Initial Problem

Start: n_f23
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26
Temp_Vars: B_P, C_P, D_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, R_P, S_P, T_P, U_P
Locations: n_f23, n_f2___1, n_f2___4, n_f2___5, n_f8___2, n_f8___3
Transitions:
0:n_f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,2,1,1,2,Arg_11,Arg_12,Arg_13,2,NoDet1,NoDet2,NoDet3,R_P,S_P,T_P,U_P,NoDet4,NoDet5,2,NoDet6,0):|:R_P<=U_P && U_P<=R_P && R_P<=T_P && T_P<=R_P && R_P<=S_P && S_P<=R_P
1:n_f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,2,1,1,2,Arg_11,Arg_12,Arg_13,2,NoDet1,NoDet2,NoDet3,R_P,S_P,T_P,U_P,NoDet4,NoDet5,2,NoDet6,0):|:R_P<=U_P && U_P<=R_P && R_P<=T_P && T_P<=R_P && R_P<=S_P && S_P<=R_P
2:n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+Arg_6<=Arg_5
3:n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_5<=Arg_6 && 0<=Arg_8 && 1<=Arg_7
4:n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___2(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_0<=B_P && 0<=Arg_8 && 1<=Arg_7 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
5:n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___3(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+B_P<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
6:n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+Arg_6<=Arg_5
7:n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_5<=Arg_6 && 0<=Arg_8 && 1<=Arg_7
8:n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___2(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_0<=B_P && 0<=Arg_8 && 1<=Arg_7 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
9:n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___3(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+B_P<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
10:n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 0<=Arg_8 && 1<=Arg_7 && 1+Arg_6<=Arg_5
11:n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,NoDet1,NoDet2,Arg_7-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_5<=Arg_6 && 0<=Arg_8 && 1<=Arg_7
12:n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___2(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_0<=B_P && 0<=Arg_8 && 1<=Arg_7 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
13:n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___3(Arg_0,NoDet2,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,NoDet0,Arg_18,Arg_19,Arg_20,NoDet1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 0<=Arg_8 && 1<=Arg_7 && 1+B_P<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
14:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___2(Arg_0,Arg_1,Arg_2,Arg_2,Arg_2,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_7 && 0<=Arg_8 && 1+Arg_0<=Arg_2
15:n_f8___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___3(Arg_0,Arg_1,Arg_2,Arg_2,Arg_2,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_7 && 0<=Arg_8 && 1+Arg_2<=Arg_0 && 1+Arg_2<=Arg_0

Preprocessing

Eliminate variables {NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,Arg_1,Arg_11,Arg_12,Arg_15,Arg_16,Arg_17,Arg_22,Arg_23,Arg_25} that do not contribute to the problem

Found invariant Arg_9<=3 && Arg_9<=Arg_8 && Arg_8+Arg_9<=6 && Arg_9<=3+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=3+Arg_26 && Arg_26+Arg_9<=3 && Arg_9<=1+Arg_24 && Arg_24+Arg_9<=5 && Arg_9<=1+Arg_14 && Arg_14+Arg_9<=5 && Arg_9<=3+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=3+Arg_10 && Arg_10+Arg_9<=3 && 3<=Arg_9 && 6<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 3+Arg_7<=Arg_9 && 3<=Arg_26+Arg_9 && 3+Arg_26<=Arg_9 && 5<=Arg_24+Arg_9 && 1+Arg_24<=Arg_9 && 5<=Arg_14+Arg_9 && 1+Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 3+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 3+Arg_10<=Arg_9 && Arg_8<=3 && Arg_8<=3+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=3+Arg_26 && Arg_26+Arg_8<=3 && Arg_8<=1+Arg_24 && Arg_24+Arg_8<=5 && Arg_8<=1+Arg_14 && Arg_14+Arg_8<=5 && Arg_8<=3+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=3+Arg_10 && Arg_10+Arg_8<=3 && 3<=Arg_8 && 3<=Arg_7+Arg_8 && 3+Arg_7<=Arg_8 && 3<=Arg_26+Arg_8 && 3+Arg_26<=Arg_8 && 5<=Arg_24+Arg_8 && 1+Arg_24<=Arg_8 && 5<=Arg_14+Arg_8 && 1+Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 3+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 3+Arg_10<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_26 && Arg_26+Arg_7<=0 && 2+Arg_7<=Arg_24 && Arg_24+Arg_7<=2 && 2+Arg_7<=Arg_14 && Arg_14+Arg_7<=2 && Arg_7<=Arg_13 && Arg_13+Arg_7<=0 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_26+Arg_7 && Arg_26<=Arg_7 && 2<=Arg_24+Arg_7 && Arg_24<=2+Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=2+Arg_7 && 0<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && Arg_26<=Arg_13 && Arg_13+Arg_26<=0 && Arg_26<=Arg_10 && Arg_10+Arg_26<=0 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 0<=Arg_13+Arg_26 && Arg_13<=Arg_26 && 0<=Arg_10+Arg_26 && Arg_10<=Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=2+Arg_13 && Arg_13+Arg_24<=2 && Arg_24<=2+Arg_10 && Arg_10+Arg_24<=2 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 2<=Arg_13+Arg_24 && 2+Arg_13<=Arg_24 && 2<=Arg_10+Arg_24 && 2+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=2+Arg_13 && Arg_13+Arg_14<=2 && Arg_14<=2+Arg_10 && Arg_10+Arg_14<=2 && 2<=Arg_14 && 2<=Arg_13+Arg_14 && 2+Arg_13<=Arg_14 && 2<=Arg_10+Arg_14 && 2+Arg_10<=Arg_14 && Arg_13<=0 && Arg_13<=Arg_10 && Arg_10+Arg_13<=0 && 0<=Arg_13 && 0<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=0 && 0<=Arg_10 for location n_f2___1

