Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31, Arg_32, Arg_33
Temp_Vars: A_P, C_P, E_P, H1_P, J_P, K_P, L_P, M_P, N_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet13, NoDet14, NoDet15, NoDet16, NoDet17, NoDet18, NoDet19, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9, O_P, W_P
Locations: n_f0, n_f11___10, n_f11___7, n_f1___11, n_f2___3, n_f2___4, n_f2___5, n_f2___6, n_f5___1, n_f5___2, n_f5___8, n_f5___9
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f11___10(A_P,Arg_1,2,Arg_3,C_P,Arg_5,NoDet0,Arg_7,E_P,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,K_P,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet1,W_P,NoDet2,Arg_32,Arg_33):|:2<=A_P && C_P<=W_P && W_P<=C_P && A_P<=K_P && K_P<=A_P && C_P<=E_P && E_P<=C_P
1:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f1___11(NoDet0,NoDet13,NoDet1,NoDet14,NoDet2,NoDet15,NoDet3,NoDet16,NoDet4,NoDet17,Arg_10,NoDet18,Arg_12,NoDet19,Arg_14,Arg_15,Arg_16,NoDet5,K_P,NoDet6,NoDet7,Arg_21,NoDet8,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet9,NoDet10,Arg_31,NoDet11,NoDet12):|:K_P<=0 && Arg_32<=0 && 0<=Arg_32
2:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___8(NoDet0,NoDet8,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,1,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,NoDet6,Arg_31,Arg_32,NoDet7):|:1<=Arg_17 && L_P<=N_P && N_P<=L_P
3:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___9(NoDet0,NoDet8,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,1,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,NoDet6,Arg_31,Arg_32,NoDet7):|:1+Arg_17<=0 && L_P<=N_P && N_P<=L_P
4:n_f11___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f11___7(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_6,Arg_5,NoDet0,Arg_7,Arg_6,Arg_9,NoDet1,Arg_11,Arg_2,Arg_13,Arg_16,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
5:n_f11___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___5(NoDet0,NoDet7,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,NoDet5,Arg_31,Arg_32,NoDet6):|:0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_17<=0 && 2<=K_P && 2<=H1_P && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
6:n_f11___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___6(NoDet0,NoDet7,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,NoDet5,Arg_31,Arg_32,NoDet6):|:0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 2<=K_P && 2<=H1_P && 1<=Arg_17 && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
7:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f11___7(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_6,Arg_5,NoDet0,Arg_7,Arg_6,Arg_9,NoDet1,Arg_11,Arg_2,Arg_13,Arg_16,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
8:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___5(NoDet0,NoDet7,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,NoDet5,Arg_31,Arg_32,NoDet6):|:0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_17<=0 && 2<=K_P && 2<=H1_P && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
9:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___6(NoDet0,NoDet7,NoDet1,Arg_3,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,NoDet5,Arg_31,Arg_32,NoDet6):|:0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 2<=K_P && 2<=H1_P && 1<=Arg_17 && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
10:n_f2___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_23<=Arg_24 && Arg_24<=Arg_23 && 2<=Arg_18 && 1+Arg_22<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 2<=Arg_18 && 2<=Arg_15 && 1+Arg_20<=0 && 1+J_P<=0 && 2<=K_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
11:n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_20 && 2<=Arg_18 && 2<=Arg_15 && 1<=Arg_17 && Arg_23<=Arg_24 && Arg_24<=Arg_23 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_22 && 2<=Arg_18 && 2<=K_P && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
12:n_f2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 2<=Arg_18 && 2<=Arg_15 && 1+Arg_20<=0 && 1+J_P<=0 && 2<=K_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
13:n_f2___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_20 && 2<=Arg_18 && 2<=Arg_15 && 1<=Arg_17 && 2<=K_P && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
14:n_f5___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1<=Arg_17 && 1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_27<=Arg_28 && Arg_28<=Arg_27 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_18<=1 && 1<=Arg_18 && Arg_16<=Arg_26 && Arg_26<=Arg_16 && 1<=Arg_22 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1<=Arg_22 && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
15:n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_27<=Arg_28 && Arg_28<=Arg_27 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_18<=1 && 1<=Arg_18 && Arg_16<=Arg_26 && Arg_26<=Arg_16 && 1+Arg_22<=0 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1+Arg_22<=0 && 1+J_P<=0 && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
16:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1<=Arg_17 && 1<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1<=Arg_22 && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
17:n_f5___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33) -> n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33):|:1+Arg_17<=0 && 1+Arg_17<=0 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1+Arg_22<=0 && 1+J_P<=0 && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17

Preprocessing

Eliminate variables {NoDet12,NoDet13,NoDet14,NoDet15,NoDet16,NoDet17,NoDet18,NoDet19,NoDet9,Arg_1,Arg_3,Arg_5,Arg_7,Arg_9,Arg_10,Arg_11,Arg_13,Arg_29,Arg_31,Arg_33} that do not contribute to the problem

Found invariant Arg_8<=Arg_4 && Arg_8<=Arg_30 && Arg_4<=Arg_8 && Arg_30<=Arg_8 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && Arg_2<=2 && Arg_2<=Arg_18 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_18+Arg_2 && 4<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 2<=Arg_18 && 4<=Arg_0+Arg_18 && Arg_0<=Arg_18 && 2<=Arg_0 for location n_f11___10

Found invariant Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_2<=Arg_18 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 6<=Arg_18+Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 3<=Arg_18 && 5<=Arg_12+Arg_18 && 1+Arg_12<=Arg_18 && 6<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_16<=Arg_14 && Arg_14<=Arg_16 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 for location n_f11___7

