Initial Problem

Start: n_f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: C_P, D_P, E_P, F_P, H_P, NoDet0
Locations: n_f1___11, n_f1___20, n_f1___33, n_f1___7, n_f2, n_f23___12, n_f23___18, n_f23___19, n_f23___23, n_f23___35, n_f23___8, n_f26___32, n_f40___31, n_f59___16, n_f59___27, n_f59___29, n_f59___30, n_f5___2, n_f5___36, n_f5___6, n_f69___14, n_f69___15, n_f69___25, n_f69___26, n_f69___28, n_f71___10, n_f71___13, n_f71___17, n_f71___24, n_f71___9, n_f74___21, n_f74___22, n_f9___1, n_f9___3, n_f9___34, n_f9___4, n_f9___5
Transitions:
0:n_f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
1:n_f23___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
2:n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f1___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
3:n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0
4:n_f23___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f1___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
5:n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f1___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
6:n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0
7:n_f23___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
8:n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f40___31(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1
9:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
10:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
11:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_3):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3
12:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
13:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
14:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
15:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
16:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
17:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
18:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
19:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
20:n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
21:n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___3(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
22:n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1
23:n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___34(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_0
24:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
25:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___3(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
26:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
27:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
28:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
29:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
30:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
31:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
32:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
33:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
34:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
35:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
36:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
37:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
38:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
39:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
40:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
41:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___12(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
42:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___21(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
43:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
44:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___12(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
45:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___21(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
46:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
47:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___23(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_3 && Arg_3<=Arg_0
48:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___21(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
49:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
50:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___23(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
51:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___21(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
52:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
53:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___8(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
54:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___21(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
55:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
56:n_f74___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1
57:n_f74___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1
58:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
59:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
60:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
61:n_f9___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
62:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
63:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
64:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___5(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
65:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3
66:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
67:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
68:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
69:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
70:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f9___5(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3

Preprocessing

Eliminate variables {NoDet0,Arg_6,Arg_8,Arg_9} that do not contribute to the problem

Found invariant Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 for location n_f5___6

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___13

Found invariant 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f9___3

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f26___32

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 for location n_f5___2

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 for location n_f9___1

Found invariant Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f1___11

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___14

Found invariant 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___15

Found invariant Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f9___5

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f59___16

Found invariant 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f71___17

Found invariant Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f9___34

Found invariant Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f1___20

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f59___27

Found invariant Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f1___7

Found invariant 1+Arg_0<=Arg_1 for location n_f23___35

Found invariant 1<=0 for location n_f74___21

Found invariant 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 for location n_f1___33

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f69___25

Found invariant Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___9

Found invariant Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___28

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f59___29

Found invariant Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f23___23

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f40___31

Found invariant Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f23___12

Found invariant Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_f23___18

Found invariant Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f23___8

Found invariant 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f59___30

Found invariant 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f69___26

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f71___24

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f23___19

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 for location n_f9___4

Found invariant 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___10

Found invariant 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f74___22

Cut unsatisfiable transition 185: n_f71___10->n_f74___21

Cut unsatisfiable transition 188: n_f71___13->n_f74___21

Cut unsatisfiable transition 191: n_f71___17->n_f74___21

Cut unsatisfiable transition 194: n_f71___24->n_f74___21

Cut unsatisfiable transition 197: n_f71___9->n_f74___21

Cut unsatisfiable transition 199: n_f74___21->n_f23___18

Cut unreachable locations [n_f74___21] from the program graph

Problem after Preprocessing

Start: n_f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_7, Arg_10
Temp_Vars: C_P, D_P, E_P, F_P, H_P
Locations: n_f1___11, n_f1___20, n_f1___33, n_f1___7, n_f2, n_f23___12, n_f23___18, n_f23___19, n_f23___23, n_f23___35, n_f23___8, n_f26___32, n_f40___31, n_f59___16, n_f59___27, n_f59___29, n_f59___30, n_f5___2, n_f5___36, n_f5___6, n_f69___14, n_f69___15, n_f69___25, n_f69___26, n_f69___28, n_f71___10, n_f71___13, n_f71___17, n_f71___24, n_f71___9, n_f74___22, n_f9___1, n_f9___3, n_f9___34, n_f9___4, n_f9___5
Transitions:
143:n_f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10)
144:n_f23___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
145:n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f1___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
146:n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0
147:n_f23___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f1___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
148:n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f1___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
149:n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0
150:n_f23___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
151:n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f40___31(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1
152:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
153:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
154:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3
155:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
156:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
157:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
158:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
159:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
160:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
161:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
162:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
163:n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
164:n_f5___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___3(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
165:n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1
166:n_f5___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___34(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_0
167:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
168:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___3(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
169:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
170:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
171:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
172:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
173:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
174:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
175:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
176:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
177:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
178:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
179:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
180:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
181:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
182:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
183:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
184:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___12(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
186:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
187:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___12(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
189:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
190:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___23(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_3 && Arg_3<=Arg_0
192:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
193:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___23(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
195:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
196:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___8(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
198:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
200:n_f74___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_7,Arg_10):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1
201:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
202:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
203:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
204:n_f9___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
205:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
206:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
207:n_f9___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___5(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
208:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3
209:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
210:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
211:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
212:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
213:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___5(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3

MPRF for transition 146:n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0 of depth 1:

new bound:

Arg_1+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3-1 ]
n_f40___31 [Arg_1-Arg_3-1 ]
n_f59___16 [Arg_1-Arg_3-1 ]
n_f59___29 [Arg_1-Arg_3-1 ]
n_f59___27 [Arg_1-Arg_3-1 ]
n_f59___30 [Arg_1-Arg_3-1 ]
n_f69___14 [Arg_1-Arg_3-1 ]
n_f69___15 [Arg_1-Arg_3-1 ]
n_f69___25 [Arg_1-Arg_3-1 ]
n_f69___26 [Arg_1-Arg_3-1 ]
n_f69___28 [Arg_1-Arg_3-1 ]
n_f71___10 [Arg_1-Arg_3-1 ]
n_f71___13 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___24 [Arg_1-Arg_3-1 ]
n_f71___9 [Arg_1-Arg_10-1 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 151:n_f26___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f40___31(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_1+1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_3 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3 ]
n_f23___19 [Arg_1+1-Arg_3 ]

MPRF for transition 152:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_3 ]
n_f40___31 [Arg_0+1-Arg_3 ]
n_f59___16 [Arg_0-Arg_3 ]
n_f59___29 [Arg_0-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_7-Arg_3-1 ]
n_f69___15 [Arg_0-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0-Arg_10 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_7-Arg_3-1 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_7-Arg_3-1 ]
n_f71___9 [Arg_0-Arg_10 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0+1-Arg_3 ]

MPRF for transition 153:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_1+1-Arg_3 ]
n_f40___31 [Arg_1+1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_3 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_3 ]
n_f74___22 [Arg_1-Arg_3 ]
n_f23___19 [Arg_1+1-Arg_3 ]

MPRF for transition 154:n_f40___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_10+1-Arg_3 ]
n_f40___31 [Arg_10+1-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10-Arg_3 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3 ]
n_f23___19 [Arg_10+1-Arg_3 ]

MPRF for transition 155:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_1+Arg_7 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_7 ]
n_f40___31 [Arg_1-Arg_7 ]
n_f59___16 [Arg_1+1-Arg_7 ]
n_f59___29 [Arg_1-Arg_7 ]
n_f59___27 [Arg_1-Arg_0 ]
n_f59___30 [Arg_1-Arg_7 ]
n_f69___14 [Arg_1-Arg_7 ]
n_f69___15 [Arg_1-Arg_7 ]
n_f69___25 [Arg_1-Arg_7 ]
n_f69___26 [Arg_1-Arg_7 ]
n_f69___28 [Arg_1-Arg_7 ]
n_f71___10 [Arg_1-Arg_7 ]
n_f71___13 [Arg_1-Arg_7 ]
n_f71___17 [Arg_1-Arg_7 ]
n_f71___24 [Arg_1-Arg_7 ]
n_f71___9 [Arg_1-Arg_7 ]
n_f74___22 [Arg_1-Arg_7 ]
n_f23___19 [Arg_1-Arg_7 ]

MPRF for transition 156:n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_1+Arg_7 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_7 ]
n_f40___31 [Arg_1-Arg_7 ]
n_f59___16 [Arg_1+1-Arg_7 ]
n_f59___29 [Arg_1-Arg_7 ]
n_f59___27 [Arg_1-Arg_0 ]
n_f59___30 [Arg_1-Arg_7 ]
n_f69___14 [Arg_1-Arg_7 ]
n_f69___15 [Arg_1-Arg_7 ]
n_f69___25 [Arg_1-Arg_7 ]
n_f69___26 [Arg_1-Arg_7 ]
n_f69___28 [Arg_1-Arg_7 ]
n_f71___10 [Arg_1-Arg_7 ]
n_f71___13 [Arg_1-Arg_7 ]
n_f71___17 [Arg_1-Arg_7 ]
n_f71___24 [Arg_1-Arg_7 ]
n_f71___9 [Arg_1-Arg_7 ]
n_f74___22 [Arg_1-Arg_7 ]
n_f23___19 [Arg_1-Arg_7 ]

