Initial Problem
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: D_P, NoDet0
Locations: n_f0, n_f14___12, n_f14___17, n_f14___20, n_f14___24, n_f14___26, n_f14___3, n_f14___31, n_f14___34, n_f14___38, n_f14___44, n_f14___6, n_f14___9, n_f4___14, n_f4___27, n_f4___28, n_f4___35, n_f4___40, n_f4___41, n_f4___46, n_f6___13, n_f6___21, n_f6___25, n_f6___32, n_f6___33, n_f6___39, n_f6___45, n_f6___7, n_f6___8, n_f7___1, n_f7___10, n_f7___11, n_f7___15, n_f7___16, n_f7___18, n_f7___19, n_f7___2, n_f7___22, n_f7___23, n_f7___29, n_f7___30, n_f7___36, n_f7___37, n_f7___4, n_f7___42, n_f7___43, n_f7___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___46(Arg_0,Arg_1,Arg_2,Arg_1+1):|:0<=Arg_1 && Arg_1<=Arg_2
1:n_f4___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___13(NoDet0,Arg_1,Arg_2,D_P):|:1+Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
2:n_f4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___21(NoDet0,Arg_1,Arg_2,D_P):|:1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
3:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___26(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=1+Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1
4:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___25(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=1+Arg_2 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
5:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___39(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
6:n_f4___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___34(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=0 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_3<=Arg_1
7:n_f4___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___32(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=0 && 0<=Arg_3 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
8:n_f4___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___33(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=0 && 0<=Arg_3 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
9:n_f4___40(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___9(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=Arg_2 && Arg_3<=1+Arg_2 && Arg_3<=0 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_3<=Arg_1
10:n_f4___40(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___7(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=Arg_2 && Arg_3<=1+Arg_2 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
11:n_f4___40(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___8(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=Arg_2 && Arg_3<=1+Arg_2 && Arg_3<=0 && 0<=Arg_3 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
12:n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___39(NoDet0,Arg_1,Arg_2,D_P):|:1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
13:n_f4___46(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___45(NoDet0,Arg_1,Arg_2,D_P):|:1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_1 && 0<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
14:n_f6___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 1+Arg_2<=0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
15:n_f6___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___10(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 1+Arg_2<=0 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
16:n_f6___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___11(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 1+Arg_2<=0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
17:n_f6___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___20(0,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
18:n_f6___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___18(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
