Start: n_f6
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: C_P, E_P, F_P, G_P, L_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, NoDet5, P_P
Locations: n_f0___2, n_f0___5, n_f12___1, n_f12___4, n_f5___3, n_f5___6, n_f6, n_f9___7, n_f9___8, n_f9___9
Transitions:
0:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_6,NoDet1,NoDet2,NoDet3,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=Arg_5 && 1<=Arg_4
1:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f12___1(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,Arg_6,0,NoDet0,NoDet1,Arg_10,Arg_12,Arg_12,0,Arg_14,P_P,NoDet2,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=F_P && 0<=E_P && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && Arg_4<=E_P && E_P<=Arg_4 && E_P<=P_P && P_P<=E_P
2:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5-1,Arg_12,0,NoDet0,NoDet1,Arg_10,Arg_12,Arg_13,NoDet2,NoDet3,Arg_4,Arg_16,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=Arg_5 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7
3:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_6,NoDet1,NoDet2,NoDet3,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=Arg_5 && 1<=Arg_4
4:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,Arg_6,0,NoDet0,NoDet1,Arg_10,Arg_12,Arg_12,0,Arg_14,P_P,NoDet2,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=F_P && 0<=E_P && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && Arg_4<=E_P && E_P<=Arg_4 && E_P<=P_P && P_P<=E_P
5:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5-1,Arg_12,0,NoDet0,NoDet1,Arg_10,Arg_12,Arg_13,NoDet2,NoDet3,Arg_4,Arg_16,Arg_17):|:0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=Arg_5 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7
6:n_f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___9(17,1,0,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,NoDet1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17)
7:n_f9___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,1,NoDet0,G_P,0,NoDet1,NoDet2,Arg_10,L_P,NoDet3,NoDet4,NoDet5,Arg_15,Arg_3,Arg_2-2):|:2<=Arg_2 && 0<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_2 && G_P<=L_P && L_P<=G_P
8:n_f9___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___7(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_2 && 0<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
9:n_f9___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___7(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_1<=Arg_0 && 0<=Arg_2 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
10:n_f9___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___8(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_1<=Arg_0 && 0<=Arg_2 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=17 && 17<=Arg_0 && Arg_1<=1 && 1<=Arg_1 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
Eliminate variables {NoDet5,Arg_8,Arg_9,Arg_10,Arg_14} that do not contribute to the problem
Found invariant Arg_7<=0 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=1 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f5___6
