Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars: D_P, F_P, NoDet0
Locations: n_f0, n_f18___17, n_f18___4, n_f18___9, n_f22___12, n_f22___13, n_f22___14, n_f22___15, n_f22___16, n_f33___10, n_f33___11, n_f33___5, n_f33___6, n_f40___1, n_f40___2, n_f40___3, n_f40___7, n_f40___8, n_f8___18, n_f8___19, n_f8___20
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f8___20(-1,-1,1,Arg_3,Arg_4,Arg_5,Arg_6)
1:n_f18___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1,Arg_6):|:Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && 101<=Arg_2 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
2:n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
3:n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f40___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && 100<=Arg_3
4:n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1,Arg_6):|:Arg_3<=99 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
5:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
6:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P,NoDet0):|:Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
7:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
8:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 100<=Arg_5
9:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P,NoDet0):|:Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
10:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
11:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<=100 && Arg_3+Arg_5<=101 && 100<=Arg_5
12:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
13:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
14:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P,NoDet0):|:Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
15:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
16:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P,NoDet0):|:Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
17:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
18:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
19:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___14(Arg_0,Arg_1,Arg_2,D_P,0,F_P,NoDet0):|:Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
20:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_3+Arg_5<=100
21:n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5,Arg_6):|:Arg_3<=1 && Arg_5<=100 && 100<=Arg_5 && Arg_4<=0 && 0<=Arg_4
22:n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f40___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=1 && Arg_5<=100 && 100<=Arg_5 && 1+Arg_4<=0
23:n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f40___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=1 && Arg_5<=100 && 100<=Arg_5 && 1<=Arg_4
24:n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5,Arg_6):|:2<=Arg_3 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_4<=0 && 0<=Arg_4
25:n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f40___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:2<=Arg_3 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && 1+Arg_4<=0
26:n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f40___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:2<=Arg_3 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && 1<=Arg_4
27:n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5,Arg_6):|:Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_4<=0 && 0<=Arg_4
28:n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5,Arg_6):|:Arg_3<=1 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && 100<=Arg_5 && Arg_4<=0 && 0<=Arg_4
29:n_f8___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___17(Arg_0,Arg_1,Arg_2,1,0,Arg_5,Arg_6):|:Arg_2<=101 && 101<=Arg_2
30:n_f8___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f8___18(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=101 && Arg_2<=100
31:n_f8___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f8___18(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=100 && Arg_2<=100 && Arg_2<=101 && Arg_2<=100
32:n_f8___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f8___19(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=100 && Arg_2<=1 && 1<=Arg_2 && 1+Arg_0<=0 && 0<=1+Arg_0 && 1+Arg_1<=0 && 0<=1+Arg_1 && Arg_2<=100 && Arg_2<=101 && Arg_2<=100

Preprocessing

Eliminate variables {NoDet0,Arg_6} that do not contribute to the problem

Found invariant Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 101<=Arg_4+Arg_5 && 99+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f33___10

Found invariant Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=96+Arg_3 && Arg_3+Arg_5<=102 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 102<=Arg_3+Arg_5 && Arg_4<=0 && 3+Arg_4<=Arg_3 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 3<=Arg_3 && 104<=Arg_2+Arg_3 && Arg_2<=98+Arg_3 && 2<=Arg_1+Arg_3 && 4+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f18___4

Found invariant Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f33___5

Found invariant Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && 98+Arg_5<=Arg_3 && Arg_3+Arg_5<=102 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 102<=Arg_3+Arg_5 && Arg_4<=0 && 100+Arg_4<=Arg_3 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 100<=Arg_3+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 100<=Arg_3 && 201<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 99<=Arg_1+Arg_3 && 101+Arg_1<=Arg_3 && 99<=Arg_0+Arg_3 && 101+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f40___3

Found invariant Arg_5<=1 && Arg_5<=Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=100 && 100+Arg_5<=Arg_2 && Arg_2+Arg_5<=102 && Arg_5<=2+Arg_1 && Arg_1+Arg_5<=0 && Arg_5<=2+Arg_0 && Arg_0+Arg_5<=0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=98+Arg_5 && 102<=Arg_2+Arg_5 && Arg_2<=100+Arg_5 && 0<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 0<=Arg_0+Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f22___16

Found invariant 1<=0 for location n_f40___1

Found invariant Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f22___15

Found invariant Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 101<=Arg_4+Arg_5 && 99+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f40___8

Found invariant Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f33___6

Found invariant Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 3<=Arg_2 && 2<=Arg_1+Arg_2 && 4+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 4+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f8___18

Found invariant Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f18___17

Found invariant Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f22___14

Found invariant Arg_5<=99 && Arg_5<=98+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f33___11

Found invariant Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=98+Arg_3 && Arg_3+Arg_5<=102 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 102<=Arg_3+Arg_5 && 98+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=2+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=2 && 99+Arg_3<=Arg_2 && Arg_2+Arg_3<=103 && Arg_3<=3+Arg_1 && Arg_1+Arg_3<=1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=1 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f18___9

Found invariant Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f22___12

Found invariant Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f22___13

Found invariant Arg_5<=99 && Arg_5<=98+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f40___2

Found invariant 1<=0 for location n_f40___7

Found invariant Arg_2<=2 && Arg_2<=3+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=3+Arg_0 && Arg_0+Arg_2<=1 && 2<=Arg_2 && 1<=Arg_1+Arg_2 && 3+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f8___19

Found invariant Arg_2<=1 && Arg_2<=2+Arg_1 && Arg_1+Arg_2<=0 && Arg_2<=2+Arg_0 && Arg_0+Arg_2<=0 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 for location n_f8___20