Found invariant Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && 1+Arg_0<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 3<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 1<=Arg_10 for location n_f8___2

Found invariant Arg_9<=1 && Arg_9<=Arg_8 && Arg_8+Arg_9<=2 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=1+Arg_26 && Arg_26+Arg_9<=1 && 1+Arg_9<=Arg_24 && Arg_24+Arg_9<=3 && 1+Arg_9<=Arg_14 && Arg_14+Arg_9<=3 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=1 && 1+Arg_8<=Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=1+Arg_26 && Arg_26+Arg_8<=1 && 1+Arg_8<=Arg_24 && Arg_24+Arg_8<=3 && 1+Arg_8<=Arg_14 && Arg_14+Arg_8<=3 && 1+Arg_8<=Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 2<=Arg_7 && 2<=Arg_26+Arg_7 && 2+Arg_26<=Arg_7 && 4<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 4<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 4<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 2+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 2<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 4<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 4<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 2<=Arg_10 for location n_f2___5

Found invariant Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 2<=Arg_9 && 4<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 2<=Arg_26+Arg_9 && 2+Arg_26<=Arg_9 && 4<=Arg_24+Arg_9 && Arg_24<=Arg_9 && 4<=Arg_14+Arg_9 && Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 1+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 1+Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 2<=Arg_8 && 3<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_26+Arg_8 && 2+Arg_26<=Arg_8 && 4<=Arg_24+Arg_8 && Arg_24<=Arg_8 && 4<=Arg_14+Arg_8 && Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 1+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_26 && Arg_26+Arg_7<=1 && 1+Arg_7<=Arg_24 && Arg_24+Arg_7<=3 && 1+Arg_7<=Arg_14 && Arg_14+Arg_7<=3 && Arg_7<=Arg_13 && Arg_13+Arg_7<=2 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_13 && Arg_13+Arg_26<=1 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=1 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_13+Arg_26 && Arg_13<=1+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=1+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_13 && Arg_13+Arg_24<=3 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=3 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 1+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_13 && Arg_13+Arg_14<=3 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=3 && 2<=Arg_14 && 3<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 3<=Arg_10+Arg_14 && 1+Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=Arg_10 && Arg_10+Arg_13<=2 && 1<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=1 && 1<=Arg_10 for location n_f2___4

Found invariant Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && 1+Arg_2<=Arg_0 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 3<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 1<=Arg_10 for location n_f8___3