Found invariant Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 3<=Arg_18+Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && 3<=Arg_15+Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 3<=Arg_18+Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && 3<=Arg_15+Arg_20 && 2<=Arg_18 && 3<=Arg_17+Arg_18 && 4<=Arg_15+Arg_18 && 1<=Arg_17 && 3<=Arg_15+Arg_17 && 2<=Arg_15 for location n_f2___6

Found invariant Arg_28<=Arg_27 && Arg_27<=Arg_28 && Arg_26<=Arg_16 && Arg_16<=Arg_26 && 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 2+Arg_22<=Arg_18 && Arg_18+Arg_22<=0 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 2+Arg_20<=Arg_18 && Arg_18+Arg_20<=0 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_17+Arg_18<=0 && 1<=Arg_18 && 2+Arg_17<=Arg_18 && 1+Arg_17<=0 for location n_f5___2

Found invariant Arg_18<=0 for location n_f1___11

Found invariant 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 2+Arg_22<=Arg_18 && Arg_18+Arg_22<=0 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 2+Arg_20<=Arg_18 && Arg_18+Arg_20<=0 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_17+Arg_18<=0 && 1<=Arg_18 && 2+Arg_17<=Arg_18 && 1+Arg_17<=0 for location n_f5___9

Found invariant 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 3+Arg_22<=Arg_18 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && 3+Arg_22<=Arg_15 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 3+Arg_20<=Arg_18 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && 3+Arg_20<=Arg_15 && Arg_17<=Arg_20 && 2<=Arg_18 && 3+Arg_17<=Arg_18 && 4<=Arg_15+Arg_18 && 1+Arg_17<=0 && 3+Arg_17<=Arg_15 && 2<=Arg_15 for location n_f2___5

Found invariant Arg_28<=Arg_27 && Arg_27<=Arg_28 && Arg_26<=Arg_16 && Arg_16<=Arg_26 && Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 2<=Arg_18+Arg_22 && Arg_18<=Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 2<=Arg_18+Arg_20 && Arg_18<=Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_18<=Arg_17 && 1<=Arg_18 && 2<=Arg_17+Arg_18 && 1<=Arg_17 for location n_f5___1

Found invariant Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_24<=Arg_23 && Arg_23<=Arg_24 && Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 3<=Arg_18+Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && 3<=Arg_15+Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 3<=Arg_18+Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && 3<=Arg_15+Arg_20 && 2<=Arg_18 && 3<=Arg_17+Arg_18 && 4<=Arg_15+Arg_18 && 1<=Arg_17 && 3<=Arg_15+Arg_17 && 2<=Arg_15 for location n_f2___4

Found invariant Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 2<=Arg_18+Arg_22 && Arg_18<=Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 2<=Arg_18+Arg_20 && Arg_18<=Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_18<=Arg_17 && 1<=Arg_18 && 2<=Arg_17+Arg_18 && 1<=Arg_17 for location n_f5___8

Found invariant Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_24<=Arg_23 && Arg_23<=Arg_24 && 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 3+Arg_22<=Arg_18 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && 3+Arg_22<=Arg_15 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 3+Arg_20<=Arg_18 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && 3+Arg_20<=Arg_15 && Arg_17<=Arg_20 && 2<=Arg_18 && 3+Arg_17<=Arg_18 && 4<=Arg_15+Arg_18 && 1+Arg_17<=0 && 3+Arg_17<=Arg_15 && 2<=Arg_15 for location n_f2___3