MPRF for transition 157:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

2*Arg_1+Arg_0+Arg_7 {O(n)}

MPRF:

n_f26___32 [2*Arg_1-Arg_0-Arg_7 ]
n_f40___31 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___16 [2*Arg_1-2*Arg_0 ]
n_f59___29 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___27 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___30 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___14 [2*Arg_1-2*Arg_0 ]
n_f69___15 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___25 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___26 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___28 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___10 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___13 [2*Arg_1-2*Arg_0 ]
n_f71___17 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___24 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___9 [2*Arg_1-Arg_0-Arg_7 ]
n_f74___22 [2*Arg_1-Arg_0-Arg_7 ]
n_f23___19 [2*Arg_1-Arg_0-Arg_7 ]

MPRF for transition 158:n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3-1 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_10 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3-1 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 159:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_3 ]
n_f40___31 [Arg_0+1-Arg_3 ]
n_f59___16 [Arg_0-Arg_3 ]
n_f59___29 [Arg_0+1-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_0-Arg_3 ]
n_f69___15 [Arg_0-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0-Arg_10 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_0-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_7-Arg_3-1 ]
n_f71___9 [Arg_0-Arg_10 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0+1-Arg_3 ]

MPRF for transition 160:n_f59___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_3 ]
n_f40___31 [Arg_0+1-Arg_3 ]
n_f59___16 [Arg_0+1-Arg_3 ]
n_f59___29 [Arg_0+1-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_7-Arg_3 ]
n_f69___15 [Arg_0-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0-Arg_3 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_7-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_7-Arg_3-1 ]
n_f71___9 [Arg_0-Arg_10 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0+1-Arg_3 ]

MPRF for transition 161:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3-1 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3-1 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3-1 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3-1 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_3 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3-1 ]
n_f71___9 [Arg_1-Arg_3 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 162:n_f59___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_10+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_10-Arg_3 ]
n_f40___31 [Arg_10-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10-Arg_3-1 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3-1 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3-1 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3-1 ]
n_f23___19 [Arg_10-Arg_3 ]

MPRF for transition 169:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

2*Arg_1+Arg_10+Arg_7+2 {O(n)}

MPRF:

n_f26___32 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f40___31 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f59___16 [2*Arg_1-Arg_7-Arg_10-1 ]
n_f59___29 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f59___27 [2*Arg_1-Arg_0-Arg_10-2 ]
n_f59___30 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f69___14 [2*Arg_1-Arg_7-Arg_10-1 ]
n_f69___15 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f69___25 [Arg_0+2*Arg_1-2*Arg_7-Arg_10 ]
n_f69___26 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f69___28 [2*Arg_1-Arg_3-Arg_7-2 ]
n_f71___10 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f71___13 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f71___17 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f71___24 [2*Arg_1-Arg_7-Arg_10-1 ]
n_f71___9 [2*Arg_1-Arg_3-Arg_7-2 ]
n_f74___22 [2*Arg_1-Arg_7-Arg_10-2 ]
n_f23___19 [2*Arg_1-Arg_7-Arg_10-2 ]

MPRF for transition 170:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_1+Arg_7 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_7 ]
n_f40___31 [Arg_1-Arg_7 ]
n_f59___16 [Arg_1+1-Arg_7 ]
n_f59___29 [Arg_1-Arg_7 ]
n_f59___27 [Arg_1-Arg_0 ]
n_f59___30 [Arg_1-Arg_7 ]
n_f69___14 [Arg_1-Arg_0 ]
n_f69___15 [Arg_1-Arg_7 ]
n_f69___25 [Arg_1-Arg_7 ]
n_f69___26 [Arg_1-Arg_7 ]
n_f69___28 [Arg_1-Arg_7 ]
n_f71___10 [Arg_1-Arg_7 ]
n_f71___13 [Arg_1-Arg_7 ]
n_f71___17 [Arg_1-Arg_7 ]
n_f71___24 [Arg_1-Arg_7 ]
n_f71___9 [Arg_1-Arg_7 ]
n_f74___22 [Arg_1-Arg_7 ]
n_f23___19 [Arg_1-Arg_7 ]

MPRF for transition 171:n_f69___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_10 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 172:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_10 ]
n_f71___10 [Arg_1-Arg_3-1 ]
n_f71___13 [Arg_1+2*Arg_7-2*Arg_0-Arg_3-2 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 173:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_3 ]
n_f40___31 [Arg_0+1-Arg_3 ]
n_f59___16 [Arg_0-Arg_3 ]
n_f59___29 [Arg_0+1-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_7-Arg_3-1 ]
n_f69___15 [Arg_0+1-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0-Arg_3 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_7-Arg_3-1 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_7-Arg_3-1 ]
n_f71___9 [Arg_0-Arg_3 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0+1-Arg_3 ]

MPRF for transition 174:n_f69___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_10 ]
n_f71___10 [Arg_1-Arg_3-1 ]
n_f71___13 [Arg_1+2*Arg_7-2*Arg_0-Arg_3-2 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 175:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_0+Arg_7+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_7 ]
n_f40___31 [Arg_0+1-Arg_7 ]
n_f59___16 [1 ]
n_f59___29 [Arg_0+1-Arg_7 ]
n_f59___27 [1 ]
n_f59___30 [Arg_0+1-Arg_7 ]
n_f69___14 [1 ]
n_f69___15 [Arg_0+1-Arg_7 ]
n_f69___25 [1 ]
n_f69___26 [Arg_0+1-Arg_7 ]
n_f69___28 [Arg_0+1-Arg_7 ]
n_f71___10 [Arg_0+1-Arg_7 ]
n_f71___13 [1 ]
n_f71___17 [Arg_0+1-Arg_7 ]
n_f71___24 [0 ]
n_f71___9 [Arg_0+1-Arg_7 ]
n_f74___22 [Arg_0+1-Arg_7 ]
n_f23___19 [Arg_0+1-Arg_7 ]

MPRF for transition 176:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

2*Arg_1+Arg_0+Arg_7 {O(n)}

MPRF:

n_f26___32 [2*Arg_1-Arg_0-Arg_7 ]
n_f40___31 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___16 [2*Arg_1-2*Arg_0 ]
n_f59___29 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___27 [2*Arg_1-2*Arg_0 ]
n_f59___30 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___14 [2*Arg_1-2*Arg_0 ]
n_f69___15 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___25 [2*Arg_1+2-2*Arg_7 ]
n_f69___26 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___28 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___10 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___13 [2*Arg_1-2*Arg_0 ]
n_f71___17 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___24 [2*Arg_1+1-2*Arg_7 ]
n_f71___9 [2*Arg_1-Arg_0-Arg_7 ]
n_f74___22 [2*Arg_1-Arg_0-Arg_7 ]
n_f23___19 [2*Arg_1-Arg_0-Arg_7 ]

MPRF for transition 177:n_f69___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_0+Arg_7+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_7 ]
n_f40___31 [Arg_0+1-Arg_7 ]
n_f59___16 [0 ]
n_f59___29 [Arg_0+1-Arg_7 ]
n_f59___27 [1 ]
n_f59___30 [Arg_0+1-Arg_7 ]
n_f69___14 [0 ]
n_f69___15 [Arg_0+1-Arg_7 ]
n_f69___25 [1 ]
n_f69___26 [Arg_0+1-Arg_7 ]
n_f69___28 [Arg_0+1-Arg_7 ]
n_f71___10 [Arg_0+1-Arg_7 ]
n_f71___13 [0 ]
n_f71___17 [Arg_0+1-Arg_7 ]
n_f71___24 [0 ]
n_f71___9 [Arg_0+1-Arg_7 ]
n_f74___22 [Arg_0+1-Arg_7 ]
n_f23___19 [Arg_0+1-Arg_7 ]

MPRF for transition 178:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_10+1-Arg_3 ]
n_f40___31 [Arg_10+1-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10+1-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10+1-Arg_3 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3 ]
n_f23___19 [Arg_10+1-Arg_3 ]

MPRF for transition 179:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_10+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_10-Arg_3 ]
n_f40___31 [Arg_10-Arg_3 ]
n_f59___16 [Arg_10-Arg_3-1 ]
n_f59___29 [Arg_10-Arg_3-1 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10-Arg_3 ]
n_f69___14 [Arg_10-Arg_3-1 ]
n_f69___15 [Arg_10-Arg_3-1 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10-Arg_3 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3-1 ]
n_f71___13 [Arg_10-Arg_3-1 ]
n_f71___17 [Arg_10-Arg_3-1 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3-1 ]
n_f23___19 [Arg_10-Arg_3 ]

MPRF for transition 180:n_f69___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_10+1-Arg_3 ]
n_f40___31 [Arg_10+1-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10+1-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10+1-Arg_3 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3 ]
n_f23___19 [Arg_10+1-Arg_3 ]

MPRF for transition 181:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]
n_f40___31 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]
n_f59___16 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___29 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___27 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___30 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___14 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f69___15 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___25 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f69___26 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___28 [Arg_1+1-Arg_0 ]
n_f71___10 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___13 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f71___17 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___24 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___9 [Arg_1-Arg_0 ]
n_f74___22 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f23___19 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]

MPRF for transition 182:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]
n_f40___31 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]
n_f59___16 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___29 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___27 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f59___30 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___14 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f69___15 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___25 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f69___26 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f69___28 [Arg_1+1-Arg_0 ]
n_f71___10 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___13 [Arg_1+Arg_10+1-Arg_3-Arg_7 ]
n_f71___17 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___24 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f71___9 [Arg_1-Arg_0 ]
n_f74___22 [Arg_1+Arg_10-Arg_0-Arg_3 ]
n_f23___19 [Arg_1+Arg_10+1-Arg_0-Arg_3 ]

