Initial Problem
Start: n_evalspeedpldi3start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_evalspeedpldi3bb2in___11, n_evalspeedpldi3bb2in___15, n_evalspeedpldi3bb2in___18, n_evalspeedpldi3bb2in___6, n_evalspeedpldi3bb3in___14, n_evalspeedpldi3bb3in___17, n_evalspeedpldi3bb3in___9, n_evalspeedpldi3bb4in___13, n_evalspeedpldi3bb4in___8, n_evalspeedpldi3bb5in___12, n_evalspeedpldi3bb5in___16, n_evalspeedpldi3bb5in___21, n_evalspeedpldi3bb5in___7, n_evalspeedpldi3entryin___22, n_evalspeedpldi3returnin___10, n_evalspeedpldi3returnin___19, n_evalspeedpldi3returnin___20, n_evalspeedpldi3returnin___5, n_evalspeedpldi3start, n_evalspeedpldi3stop___1, n_evalspeedpldi3stop___2, n_evalspeedpldi3stop___3, n_evalspeedpldi3stop___4
Transitions:
0:n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
1:n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb4in___8(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_2
2:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
3:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_0<=Arg_2
4:n_evalspeedpldi3bb2in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___17(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
5:n_evalspeedpldi3bb2in___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb4in___8(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_2
6:n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
7:n_evalspeedpldi3bb3in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
8:n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
9:n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,0,Arg_3+1):|:Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
10:n_evalspeedpldi3bb4in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___7(Arg_0,Arg_1,0,Arg_3+1):|:Arg_0<=0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2
11:n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
12:n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___10(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
13:n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
14:n_evalspeedpldi3bb5in___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___18(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
15:n_evalspeedpldi3bb5in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
16:n_evalspeedpldi3bb5in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___5(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
17:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___21(Arg_0,Arg_1,0,0):|:1<=Arg_0 && 1+Arg_0<=Arg_1
18:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_0
19:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0
20:n_evalspeedpldi3returnin___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
21:n_evalspeedpldi3returnin___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_0
22:n_evalspeedpldi3returnin___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0
23:n_evalspeedpldi3returnin___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___4(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
24:n_evalspeedpldi3start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3)
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___8
n_evalspeedpldi3bb4in___8
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb4in___8
t₁
τ = 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___6
n_evalspeedpldi3bb2in___6
n_evalspeedpldi3bb2in___6->n_evalspeedpldi3bb4in___8
t₅
τ = Arg_0<=0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_2
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___7
n_evalspeedpldi3bb5in___7
n_evalspeedpldi3bb4in___8->n_evalspeedpldi3bb5in___7
t₁₀
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = Arg_0<=0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___7->n_evalspeedpldi3bb2in___6
t₁₅
τ = Arg_0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___5
n_evalspeedpldi3returnin___5
n_evalspeedpldi3bb5in___7->n_evalspeedpldi3returnin___5
t₁₆
τ = Arg_0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0
n_evalspeedpldi3stop___4
n_evalspeedpldi3stop___4
n_evalspeedpldi3returnin___5->n_evalspeedpldi3stop___4
t₂₃
τ = Arg_0<=0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
Preprocessing
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb2in___11
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb3in___9
Found invariant Arg_1<=Arg_0 for location n_evalspeedpldi3returnin___19
Found invariant Arg_1<=Arg_0 for location n_evalspeedpldi3stop___1
Found invariant Arg_0<=0 for location n_evalspeedpldi3stop___2
Found invariant 1<=0 for location n_evalspeedpldi3bb2in___6
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb2in___18
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb3in___17
Found invariant Arg_0<=0 for location n_evalspeedpldi3returnin___20
Found invariant Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3stop___3
Found invariant 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb2in___15
Found invariant 1<=0 for location n_evalspeedpldi3bb4in___8
Found invariant Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb5in___12
Found invariant 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb5in___16
Found invariant 1<=0 for location n_evalspeedpldi3bb5in___7
Found invariant 1<=0 for location n_evalspeedpldi3returnin___5
Found invariant 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 for location n_evalspeedpldi3bb3in___14
Found invariant 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb4in___13
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3bb5in___21
Found invariant Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_evalspeedpldi3returnin___10
Found invariant 1<=0 for location n_evalspeedpldi3stop___4
Cut unsatisfiable transition 1: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb4in___8
Cut unsatisfiable transition 5: n_evalspeedpldi3bb2in___6->n_evalspeedpldi3bb4in___8
Cut unsatisfiable transition 10: n_evalspeedpldi3bb4in___8->n_evalspeedpldi3bb5in___7
Cut unsatisfiable transition 15: n_evalspeedpldi3bb5in___7->n_evalspeedpldi3bb2in___6
Cut unsatisfiable transition 16: n_evalspeedpldi3bb5in___7->n_evalspeedpldi3returnin___5