Found invariant Arg_7<=0 && Arg_7<=Arg_5 && 2+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 2+Arg_7<=Arg_15 && Arg_7<=Arg_13 && Arg_13+Arg_7<=0 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && 2<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 2<=Arg_15+Arg_7 && 0<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 14<=Arg_17+Arg_5 && Arg_17<=14+Arg_5 && 2<=Arg_15+Arg_5 && 0<=Arg_13+Arg_5 && Arg_13<=Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 4<=Arg_15+Arg_4 && Arg_15<=Arg_4 && 2<=Arg_13+Arg_4 && 2+Arg_13<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=14+Arg_15 && Arg_2<=16+Arg_13 && Arg_13+Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 18<=Arg_15+Arg_2 && 16<=Arg_13+Arg_2 && 16+Arg_13<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=12+Arg_15 && Arg_17<=14+Arg_13 && Arg_13+Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 16<=Arg_15+Arg_17 && 14<=Arg_13+Arg_17 && 14+Arg_13<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 2<=Arg_15 && 2<=Arg_13+Arg_15 && 2+Arg_13<=Arg_15 && 19<=Arg_1+Arg_15 && Arg_1<=15+Arg_15 && 19<=Arg_0+Arg_15 && Arg_0<=15+Arg_15 && Arg_13<=0 && 17+Arg_13<=Arg_1 && Arg_1+Arg_13<=17 && 17+Arg_13<=Arg_0 && Arg_0+Arg_13<=17 && 0<=Arg_13 && 17<=Arg_1+Arg_13 && Arg_1<=17+Arg_13 && 17<=Arg_0+Arg_13 && Arg_0<=17+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f12___1
Found invariant Arg_7<=0 && Arg_7<=Arg_5 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=1 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 1+Arg_7<=Arg_15 && Arg_15+Arg_7<=1 && Arg_7<=Arg_13 && Arg_13+Arg_7<=0 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 1<=Arg_15+Arg_7 && Arg_15<=1+Arg_7 && 0<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 14<=Arg_17+Arg_5 && Arg_17<=14+Arg_5 && 1<=Arg_15+Arg_5 && Arg_15<=1+Arg_5 && 0<=Arg_13+Arg_5 && Arg_13<=Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && Arg_4<=Arg_15 && Arg_15+Arg_4<=2 && Arg_4<=1+Arg_13 && Arg_13+Arg_4<=1 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 2<=Arg_15+Arg_4 && Arg_15<=Arg_4 && 1<=Arg_13+Arg_4 && 1+Arg_13<=Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && Arg_15+Arg_2<=17 && Arg_2<=16+Arg_13 && Arg_13+Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 15+Arg_15<=Arg_2 && 16<=Arg_13+Arg_2 && 16+Arg_13<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && Arg_15+Arg_17<=15 && Arg_17<=14+Arg_13 && Arg_13+Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 13+Arg_15<=Arg_17 && 14<=Arg_13+Arg_17 && 14+Arg_13<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_15<=1 && Arg_15<=1+Arg_13 && Arg_13+Arg_15<=1 && 16+Arg_15<=Arg_1 && Arg_1+Arg_15<=18 && 16+Arg_15<=Arg_0 && Arg_0+Arg_15<=18 && 1<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_13<=0 && 17+Arg_13<=Arg_1 && Arg_1+Arg_13<=17 && 17+Arg_13<=Arg_0 && Arg_0+Arg_13<=17 && 0<=Arg_13 && 17<=Arg_1+Arg_13 && Arg_1<=17+Arg_13 && 17<=Arg_0+Arg_13 && Arg_0<=17+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f12___4
Found invariant Arg_7<=0 && Arg_7<=1+Arg_5 && 2+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 1+Arg_7<=Arg_15 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 2<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 1<=Arg_15+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=1+Arg_5 && 1<=Arg_4+Arg_5 && 15<=Arg_2+Arg_5 && Arg_2<=17+Arg_5 && 13<=Arg_17+Arg_5 && Arg_17<=15+Arg_5 && 0<=Arg_15+Arg_5 && 16<=Arg_1+Arg_5 && Arg_1<=18+Arg_5 && 16<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=1+Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 3<=Arg_15+Arg_4 && 1+Arg_15<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 1<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f5___3