Cut unsatisfiable transition 87: n_f33___10->n_f18___9

Cut unsatisfiable transition 88: n_f33___10->n_f40___7

Cut unsatisfiable transition 90: n_f33___11->n_f18___4

Cut unsatisfiable transition 91: n_f33___11->n_f40___1

Cut unreachable locations [n_f40___1; n_f40___7] from the program graph

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: D_P, F_P
Locations: n_f0, n_f18___17, n_f18___4, n_f18___9, n_f22___12, n_f22___13, n_f22___14, n_f22___15, n_f22___16, n_f33___10, n_f33___11, n_f33___5, n_f33___6, n_f40___2, n_f40___3, n_f40___8, n_f8___18, n_f8___19, n_f8___20
Transitions:
66:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f8___20(-1,-1,1,Arg_3,Arg_4,Arg_5)
67:n_f18___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1):|:Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && 101<=Arg_2 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
68:n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1):|:Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=96+Arg_3 && Arg_3+Arg_5<=102 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 102<=Arg_3+Arg_5 && Arg_4<=0 && 3+Arg_4<=Arg_3 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 3<=Arg_3 && 104<=Arg_2+Arg_3 && Arg_2<=98+Arg_3 && 2<=Arg_1+Arg_3 && 4+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
69:n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f40___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=96+Arg_3 && Arg_3+Arg_5<=102 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 102<=Arg_3+Arg_5 && Arg_4<=0 && 3+Arg_4<=Arg_3 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 3<=Arg_3 && 104<=Arg_2+Arg_3 && Arg_2<=98+Arg_3 && 2<=Arg_1+Arg_3 && 4+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && 100<=Arg_3
70:n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=98+Arg_3 && Arg_3+Arg_5<=102 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 102<=Arg_3+Arg_5 && 98+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=2+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=2 && 99+Arg_3<=Arg_2 && Arg_2+Arg_3<=103 && Arg_3<=3+Arg_1 && Arg_1+Arg_3<=1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=1 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=99 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99
71:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
72:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
73:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
74:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 100<=Arg_5
75:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
76:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
77:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && 100<=Arg_5
78:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
79:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
80:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
81:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
82:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
83:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100
84:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99
85:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___14(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=1 && Arg_5<=Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=100 && 100+Arg_5<=Arg_2 && Arg_2+Arg_5<=102 && Arg_5<=2+Arg_1 && Arg_1+Arg_5<=0 && Arg_5<=2+Arg_0 && Arg_0+Arg_5<=0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=98+Arg_5 && 102<=Arg_2+Arg_5 && Arg_2<=100+Arg_5 && 0<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 0<=Arg_0+Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5
86:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=1 && Arg_5<=Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=100 && 100+Arg_5<=Arg_2 && Arg_2+Arg_5<=102 && Arg_5<=2+Arg_1 && Arg_1+Arg_5<=0 && Arg_5<=2+Arg_0 && Arg_0+Arg_5<=0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=98+Arg_5 && 102<=Arg_2+Arg_5 && Arg_2<=100+Arg_5 && 0<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 0<=Arg_0+Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_3+Arg_5<=100
89:n_f33___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f40___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 101<=Arg_4+Arg_5 && 99+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=1 && Arg_5<=100 && 100<=Arg_5 && 1<=Arg_4
92:n_f33___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f40___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=99 && Arg_5<=98+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && 2<=Arg_3 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && 1<=Arg_4
93:n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5):|:Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_4<=0 && 0<=Arg_4
94:n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=1 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && 100<=Arg_5 && Arg_4<=0 && 0<=Arg_4
95:n_f8___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___17(Arg_0,Arg_1,Arg_2,1,0,Arg_5):|:Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 3<=Arg_2 && 2<=Arg_1+Arg_2 && 4+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 4+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_2<=101 && 101<=Arg_2
96:n_f8___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f8___18(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5):|:Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 3<=Arg_2 && 2<=Arg_1+Arg_2 && 4+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 4+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_2<=101 && Arg_2<=100
97:n_f8___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f8___18(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5):|:Arg_2<=2 && Arg_2<=3+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=3+Arg_0 && Arg_0+Arg_2<=1 && 2<=Arg_2 && 1<=Arg_1+Arg_2 && 3+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_2<=100 && Arg_2<=100 && Arg_2<=101 && Arg_2<=100
98:n_f8___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f8___19(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5):|:Arg_2<=1 && Arg_2<=2+Arg_1 && Arg_1+Arg_2<=0 && Arg_2<=2+Arg_0 && Arg_0+Arg_2<=0 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_2<=100 && Arg_2<=1 && 1<=Arg_2 && 1+Arg_0<=0 && 0<=1+Arg_0 && 1+Arg_1<=0 && 0<=1+Arg_1 && Arg_2<=100 && Arg_2<=101 && Arg_2<=100

MPRF for transition 96:n_f8___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f8___18(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5):|:Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 3<=Arg_2 && 2<=Arg_1+Arg_2 && 4+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 4+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_2<=101 && Arg_2<=100 of depth 1:

new bound:

105 {O(1)}

MPRF:

n_f8___18 [102-Arg_2 ]

MPRF for transition 68:n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1):|:Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=96+Arg_3 && Arg_3+Arg_5<=102 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 102<=Arg_3+Arg_5 && Arg_4<=0 && 3+Arg_4<=Arg_3 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 3<=Arg_3 && 104<=Arg_2+Arg_3 && Arg_2<=98+Arg_3 && 2<=Arg_1+Arg_3 && 4+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99 of depth 1:

new bound:

10201 {O(1)}

MPRF:

n_f22___12 [100*Arg_2-101*Arg_3 ]
n_f22___13 [100*Arg_2-101*Arg_3 ]
n_f22___14 [100*Arg_2-101*Arg_3 ]
n_f22___16 [10100-101*Arg_3 ]
n_f22___15 [10100*Arg_4-101*Arg_3 ]
n_f33___5 [101*Arg_0+101*Arg_5 ]
n_f18___4 [10201-101*Arg_3 ]
n_f33___6 [100*Arg_2-101*Arg_3 ]
n_f18___9 [4949*Arg_3 ]