19:n_f6___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___19(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
20:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___24(0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && Arg_0<=0 && 0<=Arg_0
21:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_0
22:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_0<=0
23:n_f6___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___17(0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
24:n_f6___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
25:n_f6___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___16(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
26:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___31(0,Arg_1,Arg_2,Arg_3):|:1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
27:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___29(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
28:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___30(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
29:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___38(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && Arg_0<=0 && 0<=Arg_0
30:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0
31:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1+Arg_0<=0
32:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___44(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0
33:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1<=Arg_0
34:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_0<=0
35:n_f6___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___3(0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
36:n_f6___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___1(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
37:n_f6___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___2(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_1<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
38:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___6(0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
39:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___4(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
40:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
41:n_f7___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_1<=0 && 0<=Arg_2 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
42:n_f7___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___14(Arg_0,Arg_1,Arg_2,0):|:1+Arg_1<=0 && 1+Arg_2<=0 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
43:n_f7___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___14(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && 1+Arg_1<=0 && 1+Arg_2<=0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
44:n_f7___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___14(Arg_0,Arg_1,Arg_2,0):|:1+Arg_1<=0 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
45:n_f7___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_1<=0 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
46:n_f7___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___14(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && 1+Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
47:n_f7___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && 1+Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
48:n_f7___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___27(Arg_0,Arg_1,Arg_2,0):|:1+Arg_2<=0 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
49:n_f7___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___27(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && 1+Arg_2<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
