Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19
Temp_Vars: C_P, E_P, G_P, I_P, K_P, L_P, M_P, N_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8
Locations: n_f0, n_f118___1, n_f62___2, n_f62___3, n_f62___4, n_f7___5, n_f7___6, n_f7___7
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f7___7(8,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19)
1:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f118___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && 8<=Arg_1
2:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f62___2(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
3:n_f62___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f62___2(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
4:n_f62___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f62___3(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
5:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f62___4(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && 8<=Arg_1
6:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f7___5(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
7:n_f7___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f7___5(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
8:n_f7___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f7___6(Arg_0,Arg_1+1,C_P,NoDet0,E_P,NoDet1,G_P,NoDet2,I_P,NoDet3,K_P,L_P,M_P,N_P,-3196,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_1<=7 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P

Preprocessing

Eliminate variables {NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8,Arg_3,Arg_5,Arg_7,Arg_9,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19} that do not contribute to the problem

Found invariant 3196+Arg_14<=0 && 3197+Arg_14<=Arg_1 && 3195+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3195+Arg_1+Arg_14 && Arg_1<=3197+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=1 && 7+Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 1<=Arg_1 && 9<=Arg_0+Arg_1 && Arg_0<=7+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f62___3

Found invariant 3196+Arg_14<=0 && 3204+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3188+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 8<=Arg_1 && 16<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f118___1

Found invariant Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f7___7

Found invariant 3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f62___2

Found invariant 3196+Arg_14<=0 && 3196+Arg_14<=Arg_1 && 3196+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3196+Arg_1+Arg_14 && Arg_1<=3196+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f62___4

Found invariant 3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f7___5

Found invariant 3196+Arg_14<=0 && 3197+Arg_14<=Arg_1 && 3195+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3195+Arg_1+Arg_14 && Arg_1<=3197+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=1 && 7+Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 1<=Arg_1 && 9<=Arg_0+Arg_1 && Arg_0<=7+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f7___6

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_4, Arg_6, Arg_8, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: C_P, E_P, G_P, I_P, K_P, L_P, M_P, N_P
Locations: n_f0, n_f118___1, n_f62___2, n_f62___3, n_f62___4, n_f7___5, n_f7___6, n_f7___7
Transitions:
18:n_f0(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f7___7(8,0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14)
19:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f118___1(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && 8<=Arg_1
20:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f62___2(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
21:n_f62___3(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f62___2(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3197+Arg_14<=Arg_1 && 3195+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3195+Arg_1+Arg_14 && Arg_1<=3197+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=1 && 7+Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 1<=Arg_1 && 9<=Arg_0+Arg_1 && Arg_0<=7+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
22:n_f62___4(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f62___3(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3196+Arg_14<=Arg_1 && 3196+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3196+Arg_1+Arg_14 && Arg_1<=3196+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
23:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f62___4(Arg_0,0,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && 8<=Arg_1
24:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f7___5(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
25:n_f7___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f7___5(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3197+Arg_14<=Arg_1 && 3195+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3195+Arg_1+Arg_14 && Arg_1<=3197+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=1 && 7+Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 1<=Arg_1 && 9<=Arg_0+Arg_1 && Arg_0<=7+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=7 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P
26:n_f7___7(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f7___6(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=7 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P

MPRF for transition 24:n_f7___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f7___5(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P of depth 1:

new bound:

11 {O(1)}

MPRF:

n_f7___5 [Arg_0+1-Arg_1 ]

MPRF for transition 20:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_4,Arg_6,Arg_8,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f62___2(Arg_0,Arg_1+1,C_P,E_P,G_P,I_P,K_P,L_P,M_P,N_P,-3196):|:3196+Arg_14<=0 && 3198+Arg_14<=Arg_1 && 3188+Arg_1+Arg_14<=0 && 3204+Arg_14<=Arg_0 && 3188+Arg_0+Arg_14<=0 && 0<=3196+Arg_14 && 0<=3194+Arg_1+Arg_14 && Arg_1<=3204+Arg_14 && 0<=3188+Arg_0+Arg_14 && Arg_0<=3204+Arg_14 && Arg_1<=8 && Arg_1<=Arg_0 && Arg_0+Arg_1<=16 && 2<=Arg_1 && 10<=Arg_0+Arg_1 && Arg_0<=6+Arg_1 && Arg_0<=8 && 8<=Arg_0 && 3196+Arg_14<=0 && 0<=3196+Arg_14 && Arg_2<=Arg_8+Arg_11 && Arg_8+Arg_11<=Arg_2 && Arg_2+Arg_8<=Arg_10 && Arg_10<=Arg_2+Arg_8 && Arg_4+Arg_6<=Arg_12 && Arg_12<=Arg_4+Arg_6 && Arg_4<=Arg_6+Arg_13 && Arg_6+Arg_13<=Arg_4 && Arg_1<=8 && Arg_1<=7 && E_P<=G_P+N_P && G_P+N_P<=E_P && E_P+G_P<=M_P && M_P<=E_P+G_P && C_P+I_P<=K_P && K_P<=C_P+I_P && C_P<=I_P+L_P && I_P+L_P<=C_P of depth 1:

new bound:

11 {O(1)}

MPRF:

n_f62___2 [Arg_0+1-Arg_1 ]

All Bounds

Timebounds

Overall timebound:29 {O(1)}
18: n_f0->n_f7___7: 1 {O(1)}
19: n_f62___2->n_f118___1: 1 {O(1)}
20: n_f62___2->n_f62___2: 11 {O(1)}
21: n_f62___3->n_f62___2: 1 {O(1)}
22: n_f62___4->n_f62___3: 1 {O(1)}
23: n_f7___5->n_f62___4: 1 {O(1)}
24: n_f7___5->n_f7___5: 11 {O(1)}
25: n_f7___6->n_f7___5: 1 {O(1)}
26: n_f7___7->n_f7___6: 1 {O(1)}

Costbounds

Overall costbound: 29 {O(1)}
18: n_f0->n_f7___7: 1 {O(1)}
19: n_f62___2->n_f118___1: 1 {O(1)}
20: n_f62___2->n_f62___2: 11 {O(1)}
21: n_f62___3->n_f62___2: 1 {O(1)}
22: n_f62___4->n_f62___3: 1 {O(1)}
23: n_f7___5->n_f62___4: 1 {O(1)}
24: n_f7___5->n_f7___5: 11 {O(1)}
25: n_f7___6->n_f7___5: 1 {O(1)}
26: n_f7___7->n_f7___6: 1 {O(1)}

Sizebounds

18: n_f0->n_f7___7, Arg_0: 8 {O(1)}
18: n_f0->n_f7___7, Arg_1: 0 {O(1)}
18: n_f0->n_f7___7, Arg_2: Arg_2 {O(n)}
18: n_f0->n_f7___7, Arg_4: Arg_4 {O(n)}
18: n_f0->n_f7___7, Arg_6: Arg_6 {O(n)}
18: n_f0->n_f7___7, Arg_8: Arg_8 {O(n)}
18: n_f0->n_f7___7, Arg_10: Arg_10 {O(n)}
18: n_f0->n_f7___7, Arg_11: Arg_11 {O(n)}
18: n_f0->n_f7___7, Arg_12: Arg_12 {O(n)}
18: n_f0->n_f7___7, Arg_13: Arg_13 {O(n)}
18: n_f0->n_f7___7, Arg_14: Arg_14 {O(n)}
19: n_f62___2->n_f118___1, Arg_0: 8 {O(1)}
19: n_f62___2->n_f118___1, Arg_1: 8 {O(1)}
19: n_f62___2->n_f118___1, Arg_14: 3196 {O(1)}
20: n_f62___2->n_f62___2, Arg_0: 8 {O(1)}
20: n_f62___2->n_f62___2, Arg_1: 8 {O(1)}
20: n_f62___2->n_f62___2, Arg_14: 3196 {O(1)}
21: n_f62___3->n_f62___2, Arg_0: 8 {O(1)}
21: n_f62___3->n_f62___2, Arg_1: 2 {O(1)}
21: n_f62___3->n_f62___2, Arg_14: 3196 {O(1)}
22: n_f62___4->n_f62___3, Arg_0: 8 {O(1)}
22: n_f62___4->n_f62___3, Arg_1: 1 {O(1)}
22: n_f62___4->n_f62___3, Arg_14: 3196 {O(1)}
23: n_f7___5->n_f62___4, Arg_0: 8 {O(1)}
23: n_f7___5->n_f62___4, Arg_1: 0 {O(1)}
23: n_f7___5->n_f62___4, Arg_14: 3196 {O(1)}
24: n_f7___5->n_f7___5, Arg_0: 8 {O(1)}
24: n_f7___5->n_f7___5, Arg_1: 8 {O(1)}
24: n_f7___5->n_f7___5, Arg_14: 3196 {O(1)}
25: n_f7___6->n_f7___5, Arg_0: 8 {O(1)}
25: n_f7___6->n_f7___5, Arg_1: 2 {O(1)}
25: n_f7___6->n_f7___5, Arg_14: 3196 {O(1)}
26: n_f7___7->n_f7___6, Arg_0: 8 {O(1)}
26: n_f7___7->n_f7___6, Arg_1: 1 {O(1)}
26: n_f7___7->n_f7___6, Arg_14: 3196 {O(1)}