MPRF for transition 70:n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,1,1):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=98+Arg_3 && Arg_3+Arg_5<=102 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 102<=Arg_3+Arg_5 && 98+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=2+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=2 && 99+Arg_3<=Arg_2 && Arg_2+Arg_3<=103 && Arg_3<=3+Arg_1 && Arg_1+Arg_3<=1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=1 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=99 && Arg_3<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=99 of depth 1:

new bound:

18625 {O(1)}

MPRF:

n_f22___12 [-9313*Arg_0-9312*Arg_3 ]
n_f22___13 [9313-9312*Arg_3 ]
n_f22___14 [9313-9312*Arg_3 ]
n_f22___16 [9312-Arg_1-9312*Arg_3 ]
n_f22___15 [9313*Arg_4-9312*Arg_3 ]
n_f33___5 [9216*Arg_5-931007 ]
n_f18___4 [9216*Arg_5-Arg_0-931008 ]
n_f33___6 [-9313*Arg_1-9312*Arg_3 ]
n_f18___9 [-Arg_0 ]

MPRF for transition 71:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 of depth 1:

new bound:

186260766 {O(1)}

MPRF:

n_f22___12 [184418930-1900618*Arg_3-19594*Arg_5 ]
n_f22___13 [184399336-1900416*Arg_3-202*Arg_4-19594*Arg_5 ]
n_f22___14 [184399336-1900618*Arg_3-19594*Arg_5 ]
n_f22___16 [-184360148*Arg_1-1900618*Arg_3 ]
n_f22___15 [92180074*Arg_5-1900618*Arg_3 ]
n_f33___5 [1825732*Arg_2-1900618*Arg_3-19392*Arg_5 ]
n_f18___4 [91229866*Arg_0+91229866-184360148*Arg_1-1900618*Arg_3 ]
n_f33___6 [1825930*Arg_2-1900618*Arg_3-19594*Arg_5 ]
n_f18___9 [-184360148*Arg_1-940512*Arg_3-1920212 ]

MPRF for transition 72:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

92218701 {O(1)}

MPRF:

n_f22___12 [91296086-940900*Arg_3-9595*Arg_5 ]
n_f22___13 [91316581-100*Arg_2-941005*Arg_3-9595*Arg_5 ]
n_f22___14 [45614833*Arg_5+37635-940900*Arg_3 ]
n_f22___16 [-45662863*Arg_0-45614833*Arg_1-941005*Arg_3 ]
n_f22___15 [91296886-941005*Arg_3-9595*Arg_5 ]
n_f33___5 [Arg_5+90346082-940900*Arg_3 ]
n_f18___4 [45614933*Arg_1+91229867-45662863*Arg_0-Arg_2-941005*Arg_3 ]
n_f33___6 [91296191-941005*Arg_3-9595*Arg_5 ]
n_f18___9 [9500*Arg_2-45662863*Arg_0-45614833*Arg_1-941005*Arg_3-9595*Arg_5 ]

MPRF for transition 73:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99 of depth 1:

new bound:

960400 {O(1)}

MPRF:

n_f22___12 [950700-9700*Arg_3 ]
n_f22___13 [950700-9700*Arg_3 ]
n_f22___14 [950700-9700*Arg_3 ]
n_f22___16 [950700-9700*Arg_3 ]
n_f22___15 [950700-9700*Arg_3 ]
n_f33___5 [9700*Arg_5-38506 ]
n_f18___4 [19405*Arg_0+9605*Arg_2-9700*Arg_3 ]
n_f33___6 [9410*Arg_5-9700*Arg_3 ]
n_f18___9 [950700-9700*Arg_3 ]

MPRF for transition 74:n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=98 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 100<=Arg_5 of depth 1:

new bound:

94080592 {O(1)}

MPRF:

n_f22___12 [93130283-950309*Arg_3 ]
n_f22___13 [93130283-950309*Arg_3 ]
n_f22___14 [93130283-950309*Arg_3 ]
n_f22___16 [93130283-950309*Arg_3 ]
n_f22___15 [93130283-950309*Arg_3 ]
n_f33___5 [92160380-101*Arg_0-Arg_2-940512*Arg_3 ]
n_f18___4 [Arg_1+93100892-Arg_0-940512*Arg_3 ]
n_f33___6 [92179974-950309*Arg_3 ]
n_f18___9 [93130283-950309*Arg_3 ]

MPRF for transition 75:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

197 {O(1)}

MPRF:

n_f22___12 [195-Arg_3 ]
n_f22___13 [196-Arg_3 ]
n_f22___14 [Arg_2+94-Arg_3 ]
n_f22___16 [Arg_2+95-Arg_3 ]
n_f22___15 [Arg_0+Arg_2+95-2*Arg_1-Arg_3-Arg_4 ]
n_f33___5 [Arg_5+94 ]
n_f18___4 [7*Arg_0+Arg_2+Arg_5 ]
n_f33___6 [Arg_2+94-Arg_3 ]
n_f18___9 [Arg_2+95-Arg_3 ]

MPRF for transition 76:n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=100 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=101 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=95+Arg_5 && 104<=Arg_2+Arg_5 && Arg_2<=98+Arg_5 && 2<=Arg_1+Arg_5 && 4+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 4+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=97+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=98 && 3+Arg_3<=Arg_2 && Arg_2+Arg_3<=199 && Arg_3<=99+Arg_1 && Arg_1+Arg_3<=97 && Arg_3<=99+Arg_0 && Arg_0+Arg_3<=97 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 of depth 1:

new bound:

10483 {O(1)}

MPRF:

n_f22___12 [-9312*Arg_0-96*Arg_3 ]
n_f22___13 [9413-97*Arg_3-Arg_5 ]
n_f22___14 [-9410*Arg_0-97*Arg_3 ]
n_f22___16 [488*Arg_0-9898*Arg_1-97*Arg_3 ]
n_f22___15 [-9412*Arg_0-97*Arg_3-Arg_5 ]
n_f33___5 [201-9312*Arg_0-Arg_2-97*Arg_3-Arg_5 ]
n_f18___4 [488*Arg_0+5*Arg_3+101*Arg_5-9898*Arg_1-2*Arg_2-10103 ]
n_f33___6 [-9312*Arg_0-9410*Arg_1-96*Arg_3-9410 ]
n_f18___9 [-9410*Arg_1-97*Arg_3 ]