Cut unsatisfiable transition 35: n_f2___1->n_f2___1

Cut unsatisfiable transition 36: n_f2___1->n_f2___1

Cut unsatisfiable transition 37: n_f2___1->n_f8___2

Cut unsatisfiable transition 38: n_f2___1->n_f8___3

Problem after Preprocessing

Start: n_f23
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_13, Arg_14, Arg_18, Arg_19, Arg_20, Arg_21, Arg_24, Arg_26
Temp_Vars: B_P, C_P, D_P, NoDet0, NoDet1, R_P, S_P, T_P, U_P
Locations: n_f23, n_f2___1, n_f2___4, n_f2___5, n_f8___2, n_f8___3
Transitions:
33:n_f23(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,2,1,1,2,Arg_13,2,R_P,S_P,T_P,U_P,2,0):|:R_P<=U_P && U_P<=R_P && R_P<=T_P && T_P<=R_P && R_P<=S_P && S_P<=R_P
34:n_f23(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,2,1,1,2,Arg_13,2,R_P,S_P,T_P,U_P,2,0):|:R_P<=U_P && U_P<=R_P && R_P<=T_P && T_P<=R_P && R_P<=S_P && S_P<=R_P
39:n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___1(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,Arg_7-1,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 2<=Arg_9 && 4<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 2<=Arg_26+Arg_9 && 2+Arg_26<=Arg_9 && 4<=Arg_24+Arg_9 && Arg_24<=Arg_9 && 4<=Arg_14+Arg_9 && Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 1+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 1+Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 2<=Arg_8 && 3<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_26+Arg_8 && 2+Arg_26<=Arg_8 && 4<=Arg_24+Arg_8 && Arg_24<=Arg_8 && 4<=Arg_14+Arg_8 && Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 1+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_26 && Arg_26+Arg_7<=1 && 1+Arg_7<=Arg_24 && Arg_24+Arg_7<=3 && 1+Arg_7<=Arg_14 && Arg_14+Arg_7<=3 && Arg_7<=Arg_13 && Arg_13+Arg_7<=2 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_13 && Arg_13+Arg_26<=1 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=1 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_13+Arg_26 && Arg_13<=1+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=1+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_13 && Arg_13+Arg_24<=3 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=3 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 1+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_13 && Arg_13+Arg_14<=3 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=3 && 2<=Arg_14 && 3<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 3<=Arg_10+Arg_14 && 1+Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=Arg_10 && Arg_10+Arg_13<=2 && 1<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=1 && 1<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+Arg_6<=Arg_5
40:n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___1(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,Arg_7-1,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 2<=Arg_9 && 4<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 2<=Arg_26+Arg_9 && 2+Arg_26<=Arg_9 && 4<=Arg_24+Arg_9 && Arg_24<=Arg_9 && 4<=Arg_14+Arg_9 && Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 1+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 1+Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 2<=Arg_8 && 3<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_26+Arg_8 && 2+Arg_26<=Arg_8 && 4<=Arg_24+Arg_8 && Arg_24<=Arg_8 && 4<=Arg_14+Arg_8 && Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 1+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_26 && Arg_26+Arg_7<=1 && 1+Arg_7<=Arg_24 && Arg_24+Arg_7<=3 && 1+Arg_7<=Arg_14 && Arg_14+Arg_7<=3 && Arg_7<=Arg_13 && Arg_13+Arg_7<=2 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_13 && Arg_13+Arg_26<=1 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=1 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_13+Arg_26 && Arg_13<=1+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=1+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_13 && Arg_13+Arg_24<=3 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=3 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 1+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_13 && Arg_13+Arg_14<=3 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=3 && 2<=Arg_14 && 3<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 3<=Arg_10+Arg_14 && 1+Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=Arg_10 && Arg_10+Arg_13<=2 && 1<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=1 && 1<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_5<=Arg_6 && 0<=Arg_8 && 1<=Arg_7