Found invariant Arg_2<=0 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=1 && 17+Arg_2<=Arg_0 && Arg_0+Arg_2<=17 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=1 && 16+Arg_1<=Arg_0 && Arg_0+Arg_1<=18 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f9___9
Found invariant Arg_7<=Arg_11 && Arg_11<=Arg_7 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 14<=Arg_17+Arg_5 && Arg_17<=14+Arg_5 && 1<=Arg_15+Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=1+Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 3<=Arg_15+Arg_4 && 1+Arg_15<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 1<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f0___2
Found invariant Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 19<=Arg_0+Arg_2 && Arg_0<=15+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 3<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=14+Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f9___7
Found invariant Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && 16+Arg_2<=Arg_0 && Arg_0+Arg_2<=18 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 18<=Arg_0+Arg_2 && Arg_0<=16+Arg_2 && Arg_1<=2 && 15+Arg_1<=Arg_0 && Arg_0+Arg_1<=19 && 2<=Arg_1 && 19<=Arg_0+Arg_1 && Arg_0<=15+Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f9___8
Found invariant Arg_7<=Arg_11 && Arg_11<=Arg_7 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 14<=Arg_17+Arg_5 && Arg_17<=14+Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location n_f0___5
Start: n_f6
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_11, Arg_12, Arg_13, Arg_15, Arg_16, Arg_17
Temp_Vars: C_P, E_P, F_P, G_P, L_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, P_P
Locations: n_f0___2, n_f0___5, n_f12___1, n_f12___4, n_f5___3, n_f5___6, n_f6, n_f9___7, n_f9___8, n_f9___9
Transitions:
22:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_6,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17):|:Arg_7<=0 && Arg_7<=1+Arg_5 && 2+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 1+Arg_7<=Arg_15 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 2<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 1<=Arg_15+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=1+Arg_5 && 1<=Arg_4+Arg_5 && 15<=Arg_2+Arg_5 && Arg_2<=17+Arg_5 && 13<=Arg_17+Arg_5 && Arg_17<=15+Arg_5 && 0<=Arg_15+Arg_5 && 16<=Arg_1+Arg_5 && Arg_1<=18+Arg_5 && 16<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=1+Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 3<=Arg_15+Arg_4 && 1+Arg_15<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 1<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=Arg_5 && 1<=Arg_4
23:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f12___1(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,Arg_6,0,Arg_12,Arg_12,0,P_P,NoDet2,Arg_17):|:Arg_7<=0 && Arg_7<=1+Arg_5 && 2+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 1+Arg_7<=Arg_15 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 2<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 1<=Arg_15+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=1+Arg_5 && 1<=Arg_4+Arg_5 && 15<=Arg_2+Arg_5 && Arg_2<=17+Arg_5 && 13<=Arg_17+Arg_5 && Arg_17<=15+Arg_5 && 0<=Arg_15+Arg_5 && 16<=Arg_1+Arg_5 && Arg_1<=18+Arg_5 && 16<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=1+Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 3<=Arg_15+Arg_4 && 1+Arg_15<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 1<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=F_P && 0<=E_P && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && Arg_4<=E_P && E_P<=Arg_4 && E_P<=P_P && P_P<=E_P