MPRF for transition 183:n_f69___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_0+1-Arg_3 ]
n_f40___31 [Arg_0+1-Arg_3 ]
n_f59___16 [Arg_0-Arg_3 ]
n_f59___29 [Arg_0-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_0-Arg_3 ]
n_f69___15 [Arg_0-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0+1-Arg_10 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_0-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_0-Arg_3 ]
n_f71___9 [Arg_0-Arg_10 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0+1-Arg_3 ]

MPRF for transition 186:n_f71___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_10 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_10 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 189:n_f71___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_1-Arg_3 ]
n_f40___31 [Arg_1-Arg_3 ]
n_f59___16 [Arg_1-Arg_3 ]
n_f59___29 [Arg_1-Arg_3 ]
n_f59___27 [Arg_1-Arg_3 ]
n_f59___30 [Arg_1-Arg_3 ]
n_f69___14 [Arg_1-Arg_3 ]
n_f69___15 [Arg_1-Arg_3 ]
n_f69___25 [Arg_1-Arg_3 ]
n_f69___26 [Arg_1-Arg_3 ]
n_f69___28 [Arg_1-Arg_3 ]
n_f71___10 [Arg_1-Arg_3 ]
n_f71___13 [Arg_0+Arg_1+1-Arg_3-Arg_7 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___24 [Arg_1-Arg_3 ]
n_f71___9 [Arg_1-Arg_3 ]
n_f74___22 [Arg_1-Arg_3-1 ]
n_f23___19 [Arg_1-Arg_3 ]

MPRF for transition 192:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_10+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_10-Arg_3 ]
n_f40___31 [Arg_10-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10-Arg_3 ]
n_f69___28 [0 ]
n_f71___10 [Arg_10-Arg_3 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [0 ]
n_f74___22 [Arg_10-Arg_3-1 ]
n_f23___19 [Arg_10-Arg_3 ]

MPRF for transition 195:n_f71___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_10+Arg_3+Arg_7 {O(n)}

MPRF:

n_f26___32 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f40___31 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f59___27 [Arg_0+Arg_10+1-Arg_3-Arg_7 ]
n_f59___30 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f69___25 [Arg_0+Arg_10+1-Arg_3-Arg_7 ]
n_f69___26 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f69___28 [Arg_0-Arg_7 ]
n_f71___10 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_0+Arg_10-Arg_3-Arg_7 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [Arg_0-Arg_7 ]
n_f74___22 [Arg_0+Arg_10-Arg_3-Arg_7-1 ]
n_f23___19 [Arg_0+Arg_10-Arg_3-Arg_7 ]

MPRF for transition 198:n_f71___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f74___22(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f26___32 [Arg_10+1-Arg_3 ]
n_f40___31 [Arg_10+1-Arg_3 ]
n_f59___16 [Arg_10-Arg_3 ]
n_f59___29 [Arg_10-Arg_3 ]
n_f59___27 [Arg_10-Arg_3 ]
n_f59___30 [Arg_10-Arg_3 ]
n_f69___14 [Arg_10-Arg_3 ]
n_f69___15 [Arg_10-Arg_3 ]
n_f69___25 [Arg_10-Arg_3 ]
n_f69___26 [Arg_10-Arg_3 ]
n_f69___28 [Arg_3+1-Arg_10 ]
n_f71___10 [Arg_10-Arg_3 ]
n_f71___13 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___24 [Arg_10-Arg_3 ]
n_f71___9 [1 ]
n_f74___22 [Arg_10-Arg_3 ]
n_f23___19 [Arg_10+1-Arg_3 ]

MPRF for transition 200:n_f74___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f23___19(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_7,Arg_10):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_0+Arg_3 {O(n)}

MPRF:

n_f26___32 [Arg_0-Arg_3 ]
n_f40___31 [Arg_0-Arg_3 ]
n_f59___16 [Arg_0-Arg_3 ]
n_f59___29 [Arg_0-Arg_3 ]
n_f59___27 [Arg_0-Arg_3 ]
n_f59___30 [Arg_0-Arg_3 ]
n_f69___14 [Arg_7-Arg_3-1 ]
n_f69___15 [Arg_0-Arg_3 ]
n_f69___25 [Arg_0-Arg_3 ]
n_f69___26 [Arg_0-Arg_3 ]
n_f69___28 [Arg_0-Arg_10 ]
n_f71___10 [Arg_0-Arg_3 ]
n_f71___13 [Arg_7-Arg_3-1 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___24 [Arg_7-Arg_3-1 ]
n_f71___9 [Arg_0-Arg_3 ]
n_f74___22 [Arg_0-Arg_3 ]
n_f23___19 [Arg_0-Arg_3 ]

MPRF for transition 213:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___5(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

Arg_0+Arg_3+3 {O(n)}

MPRF:

n_f9___5 [Arg_0+2-Arg_3 ]

MPRF for transition 202:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+10 {O(n)}

MPRF:

n_f9___1 [Arg_0+2-Arg_3 ]
n_f9___4 [Arg_0+1-Arg_3 ]

MPRF for transition 203:n_f9___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P of depth 1:

new bound:

4*Arg_0+4*Arg_3+8 {O(n)}

MPRF:

n_f9___1 [Arg_0+1-Arg_3 ]
n_f9___4 [Arg_0-Arg_3 ]

MPRF for transition 209:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___1(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f9___1 [Arg_0+1-Arg_3 ]
n_f9___4 [Arg_0+2-Arg_3 ]

MPRF for transition 210:n_f9___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___4(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f9___1 [Arg_0+1-Arg_3 ]
n_f9___4 [Arg_0+2-Arg_3 ]

MPRF for transition 168:n_f5___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f9___3(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 of depth 1:

new bound:

104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}

MPRF:

n_f9___3 [Arg_3-Arg_1 ]
n_f5___6 [Arg_3+1-Arg_1 ]

MPRF for transition 204:n_f9___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f5___6(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

30*Arg_0+30*Arg_1+12 {O(n)}

MPRF:

n_f9___3 [Arg_0+1-Arg_1 ]
n_f5___6 [Arg_0+1-Arg_1 ]

All Bounds

Timebounds

Overall timebound:11*Arg_10+134*Arg_0+147*Arg_3+81*Arg_1+9*Arg_7+355 {O(n)}
143: n_f2->n_f5___36: 1 {O(1)}
144: n_f23___12->n_f1___11: 1 {O(1)}
145: n_f23___18->n_f1___33: 1 {O(1)}
146: n_f23___19->n_f26___32: Arg_1+Arg_3+1 {O(n)}
147: n_f23___23->n_f1___20: 1 {O(1)}
148: n_f23___35->n_f1___33: 1 {O(1)}
149: n_f23___35->n_f26___32: 1 {O(1)}
150: n_f23___8->n_f1___7: 1 {O(1)}
151: n_f26___32->n_f40___31: Arg_1+Arg_3+1 {O(n)}
152: n_f40___31->n_f59___29: Arg_0+Arg_3+1 {O(n)}
153: n_f40___31->n_f59___30: Arg_1+Arg_3+1 {O(n)}
154: n_f40___31->n_f69___28: Arg_10+Arg_3+1 {O(n)}
155: n_f59___16->n_f59___16: Arg_1+Arg_7 {O(n)}
156: n_f59___16->n_f69___14: Arg_1+Arg_7 {O(n)}
157: n_f59___27->n_f59___27: 2*Arg_1+Arg_0+Arg_7 {O(n)}
158: n_f59___27->n_f69___25: Arg_1+Arg_3 {O(n)}
159: n_f59___29->n_f59___16: Arg_0+Arg_3+1 {O(n)}
160: n_f59___29->n_f69___15: Arg_0+Arg_3+1 {O(n)}
161: n_f59___30->n_f59___27: Arg_1+Arg_3 {O(n)}
162: n_f59___30->n_f69___26: Arg_10+Arg_3 {O(n)}
163: n_f5___2->n_f23___18: 1 {O(1)}
164: n_f5___2->n_f9___3: 1 {O(1)}
165: n_f5___36->n_f23___35: 1 {O(1)}
166: n_f5___36->n_f9___34: 1 {O(1)}
167: n_f5___6->n_f23___18: 1 {O(1)}
168: n_f5___6->n_f9___3: 104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}
169: n_f69___14->n_f71___13: 2*Arg_1+Arg_10+Arg_7+2 {O(n)}
170: n_f69___14->n_f71___13: Arg_1+Arg_7 {O(n)}
171: n_f69___14->n_f71___13: Arg_1+Arg_3 {O(n)}
172: n_f69___15->n_f71___10: Arg_1+Arg_3 {O(n)}
173: n_f69___15->n_f71___10: Arg_0+Arg_3+1 {O(n)}
174: n_f69___15->n_f71___10: Arg_1+Arg_3 {O(n)}
175: n_f69___25->n_f71___24: Arg_0+Arg_7+1 {O(n)}
176: n_f69___25->n_f71___24: 2*Arg_1+Arg_0+Arg_7 {O(n)}
177: n_f69___25->n_f71___24: Arg_0+Arg_7+1 {O(n)}
178: n_f69___26->n_f71___17: Arg_10+Arg_3+1 {O(n)}
179: n_f69___26->n_f71___17: Arg_10+Arg_3 {O(n)}
180: n_f69___26->n_f71___17: Arg_10+Arg_3+1 {O(n)}
181: n_f69___28->n_f71___9: Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}
182: n_f69___28->n_f71___9: Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}
183: n_f69___28->n_f71___9: Arg_0+Arg_3+1 {O(n)}
184: n_f71___10->n_f23___12: 1 {O(1)}
186: n_f71___10->n_f74___22: Arg_1+Arg_3 {O(n)}
187: n_f71___13->n_f23___12: 1 {O(1)}
189: n_f71___13->n_f74___22: Arg_1+Arg_3 {O(n)}
190: n_f71___17->n_f23___23: 1 {O(1)}
192: n_f71___17->n_f74___22: Arg_10+Arg_3 {O(n)}
193: n_f71___24->n_f23___23: 1 {O(1)}
195: n_f71___24->n_f74___22: Arg_0+Arg_10+Arg_3+Arg_7 {O(n)}
196: n_f71___9->n_f23___8: 1 {O(1)}
198: n_f71___9->n_f74___22: Arg_10+Arg_3+1 {O(n)}
200: n_f74___22->n_f23___19: Arg_0+Arg_3 {O(n)}
201: n_f9___1->n_f5___2: 1 {O(1)}
202: n_f9___1->n_f9___1: 4*Arg_0+4*Arg_3+10 {O(n)}
203: n_f9___1->n_f9___4: 4*Arg_0+4*Arg_3+8 {O(n)}
204: n_f9___3->n_f5___6: 30*Arg_0+30*Arg_1+12 {O(n)}
205: n_f9___34->n_f5___6: 1 {O(1)}
206: n_f9___34->n_f9___4: 1 {O(1)}
207: n_f9___34->n_f9___5: 1 {O(1)}
208: n_f9___4->n_f5___2: 1 {O(1)}
209: n_f9___4->n_f9___1: 4*Arg_0+4*Arg_3+12 {O(n)}
210: n_f9___4->n_f9___4: 4*Arg_0+4*Arg_3+12 {O(n)}
211: n_f9___5->n_f5___6: 1 {O(1)}
212: n_f9___5->n_f9___4: 1 {O(1)}
213: n_f9___5->n_f9___5: Arg_0+Arg_3+3 {O(n)}

