Start: n_f1
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: A_P, B_P, C_P, D_P, E_P, F_P
Locations: n_f0___1, n_f0___10, n_f0___11, n_f0___2, n_f0___3, n_f0___4, n_f0___5, n_f0___6, n_f0___7, n_f0___8, n_f0___9, n_f1
Transitions:
0:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
1:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
2:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
3:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
4:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
5:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
6:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
7:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
8:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
9:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
10:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
11:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
12:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
13:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
14:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
15:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
16:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
17:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
18:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
19:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
20:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
21:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
22:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
23:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
24:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
25:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
26:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
27:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
28:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
29:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
30:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
31:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
32:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
33:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
34:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
35:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
36:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
37:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
38:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
39:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
40:n_f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___11(A_P,B_P,C_P,D_P,E_P,F_P):|:1<=F_P && A_P+B_P+C_P+D_P+E_P<=F_P && F_P<=A_P+B_P+C_P+D_P+E_P
Found invariant 1<=Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_1 for location n_f0___9
Found invariant 1<=Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_2 for location n_f0___6
Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_4 for location n_f0___7
Found invariant 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 for location n_f0___8
Found invariant 1<=Arg_5 for location n_f0___11
Found invariant 1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_2 for location n_f0___3
Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 2<=Arg_0+Arg_4 && 1<=Arg_0 for location n_f0___4
Found invariant 1<=Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 for location n_f0___2
Found invariant 1<=Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_0 for location n_f0___10
Found invariant 1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_f0___5
Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 2<=Arg_1+Arg_4 && 1<=Arg_1 for location n_f0___1
Start: n_f1
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: A_P, B_P, C_P, D_P, E_P, F_P
Locations: n_f0___1, n_f0___10, n_f0___11, n_f0___2, n_f0___3, n_f0___4, n_f0___5, n_f0___6, n_f0___7, n_f0___8, n_f0___9, n_f1
Transitions:
0:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 2<=Arg_1+Arg_4 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
1:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 2<=Arg_1+Arg_4 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
2:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 2<=Arg_1+Arg_4 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
3:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_0 && 1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
4:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_0 && 1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
5:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_0 && 1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
6:n_f0___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_0 && 1<=Arg_0 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
7:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
8:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
9:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
10:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
11:n_f0___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
12:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
13:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
14:n_f0___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
15:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_2 && 1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
16:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_2 && 1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
17:n_f0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_2 && 1<=Arg_3 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
18:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 2<=Arg_0+Arg_4 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
19:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 2<=Arg_0+Arg_4 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
20:n_f0___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 2<=Arg_0+Arg_4 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
21:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
22:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
23:n_f0___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
24:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_2 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
25:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_2 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
26:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_2 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
27:n_f0___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_2 && 1<=Arg_2 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
28:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_4 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
29:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___4(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_4 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
30:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___6(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_4 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
31:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_4 && 1<=Arg_4 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
32:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___3(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
33:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___5(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
34:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___7(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
35:n_f0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___9(Arg_0+Arg_1,-Arg_1,Arg_2,Arg_1+Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && 1<=Arg_3 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_1<=0
36:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___1(Arg_0,Arg_1,Arg_2+Arg_4,Arg_3+Arg_4,-Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_1 && 1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_4<=0
37:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___10(-Arg_0,Arg_0+Arg_1,Arg_0+Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_1 && 1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_0<=0
38:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___2(Arg_0+Arg_2,Arg_1,-Arg_2,Arg_3,Arg_2+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_1 && 1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_2<=0
39:n_f0___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___8(Arg_0,Arg_1+Arg_3,Arg_2,-Arg_3,Arg_3+Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_1 && 1<=Arg_1 && Arg_0+Arg_1+Arg_2+Arg_3+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1<=Arg_0+Arg_1+Arg_2+Arg_3+Arg_4 && 1+Arg_3<=0
40:n_f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f0___11(A_P,B_P,C_P,D_P,E_P,F_P):|:1<=F_P && A_P+B_P+C_P+D_P+E_P<=F_P && F_P<=A_P+B_P+C_P+D_P+E_P
Overall timebound:inf {Infinity}
0: n_f0___1->n_f0___2: inf {Infinity}
1: n_f0___1->n_f0___4: inf {Infinity}
2: n_f0___1->n_f0___8: inf {Infinity}
3: n_f0___10->n_f0___4: inf {Infinity}
4: n_f0___10->n_f0___5: inf {Infinity}
5: n_f0___10->n_f0___6: inf {Infinity}
6: n_f0___10->n_f0___9: inf {Infinity}
7: n_f0___11->n_f0___10: 1 {O(1)}
8: n_f0___11->n_f0___6: 1 {O(1)}
9: n_f0___11->n_f0___7: 1 {O(1)}
10: n_f0___11->n_f0___8: 1 {O(1)}
11: n_f0___11->n_f0___9: 1 {O(1)}
12: n_f0___2->n_f0___1: inf {Infinity}
13: n_f0___2->n_f0___10: inf {Infinity}
14: n_f0___2->n_f0___3: inf {Infinity}
15: n_f0___3->n_f0___2: inf {Infinity}
16: n_f0___3->n_f0___5: inf {Infinity}
17: n_f0___3->n_f0___7: inf {Infinity}
18: n_f0___4->n_f0___1: inf {Infinity}
19: n_f0___4->n_f0___5: inf {Infinity}
20: n_f0___4->n_f0___6: inf {Infinity}
21: n_f0___5->n_f0___3: inf {Infinity}
22: n_f0___5->n_f0___4: inf {Infinity}
23: n_f0___5->n_f0___9: inf {Infinity}
24: n_f0___6->n_f0___10: inf {Infinity}
25: n_f0___6->n_f0___2: inf {Infinity}
26: n_f0___6->n_f0___3: inf {Infinity}
27: n_f0___6->n_f0___7: inf {Infinity}
28: n_f0___7->n_f0___1: inf {Infinity}
29: n_f0___7->n_f0___4: inf {Infinity}
30: n_f0___7->n_f0___6: inf {Infinity}
31: n_f0___7->n_f0___8: inf {Infinity}
32: n_f0___8->n_f0___3: inf {Infinity}
33: n_f0___8->n_f0___5: inf {Infinity}
34: n_f0___8->n_f0___7: inf {Infinity}
35: n_f0___8->n_f0___9: inf {Infinity}
36: n_f0___9->n_f0___1: inf {Infinity}
37: n_f0___9->n_f0___10: inf {Infinity}
38: n_f0___9->n_f0___2: inf {Infinity}
39: n_f0___9->n_f0___8: inf {Infinity}
40: n_f1->n_f0___11: 1 {O(1)}
Overall costbound: inf {Infinity}
0: n_f0___1->n_f0___2: inf {Infinity}
1: n_f0___1->n_f0___4: inf {Infinity}
2: n_f0___1->n_f0___8: inf {Infinity}
3: n_f0___10->n_f0___4: inf {Infinity}
4: n_f0___10->n_f0___5: inf {Infinity}
5: n_f0___10->n_f0___6: inf {Infinity}
6: n_f0___10->n_f0___9: inf {Infinity}
7: n_f0___11->n_f0___10: 1 {O(1)}
8: n_f0___11->n_f0___6: 1 {O(1)}
9: n_f0___11->n_f0___7: 1 {O(1)}
10: n_f0___11->n_f0___8: 1 {O(1)}
11: n_f0___11->n_f0___9: 1 {O(1)}
12: n_f0___2->n_f0___1: inf {Infinity}
13: n_f0___2->n_f0___10: inf {Infinity}
14: n_f0___2->n_f0___3: inf {Infinity}
15: n_f0___3->n_f0___2: inf {Infinity}
16: n_f0___3->n_f0___5: inf {Infinity}
17: n_f0___3->n_f0___7: inf {Infinity}
18: n_f0___4->n_f0___1: inf {Infinity}
19: n_f0___4->n_f0___5: inf {Infinity}
20: n_f0___4->n_f0___6: inf {Infinity}
21: n_f0___5->n_f0___3: inf {Infinity}
22: n_f0___5->n_f0___4: inf {Infinity}
23: n_f0___5->n_f0___9: inf {Infinity}
24: n_f0___6->n_f0___10: inf {Infinity}
25: n_f0___6->n_f0___2: inf {Infinity}
26: n_f0___6->n_f0___3: inf {Infinity}
27: n_f0___6->n_f0___7: inf {Infinity}
28: n_f0___7->n_f0___1: inf {Infinity}
29: n_f0___7->n_f0___4: inf {Infinity}
30: n_f0___7->n_f0___6: inf {Infinity}
31: n_f0___7->n_f0___8: inf {Infinity}
32: n_f0___8->n_f0___3: inf {Infinity}
33: n_f0___8->n_f0___5: inf {Infinity}
34: n_f0___8->n_f0___7: inf {Infinity}
35: n_f0___8->n_f0___9: inf {Infinity}
36: n_f0___9->n_f0___1: inf {Infinity}
37: n_f0___9->n_f0___10: inf {Infinity}
38: n_f0___9->n_f0___2: inf {Infinity}
39: n_f0___9->n_f0___8: inf {Infinity}
40: n_f1->n_f0___11: 1 {O(1)}