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_2, Arg_4, Arg_6, Arg_8, Arg_12, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_30, Arg_32
Temp_Vars: A_P, C_P, E_P, H1_P, J_P, K_P, L_P, M_P, N_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, O_P, W_P
Locations: n_f0, n_f11___10, n_f11___7, n_f1___11, n_f2___3, n_f2___4, n_f2___5, n_f2___6, n_f5___1, n_f5___2, n_f5___8, n_f5___9
Transitions:
34:n_f0(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f11___10(A_P,2,C_P,NoDet0,E_P,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,K_P,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,W_P,Arg_32):|:2<=A_P && C_P<=W_P && W_P<=C_P && A_P<=K_P && K_P<=A_P && C_P<=E_P && E_P<=C_P
35:n_f0(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f1___11(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,Arg_15,Arg_16,NoDet5,K_P,NoDet6,NoDet7,Arg_21,NoDet8,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet10,NoDet11):|:K_P<=0 && Arg_32<=0 && 0<=Arg_32
36:n_f0(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___8(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,1,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet6,Arg_32):|:1<=Arg_17 && L_P<=N_P && N_P<=L_P
37:n_f0(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___9(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,1,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet6,Arg_32):|:1+Arg_17<=0 && L_P<=N_P && N_P<=L_P
38:n_f11___10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f11___7(Arg_0,Arg_2+1,Arg_6,NoDet0,Arg_6,Arg_2,Arg_16,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:Arg_8<=Arg_4 && Arg_8<=Arg_30 && Arg_4<=Arg_8 && Arg_30<=Arg_8 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && Arg_2<=2 && Arg_2<=Arg_18 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_18+Arg_2 && 4<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 2<=Arg_18 && 4<=Arg_0+Arg_18 && Arg_0<=Arg_18 && 2<=Arg_0 && 0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
39:n_f11___10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___5(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,Arg_32):|:Arg_8<=Arg_4 && Arg_8<=Arg_30 && Arg_4<=Arg_8 && Arg_30<=Arg_8 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && Arg_2<=2 && Arg_2<=Arg_18 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_18+Arg_2 && 4<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 2<=Arg_18 && 4<=Arg_0+Arg_18 && Arg_0<=Arg_18 && 2<=Arg_0 && 0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_17<=0 && 2<=K_P && 2<=H1_P && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
40:n_f11___10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___6(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,Arg_32):|:Arg_8<=Arg_4 && Arg_8<=Arg_30 && Arg_4<=Arg_8 && Arg_30<=Arg_8 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && Arg_2<=2 && Arg_2<=Arg_18 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_18+Arg_2 && 4<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 2<=Arg_18 && 4<=Arg_0+Arg_18 && Arg_0<=Arg_18 && 2<=Arg_0 && 0<=Arg_2 && Arg_0<=Arg_18 && Arg_18<=Arg_0 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=2 && 2<=Arg_2 && Arg_4<=Arg_30 && Arg_30<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 2<=K_P && 2<=H1_P && 1<=Arg_17 && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
41:n_f11___7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f11___7(Arg_0,Arg_2+1,Arg_6,NoDet0,Arg_6,Arg_2,Arg_16,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_2<=Arg_18 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 6<=Arg_18+Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 3<=Arg_18 && 5<=Arg_12+Arg_18 && 1+Arg_12<=Arg_18 && 6<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_16<=Arg_14 && Arg_14<=Arg_16 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
42:n_f11___7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___5(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,Arg_32):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_2<=Arg_18 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 6<=Arg_18+Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 3<=Arg_18 && 5<=Arg_12+Arg_18 && 1+Arg_12<=Arg_18 && 6<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_16<=Arg_14 && Arg_14<=Arg_16 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_17<=0 && 2<=K_P && 2<=H1_P && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
43:n_f11___7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___6(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_12,Arg_14,H1_P,Arg_16,Arg_17,K_P,L_P,Arg_17,N_P,Arg_17,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet5,Arg_32):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_2<=Arg_18 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 6<=Arg_18+Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_18<=Arg_0 && 3<=Arg_18 && 5<=Arg_12+Arg_18 && 1+Arg_12<=Arg_18 && 6<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_16<=Arg_14 && Arg_14<=Arg_16 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 2<=K_P && 2<=H1_P && 1<=Arg_17 && 0<=Arg_2 && L_P<=N_P && N_P<=L_P && Arg_15<=H1_P && H1_P<=Arg_15
44:n_f2___3(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___3(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_24<=Arg_23 && Arg_23<=Arg_24 && 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 3+Arg_22<=Arg_18 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && 3+Arg_22<=Arg_15 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 3+Arg_20<=Arg_18 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && 3+Arg_20<=Arg_15 && Arg_17<=Arg_20 && 2<=Arg_18 && 3+Arg_17<=Arg_18 && 4<=Arg_15+Arg_18 && 1+Arg_17<=0 && 3+Arg_17<=Arg_15 && 2<=Arg_15 && 1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_23<=Arg_24 && Arg_24<=Arg_23 && 2<=Arg_18 && 1+Arg_22<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 2<=Arg_18 && 2<=Arg_15 && 1+Arg_20<=0 && 1+J_P<=0 && 2<=K_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
45:n_f2___4(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___4(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_24<=Arg_23 && Arg_23<=Arg_24 && Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 3<=Arg_18+Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && 3<=Arg_15+Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 3<=Arg_18+Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && 3<=Arg_15+Arg_20 && 2<=Arg_18 && 3<=Arg_17+Arg_18 && 4<=Arg_15+Arg_18 && 1<=Arg_17 && 3<=Arg_15+Arg_17 && 2<=Arg_15 && 1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_20 && 2<=Arg_18 && 2<=Arg_15 && 1<=Arg_17 && Arg_23<=Arg_24 && Arg_24<=Arg_23 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_22 && 2<=Arg_18 && 2<=K_P && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
46:n_f2___5(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___3(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 3+Arg_22<=Arg_18 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && 3+Arg_22<=Arg_15 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 3+Arg_20<=Arg_18 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && 3+Arg_20<=Arg_15 && Arg_17<=Arg_20 && 2<=Arg_18 && 3+Arg_17<=Arg_18 && 4<=Arg_15+Arg_18 && 1+Arg_17<=0 && 3+Arg_17<=Arg_15 && 2<=Arg_15 && 1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 2<=Arg_18 && 2<=Arg_15 && 1+Arg_20<=0 && 1+J_P<=0 && 2<=K_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
47:n_f2___6(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f2___4(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,K_P,L_P,M_P,N_P,O_P,Arg_24,Arg_24,Arg_16,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32):|:Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 3<=Arg_18+Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && 3<=Arg_15+Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 3<=Arg_18+Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && 3<=Arg_15+Arg_20 && 2<=Arg_18 && 3<=Arg_17+Arg_18 && 4<=Arg_15+Arg_18 && 1<=Arg_17 && 3<=Arg_15+Arg_17 && 2<=Arg_15 && 1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_17<=Arg_20 && Arg_20<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && 1<=Arg_20 && 2<=Arg_18 && 2<=Arg_15 && 1<=Arg_17 && 2<=K_P && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
48:n_f5___1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_30,Arg_32):|:Arg_28<=Arg_27 && Arg_27<=Arg_28 && Arg_26<=Arg_16 && Arg_16<=Arg_26 && Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 2<=Arg_18+Arg_22 && Arg_18<=Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 2<=Arg_18+Arg_20 && Arg_18<=Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_18<=Arg_17 && 1<=Arg_18 && 2<=Arg_17+Arg_18 && 1<=Arg_17 && 1<=Arg_17 && 1<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_27<=Arg_28 && Arg_28<=Arg_27 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_18<=1 && 1<=Arg_18 && Arg_16<=Arg_26 && Arg_26<=Arg_16 && 1<=Arg_22 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1<=Arg_22 && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
49:n_f5___2(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___2(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_30,Arg_32):|:Arg_28<=Arg_27 && Arg_27<=Arg_28 && Arg_26<=Arg_16 && Arg_16<=Arg_26 && 1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 2+Arg_22<=Arg_18 && Arg_18+Arg_22<=0 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 2+Arg_20<=Arg_18 && Arg_18+Arg_20<=0 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_17+Arg_18<=0 && 1<=Arg_18 && 2+Arg_17<=Arg_18 && 1+Arg_17<=0 && 1+Arg_17<=0 && 1+Arg_17<=0 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_27<=Arg_28 && Arg_28<=Arg_27 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_18<=1 && 1<=Arg_18 && Arg_16<=Arg_26 && Arg_26<=Arg_16 && 1+Arg_22<=0 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1+Arg_22<=0 && 1+J_P<=0 && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
50:n_f5___8(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_30,Arg_32):|:Arg_22<=Arg_20 && Arg_22<=Arg_17 && 1<=Arg_22 && 2<=Arg_20+Arg_22 && Arg_20<=Arg_22 && 2<=Arg_18+Arg_22 && Arg_18<=Arg_22 && 2<=Arg_17+Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && Arg_20<=Arg_17 && 1<=Arg_20 && 2<=Arg_18+Arg_20 && Arg_18<=Arg_20 && 2<=Arg_17+Arg_20 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_18<=Arg_17 && 1<=Arg_18 && 2<=Arg_17+Arg_18 && 1<=Arg_17 && 1<=Arg_17 && 1<=Arg_17 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1<=Arg_22 && 1<=J_P && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17
51:n_f5___9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,Arg_32) -> n_f5___2(Arg_0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_12,Arg_14,Arg_15,Arg_16,J_P,1,L_P,M_P,N_P,O_P,Arg_23,Arg_24,Arg_25,Arg_16,Arg_28,Arg_28,Arg_30,Arg_32):|:1+Arg_22<=0 && Arg_22<=Arg_20 && 2+Arg_20+Arg_22<=0 && 2+Arg_22<=Arg_18 && Arg_18+Arg_22<=0 && Arg_22<=Arg_17 && 2+Arg_17+Arg_22<=0 && Arg_20<=Arg_22 && Arg_17<=Arg_22 && Arg_21<=Arg_19 && Arg_19<=Arg_21 && 1+Arg_20<=0 && 2+Arg_20<=Arg_18 && Arg_18+Arg_20<=0 && Arg_20<=Arg_17 && 2+Arg_17+Arg_20<=0 && Arg_17<=Arg_20 && Arg_18<=1 && Arg_17+Arg_18<=0 && 1<=Arg_18 && 2+Arg_17<=Arg_18 && 1+Arg_17<=0 && 1+Arg_17<=0 && 1+Arg_17<=0 && Arg_19<=Arg_21 && Arg_21<=Arg_19 && Arg_18<=1 && 1<=Arg_18 && Arg_17<=Arg_22 && Arg_22<=Arg_17 && Arg_20<=Arg_22 && Arg_22<=Arg_20 && 1+Arg_22<=0 && 1+J_P<=0 && J_P<=O_P && O_P<=J_P && L_P<=N_P && N_P<=L_P && J_P<=M_P && M_P<=J_P && Arg_17<=J_P && J_P<=Arg_17