Costbounds

Overall costbound: 11*Arg_10+134*Arg_0+147*Arg_3+81*Arg_1+9*Arg_7+355 {O(n)}
143: n_f2->n_f5___36: 1 {O(1)}
144: n_f23___12->n_f1___11: 1 {O(1)}
145: n_f23___18->n_f1___33: 1 {O(1)}
146: n_f23___19->n_f26___32: Arg_1+Arg_3+1 {O(n)}
147: n_f23___23->n_f1___20: 1 {O(1)}
148: n_f23___35->n_f1___33: 1 {O(1)}
149: n_f23___35->n_f26___32: 1 {O(1)}
150: n_f23___8->n_f1___7: 1 {O(1)}
151: n_f26___32->n_f40___31: Arg_1+Arg_3+1 {O(n)}
152: n_f40___31->n_f59___29: Arg_0+Arg_3+1 {O(n)}
153: n_f40___31->n_f59___30: Arg_1+Arg_3+1 {O(n)}
154: n_f40___31->n_f69___28: Arg_10+Arg_3+1 {O(n)}
155: n_f59___16->n_f59___16: Arg_1+Arg_7 {O(n)}
156: n_f59___16->n_f69___14: Arg_1+Arg_7 {O(n)}
157: n_f59___27->n_f59___27: 2*Arg_1+Arg_0+Arg_7 {O(n)}
158: n_f59___27->n_f69___25: Arg_1+Arg_3 {O(n)}
159: n_f59___29->n_f59___16: Arg_0+Arg_3+1 {O(n)}
160: n_f59___29->n_f69___15: Arg_0+Arg_3+1 {O(n)}
161: n_f59___30->n_f59___27: Arg_1+Arg_3 {O(n)}
162: n_f59___30->n_f69___26: Arg_10+Arg_3 {O(n)}
163: n_f5___2->n_f23___18: 1 {O(1)}
164: n_f5___2->n_f9___3: 1 {O(1)}
165: n_f5___36->n_f23___35: 1 {O(1)}
166: n_f5___36->n_f9___34: 1 {O(1)}
167: n_f5___6->n_f23___18: 1 {O(1)}
168: n_f5___6->n_f9___3: 104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}
169: n_f69___14->n_f71___13: 2*Arg_1+Arg_10+Arg_7+2 {O(n)}
170: n_f69___14->n_f71___13: Arg_1+Arg_7 {O(n)}
171: n_f69___14->n_f71___13: Arg_1+Arg_3 {O(n)}
172: n_f69___15->n_f71___10: Arg_1+Arg_3 {O(n)}
173: n_f69___15->n_f71___10: Arg_0+Arg_3+1 {O(n)}
174: n_f69___15->n_f71___10: Arg_1+Arg_3 {O(n)}
175: n_f69___25->n_f71___24: Arg_0+Arg_7+1 {O(n)}
176: n_f69___25->n_f71___24: 2*Arg_1+Arg_0+Arg_7 {O(n)}
177: n_f69___25->n_f71___24: Arg_0+Arg_7+1 {O(n)}
178: n_f69___26->n_f71___17: Arg_10+Arg_3+1 {O(n)}
179: n_f69___26->n_f71___17: Arg_10+Arg_3 {O(n)}
180: n_f69___26->n_f71___17: Arg_10+Arg_3+1 {O(n)}
181: n_f69___28->n_f71___9: Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}
182: n_f69___28->n_f71___9: Arg_0+Arg_1+Arg_10+Arg_3+1 {O(n)}
183: n_f69___28->n_f71___9: Arg_0+Arg_3+1 {O(n)}
184: n_f71___10->n_f23___12: 1 {O(1)}
186: n_f71___10->n_f74___22: Arg_1+Arg_3 {O(n)}
187: n_f71___13->n_f23___12: 1 {O(1)}
189: n_f71___13->n_f74___22: Arg_1+Arg_3 {O(n)}
190: n_f71___17->n_f23___23: 1 {O(1)}
192: n_f71___17->n_f74___22: Arg_10+Arg_3 {O(n)}
193: n_f71___24->n_f23___23: 1 {O(1)}
195: n_f71___24->n_f74___22: Arg_0+Arg_10+Arg_3+Arg_7 {O(n)}
196: n_f71___9->n_f23___8: 1 {O(1)}
198: n_f71___9->n_f74___22: Arg_10+Arg_3+1 {O(n)}
200: n_f74___22->n_f23___19: Arg_0+Arg_3 {O(n)}
201: n_f9___1->n_f5___2: 1 {O(1)}
202: n_f9___1->n_f9___1: 4*Arg_0+4*Arg_3+10 {O(n)}
203: n_f9___1->n_f9___4: 4*Arg_0+4*Arg_3+8 {O(n)}
204: n_f9___3->n_f5___6: 30*Arg_0+30*Arg_1+12 {O(n)}
205: n_f9___34->n_f5___6: 1 {O(1)}
206: n_f9___34->n_f9___4: 1 {O(1)}
207: n_f9___34->n_f9___5: 1 {O(1)}
208: n_f9___4->n_f5___2: 1 {O(1)}
209: n_f9___4->n_f9___1: 4*Arg_0+4*Arg_3+12 {O(n)}
210: n_f9___4->n_f9___4: 4*Arg_0+4*Arg_3+12 {O(n)}
211: n_f9___5->n_f5___6: 1 {O(1)}
212: n_f9___5->n_f9___4: 1 {O(1)}
213: n_f9___5->n_f9___5: Arg_0+Arg_3+3 {O(n)}