24:n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5-1,Arg_12,0,Arg_12,Arg_13,NoDet2,Arg_4,Arg_16,Arg_17):|:Arg_7<=0 && Arg_7<=1+Arg_5 && 2+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 1+Arg_7<=Arg_15 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 2<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 1<=Arg_15+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=1+Arg_5 && 1<=Arg_4+Arg_5 && 15<=Arg_2+Arg_5 && Arg_2<=17+Arg_5 && 13<=Arg_17+Arg_5 && Arg_17<=15+Arg_5 && 0<=Arg_15+Arg_5 && 16<=Arg_1+Arg_5 && Arg_1<=18+Arg_5 && 16<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=1+Arg_15 && 2<=Arg_4 && 18<=Arg_2+Arg_4 && Arg_2<=14+Arg_4 && 16<=Arg_17+Arg_4 && Arg_17<=12+Arg_4 && 3<=Arg_15+Arg_4 && 1+Arg_15<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=15+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=15+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && Arg_2<=15+Arg_15 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 17<=Arg_15+Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && Arg_17<=13+Arg_15 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 15<=Arg_15+Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && 1<=Arg_15 && 18<=Arg_1+Arg_15 && Arg_1<=16+Arg_15 && 18<=Arg_0+Arg_15 && Arg_0<=16+Arg_15 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_15 && 1+Arg_15<=Arg_4 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_15 && 0<=1+Arg_5 && 0<=Arg_5 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7
25:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_6,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=1 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=Arg_5 && 1<=Arg_4
26:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,Arg_6,0,Arg_12,Arg_12,0,P_P,NoDet2,Arg_17):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=1 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=F_P && 0<=E_P && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7 && Arg_5<=F_P && F_P<=Arg_5 && Arg_4<=E_P && E_P<=Arg_4 && E_P<=P_P && P_P<=E_P
27:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f5___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5-1,Arg_12,0,Arg_12,Arg_13,NoDet2,Arg_4,Arg_16,Arg_17):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && Arg_4+Arg_7<=1 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 14+Arg_7<=Arg_17 && Arg_17+Arg_7<=14 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 14<=Arg_17+Arg_7 && Arg_17<=14+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_4<=1 && 15+Arg_4<=Arg_2 && Arg_2+Arg_4<=17 && 13+Arg_4<=Arg_17 && Arg_17+Arg_4<=15 && 16+Arg_4<=Arg_1 && Arg_1+Arg_4<=18 && 16+Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 15<=Arg_17+Arg_4 && Arg_17<=13+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=16 && Arg_2<=2+Arg_17 && Arg_17+Arg_2<=30 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 30<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_17<=14 && 3+Arg_17<=Arg_1 && Arg_1+Arg_17<=31 && 3+Arg_17<=Arg_0 && Arg_0+Arg_17<=31 && 14<=Arg_17 && 31<=Arg_1+Arg_17 && Arg_1<=3+Arg_17 && 31<=Arg_0+Arg_17 && Arg_0<=3+Arg_17 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_4<=1 && 1<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_16 && Arg_16<=Arg_3 && Arg_2<=2+Arg_17 && 2+Arg_17<=Arg_2 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && 0<=Arg_17 && Arg_0<=Arg_1 && 0<=Arg_5 && 0<=Arg_4 && Arg_7<=0 && 0<=Arg_7