MPRF for transition 79:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 of depth 1:

new bound:

10386 {O(1)}

MPRF:

n_f22___12 [9605-97*Arg_3 ]
n_f22___13 [9605-97*Arg_3 ]
n_f22___14 [9606-98*Arg_0-98*Arg_3 ]
n_f22___16 [292*Arg_1+9996-98*Arg_3 ]
n_f22___15 [9805-Arg_2-98*Arg_3 ]
n_f33___5 [303*Arg_1+Arg_3+98*Arg_5+9 ]
n_f18___4 [295*Arg_0+Arg_3+98*Arg_5 ]
n_f33___6 [96*Arg_5+5-97*Arg_3 ]
n_f18___9 [292*Arg_1+9996-98*Arg_3 ]

MPRF for transition 80:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

9801 {O(1)}

MPRF:

n_f22___12 [9702-98*Arg_3 ]
n_f22___13 [9702-98*Arg_3 ]
n_f22___14 [9703-98*Arg_3 ]
n_f22___16 [-9703*Arg_0-98*Arg_3 ]
n_f22___15 [9803-Arg_2-98*Arg_3 ]
n_f33___5 [295*Arg_1+Arg_3+99*Arg_5-2 ]
n_f18___4 [295*Arg_1+98*Arg_5-9703*Arg_0-96*Arg_2-5 ]
n_f33___6 [9705-98*Arg_3-Arg_5 ]
n_f18___9 [9703*Arg_1+9803-9703*Arg_0-98*Arg_3-Arg_5 ]

MPRF for transition 81:n_f22___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=2 && Arg_5<=2+Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_5<=99 of depth 1:

new bound:

969701 {O(1)}

MPRF:

n_f22___12 [960005-9696*Arg_3 ]
n_f22___13 [960005-9696*Arg_3 ]
n_f22___14 [950309-9696*Arg_0-9696*Arg_3 ]
n_f22___16 [9696*Arg_5+950309-9696*Arg_3 ]
n_f22___15 [960005*Arg_4-9696*Arg_3 ]
n_f33___5 [9797*Arg_5-9696*Arg_1-38986 ]
n_f18___4 [9508*Arg_2-9696*Arg_0-9797*Arg_3 ]
n_f33___6 [960005-9696*Arg_3 ]
n_f18___9 [960005-9696*Arg_3 ]

MPRF for transition 82:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___12(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

950601 {O(1)}

MPRF:

n_f22___12 [931589-9506*Arg_3 ]
n_f22___13 [931491-9408*Arg_3 ]
n_f22___14 [931589-9506*Arg_3 ]
n_f22___16 [941095-9506*Arg_3 ]
n_f22___15 [941095-9506*Arg_3 ]
n_f33___5 [28517*Arg_1+9506*Arg_5 ]
n_f18___4 [28517*Arg_0+9506*Arg_5 ]
n_f33___6 [931589-9506*Arg_3 ]
n_f18___9 [941095-9506*Arg_3 ]

MPRF for transition 83:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=2 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=3 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=101 && 99+Arg_5<=Arg_2 && Arg_2+Arg_5<=103 && Arg_5<=3+Arg_1 && Arg_1+Arg_5<=1 && Arg_5<=3+Arg_0 && Arg_0+Arg_5<=1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 of depth 1:

new bound:

95445194 {O(1)}

MPRF:

n_f22___12 [94490550-954450*Arg_3 ]
n_f22___13 [94490550-954450*Arg_3 ]
n_f22___14 [935551*Arg_2+94-954451*Arg_3 ]
n_f22___16 [Arg_5+94490743-954450*Arg_3 ]
n_f22___15 [94490551-954450*Arg_3 ]
n_f33___5 [2880217*Arg_0+9617*Arg_3+964067*Arg_5 ]
n_f18___4 [2880217*Arg_0+954450*Arg_5-2880217*Arg_1-2863156 ]
n_f33___6 [93536394-954450*Arg_3-Arg_5 ]
n_f18___9 [94490744-954450*Arg_3 ]

MPRF for transition 85:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___14(Arg_0,Arg_1,Arg_2,D_P,0,F_P):|:Arg_5<=1 && Arg_5<=Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=100 && 100+Arg_5<=Arg_2 && Arg_2+Arg_5<=102 && Arg_5<=2+Arg_1 && Arg_1+Arg_5<=0 && Arg_5<=2+Arg_0 && Arg_0+Arg_5<=0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=98+Arg_5 && 102<=Arg_2+Arg_5 && Arg_2<=100+Arg_5 && 0<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 0<=Arg_0+Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && D_P+F_P<=101 && F_P<=100 && Arg_3<=D_P && D_P<=Arg_3 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

245100 {O(1)}

MPRF:

n_f22___12 [240200-2450*Arg_3 ]
n_f22___13 [Arg_1+240200-Arg_0-2449*Arg_3 ]
n_f22___14 [240200-2450*Arg_3 ]
n_f22___16 [242650-2450*Arg_3 ]
n_f22___15 [240298-2450*Arg_3 ]
n_f33___5 [-240200*Arg_0-2450*Arg_3 ]
n_f18___4 [931589*Arg_1+962362-931589*Arg_0-9506*Arg_3-7056*Arg_5 ]
n_f33___6 [2402*Arg_5-2450*Arg_3 ]
n_f18___9 [242650-2450*Arg_3 ]