50:n_f7___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && 1+Arg_1<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
51:n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2
52:n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && 1+Arg_2<=Arg_3
53:n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_2
54:n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_2<=Arg_3
55:n_f7___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___27(Arg_0,Arg_1,Arg_2,0):|:1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
56:n_f7___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
57:n_f7___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___27(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_2<=Arg_3
58:n_f7___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
59:n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 && 1+Arg_2<=Arg_3
60:n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 && Arg_3<=Arg_2
61:n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1+Arg_2<=Arg_3
62:n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && Arg_3<=Arg_2
63:n_f7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
64:n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___40(Arg_0,Arg_1,Arg_2,0):|:Arg_1<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_2<=Arg_3
65:n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_1<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_3<=Arg_2
66:n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___40(Arg_0,Arg_1,Arg_2,0):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_2<=Arg_3
67:n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_3<=Arg_2
68:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_0<=0 && 0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
Preprocessing
Cut unsatisfiable transition 5: n_f4___28->n_f6___39
Cut unsatisfiable transition 10: n_f4___40->n_f6___7
Cut unreachable locations [n_f14___3; n_f6___7; n_f7___1; n_f7___2] from the program graph
Found invariant Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f14___26
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f6___25
Found invariant Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_0+Arg_3<=0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_f7___30
Found invariant Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 for location n_f6___45
Found invariant 1<=0 for location n_f4___14
Found invariant Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f14___31
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f14___24
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_f4___35
Found invariant 1<=0 for location n_f6___13
Found invariant 1<=0 for location n_f7___11
Found invariant Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_f7___43
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_0+Arg_3<=0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_f7___5
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f7___22
Found invariant Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f7___36
Found invariant Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f14___44
Found invariant 1<=0 for location n_f6___21
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 for location n_f4___40
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f7___4
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f14___6
Found invariant Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 for location n_f4___46
Found invariant 1<=0 for location n_f14___17
Found invariant Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_f6___39
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_f14___34
Found invariant 1<=0 for location n_f7___18
Found invariant Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f4___28
Found invariant 1<=0 for location n_f4___27
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_f7___23