41:n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___2(Arg_0,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,NoDet1,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 2<=Arg_9 && 4<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 2<=Arg_26+Arg_9 && 2+Arg_26<=Arg_9 && 4<=Arg_24+Arg_9 && Arg_24<=Arg_9 && 4<=Arg_14+Arg_9 && Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 1+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 1+Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 2<=Arg_8 && 3<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_26+Arg_8 && 2+Arg_26<=Arg_8 && 4<=Arg_24+Arg_8 && Arg_24<=Arg_8 && 4<=Arg_14+Arg_8 && Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 1+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_26 && Arg_26+Arg_7<=1 && 1+Arg_7<=Arg_24 && Arg_24+Arg_7<=3 && 1+Arg_7<=Arg_14 && Arg_14+Arg_7<=3 && Arg_7<=Arg_13 && Arg_13+Arg_7<=2 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_13 && Arg_13+Arg_26<=1 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=1 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_13+Arg_26 && Arg_13<=1+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=1+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_13 && Arg_13+Arg_24<=3 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=3 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 1+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_13 && Arg_13+Arg_14<=3 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=3 && 2<=Arg_14 && 3<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 3<=Arg_10+Arg_14 && 1+Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=Arg_10 && Arg_10+Arg_13<=2 && 1<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=1 && 1<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 1+Arg_0<=B_P && 0<=Arg_8 && 1<=Arg_7 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
42:n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___3(Arg_0,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,NoDet1,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_13 && Arg_13+Arg_9<=3 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 2<=Arg_9 && 4<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && 1+Arg_7<=Arg_9 && 2<=Arg_26+Arg_9 && 2+Arg_26<=Arg_9 && 4<=Arg_24+Arg_9 && Arg_24<=Arg_9 && 4<=Arg_14+Arg_9 && Arg_14<=Arg_9 && 3<=Arg_13+Arg_9 && 1+Arg_13<=Arg_9 && 3<=Arg_10+Arg_9 && 1+Arg_10<=Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_13 && Arg_13+Arg_8<=3 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 2<=Arg_8 && 3<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_26+Arg_8 && 2+Arg_26<=Arg_8 && 4<=Arg_24+Arg_8 && Arg_24<=Arg_8 && 4<=Arg_14+Arg_8 && Arg_14<=Arg_8 && 3<=Arg_13+Arg_8 && 1+Arg_13<=Arg_8 && 3<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_26 && Arg_26+Arg_7<=1 && 1+Arg_7<=Arg_24 && Arg_24+Arg_7<=3 && 1+Arg_7<=Arg_14 && Arg_14+Arg_7<=3 && Arg_7<=Arg_13 && Arg_13+Arg_7<=2 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_13 && Arg_13+Arg_26<=1 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=1 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_13+Arg_26 && Arg_13<=1+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=1+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_13 && Arg_13+Arg_24<=3 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=3 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 1+Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_13 && Arg_13+Arg_14<=3 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=3 && 2<=Arg_14 && 3<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 3<=Arg_10+Arg_14 && 1+Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=Arg_10 && Arg_10+Arg_13<=2 && 1<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=1 && 1<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_7<=Arg_13 && Arg_13<=Arg_7 && 0<=Arg_13 && 1<=Arg_8 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_7<=Arg_10 && Arg_10<=Arg_7 && 0<=Arg_10 && 1<=Arg_8 && 0<=Arg_8 && 1<=Arg_7 && 1+B_P<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