All Bounds

Timebounds

Overall timebound:inf {Infinity}
34: n_f0->n_f11___10: 1 {O(1)}
35: n_f0->n_f1___11: 1 {O(1)}
36: n_f0->n_f5___8: 1 {O(1)}
37: n_f0->n_f5___9: 1 {O(1)}
38: n_f11___10->n_f11___7: 1 {O(1)}
39: n_f11___10->n_f2___5: 1 {O(1)}
40: n_f11___10->n_f2___6: 1 {O(1)}
41: n_f11___7->n_f11___7: inf {Infinity}
42: n_f11___7->n_f2___5: 1 {O(1)}
43: n_f11___7->n_f2___6: 1 {O(1)}
44: n_f2___3->n_f2___3: inf {Infinity}
45: n_f2___4->n_f2___4: inf {Infinity}
46: n_f2___5->n_f2___3: 1 {O(1)}
47: n_f2___6->n_f2___4: 1 {O(1)}
48: n_f5___1->n_f5___1: inf {Infinity}
49: n_f5___2->n_f5___2: inf {Infinity}
50: n_f5___8->n_f5___1: 1 {O(1)}
51: n_f5___9->n_f5___2: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
34: n_f0->n_f11___10: 1 {O(1)}
35: n_f0->n_f1___11: 1 {O(1)}
36: n_f0->n_f5___8: 1 {O(1)}
37: n_f0->n_f5___9: 1 {O(1)}
38: n_f11___10->n_f11___7: 1 {O(1)}
39: n_f11___10->n_f2___5: 1 {O(1)}
40: n_f11___10->n_f2___6: 1 {O(1)}
41: n_f11___7->n_f11___7: inf {Infinity}
42: n_f11___7->n_f2___5: 1 {O(1)}
43: n_f11___7->n_f2___6: 1 {O(1)}
44: n_f2___3->n_f2___3: inf {Infinity}
45: n_f2___4->n_f2___4: inf {Infinity}
46: n_f2___5->n_f2___3: 1 {O(1)}
47: n_f2___6->n_f2___4: 1 {O(1)}
48: n_f5___1->n_f5___1: inf {Infinity}
49: n_f5___2->n_f5___2: inf {Infinity}
50: n_f5___8->n_f5___1: 1 {O(1)}
51: n_f5___9->n_f5___2: 1 {O(1)}