Found invariant 1<=0 for location n_f14___20
Found invariant Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_f7___37
Found invariant 1<=0 for location n_f7___16
Found invariant Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_f4___41
Found invariant Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f7___29
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_f14___9
Found invariant 1<=0 for location n_f7___19
Found invariant Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f7___42
Found invariant 1<=0 for location n_f14___12
Found invariant 1<=0 for location n_f6___32
Found invariant 1<=0 for location n_f7___10
Found invariant Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location n_f6___33
Found invariant 1<=0 for location n_f7___15
Found invariant Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f14___38
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f6___8
Cut unsatisfiable transition 1: n_f4___14->n_f6___13
Cut unsatisfiable transition 2: n_f4___27->n_f6___21
Cut unsatisfiable transition 7: n_f4___35->n_f6___32
Cut unsatisfiable transition 14: n_f6___13->n_f14___12
Cut unsatisfiable transition 15: n_f6___13->n_f7___10
Cut unsatisfiable transition 16: n_f6___13->n_f7___11
Cut unsatisfiable transition 17: n_f6___21->n_f14___20
Cut unsatisfiable transition 18: n_f6___21->n_f7___18
Cut unsatisfiable transition 19: n_f6___21->n_f7___19
Cut unsatisfiable transition 23: n_f6___32->n_f14___17
Cut unsatisfiable transition 24: n_f6___32->n_f7___15
Cut unsatisfiable transition 25: n_f6___32->n_f7___16
Cut unsatisfiable transition 42: n_f7___10->n_f4___14
Cut unsatisfiable transition 43: n_f7___11->n_f4___14
Cut unsatisfiable transition 44: n_f7___15->n_f4___14
Cut unsatisfiable transition 45: n_f7___15->n_f4___41
Cut unsatisfiable transition 46: n_f7___16->n_f4___14
Cut unsatisfiable transition 47: n_f7___16->n_f4___41
Cut unsatisfiable transition 48: n_f7___18->n_f4___27
Cut unsatisfiable transition 49: n_f7___19->n_f4___27
Cut unsatisfiable transition 52: n_f7___22->n_f4___35
Cut unsatisfiable transition 54: n_f7___23->n_f4___35
Cut unsatisfiable transition 55: n_f7___29->n_f4___27
Cut unsatisfiable transition 57: n_f7___30->n_f4___27
Cut unreachable locations [n_f14___12; n_f14___17; n_f14___20; n_f4___14; n_f4___27; n_f6___13; n_f6___21; n_f6___32; n_f7___10; n_f7___11; n_f7___15; n_f7___16; n_f7___18; n_f7___19] from the program graph
Problem after Preprocessing
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: D_P, NoDet0
Locations: n_f0, n_f14___24, n_f14___26, n_f14___31, n_f14___34, n_f14___38, n_f14___44, n_f14___6, n_f14___9, n_f4___28, n_f4___35, n_f4___40, n_f4___41, n_f4___46, n_f6___25, n_f6___33, n_f6___39, n_f6___45, n_f6___8, n_f7___22, n_f7___23, n_f7___29, n_f7___30, n_f7___36, n_f7___37, n_f7___4, n_f7___42, n_f7___43, n_f7___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___46(Arg_0,Arg_1,Arg_2,Arg_1+1):|:0<=Arg_1 && Arg_1<=Arg_2
3:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___26(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_3<=1+Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1
4:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___25(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_3<=1+Arg_2 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
6:n_f4___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___34(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_3<=Arg_1
8:n_f4___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___33(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
9:n_f4___40(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___9(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=Arg_2 && Arg_3<=1+Arg_2 && Arg_3<=0 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_3<=Arg_1
