart->n_evalfentryin___20: 1 {O(1)}

Sizebounds

0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_0: Arg_1 {O(n)}
0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_1: Arg_2 {O(n)}
0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_2: Arg_3 {O(n)}
0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_4: 2*Arg_2 {O(n)}
0: n_evalfbb1in___16->n_evalfbb3in___14, Arg_5: 2*Arg_0+2*Arg_2+Arg_1+1 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_0: Arg_1 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_1: Arg_2 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_2: Arg_3 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
1: n_evalfbb1in___7->n_evalfbb3in___14, Arg_5: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+3*Arg_1+4*Arg_0+6*Arg_2+Arg_3+3 {O(n^2)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_0: Arg_1 {O(n)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_1: Arg_2 {O(n)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_2: Arg_3 {O(n)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
2: n_evalfbb2in___10->n_evalfbb3in___11, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+20*Arg_0*Arg_2+20*Arg_1*Arg_2+4*Arg_0*Arg_1+9*Arg_0*Arg_3+9*Arg_1*Arg_3+10*Arg_0+20*Arg_2+6*Arg_3+8*Arg_1+7 {O(n^4)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_0: Arg_1 {O(n)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_1: Arg_2 {O(n)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_2: Arg_3 {O(n)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
3: n_evalfbb2in___13->n_evalfbb3in___11, Arg_5: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+4*Arg_1+6*Arg_0+8*Arg_2+Arg_3+5 {O(n^2)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_0: Arg_1 {O(n)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_1: Arg_2 {O(n)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_2: Arg_3 {O(n)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
4: n_evalfbb3in___11->n_evalfbb2in___10, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+20*Arg_0*Arg_2+20*Arg_1*Arg_2+4*Arg_0*Arg_1+9*Arg_0*Arg_3+9*Arg_1*Arg_3+10*Arg_0+20*Arg_2+6*Arg_3+8*Arg_1+7 {O(n^4)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_0: Arg_1 {O(n)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_1: Arg_2 {O(n)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_2: Arg_3 {O(n)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
5: n_evalfbb3in___11->n_evalfbb4in___9, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_0*Arg_3+10*Arg_1*Arg_3+10*Arg_2*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+22*Arg_0*Arg_2+22*Arg_1*Arg_2+4*Arg_0*Arg_1+12*Arg_1+16*Arg_0+28*Arg_2+7*Arg_3+12 {O(n^4)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_0: Arg_1 {O(n)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_1: Arg_2 {O(n)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_2: Arg_3 {O(n)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
6: n_evalfbb3in___14->n_evalfbb2in___13, Arg_5: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+4*Arg_1+6*Arg_0+8*Arg_2+Arg_3+4 {O(n^2)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_0: Arg_1 {O(n)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_1: Arg_2 {O(n)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_2: Arg_3 {O(n)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
7: n_evalfbb3in___14->n_evalfbb4in___12, Arg_5: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+4*Arg_1+6*Arg_0+8*Arg_2+Arg_3+4 {O(n^2)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_0: Arg_1 {O(n)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_1: Arg_2 {O(n)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_2: Arg_3 {O(n)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
8: n_evalfbb4in___12->n_evalfbb5in___8, Arg_5: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+4*Arg_1+6*Arg_0+8*Arg_2+Arg_3+4 {O(n^2)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_0: Arg_1 {O(n)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_1: Arg_2 {O(n)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_2: Arg_3 {O(n)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
9: n_evalfbb4in___9->n_evalfbb5in___8, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_0*Arg_3+10*Arg_1*Arg_3+10*Arg_2*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+22*Arg_0*Arg_2+22*Arg_1*Arg_2+4*Arg_0*Arg_1+12*Arg_1+16*Arg_0+28*Arg_2+7*Arg_3+12 {O(n^4)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_0: Arg_1 {O(n)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_1: Arg_2 {O(n)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_2: Arg_3 {O(n)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_4: 2*Arg_2 {O(n)}
10: n_evalfbb5in___18->n_evalfbb1in___16, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_0: Arg_1 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_1: Arg_2 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_2: Arg_3 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_4: 2*Arg_2 {O(n)}
11: n_evalfbb5in___18->n_evalfbb6in___15, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_0: Arg_1 {O(n)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_1: Arg_2 {O(n)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_2: Arg_3 {O(n)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_3: 3*Arg_1+4*Arg_0+3 {O(n)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_4: Arg_2 {O(n)}
12: n_evalfbb5in___4->n_evalfbb6in___15, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_0: Arg_1 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_1: Arg_2 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_2: Arg_3 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_4: 2*Arg_0*Arg_2+2*Arg_1*Arg_2+Arg_0*Arg_3+Arg_1*Arg_3+2*Arg_0+2*Arg_1+6*Arg_2+Arg_3+2 {O(n^2)}