Sizebounds

143: n_f2->n_f5___36, Arg_0: Arg_0 {O(n)}
143: n_f2->n_f5___36, Arg_1: Arg_1 {O(n)}
143: n_f2->n_f5___36, Arg_2: Arg_2 {O(n)}
143: n_f2->n_f5___36, Arg_3: Arg_3 {O(n)}
143: n_f2->n_f5___36, Arg_4: Arg_4 {O(n)}
143: n_f2->n_f5___36, Arg_5: Arg_5 {O(n)}
143: n_f2->n_f5___36, Arg_7: Arg_7 {O(n)}
143: n_f2->n_f5___36, Arg_10: Arg_10 {O(n)}
144: n_f23___12->n_f1___11, Arg_0: 6*Arg_0 {O(n)}
144: n_f23___12->n_f1___11, Arg_1: 6*Arg_1 {O(n)}
144: n_f23___12->n_f1___11, Arg_2: 0 {O(1)}
144: n_f23___12->n_f1___11, Arg_3: 6*Arg_0+6 {O(n)}
144: n_f23___12->n_f1___11, Arg_4: 6*Arg_4 {O(n)}
144: n_f23___12->n_f1___11, Arg_5: 6*Arg_5 {O(n)}
144: n_f23___12->n_f1___11, Arg_7: 12*Arg_0+12*Arg_3+18*Arg_7+24*Arg_1+6 {O(n)}
144: n_f23___12->n_f1___11, Arg_10: 18*Arg_0+36*Arg_3+6*Arg_10 {O(n)}
145: n_f23___18->n_f1___33, Arg_0: 60*Arg_0 {O(n)}
145: n_f23___18->n_f1___33, Arg_1: 30*Arg_0+90*Arg_1+30 {O(n)}
145: n_f23___18->n_f1___33, Arg_3: 148*Arg_0+208*Arg_3+490 {O(n)}
145: n_f23___18->n_f1___33, Arg_7: 60*Arg_7 {O(n)}
145: n_f23___18->n_f1___33, Arg_10: 60*Arg_10 {O(n)}
146: n_f23___19->n_f26___32, Arg_0: Arg_0 {O(n)}
146: n_f23___19->n_f26___32, Arg_1: Arg_1 {O(n)}
146: n_f23___19->n_f26___32, Arg_2: 0 {O(1)}
146: n_f23___19->n_f26___32, Arg_3: 2*Arg_3+Arg_0 {O(n)}
146: n_f23___19->n_f26___32, Arg_4: Arg_4 {O(n)}
146: n_f23___19->n_f26___32, Arg_5: Arg_5 {O(n)}
146: n_f23___19->n_f26___32, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
146: n_f23___19->n_f26___32, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
147: n_f23___23->n_f1___20, Arg_0: 6*Arg_0 {O(n)}
147: n_f23___23->n_f1___20, Arg_1: 6*Arg_1 {O(n)}
147: n_f23___23->n_f1___20, Arg_2: 0 {O(1)}
147: n_f23___23->n_f1___20, Arg_3: 6*Arg_0+6 {O(n)}
147: n_f23___23->n_f1___20, Arg_4: 6*Arg_4 {O(n)}
147: n_f23___23->n_f1___20, Arg_5: 6*Arg_5 {O(n)}
147: n_f23___23->n_f1___20, Arg_7: 12*Arg_0+12*Arg_3+18*Arg_7+24*Arg_1+6 {O(n)}
147: n_f23___23->n_f1___20, Arg_10: 18*Arg_0+36*Arg_3+6*Arg_10 {O(n)}
148: n_f23___35->n_f1___33, Arg_0: Arg_0 {O(n)}
148: n_f23___35->n_f1___33, Arg_1: Arg_1 {O(n)}
148: n_f23___35->n_f1___33, Arg_2: Arg_2 {O(n)}
148: n_f23___35->n_f1___33, Arg_3: Arg_3 {O(n)}
148: n_f23___35->n_f1___33, Arg_4: Arg_4 {O(n)}
148: n_f23___35->n_f1___33, Arg_5: Arg_5 {O(n)}
148: n_f23___35->n_f1___33, Arg_7: Arg_7 {O(n)}
148: n_f23___35->n_f1___33, Arg_10: Arg_10 {O(n)}
149: n_f23___35->n_f26___32, Arg_0: Arg_0 {O(n)}
149: n_f23___35->n_f26___32, Arg_1: Arg_1 {O(n)}
149: n_f23___35->n_f26___32, Arg_2: Arg_2 {O(n)}
149: n_f23___35->n_f26___32, Arg_3: Arg_3 {O(n)}
149: n_f23___35->n_f26___32, Arg_4: Arg_4 {O(n)}
149: n_f23___35->n_f26___32, Arg_5: Arg_5 {O(n)}
149: n_f23___35->n_f26___32, Arg_7: Arg_7 {O(n)}
149: n_f23___35->n_f26___32, Arg_10: Arg_10 {O(n)}
150: n_f23___8->n_f1___7, Arg_0: 3*Arg_0 {O(n)}
150: n_f23___8->n_f1___7, Arg_1: 3*Arg_1 {O(n)}
150: n_f23___8->n_f1___7, Arg_2: 0 {O(1)}
150: n_f23___8->n_f1___7, Arg_3: 3*Arg_0+3 {O(n)}
150: n_f23___8->n_f1___7, Arg_4: 3*Arg_4 {O(n)}
150: n_f23___8->n_f1___7, Arg_5: 3*Arg_5 {O(n)}
150: n_f23___8->n_f1___7, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
150: n_f23___8->n_f1___7, Arg_10: 3*Arg_0+6*Arg_3 {O(n)}
151: n_f26___32->n_f40___31, Arg_0: Arg_0 {O(n)}
151: n_f26___32->n_f40___31, Arg_1: Arg_1 {O(n)}
151: n_f26___32->n_f40___31, Arg_2: 0 {O(1)}
151: n_f26___32->n_f40___31, Arg_3: 2*Arg_3+Arg_0 {O(n)}
151: n_f26___32->n_f40___31, Arg_4: Arg_4 {O(n)}
151: n_f26___32->n_f40___31, Arg_5: Arg_5 {O(n)}
151: n_f26___32->n_f40___31, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
151: n_f26___32->n_f40___31, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
152: n_f40___31->n_f59___29, Arg_0: Arg_0 {O(n)}
152: n_f40___31->n_f59___29, Arg_1: Arg_1 {O(n)}
152: n_f40___31->n_f59___29, Arg_2: 0 {O(1)}
152: n_f40___31->n_f59___29, Arg_3: 2*Arg_3+Arg_0 {O(n)}
152: n_f40___31->n_f59___29, Arg_4: Arg_4 {O(n)}
152: n_f40___31->n_f59___29, Arg_5: Arg_5 {O(n)}
152: n_f40___31->n_f59___29, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
152: n_f40___31->n_f59___29, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
153: n_f40___31->n_f59___30, Arg_0: Arg_0 {O(n)}
153: n_f40___31->n_f59___30, Arg_1: Arg_1 {O(n)}
153: n_f40___31->n_f59___30, Arg_2: 0 {O(1)}
153: n_f40___31->n_f59___30, Arg_3: 2*Arg_3+Arg_0 {O(n)}
153: n_f40___31->n_f59___30, Arg_4: Arg_4 {O(n)}
153: n_f40___31->n_f59___30, Arg_5: Arg_5 {O(n)}
153: n_f40___31->n_f59___30, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
153: n_f40___31->n_f59___30, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
154: n_f40___31->n_f69___28, Arg_0: Arg_0 {O(n)}
154: n_f40___31->n_f69___28, Arg_1: Arg_1 {O(n)}
154: n_f40___31->n_f69___28, Arg_2: 0 {O(1)}
154: n_f40___31->n_f69___28, Arg_3: 2*Arg_3+Arg_0 {O(n)}
154: n_f40___31->n_f69___28, Arg_4: Arg_4 {O(n)}
154: n_f40___31->n_f69___28, Arg_5: Arg_5 {O(n)}
154: n_f40___31->n_f69___28, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
154: n_f40___31->n_f69___28, Arg_10: 2*Arg_3+Arg_0 {O(n)}
155: n_f59___16->n_f59___16, Arg_0: Arg_0 {O(n)}
155: n_f59___16->n_f59___16, Arg_1: Arg_1 {O(n)}
155: n_f59___16->n_f59___16, Arg_2: 0 {O(1)}
155: n_f59___16->n_f59___16, Arg_3: 2*Arg_3+Arg_0 {O(n)}
155: n_f59___16->n_f59___16, Arg_4: Arg_4 {O(n)}
155: n_f59___16->n_f59___16, Arg_5: Arg_5 {O(n)}
155: n_f59___16->n_f59___16, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
155: n_f59___16->n_f59___16, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
156: n_f59___16->n_f69___14, Arg_0: Arg_0 {O(n)}
156: n_f59___16->n_f69___14, Arg_1: Arg_1 {O(n)}
156: n_f59___16->n_f69___14, Arg_2: 0 {O(1)}
156: n_f59___16->n_f69___14, Arg_3: 2*Arg_3+Arg_0 {O(n)}
156: n_f59___16->n_f69___14, Arg_4: Arg_4 {O(n)}
156: n_f59___16->n_f69___14, Arg_5: Arg_5 {O(n)}
156: n_f59___16->n_f69___14, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
156: n_f59___16->n_f69___14, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
157: n_f59___27->n_f59___27, Arg_0: Arg_0 {O(n)}
157: n_f59___27->n_f59___27, Arg_1: Arg_1 {O(n)}
157: n_f59___27->n_f59___27, Arg_2: 0 {O(1)}
157: n_f59___27->n_f59___27, Arg_3: 2*Arg_3+Arg_0 {O(n)}
157: n_f59___27->n_f59___27, Arg_4: Arg_4 {O(n)}
157: n_f59___27->n_f59___27, Arg_5: Arg_5 {O(n)}
157: n_f59___27->n_f59___27, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
157: n_f59___27->n_f59___27, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