11:n_f4___40(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___8(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=Arg_2 && Arg_3<=1+Arg_2 && Arg_3<=0 && 0<=Arg_3 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3
12:n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___39(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
13:n_f4___46(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___45(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_1 && 0<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3
20:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___24(0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && Arg_0<=0 && 0<=Arg_0
21:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_0
22:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_0<=0
26:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___31(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
27:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___29(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
28:n_f6___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___30(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
29:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___38(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && Arg_0<=0 && 0<=Arg_0
30:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0
31:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1+Arg_0<=0
32:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___44(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0
33:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1<=Arg_0
34:n_f6___45(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_0<=0
38:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___6(0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
39:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___4(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1<=Arg_0
40:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 1+Arg_0<=0
51:n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2
53:n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_2
56:n_f7___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
58:n_f7___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_0+Arg_3<=0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
59:n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 && 1+Arg_2<=Arg_3
60:n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 && Arg_3<=Arg_2
61:n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___35(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1+Arg_2<=Arg_3
62:n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && Arg_3<=Arg_2
63:n_f7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
64:n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___40(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_2<=Arg_3
65:n_f7___42(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_3<=Arg_2
66:n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___40(Arg_0,Arg_1,Arg_2,0):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 1+Arg_2<=Arg_3
67:n_f7___43(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1<=Arg_3 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_3<=Arg_2
68:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_0+Arg_3<=0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && 0<=Arg_2 && 1<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && Arg_3<=Arg_2
MPRF for transition 12:n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___39(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_3<=1+Arg_2 && 1+Arg_1<=D_P && Arg_3<=D_P && D_P<=Arg_3 of depth 1:
new bound:
2*Arg_1+4*Arg_2+6 {O(n)}
MPRF:
n_f6___39 [2*Arg_2-Arg_3 ]
n_f7___36 [2*Arg_2-Arg_3 ]
n_f7___37 [2*Arg_2-Arg_3 ]
n_f4___41 [2*Arg_2+1-Arg_3 ]