43:n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,Arg_7-1,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=1 && Arg_9<=Arg_8 && Arg_8+Arg_9<=2 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=1+Arg_26 && Arg_26+Arg_9<=1 && 1+Arg_9<=Arg_24 && Arg_24+Arg_9<=3 && 1+Arg_9<=Arg_14 && Arg_14+Arg_9<=3 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=1 && 1+Arg_8<=Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=1+Arg_26 && Arg_26+Arg_8<=1 && 1+Arg_8<=Arg_24 && Arg_24+Arg_8<=3 && 1+Arg_8<=Arg_14 && Arg_14+Arg_8<=3 && 1+Arg_8<=Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 2<=Arg_7 && 2<=Arg_26+Arg_7 && 2+Arg_26<=Arg_7 && 4<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 4<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 4<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 2+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 2<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 4<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 4<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 2<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 0<=Arg_8 && 1<=Arg_7 && 1+Arg_6<=Arg_5
44:n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f2___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,NoDet0,Arg_7-1,Arg_8+1,Arg_8+1,Arg_7-1,Arg_7-1,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=1 && Arg_9<=Arg_8 && Arg_8+Arg_9<=2 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=1+Arg_26 && Arg_26+Arg_9<=1 && 1+Arg_9<=Arg_24 && Arg_24+Arg_9<=3 && 1+Arg_9<=Arg_14 && Arg_14+Arg_9<=3 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=1 && 1+Arg_8<=Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=1+Arg_26 && Arg_26+Arg_8<=1 && 1+Arg_8<=Arg_24 && Arg_24+Arg_8<=3 && 1+Arg_8<=Arg_14 && Arg_14+Arg_8<=3 && 1+Arg_8<=Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 2<=Arg_7 && 2<=Arg_26+Arg_7 && 2+Arg_26<=Arg_7 && 4<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 4<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 4<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 2+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 2<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 4<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 4<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 2<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_5<=Arg_6 && 0<=Arg_8 && 1<=Arg_7
45:n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___2(Arg_0,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,NoDet1,Arg_24,Arg_26):|:Arg_9<=1 && Arg_9<=Arg_8 && Arg_8+Arg_9<=2 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=1+Arg_26 && Arg_26+Arg_9<=1 && 1+Arg_9<=Arg_24 && Arg_24+Arg_9<=3 && 1+Arg_9<=Arg_14 && Arg_14+Arg_9<=3 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=1 && 1+Arg_8<=Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=1+Arg_26 && Arg_26+Arg_8<=1 && 1+Arg_8<=Arg_24 && Arg_24+Arg_8<=3 && 1+Arg_8<=Arg_14 && Arg_14+Arg_8<=3 && 1+Arg_8<=Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 2<=Arg_7 && 2<=Arg_26+Arg_7 && 2+Arg_26<=Arg_7 && 4<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 4<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 4<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 2+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 2<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 4<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 4<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 2<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_0<=B_P && 0<=Arg_8 && 1<=Arg_7 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
46:n_f2___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___3(Arg_0,B_P,C_P,D_P,Arg_5,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,NoDet1,Arg_24,Arg_26):|:Arg_9<=1 && Arg_9<=Arg_8 && Arg_8+Arg_9<=2 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=1+Arg_26 && Arg_26+Arg_9<=1 && 1+Arg_9<=Arg_24 && Arg_24+Arg_9<=3 && 1+Arg_9<=Arg_14 && Arg_14+Arg_9<=3 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=1 && 1+Arg_8<=Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=1+Arg_26 && Arg_26+Arg_8<=1 && 1+Arg_8<=Arg_24 && Arg_24+Arg_8<=3 && 1+Arg_8<=Arg_14 && Arg_14+Arg_8<=3 && 1+Arg_8<=Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 2<=Arg_7 && 2<=Arg_26+Arg_7 && 2+Arg_26<=Arg_7 && 4<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 4<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 4<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 2+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 