Sizebounds

34: n_f0->n_f11___10, Arg_2: 2 {O(1)}
34: n_f0->n_f11___10, Arg_12: Arg_12 {O(n)}
34: n_f0->n_f11___10, Arg_14: Arg_14 {O(n)}
34: n_f0->n_f11___10, Arg_15: Arg_15 {O(n)}
34: n_f0->n_f11___10, Arg_16: Arg_16 {O(n)}
34: n_f0->n_f11___10, Arg_17: Arg_17 {O(n)}
34: n_f0->n_f11___10, Arg_19: Arg_19 {O(n)}
34: n_f0->n_f11___10, Arg_20: Arg_20 {O(n)}
34: n_f0->n_f11___10, Arg_21: Arg_21 {O(n)}
34: n_f0->n_f11___10, Arg_22: Arg_22 {O(n)}
34: n_f0->n_f11___10, Arg_23: Arg_23 {O(n)}
34: n_f0->n_f11___10, Arg_24: Arg_24 {O(n)}
34: n_f0->n_f11___10, Arg_25: Arg_25 {O(n)}
34: n_f0->n_f11___10, Arg_26: Arg_26 {O(n)}
34: n_f0->n_f11___10, Arg_27: Arg_27 {O(n)}
34: n_f0->n_f11___10, Arg_28: Arg_28 {O(n)}
34: n_f0->n_f11___10, Arg_32: Arg_32 {O(n)}
35: n_f0->n_f1___11, Arg_12: Arg_12 {O(n)}
35: n_f0->n_f1___11, Arg_14: Arg_14 {O(n)}
35: n_f0->n_f1___11, Arg_15: Arg_15 {O(n)}
35: n_f0->n_f1___11, Arg_16: Arg_16 {O(n)}
35: n_f0->n_f1___11, Arg_21: Arg_21 {O(n)}
35: n_f0->n_f1___11, Arg_23: Arg_23 {O(n)}
35: n_f0->n_f1___11, Arg_24: Arg_24 {O(n)}
35: n_f0->n_f1___11, Arg_25: Arg_25 {O(n)}
35: n_f0->n_f1___11, Arg_26: Arg_26 {O(n)}
35: n_f0->n_f1___11, Arg_27: Arg_27 {O(n)}
35: n_f0->n_f1___11, Arg_28: Arg_28 {O(n)}
36: n_f0->n_f5___8, Arg_12: Arg_12 {O(n)}
36: n_f0->n_f5___8, Arg_14: Arg_14 {O(n)}
36: n_f0->n_f5___8, Arg_15: Arg_15 {O(n)}
36: n_f0->n_f5___8, Arg_16: Arg_16 {O(n)}
36: n_f0->n_f5___8, Arg_17: Arg_17 {O(n)}
36: n_f0->n_f5___8, Arg_18: 1 {O(1)}
36: n_f0->n_f5___8, Arg_20: Arg_17 {O(n)}
36: n_f0->n_f5___8, Arg_22: Arg_17 {O(n)}
36: n_f0->n_f5___8, Arg_23: Arg_23 {O(n)}
36: n_f0->n_f5___8, Arg_24: Arg_24 {O(n)}
36: n_f0->n_f5___8, Arg_25: Arg_25 {O(n)}
36: n_f0->n_f5___8, Arg_26: Arg_26 {O(n)}
36: n_f0->n_f5___8, Arg_27: Arg_27 {O(n)}
36: n_f0->n_f5___8, Arg_28: Arg_28 {O(n)}
36: n_f0->n_f5___8, Arg_32: Arg_32 {O(n)}
37: n_f0->n_f5___9, Arg_12: Arg_12 {O(n)}
37: n_f0->n_f5___9, Arg_14: Arg_14 {O(n)}
37: n_f0->n_f5___9, Arg_15: Arg_15 {O(n)}
37: n_f0->n_f5___9, Arg_16: Arg_16 {O(n)}
37: n_f0->n_f5___9, Arg_17: Arg_17 {O(n)}
37: n_f0->n_f5___9, Arg_18: 1 {O(1)}
37: n_f0->n_f5___9, Arg_20: Arg_17 {O(n)}
37: n_f0->n_f5___9, Arg_22: Arg_17 {O(n)}
37: n_f0->n_f5___9, Arg_23: Arg_23 {O(n)}
37: n_f0->n_f5___9, Arg_24: Arg_24 {O(n)}
37: n_f0->n_f5___9, Arg_25: Arg_25 {O(n)}
37: n_f0->n_f5___9, Arg_26: Arg_26 {O(n)}
37: n_f0->n_f5___9, Arg_27: Arg_27 {O(n)}
37: n_f0->n_f5___9, Arg_28: Arg_28 {O(n)}
37: n_f0->n_f5___9, Arg_32: Arg_32 {O(n)}
38: n_f11___10->n_f11___7, Arg_2: 3 {O(1)}
38: n_f11___10->n_f11___7, Arg_12: 2 {O(1)}
38: n_f11___10->n_f11___7, Arg_14: Arg_16 {O(n)}
38: n_f11___10->n_f11___7, Arg_15: Arg_15 {O(n)}
38: n_f11___10->n_f11___7, Arg_16: Arg_16 {O(n)}
38: n_f11___10->n_f11___7, Arg_17: Arg_17 {O(n)}
38: n_f11___10->n_f11___7, Arg_19: Arg_19 {O(n)}
38: n_f11___10->n_f11___7, Arg_20: Arg_20 {O(n)}
38: n_f11___10->n_f11___7, Arg_21: Arg_21 {O(n)}
38: n_f11___10->n_f11___7, Arg_22: Arg_22 {O(n)}