MPRF for transition 30:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 of depth 1:
new bound:
2*Arg_1+2*Arg_2+8 {O(n)}
MPRF:
n_f6___39 [Arg_2+2-Arg_3 ]
n_f7___36 [Arg_2+1-Arg_3 ]
n_f7___37 [Arg_2+1-Arg_3 ]
n_f4___41 [Arg_2+2-Arg_3 ]
MPRF for transition 31:n_f6___39(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1+Arg_0<=0 of depth 1:
new bound:
2*Arg_1+2*Arg_2+8 {O(n)}
MPRF:
n_f6___39 [Arg_2+2-Arg_3 ]
n_f7___36 [Arg_2+1-Arg_3 ]
n_f7___37 [Arg_2+1-Arg_3 ]
n_f4___41 [Arg_2+2-Arg_3 ]
MPRF for transition 60:n_f7___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && 1<=Arg_0 && Arg_3<=Arg_2 of depth 1:
new bound:
2*Arg_1+2*Arg_2+6 {O(n)}
MPRF:
n_f6___39 [Arg_2+1-Arg_3 ]
n_f7___36 [Arg_2+1-Arg_3 ]
n_f7___37 [Arg_2-Arg_3 ]
n_f4___41 [Arg_2+1-Arg_3 ]
MPRF for transition 62:n_f7___37(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___41(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_1<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
2*Arg_1+4*Arg_2+4 {O(n)}
MPRF:
n_f6___39 [2*Arg_2-Arg_3 ]
n_f7___36 [2*Arg_2-Arg_3 ]
n_f7___37 [2*Arg_2-Arg_3 ]
n_f4___41 [2*Arg_2-Arg_3 ]
MPRF for transition 4:n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___25(NoDet0,Arg_1,Arg_2,D_P):|:Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_3<=1+Arg_2 && 1+D_P<=Arg_1 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:
new bound:
12*Arg_2+8 {O(n)}
MPRF:
n_f6___25 [Arg_2-Arg_3 ]
n_f7___22 [Arg_2-Arg_3 ]
n_f7___23 [Arg_2-Arg_3 ]
n_f4___28 [Arg_2+1-Arg_3 ]
MPRF for transition 21:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1<=Arg_0 of depth 1:
new bound:
12*Arg_2+12 {O(n)}
MPRF:
n_f6___25 [Arg_2+2-Arg_3 ]
n_f7___22 [Arg_2+1-Arg_3 ]
n_f7___23 [Arg_2+1-Arg_3 ]
n_f4___28 [Arg_2+2-Arg_3 ]
MPRF for transition 22:n_f6___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_2 && 1+Arg_0<=0 of depth 1:
new bound:
12*Arg_2+12 {O(n)}
MPRF:
n_f6___25 [Arg_2+2-Arg_3 ]
n_f7___22 [Arg_2+1-Arg_3 ]
n_f7___23 [Arg_2+1-Arg_3 ]
n_f4___28 [Arg_2+2-Arg_3 ]
MPRF for transition 51:n_f7___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 of depth 1:
new bound:
12*Arg_2+8 {O(n)}
MPRF:
n_f6___25 [Arg_2+1-Arg_3 ]
n_f7___22 [Arg_2+1-Arg_3 ]
n_f7___23 [Arg_2-Arg_3 ]
n_f4___28 [Arg_2+1-Arg_3 ]
MPRF for transition 53:n_f7___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f4___28(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && 1+Arg_0<=0 && Arg_3<=1+Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_2 of depth 1:
new bound:
24*Arg_2+4 {O(n)}
MPRF:
n_f6___25 [2*Arg_2-Arg_3 ]
n_f7___22 [2*Arg_2-Arg_3 ]
n_f7___23 [2*Arg_2-Arg_3 ]
n_f4___28 [2*Arg_2-Arg_3 ]
All Bounds
Timebounds
Overall timebound:10*Arg_1+86*Arg_2+104 {O(n)}
0: n_f0->n_f4___46: 1 {O(1)}
3: n_f4___28->n_f14___26: 1 {O(1)}
4: n_f4___28->n_f6___25: 12*Arg_2+8 {O(n)}
6: n_f4___35->n_f14___34: 1 {O(1)}
8: n_f4___35->n_f6___33: 1 {O(1)}
9: n_f4___40->n_f14___9: 1 {O(1)}
11: n_f4___40->n_f6___8: 1 {O(1)}
12: n_f4___41->n_f6___39: 2*Arg_1+4*Arg_2+6 {O(n)}
13: n_f4___46->n_f6___45: 1 {O(1)}
20: n_f6___25->n_f14___24: 1 {O(1)}
21: n_f6___25->n_f7___22: 12*Arg_2+12 {O(n)}
22: n_f6___25->n_f7___23: 12*Arg_2+12 {O(n)}
26: n_f6___33->n_f14___31: 1 {O(1)}
27: n_f6___33->n_f7___29: 1 {O(1)}
28: n_f6___33->n_f7___30: 1 {O(1)}
29: n_f6___39->n_f14___38: 1 {O(1)}
30: n_f6___39->n_f7___36: 2*Arg_1+2*Arg_2+8 {O(n)}
31: n_f6___39->n_f7___37: 2*Arg_1+2*Arg_2+8 {O(n)}
32: n_f6___45->n_f14___44: 1 {O(1)}
33: n_f6___45->n_f7___42: 1 {O(1)}
34: n_f6___45->n_f7___43: 1 {O(1)}
38: n_f6___8->n_f14___6: 1 {O(1)}
39: n_f6___8->n_f7___4: 1 {O(1)}
40: n_f6___8->n_f7___5: 1 {O(1)}
51: n_f7___22->n_f4___28: 12*Arg_2+8 {O(n)}
53: n_f7___23->n_f4___28: 24*Arg_2+4 {O(n)}
56: n_f7___29->n_f4___28: 1 {O(1)}
58: n_f7___30->n_f4___28: 1 {O(1)}
59: n_f7___36->n_f4___35: 1 {O(1)}