MPRF for transition 86:n_f22___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=1 && Arg_5<=Arg_4 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=100 && 100+Arg_5<=Arg_2 && Arg_2+Arg_5<=102 && Arg_5<=2+Arg_1 && Arg_1+Arg_5<=0 && Arg_5<=2+Arg_0 && Arg_0+Arg_5<=0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=98+Arg_5 && 102<=Arg_2+Arg_5 && Arg_2<=100+Arg_5 && 0<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 0<=Arg_0+Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=100 && 100+Arg_4<=Arg_2 && Arg_2+Arg_4<=102 && Arg_4<=2+Arg_1 && Arg_1+Arg_4<=0 && Arg_4<=2+Arg_0 && Arg_0+Arg_4<=0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=98+Arg_4 && 102<=Arg_2+Arg_4 && Arg_2<=100+Arg_4 && 0<=Arg_1+Arg_4 && 2+Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_4<=1 && 1<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && Arg_3<=99 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=100 && Arg_3+Arg_5<=101 && Arg_5<=99 && Arg_3+Arg_5<=100 && Arg_5<=99 && Arg_3+Arg_5<=100 of depth 1:

new bound:

101 {O(1)}

MPRF:

n_f22___12 [99-Arg_3 ]
n_f22___13 [99-Arg_3 ]
n_f22___14 [99-Arg_3 ]
n_f22___16 [100-Arg_3 ]
n_f22___15 [99-Arg_3 ]
n_f33___5 [Arg_5-2 ]
n_f18___4 [293*Arg_0+100-293*Arg_1-Arg_3 ]
n_f33___6 [198-Arg_1-Arg_3-Arg_5 ]
n_f18___9 [98 ]

MPRF for transition 93:n_f33___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___4(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5):|:Arg_5<=99 && Arg_5<=99+Arg_4 && Arg_4+Arg_5<=99 && Arg_5<=97+Arg_3 && Arg_3+Arg_5<=101 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=200 && Arg_5<=100+Arg_1 && Arg_1+Arg_5<=98 && Arg_5<=100+Arg_0 && Arg_0+Arg_5<=98 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && Arg_3<=97+Arg_5 && 103<=Arg_2+Arg_5 && Arg_2<=99+Arg_5 && 1<=Arg_1+Arg_5 && 3+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && Arg_3+Arg_4<=99 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=99+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=99 && 2+Arg_3<=Arg_2 && Arg_2+Arg_3<=200 && Arg_3<=100+Arg_1 && Arg_1+Arg_3<=98 && Arg_3<=100+Arg_0 && Arg_0+Arg_3<=98 && 2<=Arg_3 && 103<=Arg_2+Arg_3 && Arg_2<=99+Arg_3 && 1<=Arg_1+Arg_3 && 3+Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_5<=99 && Arg_4<=0 && 0<=Arg_4 && Arg_3+Arg_5<=101 && 101<=Arg_3+Arg_5 && Arg_4<=0 && 0<=Arg_4 of depth 1:

new bound:

101 {O(1)}

MPRF:

n_f22___12 [100-Arg_3 ]
n_f22___13 [100-Arg_3 ]
n_f22___14 [100-Arg_3 ]
n_f22___16 [100*Arg_4-Arg_3 ]
n_f22___15 [100-Arg_3 ]
n_f33___5 [Arg_5-1 ]
n_f18___4 [Arg_5-2 ]
n_f33___6 [199-Arg_3-Arg_5 ]
n_f18___9 [100-Arg_3 ]

MPRF for transition 94:n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3+1,0,Arg_5):|:Arg_5<=100 && Arg_5<=100+Arg_4 && Arg_4+Arg_5<=100 && Arg_5<=99+Arg_3 && Arg_3+Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_2+Arg_5<=201 && Arg_5<=101+Arg_1 && Arg_1+Arg_5<=99 && Arg_5<=101+Arg_0 && Arg_0+Arg_5<=99 && 100<=Arg_5 && 100<=Arg_4+Arg_5 && 100+Arg_4<=Arg_5 && 101<=Arg_3+Arg_5 && 99+Arg_3<=Arg_5 && 201<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 99<=Arg_1+Arg_5 && 101+Arg_1<=Arg_5 && 99<=Arg_0+Arg_5 && 101+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 101+Arg_4<=Arg_2 && Arg_2+Arg_4<=101 && Arg_4<=1+Arg_1 && 1+Arg_1+Arg_4<=0 && Arg_4<=1+Arg_0 && 1+Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 101<=Arg_2+Arg_4 && Arg_2<=101+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 100+Arg_3<=Arg_2 && Arg_2+Arg_3<=102 && Arg_3<=2+Arg_1 && Arg_1+Arg_3<=0 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=0 && 1<=Arg_3 && 102<=Arg_2+Arg_3 && Arg_2<=100+Arg_3 && 0<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 0<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=102+Arg_1 && Arg_1+Arg_2<=100 && Arg_2<=102+Arg_0 && Arg_0+Arg_2<=100 && 101<=Arg_2 && 100<=Arg_1+Arg_2 && 102+Arg_1<=Arg_2 && 100<=Arg_0+Arg_2 && 102+Arg_0<=Arg_2 && 1+Arg_1<=0 && Arg_1<=Arg_0 && 2+Arg_0+Arg_1<=0 && 0<=1+Arg_1 && 0<=2+Arg_0+Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=0 && 0<=1+Arg_0 && Arg_3<=1 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=100 && 100<=Arg_5 && Arg_4<=0 && 0<=Arg_4 of depth 1:

new bound:

3 {O(1)}

MPRF:

n_f22___12 [2-Arg_3 ]
n_f22___13 [2-Arg_3 ]
n_f22___14 [2-Arg_3 ]
n_f22___16 [2*Arg_4-Arg_3 ]
n_f22___15 [2-Arg_3 ]
n_f33___5 [-Arg_1-Arg_3 ]
n_f18___4 [Arg_0+2-Arg_1-Arg_3 ]
n_f33___6 [1 ]
n_f18___9 [0 ]