158: n_f59___27->n_f69___25, Arg_0: Arg_0 {O(n)}
158: n_f59___27->n_f69___25, Arg_1: Arg_1 {O(n)}
158: n_f59___27->n_f69___25, Arg_2: 0 {O(1)}
158: n_f59___27->n_f69___25, Arg_3: 2*Arg_3+Arg_0 {O(n)}
158: n_f59___27->n_f69___25, Arg_4: Arg_4 {O(n)}
158: n_f59___27->n_f69___25, Arg_5: Arg_5 {O(n)}
158: n_f59___27->n_f69___25, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
158: n_f59___27->n_f69___25, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
159: n_f59___29->n_f59___16, Arg_0: Arg_0 {O(n)}
159: n_f59___29->n_f59___16, Arg_1: Arg_1 {O(n)}
159: n_f59___29->n_f59___16, Arg_2: 0 {O(1)}
159: n_f59___29->n_f59___16, Arg_3: 2*Arg_3+Arg_0 {O(n)}
159: n_f59___29->n_f59___16, Arg_4: Arg_4 {O(n)}
159: n_f59___29->n_f59___16, Arg_5: Arg_5 {O(n)}
159: n_f59___29->n_f59___16, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
159: n_f59___29->n_f59___16, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
160: n_f59___29->n_f69___15, Arg_0: Arg_0 {O(n)}
160: n_f59___29->n_f69___15, Arg_1: Arg_1 {O(n)}
160: n_f59___29->n_f69___15, Arg_2: 0 {O(1)}
160: n_f59___29->n_f69___15, Arg_3: 2*Arg_3+Arg_0 {O(n)}
160: n_f59___29->n_f69___15, Arg_4: Arg_4 {O(n)}
160: n_f59___29->n_f69___15, Arg_5: Arg_5 {O(n)}
160: n_f59___29->n_f69___15, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
160: n_f59___29->n_f69___15, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
161: n_f59___30->n_f59___27, Arg_0: Arg_0 {O(n)}
161: n_f59___30->n_f59___27, Arg_1: Arg_1 {O(n)}
161: n_f59___30->n_f59___27, Arg_2: 0 {O(1)}
161: n_f59___30->n_f59___27, Arg_3: 2*Arg_3+Arg_0 {O(n)}
161: n_f59___30->n_f59___27, Arg_4: Arg_4 {O(n)}
161: n_f59___30->n_f59___27, Arg_5: Arg_5 {O(n)}
161: n_f59___30->n_f59___27, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
161: n_f59___30->n_f59___27, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
162: n_f59___30->n_f69___26, Arg_0: Arg_0 {O(n)}
162: n_f59___30->n_f69___26, Arg_1: Arg_1 {O(n)}
162: n_f59___30->n_f69___26, Arg_2: 0 {O(1)}
162: n_f59___30->n_f69___26, Arg_3: 2*Arg_3+Arg_0 {O(n)}
162: n_f59___30->n_f69___26, Arg_4: Arg_4 {O(n)}
162: n_f59___30->n_f69___26, Arg_5: Arg_5 {O(n)}
162: n_f59___30->n_f69___26, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
162: n_f59___30->n_f69___26, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
163: n_f5___2->n_f23___18, Arg_0: 27*Arg_0 {O(n)}
163: n_f5___2->n_f23___18, Arg_1: 27*Arg_1+6 {O(n)}
163: n_f5___2->n_f23___18, Arg_3: 100*Arg_3+73*Arg_0+240 {O(n)}
163: n_f5___2->n_f23___18, Arg_7: 27*Arg_7 {O(n)}
163: n_f5___2->n_f23___18, Arg_10: 27*Arg_10 {O(n)}
164: n_f5___2->n_f9___3, Arg_0: 27*Arg_0 {O(n)}
164: n_f5___2->n_f9___3, Arg_1: 27*Arg_1+6 {O(n)}
164: n_f5___2->n_f9___3, Arg_2: 0 {O(1)}
164: n_f5___2->n_f9___3, Arg_3: 100*Arg_3+73*Arg_0+240 {O(n)}
164: n_f5___2->n_f9___3, Arg_7: 27*Arg_7 {O(n)}
164: n_f5___2->n_f9___3, Arg_10: 27*Arg_10 {O(n)}
165: n_f5___36->n_f23___35, Arg_0: Arg_0 {O(n)}
165: n_f5___36->n_f23___35, Arg_1: Arg_1 {O(n)}
165: n_f5___36->n_f23___35, Arg_2: Arg_2 {O(n)}
165: n_f5___36->n_f23___35, Arg_3: Arg_3 {O(n)}
165: n_f5___36->n_f23___35, Arg_4: Arg_4 {O(n)}
165: n_f5___36->n_f23___35, Arg_5: Arg_5 {O(n)}
165: n_f5___36->n_f23___35, Arg_7: Arg_7 {O(n)}
165: n_f5___36->n_f23___35, Arg_10: Arg_10 {O(n)}
166: n_f5___36->n_f9___34, Arg_0: Arg_0 {O(n)}
166: n_f5___36->n_f9___34, Arg_1: Arg_1 {O(n)}
166: n_f5___36->n_f9___34, Arg_2: 0 {O(1)}
166: n_f5___36->n_f9___34, Arg_3: Arg_3 {O(n)}
166: n_f5___36->n_f9___34, Arg_4: Arg_4 {O(n)}
166: n_f5___36->n_f9___34, Arg_5: Arg_5 {O(n)}
166: n_f5___36->n_f9___34, Arg_7: Arg_7 {O(n)}
166: n_f5___36->n_f9___34, Arg_10: Arg_10 {O(n)}
167: n_f5___6->n_f23___18, Arg_0: 33*Arg_0 {O(n)}
167: n_f5___6->n_f23___18, Arg_1: 30*Arg_0+63*Arg_1+24 {O(n)}
167: n_f5___6->n_f23___18, Arg_2: 0 {O(1)}
167: n_f5___6->n_f23___18, Arg_3: 108*Arg_3+75*Arg_0+250 {O(n)}
167: n_f5___6->n_f23___18, Arg_7: 33*Arg_7 {O(n)}
167: n_f5___6->n_f23___18, Arg_10: 33*Arg_10 {O(n)}
168: n_f5___6->n_f9___3, Arg_0: 30*Arg_0 {O(n)}
168: n_f5___6->n_f9___3, Arg_1: 30*Arg_0+60*Arg_1+21 {O(n)}
168: n_f5___6->n_f9___3, Arg_2: 0 {O(1)}
168: n_f5___6->n_f9___3, Arg_3: 104*Arg_3+74*Arg_0+245 {O(n)}
168: n_f5___6->n_f9___3, Arg_7: 30*Arg_7 {O(n)}
168: n_f5___6->n_f9___3, Arg_10: 30*Arg_10 {O(n)}
169: n_f69___14->n_f71___13, Arg_0: Arg_0 {O(n)}
169: n_f69___14->n_f71___13, Arg_1: Arg_1 {O(n)}
169: n_f69___14->n_f71___13, Arg_2: 0 {O(1)}
169: n_f69___14->n_f71___13, Arg_3: 2*Arg_3+Arg_0 {O(n)}
169: n_f69___14->n_f71___13, Arg_4: Arg_4 {O(n)}
169: n_f69___14->n_f71___13, Arg_5: Arg_5 {O(n)}
169: n_f69___14->n_f71___13, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
169: n_f69___14->n_f71___13, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
170: n_f69___14->n_f71___13, Arg_0: Arg_0 {O(n)}
170: n_f69___14->n_f71___13, Arg_1: Arg_1 {O(n)}
170: n_f69___14->n_f71___13, Arg_2: 0 {O(1)}
170: n_f69___14->n_f71___13, Arg_3: 2*Arg_3+Arg_0 {O(n)}
170: n_f69___14->n_f71___13, Arg_4: Arg_4 {O(n)}
170: n_f69___14->n_f71___13, Arg_5: Arg_5 {O(n)}
170: n_f69___14->n_f71___13, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
170: n_f69___14->n_f71___13, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
171: n_f69___14->n_f71___13, Arg_0: Arg_0 {O(n)}
171: n_f69___14->n_f71___13, Arg_1: Arg_1 {O(n)}
171: n_f69___14->n_f71___13, Arg_2: 0 {O(1)}
171: n_f69___14->n_f71___13, Arg_3: 2*Arg_3+Arg_0 {O(n)}
171: n_f69___14->n_f71___13, Arg_4: Arg_4 {O(n)}
171: n_f69___14->n_f71___13, Arg_5: Arg_5 {O(n)}
171: n_f69___14->n_f71___13, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
171: n_f69___14->n_f71___13, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
172: n_f69___15->n_f71___10, Arg_0: Arg_0 {O(n)}
172: n_f69___15->n_f71___10, Arg_1: Arg_1 {O(n)}
172: n_f69___15->n_f71___10, Arg_2: 0 {O(1)}
172: n_f69___15->n_f71___10, Arg_3: 2*Arg_3+Arg_0 {O(n)}
172: n_f69___15->n_f71___10, Arg_4: Arg_4 {O(n)}
172: n_f69___15->n_f71___10, Arg_5: Arg_5 {O(n)}
172: n_f69___15->n_f71___10, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
172: n_f69___15->n_f71___10, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
173: n_f69___15->n_f71___10, Arg_0: Arg_0 {O(n)}
173: n_f69___15->n_f71___10, Arg_1: Arg_1 {O(n)}
173: n_f69___15->n_f71___10, Arg_2: 0 {O(1)}
173: n_f69___15->n_f71___10, Arg_3: 2*Arg_3+Arg_0 {O(n)}
173: n_f69___15->n_f71___10, Arg_4: Arg_4 {O(n)}