60: n_f7___36->n_f4___41: 2*Arg_1+2*Arg_2+6 {O(n)}
61: n_f7___37->n_f4___35: 1 {O(1)}
62: n_f7___37->n_f4___41: 2*Arg_1+4*Arg_2+4 {O(n)}
63: n_f7___4->n_f4___28: 1 {O(1)}
64: n_f7___42->n_f4___40: 1 {O(1)}
65: n_f7___42->n_f4___41: 1 {O(1)}
66: n_f7___43->n_f4___40: 1 {O(1)}
67: n_f7___43->n_f4___41: 1 {O(1)}
68: n_f7___5->n_f4___28: 1 {O(1)}
Costbounds
Overall costbound: 10*Arg_1+86*Arg_2+104 {O(n)}
0: n_f0->n_f4___46: 1 {O(1)}
3: n_f4___28->n_f14___26: 1 {O(1)}
4: n_f4___28->n_f6___25: 12*Arg_2+8 {O(n)}
6: n_f4___35->n_f14___34: 1 {O(1)}
8: n_f4___35->n_f6___33: 1 {O(1)}
9: n_f4___40->n_f14___9: 1 {O(1)}
11: n_f4___40->n_f6___8: 1 {O(1)}
12: n_f4___41->n_f6___39: 2*Arg_1+4*Arg_2+6 {O(n)}
13: n_f4___46->n_f6___45: 1 {O(1)}
20: n_f6___25->n_f14___24: 1 {O(1)}
21: n_f6___25->n_f7___22: 12*Arg_2+12 {O(n)}
22: n_f6___25->n_f7___23: 12*Arg_2+12 {O(n)}
26: n_f6___33->n_f14___31: 1 {O(1)}
27: n_f6___33->n_f7___29: 1 {O(1)}
28: n_f6___33->n_f7___30: 1 {O(1)}
29: n_f6___39->n_f14___38: 1 {O(1)}
30: n_f6___39->n_f7___36: 2*Arg_1+2*Arg_2+8 {O(n)}
31: n_f6___39->n_f7___37: 2*Arg_1+2*Arg_2+8 {O(n)}
32: n_f6___45->n_f14___44: 1 {O(1)}
33: n_f6___45->n_f7___42: 1 {O(1)}
34: n_f6___45->n_f7___43: 1 {O(1)}
38: n_f6___8->n_f14___6: 1 {O(1)}
39: n_f6___8->n_f7___4: 1 {O(1)}
40: n_f6___8->n_f7___5: 1 {O(1)}
51: n_f7___22->n_f4___28: 12*Arg_2+8 {O(n)}
53: n_f7___23->n_f4___28: 24*Arg_2+4 {O(n)}
56: n_f7___29->n_f4___28: 1 {O(1)}
58: n_f7___30->n_f4___28: 1 {O(1)}
59: n_f7___36->n_f4___35: 1 {O(1)}
60: n_f7___36->n_f4___41: 2*Arg_1+2*Arg_2+6 {O(n)}
61: n_f7___37->n_f4___35: 1 {O(1)}
62: n_f7___37->n_f4___41: 2*Arg_1+4*Arg_2+4 {O(n)}
63: n_f7___4->n_f4___28: 1 {O(1)}
64: n_f7___42->n_f4___40: 1 {O(1)}
65: n_f7___42->n_f4___41: 1 {O(1)}
66: n_f7___43->n_f4___40: 1 {O(1)}
67: n_f7___43->n_f4___41: 1 {O(1)}
68: n_f7___5->n_f4___28: 1 {O(1)}
Sizebounds
0: n_f0->n_f4___46, Arg_0: Arg_0 {O(n)}
0: n_f0->n_f4___46, Arg_1: Arg_1 {O(n)}
0: n_f0->n_f4___46, Arg_2: Arg_2 {O(n)}
0: n_f0->n_f4___46, Arg_3: Arg_1+1 {O(n)}
3: n_f4___28->n_f14___26, Arg_1: 36*Arg_1 {O(n)}
3: n_f4___28->n_f14___26, Arg_2: 36*Arg_2 {O(n)}
3: n_f4___28->n_f14___26, Arg_3: 36*Arg_1 {O(n)}
4: n_f4___28->n_f6___25, Arg_1: 12*Arg_1 {O(n)}
4: n_f4___28->n_f6___25, Arg_2: 12*Arg_2 {O(n)}
4: n_f4___28->n_f6___25, Arg_3: 36*Arg_2+16 {O(n)}
6: n_f4___35->n_f14___34, Arg_1: 0 {O(1)}
6: n_f4___35->n_f14___34, Arg_2: 4*Arg_2 {O(n)}
6: n_f4___35->n_f14___34, Arg_3: 0 {O(1)}
8: n_f4___35->n_f6___33, Arg_1: 4*Arg_1 {O(n)}
8: n_f4___35->n_f6___33, Arg_2: 4*Arg_2 {O(n)}
8: n_f4___35->n_f6___33, Arg_3: 0 {O(1)}
9: n_f4___40->n_f14___9, Arg_1: 0 {O(1)}
9: n_f4___40->n_f14___9, Arg_2: 0 {O(1)}
9: n_f4___40->n_f14___9, Arg_3: 0 {O(1)}
11: n_f4___40->n_f6___8, Arg_1: 2*Arg_1 {O(n)}
11: n_f4___40->n_f6___8, Arg_2: 2*Arg_2 {O(n)}
11: n_f4___40->n_f6___8, Arg_3: 0 {O(1)}
12: n_f4___41->n_f6___39, Arg_1: 2*Arg_1 {O(n)}
12: n_f4___41->n_f6___39, Arg_2: 2*Arg_2 {O(n)}
12: n_f4___41->n_f6___39, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
13: n_f4___46->n_f6___45, Arg_1: Arg_1 {O(n)}
13: n_f4___46->n_f6___45, Arg_2: Arg_2 {O(n)}
13: n_f4___46->n_f6___45, Arg_3: Arg_1+1 {O(n)}
20: n_f6___25->n_f14___24, Arg_0: 0 {O(1)}
20: n_f6___25->n_f14___24, Arg_1: 12*Arg_1 {O(n)}
20: n_f6___25->n_f14___24, Arg_2: 12*Arg_2 {O(n)}
20: n_f6___25->n_f14___24, Arg_3: 36*Arg_2+16 {O(n)}
21: n_f6___25->n_f7___22, Arg_1: 12*Arg_1 {O(n)}
21: n_f6___25->n_f7___22, Arg_2: 12*Arg_2 {O(n)}
21: n_f6___25->n_f7___22, Arg_3: 36*Arg_2+16 {O(n)}
22: n_f6___25->n_f7___23, Arg_1: 12*Arg_1 {O(n)}
22: n_f6___25->n_f7___23, Arg_2: 12*Arg_2 {O(n)}
22: n_f6___25->n_f7___23, Arg_3: 36*Arg_2+16 {O(n)}
26: n_f6___33->n_f14___31, Arg_0: 0 {O(1)}
26: n_f6___33->n_f14___31, Arg_1: 4*Arg_1 {O(n)}
26: n_f6___33->n_f14___31, Arg_2: 4*Arg_2 {O(n)}