38: n_f11___10->n_f11___7, Arg_23: Arg_23 {O(n)}
38: n_f11___10->n_f11___7, Arg_24: Arg_24 {O(n)}
38: n_f11___10->n_f11___7, Arg_25: Arg_25 {O(n)}
38: n_f11___10->n_f11___7, Arg_26: Arg_26 {O(n)}
38: n_f11___10->n_f11___7, Arg_27: Arg_27 {O(n)}
38: n_f11___10->n_f11___7, Arg_28: Arg_28 {O(n)}
38: n_f11___10->n_f11___7, Arg_32: Arg_32 {O(n)}
39: n_f11___10->n_f2___5, Arg_12: Arg_12 {O(n)}
39: n_f11___10->n_f2___5, Arg_14: Arg_14 {O(n)}
39: n_f11___10->n_f2___5, Arg_15: Arg_15 {O(n)}
39: n_f11___10->n_f2___5, Arg_16: Arg_16 {O(n)}
39: n_f11___10->n_f2___5, Arg_17: Arg_17 {O(n)}
39: n_f11___10->n_f2___5, Arg_20: Arg_17 {O(n)}
39: n_f11___10->n_f2___5, Arg_22: Arg_17 {O(n)}
39: n_f11___10->n_f2___5, Arg_23: Arg_23 {O(n)}
39: n_f11___10->n_f2___5, Arg_24: Arg_24 {O(n)}
39: n_f11___10->n_f2___5, Arg_25: Arg_25 {O(n)}
39: n_f11___10->n_f2___5, Arg_26: Arg_26 {O(n)}
39: n_f11___10->n_f2___5, Arg_27: Arg_27 {O(n)}
39: n_f11___10->n_f2___5, Arg_28: Arg_28 {O(n)}
39: n_f11___10->n_f2___5, Arg_32: Arg_32 {O(n)}
40: n_f11___10->n_f2___6, Arg_12: Arg_12 {O(n)}
40: n_f11___10->n_f2___6, Arg_14: Arg_14 {O(n)}
40: n_f11___10->n_f2___6, Arg_15: Arg_15 {O(n)}
40: n_f11___10->n_f2___6, Arg_16: Arg_16 {O(n)}
40: n_f11___10->n_f2___6, Arg_17: Arg_17 {O(n)}
40: n_f11___10->n_f2___6, Arg_20: Arg_17 {O(n)}
40: n_f11___10->n_f2___6, Arg_22: Arg_17 {O(n)}
40: n_f11___10->n_f2___6, Arg_23: Arg_23 {O(n)}
40: n_f11___10->n_f2___6, Arg_24: Arg_24 {O(n)}
40: n_f11___10->n_f2___6, Arg_25: Arg_25 {O(n)}
40: n_f11___10->n_f2___6, Arg_26: Arg_26 {O(n)}
40: n_f11___10->n_f2___6, Arg_27: Arg_27 {O(n)}
40: n_f11___10->n_f2___6, Arg_28: Arg_28 {O(n)}
40: n_f11___10->n_f2___6, Arg_32: Arg_32 {O(n)}
41: n_f11___7->n_f11___7, Arg_14: Arg_16 {O(n)}
41: n_f11___7->n_f11___7, Arg_15: Arg_15 {O(n)}
41: n_f11___7->n_f11___7, Arg_16: Arg_16 {O(n)}
41: n_f11___7->n_f11___7, Arg_17: Arg_17 {O(n)}
41: n_f11___7->n_f11___7, Arg_19: Arg_19 {O(n)}
41: n_f11___7->n_f11___7, Arg_20: Arg_20 {O(n)}
41: n_f11___7->n_f11___7, Arg_21: Arg_21 {O(n)}
41: n_f11___7->n_f11___7, Arg_22: Arg_22 {O(n)}
41: n_f11___7->n_f11___7, Arg_23: Arg_23 {O(n)}
41: n_f11___7->n_f11___7, Arg_24: Arg_24 {O(n)}
41: n_f11___7->n_f11___7, Arg_25: Arg_25 {O(n)}
41: n_f11___7->n_f11___7, Arg_26: Arg_26 {O(n)}
41: n_f11___7->n_f11___7, Arg_27: Arg_27 {O(n)}
41: n_f11___7->n_f11___7, Arg_28: Arg_28 {O(n)}
41: n_f11___7->n_f11___7, Arg_32: Arg_32 {O(n)}
42: n_f11___7->n_f2___5, Arg_14: 2*Arg_16 {O(n)}
42: n_f11___7->n_f2___5, Arg_15: 2*Arg_15 {O(n)}
42: n_f11___7->n_f2___5, Arg_16: 2*Arg_16 {O(n)}
42: n_f11___7->n_f2___5, Arg_17: 2*Arg_17 {O(n)}
42: n_f11___7->n_f2___5, Arg_20: 2*Arg_17 {O(n)}
42: n_f11___7->n_f2___5, Arg_22: 2*Arg_17 {O(n)}
42: n_f11___7->n_f2___5, Arg_23: 2*Arg_23 {O(n)}
42: n_f11___7->n_f2___5, Arg_24: 2*Arg_24 {O(n)}
42: n_f11___7->n_f2___5, Arg_25: 2*Arg_25 {O(n)}
42: n_f11___7->n_f2___5, Arg_26: 2*Arg_26 {O(n)}
42: n_f11___7->n_f2___5, Arg_27: 2*Arg_27 {O(n)}
42: n_f11___7->n_f2___5, Arg_28: 2*Arg_28 {O(n)}