173: n_f69___15->n_f71___10, Arg_5: Arg_5 {O(n)}
173: n_f69___15->n_f71___10, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
173: n_f69___15->n_f71___10, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
174: n_f69___15->n_f71___10, Arg_0: Arg_0 {O(n)}
174: n_f69___15->n_f71___10, Arg_1: Arg_1 {O(n)}
174: n_f69___15->n_f71___10, Arg_2: 0 {O(1)}
174: n_f69___15->n_f71___10, Arg_3: 2*Arg_3+Arg_0 {O(n)}
174: n_f69___15->n_f71___10, Arg_4: Arg_4 {O(n)}
174: n_f69___15->n_f71___10, Arg_5: Arg_5 {O(n)}
174: n_f69___15->n_f71___10, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
174: n_f69___15->n_f71___10, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
175: n_f69___25->n_f71___24, Arg_0: Arg_0 {O(n)}
175: n_f69___25->n_f71___24, Arg_1: Arg_1 {O(n)}
175: n_f69___25->n_f71___24, Arg_2: 0 {O(1)}
175: n_f69___25->n_f71___24, Arg_3: 2*Arg_3+Arg_0 {O(n)}
175: n_f69___25->n_f71___24, Arg_4: Arg_4 {O(n)}
175: n_f69___25->n_f71___24, Arg_5: Arg_5 {O(n)}
175: n_f69___25->n_f71___24, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
175: n_f69___25->n_f71___24, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
176: n_f69___25->n_f71___24, Arg_0: Arg_0 {O(n)}
176: n_f69___25->n_f71___24, Arg_1: Arg_1 {O(n)}
176: n_f69___25->n_f71___24, Arg_2: 0 {O(1)}
176: n_f69___25->n_f71___24, Arg_3: 2*Arg_3+Arg_0 {O(n)}
176: n_f69___25->n_f71___24, Arg_4: Arg_4 {O(n)}
176: n_f69___25->n_f71___24, Arg_5: Arg_5 {O(n)}
176: n_f69___25->n_f71___24, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
176: n_f69___25->n_f71___24, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
177: n_f69___25->n_f71___24, Arg_0: Arg_0 {O(n)}
177: n_f69___25->n_f71___24, Arg_1: Arg_1 {O(n)}
177: n_f69___25->n_f71___24, Arg_2: 0 {O(1)}
177: n_f69___25->n_f71___24, Arg_3: 2*Arg_3+Arg_0 {O(n)}
177: n_f69___25->n_f71___24, Arg_4: Arg_4 {O(n)}
177: n_f69___25->n_f71___24, Arg_5: Arg_5 {O(n)}
177: n_f69___25->n_f71___24, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
177: n_f69___25->n_f71___24, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
178: n_f69___26->n_f71___17, Arg_0: Arg_0 {O(n)}
178: n_f69___26->n_f71___17, Arg_1: Arg_1 {O(n)}
178: n_f69___26->n_f71___17, Arg_2: 0 {O(1)}
178: n_f69___26->n_f71___17, Arg_3: 2*Arg_3+Arg_0 {O(n)}
178: n_f69___26->n_f71___17, Arg_4: Arg_4 {O(n)}
178: n_f69___26->n_f71___17, Arg_5: Arg_5 {O(n)}
178: n_f69___26->n_f71___17, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
178: n_f69___26->n_f71___17, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
179: n_f69___26->n_f71___17, Arg_0: Arg_0 {O(n)}
179: n_f69___26->n_f71___17, Arg_1: Arg_1 {O(n)}
179: n_f69___26->n_f71___17, Arg_2: 0 {O(1)}
179: n_f69___26->n_f71___17, Arg_3: 2*Arg_3+Arg_0 {O(n)}
179: n_f69___26->n_f71___17, Arg_4: Arg_4 {O(n)}
179: n_f69___26->n_f71___17, Arg_5: Arg_5 {O(n)}
179: n_f69___26->n_f71___17, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
179: n_f69___26->n_f71___17, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
180: n_f69___26->n_f71___17, Arg_0: Arg_0 {O(n)}
180: n_f69___26->n_f71___17, Arg_1: Arg_1 {O(n)}
180: n_f69___26->n_f71___17, Arg_2: 0 {O(1)}
180: n_f69___26->n_f71___17, Arg_3: 2*Arg_3+Arg_0 {O(n)}
180: n_f69___26->n_f71___17, Arg_4: Arg_4 {O(n)}
180: n_f69___26->n_f71___17, Arg_5: Arg_5 {O(n)}
180: n_f69___26->n_f71___17, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
180: n_f69___26->n_f71___17, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
181: n_f69___28->n_f71___9, Arg_0: Arg_0 {O(n)}
181: n_f69___28->n_f71___9, Arg_1: Arg_1 {O(n)}
181: n_f69___28->n_f71___9, Arg_2: 0 {O(1)}
181: n_f69___28->n_f71___9, Arg_3: 2*Arg_3+Arg_0 {O(n)}
181: n_f69___28->n_f71___9, Arg_4: Arg_4 {O(n)}
181: n_f69___28->n_f71___9, Arg_5: Arg_5 {O(n)}
181: n_f69___28->n_f71___9, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
181: n_f69___28->n_f71___9, Arg_10: 2*Arg_3+Arg_0 {O(n)}
182: n_f69___28->n_f71___9, Arg_0: Arg_0 {O(n)}
182: n_f69___28->n_f71___9, Arg_1: Arg_1 {O(n)}
182: n_f69___28->n_f71___9, Arg_2: 0 {O(1)}
182: n_f69___28->n_f71___9, Arg_3: 2*Arg_3+Arg_0 {O(n)}
182: n_f69___28->n_f71___9, Arg_4: Arg_4 {O(n)}
182: n_f69___28->n_f71___9, Arg_5: Arg_5 {O(n)}
182: n_f69___28->n_f71___9, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
182: n_f69___28->n_f71___9, Arg_10: 2*Arg_3+Arg_0 {O(n)}
183: n_f69___28->n_f71___9, Arg_0: Arg_0 {O(n)}
183: n_f69___28->n_f71___9, Arg_1: Arg_1 {O(n)}
183: n_f69___28->n_f71___9, Arg_2: 0 {O(1)}
183: n_f69___28->n_f71___9, Arg_3: 2*Arg_3+Arg_0 {O(n)}
183: n_f69___28->n_f71___9, Arg_4: Arg_4 {O(n)}
183: n_f69___28->n_f71___9, Arg_5: Arg_5 {O(n)}
183: n_f69___28->n_f71___9, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
183: n_f69___28->n_f71___9, Arg_10: 2*Arg_3+Arg_0 {O(n)}
184: n_f71___10->n_f23___12, Arg_0: 3*Arg_0 {O(n)}
184: n_f71___10->n_f23___12, Arg_1: 3*Arg_1 {O(n)}
184: n_f71___10->n_f23___12, Arg_2: 0 {O(1)}
184: n_f71___10->n_f23___12, Arg_3: 3*Arg_0+3 {O(n)}
184: n_f71___10->n_f23___12, Arg_4: 3*Arg_4 {O(n)}
184: n_f71___10->n_f23___12, Arg_5: 3*Arg_5 {O(n)}
184: n_f71___10->n_f23___12, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
184: n_f71___10->n_f23___12, Arg_10: 18*Arg_3+3*Arg_10+9*Arg_0 {O(n)}
186: n_f71___10->n_f74___22, Arg_0: Arg_0 {O(n)}
186: n_f71___10->n_f74___22, Arg_1: Arg_1 {O(n)}
186: n_f71___10->n_f74___22, Arg_2: 0 {O(1)}
186: n_f71___10->n_f74___22, Arg_3: 2*Arg_3+Arg_0 {O(n)}
186: n_f71___10->n_f74___22, Arg_4: Arg_4 {O(n)}
186: n_f71___10->n_f74___22, Arg_5: Arg_5 {O(n)}
186: n_f71___10->n_f74___22, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
186: n_f71___10->n_f74___22, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
187: n_f71___13->n_f23___12, Arg_0: 3*Arg_0 {O(n)}
187: n_f71___13->n_f23___12, Arg_1: 3*Arg_1 {O(n)}
187: n_f71___13->n_f23___12, Arg_2: 0 {O(1)}
187: n_f71___13->n_f23___12, Arg_3: 3*Arg_0+3 {O(n)}
187: n_f71___13->n_f23___12, Arg_4: 3*Arg_4 {O(n)}
187: n_f71___13->n_f23___12, Arg_5: 3*Arg_5 {O(n)}
187: n_f71___13->n_f23___12, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
187: n_f71___13->n_f23___12, Arg_10: 18*Arg_3+3*Arg_10+9*Arg_0 {O(n)}
189: n_f71___13->n_f74___22, Arg_0: Arg_0 {O(n)}
189: n_f71___13->n_f74___22, Arg_1: Arg_1 {O(n)}
189: n_f71___13->n_f74___22, Arg_2: 0 {O(1)}
189: n_f71___13->n_f74___22, Arg_3: 2*Arg_3+Arg_0 {O(n)}
189: n_f71___13->n_f74___22, Arg_4: Arg_4 {O(n)}
189: n_f71___13->n_f74___22, Arg_5: Arg_5 {O(n)}