Cut unsatisfiable transition 23: n_evalspeedpldi3returnin___5->n_evalspeedpldi3stop___4
Cut unreachable locations [n_evalspeedpldi3bb2in___6; n_evalspeedpldi3bb4in___8; n_evalspeedpldi3bb5in___7; n_evalspeedpldi3returnin___5; n_evalspeedpldi3stop___4] from the program graph
Problem after Preprocessing
Start: n_evalspeedpldi3start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_evalspeedpldi3bb2in___11, n_evalspeedpldi3bb2in___15, n_evalspeedpldi3bb2in___18, n_evalspeedpldi3bb3in___14, n_evalspeedpldi3bb3in___17, n_evalspeedpldi3bb3in___9, n_evalspeedpldi3bb4in___13, n_evalspeedpldi3bb5in___12, n_evalspeedpldi3bb5in___16, n_evalspeedpldi3bb5in___21, n_evalspeedpldi3entryin___22, n_evalspeedpldi3returnin___10, n_evalspeedpldi3returnin___19, n_evalspeedpldi3returnin___20, n_evalspeedpldi3start, n_evalspeedpldi3stop___1, n_evalspeedpldi3stop___2, n_evalspeedpldi3stop___3
Transitions:
0:n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
2:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
3:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
4:n_evalspeedpldi3bb2in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___17(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
6:n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
7:n_evalspeedpldi3bb3in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
8:n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
9:n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,0,Arg_3+1):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
11:n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
12:n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___10(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
13:n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
14:n_evalspeedpldi3bb5in___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
17:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___21(Arg_0,Arg_1,0,0):|:1<=Arg_0 && 1+Arg_0<=Arg_1
18:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_0
19:n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3returnin___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0
20:n_evalspeedpldi3returnin___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
21:n_evalspeedpldi3returnin___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_0 && Arg_1<=Arg_0
22:n_evalspeedpldi3returnin___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3stop___2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=0 && Arg_0<=0
24:n_evalspeedpldi3start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3entryin___22(Arg_0,Arg_1,Arg_2,Arg_3)
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 0:n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_evalspeedpldi3bb3in___14 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb3in___9 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb4in___13 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb5in___12 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___11 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb5in___16 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb2in___15 [Arg_1-Arg_3-1 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 3:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2 of depth 1:
new bound:
Arg_1 {O(n)}
MPRF:
n_evalspeedpldi3bb3in___14 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb3in___9 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb4in___13 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb5in___12 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___11 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb5in___16 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___15 [Arg_1-Arg_3 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 8:n_evalspeedpldi3bb3in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_evalspeedpldi3bb3in___14 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb3in___9 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb4in___13 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb5in___12 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___11 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb5in___16 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb2in___15 [Arg_1-Arg_3-1 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 9:n_evalspeedpldi3bb4in___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,0,Arg_3+1):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1 of depth 1:
new bound:
Arg_1 {O(n)}
MPRF:
n_evalspeedpldi3bb3in___14 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb3in___9 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb4in___13 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb5in___12 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___11 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb5in___16 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___15 [Arg_1-Arg_3 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 11:n_evalspeedpldi3bb5in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_evalspeedpldi3bb3in___14 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb3in___9 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb4in___13 [Arg_1+Arg_2-Arg_0-Arg_3-1 ]
n_evalspeedpldi3bb5in___12 [Arg_1-Arg_3 ]
n_evalspeedpldi3bb2in___11 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb5in___16 [Arg_1-Arg_3-1 ]
n_evalspeedpldi3bb2in___15 [Arg_1-Arg_3-1 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 2:n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 of depth 1:
new bound:
Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
MPRF:
n_evalspeedpldi3bb2in___11 [Arg_0 ]
n_evalspeedpldi3bb3in___14 [Arg_0-Arg_2-1 ]
n_evalspeedpldi3bb3in___9 [Arg_0 ]
n_evalspeedpldi3bb4in___13 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb5in___12 [0 ]
n_evalspeedpldi3bb5in___16 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb2in___15 [Arg_0-Arg_2 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 6:n_evalspeedpldi3bb3in___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 of depth 1:
new bound:
Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
MPRF:
n_evalspeedpldi3bb2in___11 [Arg_0 ]
n_evalspeedpldi3bb3in___14 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb3in___9 [Arg_0 ]
n_evalspeedpldi3bb4in___13 [Arg_0-Arg_1 ]
n_evalspeedpldi3bb5in___12 [Arg_0-Arg_1 ]
n_evalspeedpldi3bb5in___16 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb2in___15 [Arg_0-Arg_2 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
MPRF for transition 13:n_evalspeedpldi3bb5in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_evalspeedpldi3bb2in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:
new bound:
Arg_0*Arg_1+2*Arg_0+2 {O(n^2)}
MPRF:
n_evalspeedpldi3bb2in___11 [Arg_0 ]
n_evalspeedpldi3bb3in___14 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb3in___9 [Arg_0 ]
n_evalspeedpldi3bb4in___13 [Arg_0-Arg_2 ]
n_evalspeedpldi3bb5in___12 [0 ]
n_evalspeedpldi3bb5in___16 [Arg_0+1-Arg_2 ]
n_evalspeedpldi3bb2in___15 [Arg_0-Arg_2 ]
Show Graph
G
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb2in___11
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb3in___9
n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9
t₀
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb2in___15
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb3in___14
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14
t₂
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb4in___13
n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13
t₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && Arg_0<=Arg_2
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb2in___18
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb3in___17
n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17
t₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb5in___16
n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16
t₆
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0
n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16
t₇
η (Arg_2) = Arg_2+1
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16
t₈
η (Arg_2) = Arg_2+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb5in___12
n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12
t₉
η (Arg_2) = 0
η (Arg_3) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11
t₁₁
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3returnin___10
n_evalspeedpldi3returnin___10
n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10
t₁₂
τ = Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3
n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15
t₁₃
τ = 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21
n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18
t₁₄
τ = Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22
n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21
t₁₇
η (Arg_2) = 0
η (Arg_3) = 0
τ = 1<=Arg_0 && 1+Arg_0<=Arg_1
n_evalspeedpldi3returnin___19
n_evalspeedpldi3returnin___19
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19
t₁₈
τ = Arg_1<=Arg_0
n_evalspeedpldi3returnin___20
n_evalspeedpldi3returnin___20
n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20
t₁₉
τ = Arg_0<=0
n_evalspeedpldi3stop___3
n_evalspeedpldi3stop___3
n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3
t₂₀
τ = Arg_3<=Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2
n_evalspeedpldi3stop___1
n_evalspeedpldi3stop___1
n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1
t₂₁
τ = Arg_1<=Arg_0 && Arg_1<=Arg_0
n_evalspeedpldi3stop___2
n_evalspeedpldi3stop___2
n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2
t₂₂
τ = Arg_0<=0 && Arg_0<=0
n_evalspeedpldi3start
n_evalspeedpldi3start
n_evalspeedpldi3start->n_evalspeedpldi3entryin___22
t₂₄
All Bounds
Timebounds
Overall timebound:3*Arg_0*Arg_1+5*Arg_1+6*Arg_0+18 {O(n^2)}
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9: Arg_1+1 {O(n)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14: Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13: Arg_1 {O(n)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17: 1 {O(1)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16: Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16: 1 {O(1)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16: Arg_1+1 {O(n)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12: Arg_1 {O(n)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11: Arg_1+1 {O(n)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10: 1 {O(1)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15: Arg_0*Arg_1+2*Arg_0+2 {O(n^2)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18: 1 {O(1)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21: 1 {O(1)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19: 1 {O(1)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20: 1 {O(1)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3: 1 {O(1)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1: 1 {O(1)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2: 1 {O(1)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22: 1 {O(1)}
Costbounds
Overall costbound: 3*Arg_0*Arg_1+5*Arg_1+6*Arg_0+18 {O(n^2)}
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9: Arg_1+1 {O(n)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14: Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13: Arg_1 {O(n)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17: 1 {O(1)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16: Arg_0*Arg_1+2*Arg_0+1 {O(n^2)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16: 1 {O(1)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16: Arg_1+1 {O(n)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12: Arg_1 {O(n)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11: Arg_1+1 {O(n)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10: 1 {O(1)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15: Arg_0*Arg_1+2*Arg_0+2 {O(n^2)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18: 1 {O(1)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21: 1 {O(1)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19: 1 {O(1)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20: 1 {O(1)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3: 1 {O(1)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1: 1 {O(1)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2: 1 {O(1)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22: 1 {O(1)}