42: n_f11___7->n_f2___5, Arg_32: 2*Arg_32 {O(n)}
43: n_f11___7->n_f2___6, Arg_14: 2*Arg_16 {O(n)}
43: n_f11___7->n_f2___6, Arg_15: 2*Arg_15 {O(n)}
43: n_f11___7->n_f2___6, Arg_16: 2*Arg_16 {O(n)}
43: n_f11___7->n_f2___6, Arg_17: 2*Arg_17 {O(n)}
43: n_f11___7->n_f2___6, Arg_20: 2*Arg_17 {O(n)}
43: n_f11___7->n_f2___6, Arg_22: 2*Arg_17 {O(n)}
43: n_f11___7->n_f2___6, Arg_23: 2*Arg_23 {O(n)}
43: n_f11___7->n_f2___6, Arg_24: 2*Arg_24 {O(n)}
43: n_f11___7->n_f2___6, Arg_25: 2*Arg_25 {O(n)}
43: n_f11___7->n_f2___6, Arg_26: 2*Arg_26 {O(n)}
43: n_f11___7->n_f2___6, Arg_27: 2*Arg_27 {O(n)}
43: n_f11___7->n_f2___6, Arg_28: 2*Arg_28 {O(n)}
43: n_f11___7->n_f2___6, Arg_32: 2*Arg_32 {O(n)}
44: n_f2___3->n_f2___3, Arg_14: 2*Arg_16+Arg_14 {O(n)}
44: n_f2___3->n_f2___3, Arg_15: 3*Arg_15 {O(n)}
44: n_f2___3->n_f2___3, Arg_16: 3*Arg_16 {O(n)}
44: n_f2___3->n_f2___3, Arg_17: 3*Arg_17 {O(n)}
44: n_f2___3->n_f2___3, Arg_20: 3*Arg_17 {O(n)}
44: n_f2___3->n_f2___3, Arg_22: 3*Arg_17 {O(n)}
44: n_f2___3->n_f2___3, Arg_23: 3*Arg_24 {O(n)}
44: n_f2___3->n_f2___3, Arg_24: 3*Arg_24 {O(n)}
44: n_f2___3->n_f2___3, Arg_25: 6*Arg_16 {O(n)}
44: n_f2___3->n_f2___3, Arg_26: 3*Arg_26 {O(n)}
44: n_f2___3->n_f2___3, Arg_27: 3*Arg_27 {O(n)}
44: n_f2___3->n_f2___3, Arg_28: 3*Arg_28 {O(n)}
44: n_f2___3->n_f2___3, Arg_32: 3*Arg_32 {O(n)}
45: n_f2___4->n_f2___4, Arg_14: 2*Arg_16+Arg_14 {O(n)}
45: n_f2___4->n_f2___4, Arg_15: 3*Arg_15 {O(n)}
45: n_f2___4->n_f2___4, Arg_16: 3*Arg_16 {O(n)}
45: n_f2___4->n_f2___4, Arg_17: 3*Arg_17 {O(n)}
45: n_f2___4->n_f2___4, Arg_20: 3*Arg_17 {O(n)}
45: n_f2___4->n_f2___4, Arg_22: 3*Arg_17 {O(n)}
45: n_f2___4->n_f2___4, Arg_23: 3*Arg_24 {O(n)}
45: n_f2___4->n_f2___4, Arg_24: 3*Arg_24 {O(n)}
45: n_f2___4->n_f2___4, Arg_25: 6*Arg_16 {O(n)}
45: n_f2___4->n_f2___4, Arg_26: 3*Arg_26 {O(n)}
45: n_f2___4->n_f2___4, Arg_27: 3*Arg_27 {O(n)}
45: n_f2___4->n_f2___4, Arg_28: 3*Arg_28 {O(n)}
45: n_f2___4->n_f2___4, Arg_32: 3*Arg_32 {O(n)}
46: n_f2___5->n_f2___3, Arg_14: 2*Arg_16+Arg_14 {O(n)}
46: n_f2___5->n_f2___3, Arg_15: 3*Arg_15 {O(n)}
46: n_f2___5->n_f2___3, Arg_16: 3*Arg_16 {O(n)}
46: n_f2___5->n_f2___3, Arg_17: 3*Arg_17 {O(n)}
46: n_f2___5->n_f2___3, Arg_20: 3*Arg_17 {O(n)}
46: n_f2___5->n_f2___3, Arg_22: 3*Arg_17 {O(n)}
46: n_f2___5->n_f2___3, Arg_23: 3*Arg_24 {O(n)}
46: n_f2___5->n_f2___3, Arg_24: 3*Arg_24 {O(n)}
46: n_f2___5->n_f2___3, Arg_25: 3*Arg_16 {O(n)}
46: n_f2___5->n_f2___3, Arg_26: 3*Arg_26 {O(n)}
46: n_f2___5->n_f2___3, Arg_27: 3*Arg_27 {O(n)}
46: n_f2___5->n_f2___3, Arg_28: 3*Arg_28 {O(n)}
46: n_f2___5->n_f2___3, Arg_32: 3*Arg_32 {O(n)}
47: n_f2___6->n_f2___4, Arg_14: 2*Arg_16+Arg_14 {O(n)}
47: n_f2___6->n_f2___4, Arg_15: 3*Arg_15 {O(n)}
47: n_f2___6->n_f2___4, Arg_16: 3*Arg_16 {O(n)}
47: n_f2___6->n_f2___4, Arg_17: 3*Arg_17 {O(n)}
47: n_f2___6->n_f2___4, Arg_20: 3*Arg_17 {O(n)}
47: n_f2___6->n_f2___4, Arg_22: 3*Arg_17 {O(n)}
47: n_f2___6->n_f2___4, Arg_23: 3*Arg_24 {O(n)}
47: n_f2___6->n_f2___4, Arg_24: 3*Arg_24 {O(n)}