28:n_f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f9___9(17,1,0,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,NoDet1,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17)
29:n_f9___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,1,NoDet0,G_P,0,L_P,NoDet3,NoDet4,Arg_15,Arg_3,Arg_2-2):|:Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 19<=Arg_0+Arg_2 && Arg_0<=15+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 3<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=14+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 2<=Arg_2 && 0<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_2 && G_P<=L_P && L_P<=G_P
30:n_f9___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f9___7(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17):|:Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 19<=Arg_0+Arg_2 && Arg_0<=15+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 3<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=14+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 2<=Arg_2 && 0<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
31:n_f9___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f9___7(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17):|:Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && 16+Arg_2<=Arg_0 && Arg_0+Arg_2<=18 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 18<=Arg_0+Arg_2 && Arg_0<=16+Arg_2 && Arg_1<=2 && 15+Arg_1<=Arg_0 && Arg_0+Arg_1<=19 && 2<=Arg_1 && 19<=Arg_0+Arg_1 && Arg_0<=15+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_2 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
32:n_f9___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17) -> n_f9___8(Arg_0,Arg_1+1,C_P,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=1 && 17+Arg_2<=Arg_0 && Arg_0+Arg_2<=17 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=1 && 16+Arg_1<=Arg_0 && Arg_0+Arg_1<=18 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_2 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=17 && 17<=Arg_0 && Arg_1<=1 && 1<=Arg_1 && 1+Arg_1<=Arg_0 && 1<=C_P && Arg_2+1<=C_P && C_P<=1+Arg_2
new bound:
21 {O(1)}
MPRF:
n_f9___7 [Arg_0+1-Arg_1 ]
Overall timebound:inf {Infinity}
22: n_f5___3->n_f0___2: 1 {O(1)}
23: n_f5___3->n_f12___1: 1 {O(1)}
24: n_f5___3->n_f5___3: inf {Infinity}
25: n_f5___6->n_f0___5: 1 {O(1)}
26: n_f5___6->n_f12___4: 1 {O(1)}
27: n_f5___6->n_f5___3: 1 {O(1)}
28: n_f6->n_f9___9: 1 {O(1)}
29: n_f9___7->n_f5___6: 1 {O(1)}
30: n_f9___7->n_f9___7: 21 {O(1)}
31: n_f9___8->n_f9___7: 1 {O(1)}
32: n_f9___9->n_f9___8: 1 {O(1)}
Overall costbound: inf {Infinity}
22: n_f5___3->n_f0___2: 1 {O(1)}
23: n_f5___3->n_f12___1: 1 {O(1)}
24: n_f5___3->n_f5___3: inf {Infinity}
25: n_f5___6->n_f0___5: 1 {O(1)}
26: n_f5___6->n_f12___4: 1 {O(1)}
27: n_f5___6->n_f5___3: 1 {O(1)}
28: n_f6->n_f9___9: 1 {O(1)}
29: n_f9___7->n_f5___6: 1 {O(1)}
30: n_f9___7->n_f9___7: 21 {O(1)}
31: n_f9___8->n_f9___7: 1 {O(1)}
32: n_f9___9->n_f9___8: 1 {O(1)}
22: n_f5___3->n_f0___2, Arg_0: 17 {O(1)}
22: n_f5___3->n_f0___2, Arg_1: 17 {O(1)}
22: n_f5___3->n_f0___2, Arg_2: 16 {O(1)}
22: n_f5___3->n_f0___2, Arg_17: 14 {O(1)}
23: n_f5___3->n_f12___1, Arg_0: 17 {O(1)}
23: n_f5___3->n_f12___1, Arg_1: 17 {O(1)}
23: n_f5___3->n_f12___1, Arg_2: 16 {O(1)}
23: n_f5___3->n_f12___1, Arg_7: 0 {O(1)}
23: n_f5___3->n_f12___1, Arg_13: 0 {O(1)}
23: n_f5___3->n_f12___1, Arg_17: 14 {O(1)}