All Bounds

Timebounds

Overall timebound:471191069 {O(1)}
66: n_f0->n_f8___20: 1 {O(1)}
67: n_f18___17->n_f22___16: 1 {O(1)}
68: n_f18___4->n_f22___16: 10201 {O(1)}
69: n_f18___4->n_f40___3: 1 {O(1)}
70: n_f18___9->n_f22___16: 18625 {O(1)}
71: n_f22___12->n_f22___12: 186260766 {O(1)}
72: n_f22___12->n_f22___12: 92218701 {O(1)}
73: n_f22___12->n_f33___5: 960400 {O(1)}
74: n_f22___12->n_f33___6: 94080592 {O(1)}
75: n_f22___13->n_f22___12: 197 {O(1)}
76: n_f22___13->n_f22___13: 10483 {O(1)}
77: n_f22___13->n_f33___10: 1 {O(1)}
78: n_f22___13->n_f33___11: 1 {O(1)}
79: n_f22___14->n_f22___12: 10386 {O(1)}
80: n_f22___14->n_f22___12: 9801 {O(1)}
81: n_f22___14->n_f33___5: 969701 {O(1)}
82: n_f22___15->n_f22___12: 950601 {O(1)}
83: n_f22___15->n_f22___13: 95445194 {O(1)}
84: n_f22___15->n_f33___11: 1 {O(1)}
85: n_f22___16->n_f22___14: 245100 {O(1)}
86: n_f22___16->n_f22___15: 101 {O(1)}
89: n_f33___10->n_f40___8: 1 {O(1)}
92: n_f33___11->n_f40___2: 1 {O(1)}
93: n_f33___5->n_f18___4: 101 {O(1)}
94: n_f33___6->n_f18___9: 3 {O(1)}
95: n_f8___18->n_f18___17: 1 {O(1)}
96: n_f8___18->n_f8___18: 105 {O(1)}
97: n_f8___19->n_f8___18: 1 {O(1)}
98: n_f8___20->n_f8___19: 1 {O(1)}

Costbounds

Overall costbound: 471191069 {O(1)}
66: n_f0->n_f8___20: 1 {O(1)}
67: n_f18___17->n_f22___16: 1 {O(1)}
68: n_f18___4->n_f22___16: 10201 {O(1)}
69: n_f18___4->n_f40___3: 1 {O(1)}
70: n_f18___9->n_f22___16: 18625 {O(1)}
71: n_f22___12->n_f22___12: 186260766 {O(1)}
72: n_f22___12->n_f22___12: 92218701 {O(1)}
73: n_f22___12->n_f33___5: 960400 {O(1)}
74: n_f22___12->n_f33___6: 94080592 {O(1)}
75: n_f22___13->n_f22___12: 197 {O(1)}
76: n_f22___13->n_f22___13: 10483 {O(1)}
77: n_f22___13->n_f33___10: 1 {O(1)}
78: n_f22___13->n_f33___11: 1 {O(1)}
79: n_f22___14->n_f22___12: 10386 {O(1)}
80: n_f22___14->n_f22___12: 9801 {O(1)}
81: n_f22___14->n_f33___5: 969701 {O(1)}
82: n_f22___15->n_f22___12: 950601 {O(1)}
83: n_f22___15->n_f22___13: 95445194 {O(1)}
84: n_f22___15->n_f33___11: 1 {O(1)}
85: n_f22___16->n_f22___14: 245100 {O(1)}
86: n_f22___16->n_f22___15: 101 {O(1)}
89: n_f33___10->n_f40___8: 1 {O(1)}
92: n_f33___11->n_f40___2: 1 {O(1)}
93: n_f33___5->n_f18___4: 101 {O(1)}
94: n_f33___6->n_f18___9: 3 {O(1)}
95: n_f8___18->n_f18___17: 1 {O(1)}
96: n_f8___18->n_f8___18: 105 {O(1)}
97: n_f8___19->n_f8___18: 1 {O(1)}
98: n_f8___20->n_f8___19: 1 {O(1)}