47: n_f2___6->n_f2___4, Arg_25: 3*Arg_16 {O(n)}
47: n_f2___6->n_f2___4, Arg_26: 3*Arg_26 {O(n)}
47: n_f2___6->n_f2___4, Arg_27: 3*Arg_27 {O(n)}
47: n_f2___6->n_f2___4, Arg_28: 3*Arg_28 {O(n)}
47: n_f2___6->n_f2___4, Arg_32: 3*Arg_32 {O(n)}
48: n_f5___1->n_f5___1, Arg_12: Arg_12 {O(n)}
48: n_f5___1->n_f5___1, Arg_14: Arg_14 {O(n)}
48: n_f5___1->n_f5___1, Arg_15: Arg_15 {O(n)}
48: n_f5___1->n_f5___1, Arg_16: Arg_16 {O(n)}
48: n_f5___1->n_f5___1, Arg_17: Arg_17 {O(n)}
48: n_f5___1->n_f5___1, Arg_18: 1 {O(1)}
48: n_f5___1->n_f5___1, Arg_20: Arg_17 {O(n)}
48: n_f5___1->n_f5___1, Arg_22: Arg_17 {O(n)}
48: n_f5___1->n_f5___1, Arg_23: Arg_23 {O(n)}
48: n_f5___1->n_f5___1, Arg_24: Arg_24 {O(n)}
48: n_f5___1->n_f5___1, Arg_25: Arg_25 {O(n)}
48: n_f5___1->n_f5___1, Arg_26: 2*Arg_16 {O(n)}
48: n_f5___1->n_f5___1, Arg_27: Arg_28 {O(n)}
48: n_f5___1->n_f5___1, Arg_28: Arg_28 {O(n)}
48: n_f5___1->n_f5___1, Arg_32: Arg_32 {O(n)}
49: n_f5___2->n_f5___2, Arg_12: Arg_12 {O(n)}
49: n_f5___2->n_f5___2, Arg_14: Arg_14 {O(n)}
49: n_f5___2->n_f5___2, Arg_15: Arg_15 {O(n)}
49: n_f5___2->n_f5___2, Arg_16: Arg_16 {O(n)}
49: n_f5___2->n_f5___2, Arg_17: Arg_17 {O(n)}
49: n_f5___2->n_f5___2, Arg_18: 1 {O(1)}
49: n_f5___2->n_f5___2, Arg_20: Arg_17 {O(n)}
49: n_f5___2->n_f5___2, Arg_22: Arg_17 {O(n)}
49: n_f5___2->n_f5___2, Arg_23: Arg_23 {O(n)}
49: n_f5___2->n_f5___2, Arg_24: Arg_24 {O(n)}
49: n_f5___2->n_f5___2, Arg_25: Arg_25 {O(n)}
49: n_f5___2->n_f5___2, Arg_26: 2*Arg_16 {O(n)}
49: n_f5___2->n_f5___2, Arg_27: Arg_28 {O(n)}
49: n_f5___2->n_f5___2, Arg_28: Arg_28 {O(n)}
49: n_f5___2->n_f5___2, Arg_32: Arg_32 {O(n)}
50: n_f5___8->n_f5___1, Arg_12: Arg_12 {O(n)}
50: n_f5___8->n_f5___1, Arg_14: Arg_14 {O(n)}
50: n_f5___8->n_f5___1, Arg_15: Arg_15 {O(n)}
50: n_f5___8->n_f5___1, Arg_16: Arg_16 {O(n)}
50: n_f5___8->n_f5___1, Arg_17: Arg_17 {O(n)}
50: n_f5___8->n_f5___1, Arg_18: 1 {O(1)}
50: n_f5___8->n_f5___1, Arg_20: Arg_17 {O(n)}
50: n_f5___8->n_f5___1, Arg_22: Arg_17 {O(n)}
50: n_f5___8->n_f5___1, Arg_23: Arg_23 {O(n)}
50: n_f5___8->n_f5___1, Arg_24: Arg_24 {O(n)}
50: n_f5___8->n_f5___1, Arg_25: Arg_25 {O(n)}
50: n_f5___8->n_f5___1, Arg_26: Arg_16 {O(n)}
50: n_f5___8->n_f5___1, Arg_27: Arg_28 {O(n)}
50: n_f5___8->n_f5___1, Arg_28: Arg_28 {O(n)}
50: n_f5___8->n_f5___1, Arg_32: Arg_32 {O(n)}
51: n_f5___9->n_f5___2, Arg_12: Arg_12 {O(n)}
51: n_f5___9->n_f5___2, Arg_14: Arg_14 {O(n)}
51: n_f5___9->n_f5___2, Arg_15: Arg_15 {O(n)}
51: n_f5___9->n_f5___2, Arg_16: Arg_16 {O(n)}
51: n_f5___9->n_f5___2, Arg_17: Arg_17 {O(n)}
51: n_f5___9->n_f5___2, Arg_18: 1 {O(1)}
51: n_f5___9->n_f5___2, Arg_20: Arg_17 {O(n)}
51: n_f5___9->n_f5___2, Arg_22: Arg_17 {O(n)}
51: n_f5___9->n_f5___2, Arg_23: Arg_23 {O(n)}
51: n_f5___9->n_f5___2, Arg_24: Arg_24 {O(n)}
51: n_f5___9->n_f5___2, Arg_25: Arg_25 {O(n)}
51: n_f5___9->n_f5___2, Arg_26: Arg_16 {O(n)}
51: n_f5___9->n_f5___2, Arg_27: Arg_28 {O(n)}
51: n_f5___9->n_f5___2, Arg_28: Arg_28 {O(n)}
51: n_f5___9->n_f5___2, Arg_32: Arg_32 {O(n)}