24: n_f5___3->n_f5___3, Arg_0: 17 {O(1)}
24: n_f5___3->n_f5___3, Arg_1: 17 {O(1)}
24: n_f5___3->n_f5___3, Arg_2: 16 {O(1)}
24: n_f5___3->n_f5___3, Arg_7: 0 {O(1)}
24: n_f5___3->n_f5___3, Arg_17: 14 {O(1)}
25: n_f5___6->n_f0___5, Arg_0: 17 {O(1)}
25: n_f5___6->n_f0___5, Arg_1: 17 {O(1)}
25: n_f5___6->n_f0___5, Arg_2: 16 {O(1)}
25: n_f5___6->n_f0___5, Arg_4: 1 {O(1)}
25: n_f5___6->n_f0___5, Arg_15: Arg_15 {O(n)}
25: n_f5___6->n_f0___5, Arg_17: 14 {O(1)}
26: n_f5___6->n_f12___4, Arg_0: 17 {O(1)}
26: n_f5___6->n_f12___4, Arg_1: 17 {O(1)}
26: n_f5___6->n_f12___4, Arg_2: 16 {O(1)}
26: n_f5___6->n_f12___4, Arg_4: 1 {O(1)}
26: n_f5___6->n_f12___4, Arg_7: 0 {O(1)}
26: n_f5___6->n_f12___4, Arg_13: 0 {O(1)}
26: n_f5___6->n_f12___4, Arg_15: 1 {O(1)}
26: n_f5___6->n_f12___4, Arg_17: 14 {O(1)}
27: n_f5___6->n_f5___3, Arg_0: 17 {O(1)}
27: n_f5___6->n_f5___3, Arg_1: 17 {O(1)}
27: n_f5___6->n_f5___3, Arg_2: 16 {O(1)}
27: n_f5___6->n_f5___3, Arg_4: 2 {O(1)}
27: n_f5___6->n_f5___3, Arg_7: 0 {O(1)}
27: n_f5___6->n_f5___3, Arg_15: 1 {O(1)}
27: n_f5___6->n_f5___3, Arg_17: 14 {O(1)}
28: n_f6->n_f9___9, Arg_0: 17 {O(1)}
28: n_f6->n_f9___9, Arg_1: 1 {O(1)}
28: n_f6->n_f9___9, Arg_2: 0 {O(1)}
28: n_f6->n_f9___9, Arg_4: Arg_4 {O(n)}
28: n_f6->n_f9___9, Arg_5: Arg_5 {O(n)}
28: n_f6->n_f9___9, Arg_6: Arg_6 {O(n)}
28: n_f6->n_f9___9, Arg_7: Arg_7 {O(n)}
28: n_f6->n_f9___9, Arg_12: Arg_12 {O(n)}
28: n_f6->n_f9___9, Arg_13: Arg_13 {O(n)}
28: n_f6->n_f9___9, Arg_15: Arg_15 {O(n)}
28: n_f6->n_f9___9, Arg_16: Arg_16 {O(n)}
28: n_f6->n_f9___9, Arg_17: Arg_17 {O(n)}
29: n_f9___7->n_f5___6, Arg_0: 17 {O(1)}
29: n_f9___7->n_f5___6, Arg_1: 17 {O(1)}
29: n_f9___7->n_f5___6, Arg_2: 16 {O(1)}
29: n_f9___7->n_f5___6, Arg_4: 1 {O(1)}
29: n_f9___7->n_f5___6, Arg_7: 0 {O(1)}
29: n_f9___7->n_f5___6, Arg_15: Arg_15 {O(n)}
29: n_f9___7->n_f5___6, Arg_17: 14 {O(1)}
30: n_f9___7->n_f9___7, Arg_0: 17 {O(1)}
30: n_f9___7->n_f9___7, Arg_1: 17 {O(1)}
30: n_f9___7->n_f9___7, Arg_2: 16 {O(1)}
30: n_f9___7->n_f9___7, Arg_4: Arg_4 {O(n)}
30: n_f9___7->n_f9___7, Arg_5: Arg_5 {O(n)}
30: n_f9___7->n_f9___7, Arg_6: Arg_6 {O(n)}
30: n_f9___7->n_f9___7, Arg_7: Arg_7 {O(n)}
30: n_f9___7->n_f9___7, Arg_12: Arg_12 {O(n)}
30: n_f9___7->n_f9___7, Arg_13: Arg_13 {O(n)}
30: n_f9___7->n_f9___7, Arg_15: Arg_15 {O(n)}
30: n_f9___7->n_f9___7, Arg_16: Arg_16 {O(n)}
30: n_f9___7->n_f9___7, Arg_17: Arg_17 {O(n)}
31: n_f9___8->n_f9___7, Arg_0: 17 {O(1)}
31: n_f9___8->n_f9___7, Arg_1: 3 {O(1)}
31: n_f9___8->n_f9___7, Arg_2: 2 {O(1)}
31: n_f9___8->n_f9___7, Arg_4: Arg_4 {O(n)}
31: n_f9___8->n_f9___7, Arg_5: Arg_5 {O(n)}
31: n_f9___8->n_f9___7, Arg_6: Arg_6 {O(n)}
31: n_f9___8->n_f9___7, Arg_7: Arg_7 {O(n)}
31: n_f9___8->n_f9___7, Arg_12: Arg_12 {O(n)}
31: n_f9___8->n_f9___7, Arg_13: Arg_13 {O(n)}
31: n_f9___8->n_f9___7, Arg_15: Arg_15 {O(n)}
31: n_f9___8->n_f9___7, Arg_16: Arg_16 {O(n)}
31: n_f9___8->n_f9___7, Arg_17: Arg_17 {O(n)}
32: n_f9___9->n_f9___8, Arg_0: 17 {O(1)}
32: n_f9___9->n_f9___8, Arg_1: 2 {O(1)}
32: n_f9___9->n_f9___8, Arg_2: 1 {O(1)}
32: n_f9___9->n_f9___8, Arg_4: Arg_4 {O(n)}
32: n_f9___9->n_f9___8, Arg_5: Arg_5 {O(n)}
32: n_f9___9->n_f9___8, Arg_6: Arg_6 {O(n)}
32: n_f9___9->n_f9___8, Arg_7: Arg_7 {O(n)}
32: n_f9___9->n_f9___8, Arg_12: Arg_12 {O(n)}
32: n_f9___9->n_f9___8, Arg_13: Arg_13 {O(n)}
32: n_f9___9->n_f9___8, Arg_15: Arg_15 {O(n)}
32: n_f9___9->n_f9___8, Arg_16: Arg_16 {O(n)}
32: n_f9___9->n_f9___8, Arg_17: Arg_17 {O(n)}