2<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 4<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_21<=Arg_20 && Arg_21<=Arg_19 && Arg_21<=Arg_18 && Arg_20<=Arg_21 && Arg_19<=Arg_21 && Arg_18<=Arg_21 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 4<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 2<=Arg_10 && 0<=Arg_8 && 1<=Arg_7 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && Arg_10<=2 && 2<=Arg_10 && Arg_24<=2 && 2<=Arg_24 && Arg_26<=0 && 0<=Arg_26 && Arg_18<=Arg_19 && Arg_19<=Arg_18 && Arg_14<=2 && 2<=Arg_14 && Arg_18<=Arg_20 && Arg_20<=Arg_18 && Arg_18<=Arg_21 && Arg_21<=Arg_18 && Arg_7<=2 && 2<=Arg_7 && Arg_8<=1 && 1<=Arg_8 && Arg_9<=1 && 1<=Arg_9 && 0<=Arg_8 && 1<=Arg_7 && 1+B_P<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && B_P<=D_P && D_P<=B_P && B_P<=C_P && C_P<=B_P
47:n_f8___2(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___2(Arg_0,Arg_2,Arg_2,Arg_2,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && 1+Arg_0<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 3<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 1<=Arg_10 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_7 && 0<=Arg_8 && 1+Arg_0<=Arg_2
48:n_f8___3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26) -> n_f8___3(Arg_0,Arg_2,Arg_2,Arg_2,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_13,Arg_14,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_26):|:Arg_9<=2 && Arg_9<=Arg_8 && Arg_8+Arg_9<=4 && Arg_9<=1+Arg_7 && Arg_7+Arg_9<=3 && Arg_9<=2+Arg_26 && Arg_26+Arg_9<=2 && Arg_9<=Arg_24 && Arg_24+Arg_9<=4 && Arg_9<=Arg_14 && Arg_14+Arg_9<=4 && Arg_9<=1+Arg_10 && Arg_10+Arg_9<=3 && 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_8<=Arg_9 && 3<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_26+Arg_9 && 1+Arg_26<=Arg_9 && 3<=Arg_24+Arg_9 && Arg_24<=1+Arg_9 && 3<=Arg_14+Arg_9 && Arg_14<=1+Arg_9 && 3<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && Arg_8<=2 && Arg_8<=1+Arg_7 && Arg_7+Arg_8<=3 && Arg_8<=2+Arg_26 && Arg_26+Arg_8<=2 && Arg_8<=Arg_24 && Arg_24+Arg_8<=4 && Arg_8<=Arg_14 && Arg_14+Arg_8<=4 && Arg_8<=1+Arg_10 && Arg_10+Arg_8<=3 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_26+Arg_8 && 1+Arg_26<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 3<=Arg_14+Arg_8 && Arg_14<=1+Arg_8 && 3<=Arg_10+Arg_8 && Arg_10<=1+Arg_8 && Arg_7<=2 && Arg_7<=2+Arg_26 && Arg_26+Arg_7<=2 && Arg_7<=Arg_24 && Arg_24+Arg_7<=4 && Arg_7<=Arg_14 && Arg_14+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=4 && 1<=Arg_7 && 1<=Arg_26+Arg_7 && 1+Arg_26<=Arg_7 && 3<=Arg_24+Arg_7 && Arg_24<=1+Arg_7 && 3<=Arg_14+Arg_7 && Arg_14<=1+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_26<=0 && 2+Arg_26<=Arg_24 && Arg_24+Arg_26<=2 && 2+Arg_26<=Arg_14 && Arg_14+Arg_26<=2 && 1+Arg_26<=Arg_10 && Arg_10+Arg_26<=2 && 0<=Arg_26 && 2<=Arg_24+Arg_26 && Arg_24<=2+Arg_26 && 2<=Arg_14+Arg_26 && Arg_14<=2+Arg_26 && 1<=Arg_10+Arg_26 && Arg_10<=2+Arg_26 && Arg_24<=2 && Arg_24<=Arg_14 && Arg_14+Arg_24<=4 && Arg_24<=1+Arg_10 && Arg_10+Arg_24<=4 && 2<=Arg_24 && 4<=Arg_14+Arg_24 && Arg_14<=Arg_24 && 3<=Arg_10+Arg_24 && Arg_10<=Arg_24 && Arg_20<=Arg_19 && Arg_20<=Arg_18 && Arg_19<=Arg_20 && Arg_18<=Arg_20 && 1+Arg_2<=Arg_0 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_14<=2 && Arg_14<=1+Arg_10 && Arg_10+Arg_14<=4 && 2<=Arg_14 && 3<=Arg_10+Arg_14 && Arg_10<=Arg_14 && Arg_10<=2 && 1<=Arg_10 && 1+Arg_2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_7 && 0<=Arg_8 && 1+Arg_2<=Arg_0 && 1+Arg_2<=Arg_0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
33: n_f23->n_f2___5: 1 {O(1)}
34: n_f23->n_f2___5: 1 {O(1)}
39: n_f2___4->n_f2___1: 1 {O(1)}
40: n_f2___4->n_f2___1: 1 {O(1)}
41: n_f2___4->n_f8___2: 1 {O(1)}
42: n_f2___4->n_f8___3: 1 {O(1)}
43: n_f2___5->n_f2___4: 1 {O(1)}
44: n_f2___5->n_f2___4: 1 {O(1)}
45: n_f2___5->n_f8___2: 1 {O(1)}
46: n_f2___5->n_f8___3: 1 {O(1)}
47: n_f8___2->n_f8___2: inf {Infinity}
48: n_f8___3->n_f8___3: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
33: n_f23->n_f2___5: 1 {O(1)}
34: n_f23->n_f2___5: 1 {O(1)}
39: n_f2___4->n_f2___1: 1 {O(1)}
40: n_f2___4->n_f2___1: 1 {O(1)}
41: n_f2___4->n_f8___2: 1 {O(1)}
42: n_f2___4->n_f8___3: 1 {O(1)}
43: n_f2___5->n_f2___4: 1 {O(1)}
44: n_f2___5->n_f2___4: 1 {O(1)}
45: n_f2___5->n_f8___2: 1 {O(1)}
46: n_f2___5->n_f8___3: 1 {O(1)}
47: n_f8___2->n_f8___2: inf {Infinity}
48: n_f8___3->n_f8___3: inf {Infinity}