13: n_evalfbb5in___8->n_evalfbb1in___7, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+16 {O(n^4)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_0: Arg_1 {O(n)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_1: Arg_2 {O(n)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_2: Arg_3 {O(n)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_4: 2*Arg_0*Arg_3+2*Arg_1*Arg_3+4*Arg_0*Arg_2+4*Arg_1*Arg_2+12*Arg_2+2*Arg_3+4*Arg_0+4*Arg_1+4 {O(n^2)}
14: n_evalfbb5in___8->n_evalfbb6in___6, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+16 {O(n^4)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_0: Arg_1 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_1: Arg_2 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_2: Arg_3 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_3: 3*Arg_1+4*Arg_0+3 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_4: 3*Arg_2 {O(n)}
15: n_evalfbb6in___15->n_evalfbb7in___5, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_0: Arg_1 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_1: Arg_2 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_2: Arg_3 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_4: 2*Arg_0*Arg_3+2*Arg_1*Arg_3+4*Arg_0*Arg_2+4*Arg_1*Arg_2+12*Arg_2+2*Arg_3+4*Arg_0+4*Arg_1+4 {O(n^2)}
16: n_evalfbb6in___6->n_evalfbb7in___19, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+16 {O(n^4)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_0: Arg_1 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_1: Arg_2 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_2: Arg_3 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_3: 2*Arg_0+Arg_1+1 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_4: 2*Arg_2 {O(n)}
17: n_evalfbb7in___19->n_evalfbb5in___18, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_0: 2*Arg_1 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_1: 2*Arg_2 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_2: 2*Arg_3 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_3: 3*Arg_0+Arg_1+1 {O(n)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_4: 2*Arg_0*Arg_3+2*Arg_1*Arg_3+4*Arg_0*Arg_2+4*Arg_1*Arg_2+12*Arg_2+2*Arg_3+4*Arg_0+4*Arg_1+Arg_4+4 {O(n^2)}
18: n_evalfbb7in___19->n_evalfreturnin___17, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_0: Arg_1 {O(n)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_1: Arg_2 {O(n)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_2: Arg_3 {O(n)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_3: 3*Arg_1+4*Arg_0+3 {O(n)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_4: Arg_2 {O(n)}
19: n_evalfbb7in___5->n_evalfbb5in___4, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_0: Arg_1 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_1: Arg_2 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_2: Arg_3 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_3: 3*Arg_1+4*Arg_0+3 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_4: 3*Arg_2 {O(n)}
20: n_evalfbb7in___5->n_evalfreturnin___3, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_0: Arg_1 {O(n)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_1: Arg_2 {O(n)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_2: Arg_3 {O(n)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_3: Arg_0 {O(n)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_4: Arg_4 {O(n)}
21: n_evalfentryin___20->n_evalfbb7in___19, Arg_5: Arg_5 {O(n)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_0: 2*Arg_1 {O(n)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_1: 2*Arg_2 {O(n)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_2: 2*Arg_3 {O(n)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_3: 3*Arg_0+Arg_1+1 {O(n)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_4: 2*Arg_0*Arg_3+2*Arg_1*Arg_3+4*Arg_0*Arg_2+4*Arg_1*Arg_2+12*Arg_2+2*Arg_3+4*Arg_0+4*Arg_1+Arg_4+4 {O(n^2)}
22: n_evalfreturnin___17->n_evalfstop___1, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_0: Arg_1 {O(n)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_1: Arg_2 {O(n)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_2: Arg_3 {O(n)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_3: 3*Arg_1+4*Arg_0+3 {O(n)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_4: 3*Arg_2 {O(n)}
23: n_evalfreturnin___3->n_evalfstop___2, Arg_5: 2*Arg_0*Arg_1*Arg_3*Arg_3+4*Arg_0*Arg_0*Arg_2*Arg_2+4*Arg_0*Arg_0*Arg_2*Arg_3+4*Arg_1*Arg_1*Arg_2*Arg_2+4*Arg_1*Arg_1*Arg_2*Arg_3+8*Arg_0*Arg_1*Arg_2*Arg_2+8*Arg_0*Arg_1*Arg_2*Arg_3+Arg_0*Arg_0*Arg_3*Arg_3+Arg_1*Arg_1*Arg_3*Arg_3+12*Arg_0*Arg_1*Arg_2+14*Arg_0*Arg_2*Arg_3+14*Arg_1*Arg_2*Arg_3+16*Arg_0*Arg_2*Arg_2+16*Arg_1*Arg_2*Arg_2+3*Arg_0*Arg_0*Arg_3+3*Arg_0*Arg_3*Arg_3+3*Arg_1*Arg_1*Arg_3+3*Arg_1*Arg_3*Arg_3+6*Arg_0*Arg_0*Arg_2+6*Arg_0*Arg_1*Arg_3+6*Arg_1*Arg_1*Arg_2+10*Arg_2*Arg_3+11*Arg_0*Arg_3+11*Arg_1*Arg_3+12*Arg_2*Arg_2+2*Arg_0*Arg_0+2*Arg_1*Arg_1+2*Arg_3*Arg_3+24*Arg_0*Arg_2+24*Arg_1*Arg_2+4*Arg_0*Arg_1+16*Arg_1+22*Arg_0+36*Arg_2+8*Arg_3+Arg_5+16 {O(n^4)}
24: n_evalfstart->n_evalfentryin___20, Arg_0: Arg_0 {O(n)}
24: n_evalfstart->n_evalfentryin___20, Arg_1: Arg_1 {O(n)}
24: n_evalfstart->n_evalfentryin___20, Arg_2: Arg_2 {O(n)}
24: n_evalfstart->n_evalfentryin___20, Arg_3: Arg_3 {O(n)}
24: n_evalfstart->n_evalfentryin___20, Arg_4: Arg_4 {O(n)}
24: n_evalfstart->n_evalfentryin___20, Arg_5: Arg_5 {O(n)}