26: n_f6___33->n_f14___31, Arg_3: 0 {O(1)}
27: n_f6___33->n_f7___29, Arg_1: 4*Arg_1 {O(n)}
27: n_f6___33->n_f7___29, Arg_2: 4*Arg_2 {O(n)}
27: n_f6___33->n_f7___29, Arg_3: 0 {O(1)}
28: n_f6___33->n_f7___30, Arg_1: 4*Arg_1 {O(n)}
28: n_f6___33->n_f7___30, Arg_2: 4*Arg_2 {O(n)}
28: n_f6___33->n_f7___30, Arg_3: 0 {O(1)}
29: n_f6___39->n_f14___38, Arg_0: 0 {O(1)}
29: n_f6___39->n_f14___38, Arg_1: 2*Arg_1 {O(n)}
29: n_f6___39->n_f14___38, Arg_2: 2*Arg_2 {O(n)}
29: n_f6___39->n_f14___38, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
30: n_f6___39->n_f7___36, Arg_1: 2*Arg_1 {O(n)}
30: n_f6___39->n_f7___36, Arg_2: 2*Arg_2 {O(n)}
30: n_f6___39->n_f7___36, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
31: n_f6___39->n_f7___37, Arg_1: 2*Arg_1 {O(n)}
31: n_f6___39->n_f7___37, Arg_2: 2*Arg_2 {O(n)}
31: n_f6___39->n_f7___37, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
32: n_f6___45->n_f14___44, Arg_0: 0 {O(1)}
32: n_f6___45->n_f14___44, Arg_1: Arg_1 {O(n)}
32: n_f6___45->n_f14___44, Arg_2: Arg_2 {O(n)}
32: n_f6___45->n_f14___44, Arg_3: Arg_1+1 {O(n)}
33: n_f6___45->n_f7___42, Arg_1: Arg_1 {O(n)}
33: n_f6___45->n_f7___42, Arg_2: Arg_2 {O(n)}
33: n_f6___45->n_f7___42, Arg_3: Arg_1+1 {O(n)}
34: n_f6___45->n_f7___43, Arg_1: Arg_1 {O(n)}
34: n_f6___45->n_f7___43, Arg_2: Arg_2 {O(n)}
34: n_f6___45->n_f7___43, Arg_3: Arg_1+1 {O(n)}
38: n_f6___8->n_f14___6, Arg_0: 0 {O(1)}
38: n_f6___8->n_f14___6, Arg_1: 2*Arg_1 {O(n)}
38: n_f6___8->n_f14___6, Arg_2: 2*Arg_2 {O(n)}
38: n_f6___8->n_f14___6, Arg_3: 0 {O(1)}
39: n_f6___8->n_f7___4, Arg_1: 2*Arg_1 {O(n)}
39: n_f6___8->n_f7___4, Arg_2: 2*Arg_2 {O(n)}
39: n_f6___8->n_f7___4, Arg_3: 0 {O(1)}
40: n_f6___8->n_f7___5, Arg_1: 2*Arg_1 {O(n)}
40: n_f6___8->n_f7___5, Arg_2: 2*Arg_2 {O(n)}
40: n_f6___8->n_f7___5, Arg_3: 0 {O(1)}
51: n_f7___22->n_f4___28, Arg_1: 12*Arg_1 {O(n)}
51: n_f7___22->n_f4___28, Arg_2: 12*Arg_2 {O(n)}
51: n_f7___22->n_f4___28, Arg_3: 36*Arg_2+16 {O(n)}
53: n_f7___23->n_f4___28, Arg_1: 12*Arg_1 {O(n)}
53: n_f7___23->n_f4___28, Arg_2: 12*Arg_2 {O(n)}
53: n_f7___23->n_f4___28, Arg_3: 36*Arg_2+16 {O(n)}
56: n_f7___29->n_f4___28, Arg_1: 4*Arg_1 {O(n)}
56: n_f7___29->n_f4___28, Arg_2: 4*Arg_2 {O(n)}
56: n_f7___29->n_f4___28, Arg_3: 1 {O(1)}
58: n_f7___30->n_f4___28, Arg_1: 4*Arg_1 {O(n)}
58: n_f7___30->n_f4___28, Arg_2: 4*Arg_2 {O(n)}
58: n_f7___30->n_f4___28, Arg_3: 1 {O(1)}
59: n_f7___36->n_f4___35, Arg_1: 2*Arg_1 {O(n)}
59: n_f7___36->n_f4___35, Arg_2: 2*Arg_2 {O(n)}
59: n_f7___36->n_f4___35, Arg_3: 0 {O(1)}
60: n_f7___36->n_f4___41, Arg_1: 2*Arg_1 {O(n)}
60: n_f7___36->n_f4___41, Arg_2: 2*Arg_2 {O(n)}
60: n_f7___36->n_f4___41, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
61: n_f7___37->n_f4___35, Arg_1: 2*Arg_1 {O(n)}
61: n_f7___37->n_f4___35, Arg_2: 2*Arg_2 {O(n)}
61: n_f7___37->n_f4___35, Arg_3: 0 {O(1)}
62: n_f7___37->n_f4___41, Arg_1: 2*Arg_1 {O(n)}
62: n_f7___37->n_f4___41, Arg_2: 2*Arg_2 {O(n)}
62: n_f7___37->n_f4___41, Arg_3: 6*Arg_1+6*Arg_2+14 {O(n)}
63: n_f7___4->n_f4___28, Arg_1: 2*Arg_1 {O(n)}
63: n_f7___4->n_f4___28, Arg_2: 2*Arg_2 {O(n)}
63: n_f7___4->n_f4___28, Arg_3: 1 {O(1)}
64: n_f7___42->n_f4___40, Arg_1: Arg_1 {O(n)}
64: n_f7___42->n_f4___40, Arg_2: Arg_2 {O(n)}
64: n_f7___42->n_f4___40, Arg_3: 0 {O(1)}
65: n_f7___42->n_f4___41, Arg_1: Arg_1 {O(n)}
65: n_f7___42->n_f4___41, Arg_2: Arg_2 {O(n)}
65: n_f7___42->n_f4___41, Arg_3: Arg_1+2 {O(n)}
66: n_f7___43->n_f4___40, Arg_1: Arg_1 {O(n)}
66: n_f7___43->n_f4___40, Arg_2: Arg_2 {O(n)}
66: n_f7___43->n_f4___40, Arg_3: 0 {O(1)}
67: n_f7___43->n_f4___41, Arg_1: Arg_1 {O(n)}
67: n_f7___43->n_f4___41, Arg_2: Arg_2 {O(n)}
67: n_f7___43->n_f4___41, Arg_3: Arg_1+2 {O(n)}
68: n_f7___5->n_f4___28, Arg_1: 2*Arg_1 {O(n)}
68: n_f7___5->n_f4___28, Arg_2: 2*Arg_2 {O(n)}
68: n_f7___5->n_f4___28, Arg_3: 1 {O(1)}