Sizebounds

33: n_f23->n_f2___5, Arg_0: Arg_0 {O(n)}
33: n_f23->n_f2___5, Arg_2: Arg_2 {O(n)}
33: n_f23->n_f2___5, Arg_3: Arg_3 {O(n)}
33: n_f23->n_f2___5, Arg_4: Arg_4 {O(n)}
33: n_f23->n_f2___5, Arg_5: Arg_5 {O(n)}
33: n_f23->n_f2___5, Arg_7: 2 {O(1)}
33: n_f23->n_f2___5, Arg_8: 1 {O(1)}
33: n_f23->n_f2___5, Arg_9: 1 {O(1)}
33: n_f23->n_f2___5, Arg_10: 2 {O(1)}
33: n_f23->n_f2___5, Arg_13: Arg_13 {O(n)}
33: n_f23->n_f2___5, Arg_14: 2 {O(1)}
33: n_f23->n_f2___5, Arg_24: 2 {O(1)}
33: n_f23->n_f2___5, Arg_26: 0 {O(1)}
34: n_f23->n_f2___5, Arg_0: Arg_0 {O(n)}
34: n_f23->n_f2___5, Arg_2: Arg_2 {O(n)}
34: n_f23->n_f2___5, Arg_3: Arg_3 {O(n)}
34: n_f23->n_f2___5, Arg_4: Arg_4 {O(n)}
34: n_f23->n_f2___5, Arg_5: Arg_5 {O(n)}
34: n_f23->n_f2___5, Arg_7: 2 {O(1)}
34: n_f23->n_f2___5, Arg_8: 1 {O(1)}
34: n_f23->n_f2___5, Arg_9: 1 {O(1)}
34: n_f23->n_f2___5, Arg_10: 2 {O(1)}
34: n_f23->n_f2___5, Arg_13: Arg_13 {O(n)}
34: n_f23->n_f2___5, Arg_14: 2 {O(1)}
34: n_f23->n_f2___5, Arg_24: 2 {O(1)}
34: n_f23->n_f2___5, Arg_26: 0 {O(1)}
39: n_f2___4->n_f2___1, Arg_0: 4*Arg_0 {O(n)}
39: n_f2___4->n_f2___1, Arg_2: 4*Arg_2 {O(n)}
39: n_f2___4->n_f2___1, Arg_3: 4*Arg_3 {O(n)}
39: n_f2___4->n_f2___1, Arg_4: 4*Arg_4 {O(n)}
39: n_f2___4->n_f2___1, Arg_5: 4*Arg_5 {O(n)}
39: n_f2___4->n_f2___1, Arg_7: 0 {O(1)}
39: n_f2___4->n_f2___1, Arg_8: 3 {O(1)}
39: n_f2___4->n_f2___1, Arg_9: 3 {O(1)}
39: n_f2___4->n_f2___1, Arg_10: 0 {O(1)}
39: n_f2___4->n_f2___1, Arg_13: 0 {O(1)}
39: n_f2___4->n_f2___1, Arg_14: 2 {O(1)}
39: n_f2___4->n_f2___1, Arg_24: 2 {O(1)}
39: n_f2___4->n_f2___1, Arg_26: 0 {O(1)}
40: n_f2___4->n_f2___1, Arg_0: 4*Arg_0 {O(n)}
40: n_f2___4->n_f2___1, Arg_2: 4*Arg_2 {O(n)}
40: n_f2___4->n_f2___1, Arg_3: 4*Arg_3 {O(n)}
40: n_f2___4->n_f2___1, Arg_4: 4*Arg_4 {O(n)}
40: n_f2___4->n_f2___1, Arg_5: 4*Arg_5 {O(n)}
40: n_f2___4->n_f2___1, Arg_7: 0 {O(1)}
40: n_f2___4->n_f2___1, Arg_8: 3 {O(1)}
40: n_f2___4->n_f2___1, Arg_9: 3 {O(1)}
40: n_f2___4->n_f2___1, Arg_10: 0 {O(1)}
40: n_f2___4->n_f2___1, Arg_13: 0 {O(1)}
40: n_f2___4->n_f2___1, Arg_14: 2 {O(1)}
40: n_f2___4->n_f2___1, Arg_24: 2 {O(1)}
40: n_f2___4->n_f2___1, Arg_26: 0 {O(1)}
41: n_f2___4->n_f8___2, Arg_0: 4*Arg_0 {O(n)}
41: n_f2___4->n_f8___2, Arg_5: 4*Arg_5 {O(n)}
41: n_f2___4->n_f8___2, Arg_6: 4*Arg_5 {O(n)}
41: n_f2___4->n_f8___2, Arg_7: 1 {O(1)}
41: n_f2___4->n_f8___2, Arg_8: 2 {O(1)}
41: n_f2___4->n_f8___2, Arg_9: 2 {O(1)}
41: n_f2___4->n_f8___2, Arg_10: 1 {O(1)}
41: n_f2___4->n_f8___2, Arg_13: 1 {O(1)}
41: n_f2___4->n_f8___2, Arg_14: 2 {O(1)}
41: n_f2___4->n_f8___2, Arg_24: 2 {O(1)}
41: n_f2___4->n_f8___2, Arg_26: 0 {O(1)}
42: n_f2___4->n_f8___3, Arg_0: 4*Arg_0 {O(n)}
42: n_f2___4->n_f8___3, Arg_5: 4*Arg_5 {O(n)}
42: n_f2___4->n_f8___3, Arg_6: 4*Arg_5 {O(n)}
42: n_f2___4->n_f8___3, Arg_7: 1 {O(1)}
42: n_f2___4->n_f8___3, Arg_8: 2 {O(1)}
42: n_f2___4->n_f8___3, Arg_9: 2 {O(1)}
42: n_f2___4->n_f8___3, Arg_10: 1 {O(1)}
42: n_f2___4->n_f8___3, Arg_13: 1 {O(1)}
42: n_f2___4->n_f8___3, Arg_14: 2 {O(1)}
42: n_f2___4->n_f8___3, Arg_24: 2 {O(1)}
42: n_f2___4->n_f8___3, Arg_26: 0 {O(1)}
43: n_f2___5->n_f2___4, Arg_0: 2*Arg_0 {O(n)}