Sizebounds
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9, Arg_0: Arg_0 {O(n)}
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9, Arg_1: Arg_1 {O(n)}
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9, Arg_2: 0 {O(1)}
0: n_evalspeedpldi3bb2in___11->n_evalspeedpldi3bb3in___9, Arg_3: Arg_1 {O(n)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14, Arg_0: Arg_0 {O(n)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14, Arg_1: Arg_1 {O(n)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14, Arg_2: Arg_0*Arg_1+2*Arg_0+3 {O(n^2)}
2: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb3in___14, Arg_3: Arg_1 {O(n)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13, Arg_0: Arg_0 {O(n)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13, Arg_1: Arg_1 {O(n)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13, Arg_2: Arg_0*Arg_1+2*Arg_0+3 {O(n^2)}
3: n_evalspeedpldi3bb2in___15->n_evalspeedpldi3bb4in___13, Arg_3: Arg_1 {O(n)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17, Arg_0: Arg_0 {O(n)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17, Arg_1: Arg_1 {O(n)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17, Arg_2: 0 {O(1)}
4: n_evalspeedpldi3bb2in___18->n_evalspeedpldi3bb3in___17, Arg_3: 0 {O(1)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16, Arg_0: Arg_0 {O(n)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16, Arg_1: Arg_1 {O(n)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16, Arg_2: Arg_0*Arg_1+2*Arg_0+3 {O(n^2)}
6: n_evalspeedpldi3bb3in___14->n_evalspeedpldi3bb5in___16, Arg_3: Arg_1 {O(n)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16, Arg_0: Arg_0 {O(n)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16, Arg_1: Arg_1 {O(n)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16, Arg_2: 1 {O(1)}
7: n_evalspeedpldi3bb3in___17->n_evalspeedpldi3bb5in___16, Arg_3: 0 {O(1)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16, Arg_0: Arg_0 {O(n)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16, Arg_1: Arg_1 {O(n)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16, Arg_2: 1 {O(1)}
8: n_evalspeedpldi3bb3in___9->n_evalspeedpldi3bb5in___16, Arg_3: Arg_1 {O(n)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12, Arg_0: Arg_0 {O(n)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12, Arg_1: Arg_1 {O(n)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12, Arg_2: 0 {O(1)}
9: n_evalspeedpldi3bb4in___13->n_evalspeedpldi3bb5in___12, Arg_3: Arg_1 {O(n)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11, Arg_0: Arg_0 {O(n)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11, Arg_1: Arg_1 {O(n)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11, Arg_2: 0 {O(1)}
11: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3bb2in___11, Arg_3: Arg_1 {O(n)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10, Arg_0: Arg_0 {O(n)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10, Arg_1: Arg_1 {O(n)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10, Arg_2: 0 {O(1)}
12: n_evalspeedpldi3bb5in___12->n_evalspeedpldi3returnin___10, Arg_3: Arg_1 {O(n)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15, Arg_0: Arg_0 {O(n)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15, Arg_1: Arg_1 {O(n)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15, Arg_2: Arg_0*Arg_1+2*Arg_0+3 {O(n^2)}
13: n_evalspeedpldi3bb5in___16->n_evalspeedpldi3bb2in___15, Arg_3: Arg_1 {O(n)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18, Arg_0: Arg_0 {O(n)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18, Arg_1: Arg_1 {O(n)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18, Arg_2: 0 {O(1)}
14: n_evalspeedpldi3bb5in___21->n_evalspeedpldi3bb2in___18, Arg_3: 0 {O(1)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21, Arg_0: Arg_0 {O(n)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21, Arg_1: Arg_1 {O(n)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21, Arg_2: 0 {O(1)}
17: n_evalspeedpldi3entryin___22->n_evalspeedpldi3bb5in___21, Arg_3: 0 {O(1)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19, Arg_0: Arg_0 {O(n)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19, Arg_1: Arg_1 {O(n)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19, Arg_2: Arg_2 {O(n)}
18: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___19, Arg_3: Arg_3 {O(n)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20, Arg_0: Arg_0 {O(n)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20, Arg_1: Arg_1 {O(n)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20, Arg_2: Arg_2 {O(n)}
19: n_evalspeedpldi3entryin___22->n_evalspeedpldi3returnin___20, Arg_3: Arg_3 {O(n)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3, Arg_0: Arg_0 {O(n)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3, Arg_1: Arg_1 {O(n)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3, Arg_2: 0 {O(1)}
20: n_evalspeedpldi3returnin___10->n_evalspeedpldi3stop___3, Arg_3: Arg_1 {O(n)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1, Arg_0: Arg_0 {O(n)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1, Arg_1: Arg_1 {O(n)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1, Arg_2: Arg_2 {O(n)}
21: n_evalspeedpldi3returnin___19->n_evalspeedpldi3stop___1, Arg_3: Arg_3 {O(n)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2, Arg_0: Arg_0 {O(n)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2, Arg_1: Arg_1 {O(n)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2, Arg_2: Arg_2 {O(n)}
22: n_evalspeedpldi3returnin___20->n_evalspeedpldi3stop___2, Arg_3: Arg_3 {O(n)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22, Arg_0: Arg_0 {O(n)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22, Arg_1: Arg_1 {O(n)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22, Arg_2: Arg_2 {O(n)}
24: n_evalspeedpldi3start->n_evalspeedpldi3entryin___22, Arg_3: Arg_3 {O(n)}