Sizebounds

66: n_f0->n_f8___20, Arg_0: 1 {O(1)}
66: n_f0->n_f8___20, Arg_1: 1 {O(1)}
66: n_f0->n_f8___20, Arg_2: 1 {O(1)}
66: n_f0->n_f8___20, Arg_3: Arg_3 {O(n)}
66: n_f0->n_f8___20, Arg_4: Arg_4 {O(n)}
66: n_f0->n_f8___20, Arg_5: Arg_5 {O(n)}
67: n_f18___17->n_f22___16, Arg_0: 1 {O(1)}
67: n_f18___17->n_f22___16, Arg_1: 1 {O(1)}
67: n_f18___17->n_f22___16, Arg_2: 101 {O(1)}
67: n_f18___17->n_f22___16, Arg_3: 1 {O(1)}
67: n_f18___17->n_f22___16, Arg_4: 1 {O(1)}
67: n_f18___17->n_f22___16, Arg_5: 1 {O(1)}
68: n_f18___4->n_f22___16, Arg_0: 1 {O(1)}
68: n_f18___4->n_f22___16, Arg_1: 1 {O(1)}
68: n_f18___4->n_f22___16, Arg_2: 101 {O(1)}
68: n_f18___4->n_f22___16, Arg_3: 99 {O(1)}
68: n_f18___4->n_f22___16, Arg_4: 1 {O(1)}
68: n_f18___4->n_f22___16, Arg_5: 1 {O(1)}
69: n_f18___4->n_f40___3, Arg_0: 1 {O(1)}
69: n_f18___4->n_f40___3, Arg_1: 1 {O(1)}
69: n_f18___4->n_f40___3, Arg_2: 101 {O(1)}
69: n_f18___4->n_f40___3, Arg_3: 100 {O(1)}
69: n_f18___4->n_f40___3, Arg_4: 0 {O(1)}
69: n_f18___4->n_f40___3, Arg_5: 99 {O(1)}
70: n_f18___9->n_f22___16, Arg_0: 1 {O(1)}
70: n_f18___9->n_f22___16, Arg_1: 1 {O(1)}
70: n_f18___9->n_f22___16, Arg_2: 101 {O(1)}
70: n_f18___9->n_f22___16, Arg_3: 2 {O(1)}
70: n_f18___9->n_f22___16, Arg_4: 1 {O(1)}
70: n_f18___9->n_f22___16, Arg_5: 1 {O(1)}
71: n_f22___12->n_f22___12, Arg_0: 1 {O(1)}
71: n_f22___12->n_f22___12, Arg_1: 1 {O(1)}
71: n_f22___12->n_f22___12, Arg_2: 101 {O(1)}
71: n_f22___12->n_f22___12, Arg_3: 97 {O(1)}
71: n_f22___12->n_f22___12, Arg_4: 0 {O(1)}
71: n_f22___12->n_f22___12, Arg_5: 100 {O(1)}
72: n_f22___12->n_f22___12, Arg_0: 1 {O(1)}
72: n_f22___12->n_f22___12, Arg_1: 1 {O(1)}
72: n_f22___12->n_f22___12, Arg_2: 101 {O(1)}
72: n_f22___12->n_f22___12, Arg_3: 97 {O(1)}
72: n_f22___12->n_f22___12, Arg_4: 0 {O(1)}
72: n_f22___12->n_f22___12, Arg_5: 100 {O(1)}
73: n_f22___12->n_f33___5, Arg_0: 1 {O(1)}
73: n_f22___12->n_f33___5, Arg_1: 1 {O(1)}
73: n_f22___12->n_f33___5, Arg_2: 101 {O(1)}
73: n_f22___12->n_f33___5, Arg_3: 98 {O(1)}
73: n_f22___12->n_f33___5, Arg_4: 0 {O(1)}
73: n_f22___12->n_f33___5, Arg_5: 99 {O(1)}
74: n_f22___12->n_f33___6, Arg_0: 1 {O(1)}
74: n_f22___12->n_f33___6, Arg_1: 1 {O(1)}
74: n_f22___12->n_f33___6, Arg_2: 101 {O(1)}
74: n_f22___12->n_f33___6, Arg_3: 1 {O(1)}
74: n_f22___12->n_f33___6, Arg_4: 0 {O(1)}
74: n_f22___12->n_f33___6, Arg_5: 100 {O(1)}
75: n_f22___13->n_f22___12, Arg_0: 1 {O(1)}
75: n_f22___13->n_f22___12, Arg_1: 1 {O(1)}
75: n_f22___13->n_f22___12, Arg_2: 101 {O(1)}
75: n_f22___13->n_f22___12, Arg_3: 97 {O(1)}
75: n_f22___13->n_f22___12, Arg_4: 0 {O(1)}
75: n_f22___13->n_f22___12, Arg_5: 100 {O(1)}
76: n_f22___13->n_f22___13, Arg_0: 1 {O(1)}
76: n_f22___13->n_f22___13, Arg_1: 1 {O(1)}
76: n_f22___13->n_f22___13, Arg_2: 101 {O(1)}
76: n_f22___13->n_f22___13, Arg_3: 97 {O(1)}
76: n_f22___13->n_f22___13, Arg_4: 1 {O(1)}
76: n_f22___13->n_f22___13, Arg_5: 100 {O(1)}
77: n_f22___13->n_f33___10, Arg_0: 1 {O(1)}
77: n_f22___13->n_f33___10, Arg_1: 1 {O(1)}
77: n_f22___13->n_f33___10, Arg_2: 101 {O(1)}
77: n_f22___13->n_f33___10, Arg_3: 1 {O(1)}
77: n_f22___13->n_f33___10, Arg_4: 1 {O(1)}
77: n_f22___13->n_f33___10, Arg_5: 100 {O(1)}
78: n_f22___13->n_f33___11, Arg_0: 1 {O(1)}
78: n_f22___13->n_f33___11, Arg_1: 1 {O(1)}
78: n_f22___13->n_f33___11, Arg_2: 101 {O(1)}
78: n_f22___13->n_f33___11, Arg_3: 98 {O(1)}
78: n_f22___13->n_f33___11, Arg_4: 1 {O(1)}
78: n_f22___13->n_f33___11, Arg_5: 99 {O(1)}
79: n_f22___14->n_f22___12, Arg_0: 1 {O(1)}
79: n_f22___14->n_f22___12, Arg_1: 1 {O(1)}
79: n_f22___14->n_f22___12, Arg_2: 101 {O(1)}
79: n_f22___14->n_f22___12, Arg_3: 98 {O(1)}
79: n_f22___14->n_f22___12, Arg_4: 0 {O(1)}
79: n_f22___14->n_f22___12, Arg_5: 3 {O(1)}
80: n_f22___14->n_f22___12, Arg_0: 1 {O(1)}
80: n_f22___14->n_f22___12, Arg_1: 1 {O(1)}
80: n_f22___14->n_f22___12, Arg_2: 101 {O(1)}