43: n_f2___5->n_f2___4, Arg_2: 2*Arg_2 {O(n)}
43: n_f2___5->n_f2___4, Arg_3: 2*Arg_3 {O(n)}
43: n_f2___5->n_f2___4, Arg_4: 2*Arg_4 {O(n)}
43: n_f2___5->n_f2___4, Arg_5: 2*Arg_5 {O(n)}
43: n_f2___5->n_f2___4, Arg_7: 1 {O(1)}
43: n_f2___5->n_f2___4, Arg_8: 2 {O(1)}
43: n_f2___5->n_f2___4, Arg_9: 2 {O(1)}
43: n_f2___5->n_f2___4, Arg_10: 1 {O(1)}
43: n_f2___5->n_f2___4, Arg_13: 1 {O(1)}
43: n_f2___5->n_f2___4, Arg_14: 2 {O(1)}
43: n_f2___5->n_f2___4, Arg_24: 2 {O(1)}
43: n_f2___5->n_f2___4, Arg_26: 0 {O(1)}
44: n_f2___5->n_f2___4, Arg_0: 2*Arg_0 {O(n)}
44: n_f2___5->n_f2___4, Arg_2: 2*Arg_2 {O(n)}
44: n_f2___5->n_f2___4, Arg_3: 2*Arg_3 {O(n)}
44: n_f2___5->n_f2___4, Arg_4: 2*Arg_4 {O(n)}
44: n_f2___5->n_f2___4, Arg_5: 2*Arg_5 {O(n)}
44: n_f2___5->n_f2___4, Arg_7: 1 {O(1)}
44: n_f2___5->n_f2___4, Arg_8: 2 {O(1)}
44: n_f2___5->n_f2___4, Arg_9: 2 {O(1)}
44: n_f2___5->n_f2___4, Arg_10: 1 {O(1)}
44: n_f2___5->n_f2___4, Arg_13: 1 {O(1)}
44: n_f2___5->n_f2___4, Arg_14: 2 {O(1)}
44: n_f2___5->n_f2___4, Arg_24: 2 {O(1)}
44: n_f2___5->n_f2___4, Arg_26: 0 {O(1)}
45: n_f2___5->n_f8___2, Arg_0: 2*Arg_0 {O(n)}
45: n_f2___5->n_f8___2, Arg_5: 2*Arg_5 {O(n)}
45: n_f2___5->n_f8___2, Arg_6: 2*Arg_5 {O(n)}
45: n_f2___5->n_f8___2, Arg_7: 2 {O(1)}
45: n_f2___5->n_f8___2, Arg_8: 1 {O(1)}
45: n_f2___5->n_f8___2, Arg_9: 1 {O(1)}
45: n_f2___5->n_f8___2, Arg_10: 2 {O(1)}
45: n_f2___5->n_f8___2, Arg_13: 2*Arg_13 {O(n)}
45: n_f2___5->n_f8___2, Arg_14: 2 {O(1)}
45: n_f2___5->n_f8___2, Arg_24: 2 {O(1)}
45: n_f2___5->n_f8___2, Arg_26: 0 {O(1)}
46: n_f2___5->n_f8___3, Arg_0: 2*Arg_0 {O(n)}
46: n_f2___5->n_f8___3, Arg_5: 2*Arg_5 {O(n)}
46: n_f2___5->n_f8___3, Arg_6: 2*Arg_5 {O(n)}
46: n_f2___5->n_f8___3, Arg_7: 2 {O(1)}
46: n_f2___5->n_f8___3, Arg_8: 1 {O(1)}
46: n_f2___5->n_f8___3, Arg_9: 1 {O(1)}
46: n_f2___5->n_f8___3, Arg_10: 2 {O(1)}
46: n_f2___5->n_f8___3, Arg_13: 2*Arg_13 {O(n)}
46: n_f2___5->n_f8___3, Arg_14: 2 {O(1)}
46: n_f2___5->n_f8___3, Arg_24: 2 {O(1)}
46: n_f2___5->n_f8___3, Arg_26: 0 {O(1)}
47: n_f8___2->n_f8___2, Arg_0: 6*Arg_0 {O(n)}
47: n_f8___2->n_f8___2, Arg_5: 6*Arg_5 {O(n)}
47: n_f8___2->n_f8___2, Arg_6: 6*Arg_5 {O(n)}
47: n_f8___2->n_f8___2, Arg_7: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_8: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_9: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_10: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_13: 2*Arg_13+1 {O(n)}
47: n_f8___2->n_f8___2, Arg_14: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_24: 2 {O(1)}
47: n_f8___2->n_f8___2, Arg_26: 0 {O(1)}
48: n_f8___3->n_f8___3, Arg_0: 6*Arg_0 {O(n)}
48: n_f8___3->n_f8___3, Arg_5: 6*Arg_5 {O(n)}
48: n_f8___3->n_f8___3, Arg_6: 6*Arg_5 {O(n)}
48: n_f8___3->n_f8___3, Arg_7: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_8: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_9: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_10: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_13: 2*Arg_13+1 {O(n)}
48: n_f8___3->n_f8___3, Arg_14: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_24: 2 {O(1)}
48: n_f8___3->n_f8___3, Arg_26: 0 {O(1)}