80: n_f22___14->n_f22___12, Arg_3: 98 {O(1)}
80: n_f22___14->n_f22___12, Arg_4: 0 {O(1)}
80: n_f22___14->n_f22___12, Arg_5: 3 {O(1)}
81: n_f22___14->n_f33___5, Arg_0: 1 {O(1)}
81: n_f22___14->n_f33___5, Arg_1: 1 {O(1)}
81: n_f22___14->n_f33___5, Arg_2: 101 {O(1)}
81: n_f22___14->n_f33___5, Arg_3: 99 {O(1)}
81: n_f22___14->n_f33___5, Arg_4: 0 {O(1)}
81: n_f22___14->n_f33___5, Arg_5: 2 {O(1)}
82: n_f22___15->n_f22___12, Arg_0: 1 {O(1)}
82: n_f22___15->n_f22___12, Arg_1: 1 {O(1)}
82: n_f22___15->n_f22___12, Arg_2: 101 {O(1)}
82: n_f22___15->n_f22___12, Arg_3: 98 {O(1)}
82: n_f22___15->n_f22___12, Arg_4: 0 {O(1)}
82: n_f22___15->n_f22___12, Arg_5: 3 {O(1)}
83: n_f22___15->n_f22___13, Arg_0: 1 {O(1)}
83: n_f22___15->n_f22___13, Arg_1: 1 {O(1)}
83: n_f22___15->n_f22___13, Arg_2: 101 {O(1)}
83: n_f22___15->n_f22___13, Arg_3: 98 {O(1)}
83: n_f22___15->n_f22___13, Arg_4: 1 {O(1)}
83: n_f22___15->n_f22___13, Arg_5: 3 {O(1)}
84: n_f22___15->n_f33___11, Arg_0: 1 {O(1)}
84: n_f22___15->n_f33___11, Arg_1: 1 {O(1)}
84: n_f22___15->n_f33___11, Arg_2: 101 {O(1)}
84: n_f22___15->n_f33___11, Arg_3: 99 {O(1)}
84: n_f22___15->n_f33___11, Arg_4: 1 {O(1)}
84: n_f22___15->n_f33___11, Arg_5: 2 {O(1)}
85: n_f22___16->n_f22___14, Arg_0: 1 {O(1)}
85: n_f22___16->n_f22___14, Arg_1: 1 {O(1)}
85: n_f22___16->n_f22___14, Arg_2: 101 {O(1)}
85: n_f22___16->n_f22___14, Arg_3: 99 {O(1)}
85: n_f22___16->n_f22___14, Arg_4: 0 {O(1)}
85: n_f22___16->n_f22___14, Arg_5: 2 {O(1)}
86: n_f22___16->n_f22___15, Arg_0: 1 {O(1)}
86: n_f22___16->n_f22___15, Arg_1: 1 {O(1)}
86: n_f22___16->n_f22___15, Arg_2: 101 {O(1)}
86: n_f22___16->n_f22___15, Arg_3: 99 {O(1)}
86: n_f22___16->n_f22___15, Arg_4: 1 {O(1)}
86: n_f22___16->n_f22___15, Arg_5: 2 {O(1)}
89: n_f33___10->n_f40___8, Arg_0: 1 {O(1)}
89: n_f33___10->n_f40___8, Arg_1: 1 {O(1)}
89: n_f33___10->n_f40___8, Arg_2: 101 {O(1)}
89: n_f33___10->n_f40___8, Arg_3: 1 {O(1)}
89: n_f33___10->n_f40___8, Arg_4: 1 {O(1)}
89: n_f33___10->n_f40___8, Arg_5: 100 {O(1)}
92: n_f33___11->n_f40___2, Arg_0: 1 {O(1)}
92: n_f33___11->n_f40___2, Arg_1: 1 {O(1)}
92: n_f33___11->n_f40___2, Arg_2: 101 {O(1)}
92: n_f33___11->n_f40___2, Arg_3: 99 {O(1)}
92: n_f33___11->n_f40___2, Arg_4: 1 {O(1)}
92: n_f33___11->n_f40___2, Arg_5: 99 {O(1)}
93: n_f33___5->n_f18___4, Arg_0: 1 {O(1)}
93: n_f33___5->n_f18___4, Arg_1: 1 {O(1)}
93: n_f33___5->n_f18___4, Arg_2: 101 {O(1)}
93: n_f33___5->n_f18___4, Arg_3: 100 {O(1)}
93: n_f33___5->n_f18___4, Arg_4: 0 {O(1)}
93: n_f33___5->n_f18___4, Arg_5: 99 {O(1)}
94: n_f33___6->n_f18___9, Arg_0: 1 {O(1)}
94: n_f33___6->n_f18___9, Arg_1: 1 {O(1)}
94: n_f33___6->n_f18___9, Arg_2: 101 {O(1)}
94: n_f33___6->n_f18___9, Arg_3: 2 {O(1)}
94: n_f33___6->n_f18___9, Arg_4: 0 {O(1)}
94: n_f33___6->n_f18___9, Arg_5: 100 {O(1)}
95: n_f8___18->n_f18___17, Arg_0: 1 {O(1)}
95: n_f8___18->n_f18___17, Arg_1: 1 {O(1)}
95: n_f8___18->n_f18___17, Arg_2: 101 {O(1)}
95: n_f8___18->n_f18___17, Arg_3: 1 {O(1)}
95: n_f8___18->n_f18___17, Arg_4: 0 {O(1)}
95: n_f8___18->n_f18___17, Arg_5: Arg_5 {O(n)}
96: n_f8___18->n_f8___18, Arg_0: 1 {O(1)}
96: n_f8___18->n_f8___18, Arg_1: 1 {O(1)}
96: n_f8___18->n_f8___18, Arg_2: 101 {O(1)}
96: n_f8___18->n_f8___18, Arg_3: Arg_3 {O(n)}
96: n_f8___18->n_f8___18, Arg_4: Arg_4 {O(n)}
96: n_f8___18->n_f8___18, Arg_5: Arg_5 {O(n)}
97: n_f8___19->n_f8___18, Arg_0: 1 {O(1)}
97: n_f8___19->n_f8___18, Arg_1: 1 {O(1)}
97: n_f8___19->n_f8___18, Arg_2: 3 {O(1)}
97: n_f8___19->n_f8___18, Arg_3: Arg_3 {O(n)}
97: n_f8___19->n_f8___18, Arg_4: Arg_4 {O(n)}
97: n_f8___19->n_f8___18, Arg_5: Arg_5 {O(n)}
98: n_f8___20->n_f8___19, Arg_0: 1 {O(1)}
98: n_f8___20->n_f8___19, Arg_1: 1 {O(1)}
98: n_f8___20->n_f8___19, Arg_2: 2 {O(1)}
98: n_f8___20->n_f8___19, Arg_3: Arg_3 {O(n)}
98: n_f8___20->n_f8___19, Arg_4: Arg_4 {O(n)}
98: n_f8___20->n_f8___19, Arg_5: Arg_5 {O(n)}