189: n_f71___13->n_f74___22, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
189: n_f71___13->n_f74___22, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
190: n_f71___17->n_f23___23, Arg_0: 3*Arg_0 {O(n)}
190: n_f71___17->n_f23___23, Arg_1: 3*Arg_1 {O(n)}
190: n_f71___17->n_f23___23, Arg_2: 0 {O(1)}
190: n_f71___17->n_f23___23, Arg_3: 3*Arg_0+3 {O(n)}
190: n_f71___17->n_f23___23, Arg_4: 3*Arg_4 {O(n)}
190: n_f71___17->n_f23___23, Arg_5: 3*Arg_5 {O(n)}
190: n_f71___17->n_f23___23, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
190: n_f71___17->n_f23___23, Arg_10: 18*Arg_3+3*Arg_10+9*Arg_0 {O(n)}
192: n_f71___17->n_f74___22, Arg_0: Arg_0 {O(n)}
192: n_f71___17->n_f74___22, Arg_1: Arg_1 {O(n)}
192: n_f71___17->n_f74___22, Arg_2: 0 {O(1)}
192: n_f71___17->n_f74___22, Arg_3: 2*Arg_3+Arg_0 {O(n)}
192: n_f71___17->n_f74___22, Arg_4: Arg_4 {O(n)}
192: n_f71___17->n_f74___22, Arg_5: Arg_5 {O(n)}
192: n_f71___17->n_f74___22, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
192: n_f71___17->n_f74___22, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
193: n_f71___24->n_f23___23, Arg_0: 3*Arg_0 {O(n)}
193: n_f71___24->n_f23___23, Arg_1: 3*Arg_1 {O(n)}
193: n_f71___24->n_f23___23, Arg_2: 0 {O(1)}
193: n_f71___24->n_f23___23, Arg_3: 3*Arg_0+3 {O(n)}
193: n_f71___24->n_f23___23, Arg_4: 3*Arg_4 {O(n)}
193: n_f71___24->n_f23___23, Arg_5: 3*Arg_5 {O(n)}
193: n_f71___24->n_f23___23, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
193: n_f71___24->n_f23___23, Arg_10: 18*Arg_3+3*Arg_10+9*Arg_0 {O(n)}
195: n_f71___24->n_f74___22, Arg_0: Arg_0 {O(n)}
195: n_f71___24->n_f74___22, Arg_1: Arg_1 {O(n)}
195: n_f71___24->n_f74___22, Arg_2: 0 {O(1)}
195: n_f71___24->n_f74___22, Arg_3: 2*Arg_3+Arg_0 {O(n)}
195: n_f71___24->n_f74___22, Arg_4: Arg_4 {O(n)}
195: n_f71___24->n_f74___22, Arg_5: Arg_5 {O(n)}
195: n_f71___24->n_f74___22, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
195: n_f71___24->n_f74___22, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
196: n_f71___9->n_f23___8, Arg_0: 3*Arg_0 {O(n)}
196: n_f71___9->n_f23___8, Arg_1: 3*Arg_1 {O(n)}
196: n_f71___9->n_f23___8, Arg_2: 0 {O(1)}
196: n_f71___9->n_f23___8, Arg_3: 3*Arg_0+3 {O(n)}
196: n_f71___9->n_f23___8, Arg_4: 3*Arg_4 {O(n)}
196: n_f71___9->n_f23___8, Arg_5: 3*Arg_5 {O(n)}
196: n_f71___9->n_f23___8, Arg_7: 12*Arg_1+6*Arg_0+6*Arg_3+9*Arg_7+3 {O(n)}
196: n_f71___9->n_f23___8, Arg_10: 3*Arg_0+6*Arg_3 {O(n)}
198: n_f71___9->n_f74___22, Arg_0: Arg_0 {O(n)}
198: n_f71___9->n_f74___22, Arg_1: Arg_1 {O(n)}
198: n_f71___9->n_f74___22, Arg_2: 0 {O(1)}
198: n_f71___9->n_f74___22, Arg_3: 2*Arg_3+Arg_0 {O(n)}
198: n_f71___9->n_f74___22, Arg_4: Arg_4 {O(n)}
198: n_f71___9->n_f74___22, Arg_5: Arg_5 {O(n)}
198: n_f71___9->n_f74___22, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
198: n_f71___9->n_f74___22, Arg_10: 3*Arg_0+6*Arg_3 {O(n)}
200: n_f74___22->n_f23___19, Arg_0: Arg_0 {O(n)}
200: n_f74___22->n_f23___19, Arg_1: Arg_1 {O(n)}
200: n_f74___22->n_f23___19, Arg_2: 0 {O(1)}
200: n_f74___22->n_f23___19, Arg_3: 2*Arg_3+Arg_0 {O(n)}
200: n_f74___22->n_f23___19, Arg_4: Arg_4 {O(n)}
200: n_f74___22->n_f23___19, Arg_5: Arg_5 {O(n)}
200: n_f74___22->n_f23___19, Arg_7: 2*Arg_0+2*Arg_3+3*Arg_7+4*Arg_1+1 {O(n)}
200: n_f74___22->n_f23___19, Arg_10: 3*Arg_0+6*Arg_3+Arg_10 {O(n)}
201: n_f9___1->n_f5___2, Arg_0: 12*Arg_0 {O(n)}
201: n_f9___1->n_f5___2, Arg_1: 12*Arg_1+2 {O(n)}
201: n_f9___1->n_f5___2, Arg_3: 36*Arg_0+48*Arg_3+116 {O(n)}
201: n_f9___1->n_f5___2, Arg_7: 12*Arg_7 {O(n)}
201: n_f9___1->n_f5___2, Arg_10: 12*Arg_10 {O(n)}
202: n_f9___1->n_f9___1, Arg_0: 6*Arg_0 {O(n)}
202: n_f9___1->n_f9___1, Arg_1: 6*Arg_1 {O(n)}
202: n_f9___1->n_f9___1, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
202: n_f9___1->n_f9___1, Arg_7: 6*Arg_7 {O(n)}
202: n_f9___1->n_f9___1, Arg_10: 6*Arg_10 {O(n)}
203: n_f9___1->n_f9___4, Arg_0: 6*Arg_0 {O(n)}
203: n_f9___1->n_f9___4, Arg_1: 6*Arg_1 {O(n)}
203: n_f9___1->n_f9___4, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
203: n_f9___1->n_f9___4, Arg_7: 6*Arg_7 {O(n)}
203: n_f9___1->n_f9___4, Arg_10: 6*Arg_10 {O(n)}
204: n_f9___3->n_f5___6, Arg_0: 30*Arg_0 {O(n)}
204: n_f9___3->n_f5___6, Arg_1: 30*Arg_0+60*Arg_1+21 {O(n)}
204: n_f9___3->n_f5___6, Arg_2: 0 {O(1)}
204: n_f9___3->n_f5___6, Arg_3: 104*Arg_3+74*Arg_0+245 {O(n)}
204: n_f9___3->n_f5___6, Arg_7: 30*Arg_7 {O(n)}
204: n_f9___3->n_f5___6, Arg_10: 30*Arg_10 {O(n)}
205: n_f9___34->n_f5___6, Arg_0: Arg_0 {O(n)}
205: n_f9___34->n_f5___6, Arg_1: Arg_1+1 {O(n)}
205: n_f9___34->n_f5___6, Arg_2: 0 {O(1)}
205: n_f9___34->n_f5___6, Arg_3: Arg_3 {O(n)}
205: n_f9___34->n_f5___6, Arg_4: Arg_4 {O(n)}
205: n_f9___34->n_f5___6, Arg_5: Arg_5 {O(n)}
205: n_f9___34->n_f5___6, Arg_7: Arg_7 {O(n)}
205: n_f9___34->n_f5___6, Arg_10: Arg_10 {O(n)}
206: n_f9___34->n_f9___4, Arg_0: Arg_0 {O(n)}
206: n_f9___34->n_f9___4, Arg_1: Arg_1 {O(n)}
206: n_f9___34->n_f9___4, Arg_3: Arg_3+1 {O(n)}
206: n_f9___34->n_f9___4, Arg_7: Arg_7 {O(n)}
206: n_f9___34->n_f9___4, Arg_10: Arg_10 {O(n)}
207: n_f9___34->n_f9___5, Arg_0: Arg_0 {O(n)}
207: n_f9___34->n_f9___5, Arg_1: Arg_1 {O(n)}
207: n_f9___34->n_f9___5, Arg_2: 0 {O(1)}
207: n_f9___34->n_f9___5, Arg_3: Arg_3+1 {O(n)}
207: n_f9___34->n_f9___5, Arg_7: Arg_7 {O(n)}
207: n_f9___34->n_f9___5, Arg_10: Arg_10 {O(n)}
208: n_f9___4->n_f5___2, Arg_0: 15*Arg_0 {O(n)}
208: n_f9___4->n_f5___2, Arg_1: 15*Arg_1+4 {O(n)}
208: n_f9___4->n_f5___2, Arg_3: 37*Arg_0+52*Arg_3+124 {O(n)}
208: n_f9___4->n_f5___2, Arg_7: 15*Arg_7 {O(n)}
208: n_f9___4->n_f5___2, Arg_10: 15*Arg_10 {O(n)}
209: n_f9___4->n_f9___1, Arg_0: 6*Arg_0 {O(n)}
209: n_f9___4->n_f9___1, Arg_1: 6*Arg_1 {O(n)}
209: n_f9___4->n_f9___1, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
209: n_f9___4->n_f9___1, Arg_7: 6*Arg_7 {O(n)}
209: n_f9___4->n_f9___1, Arg_10: 6*Arg_10 {O(n)}
210: n_f9___4->n_f9___4, Arg_0: 6*Arg_0 {O(n)}
210: n_f9___4->n_f9___4, Arg_1: 6*Arg_1 {O(n)}
210: n_f9___4->n_f9___4, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
210: n_f9___4->n_f9___4, Arg_7: 6*Arg_7 {O(n)}
210: n_f9___4->n_f9___4, Arg_10: 6*Arg_10 {O(n)}
211: n_f9___5->n_f5___6, Arg_0: 2*Arg_0 {O(n)}
211: n_f9___5->n_f5___6, Arg_1: 2*Arg_1+2 {O(n)}
211: n_f9___5->n_f5___6, Arg_2: 0 {O(1)}
211: n_f9___5->n_f5___6, Arg_3: 3*Arg_3+Arg_0+5 {O(n)}
211: n_f9___5->n_f5___6, Arg_7: 2*Arg_7 {O(n)}
211: n_f9___5->n_f5___6, Arg_10: 2*Arg_10 {O(n)}
212: n_f9___5->n_f9___4, Arg_0: 2*Arg_0 {O(n)}
212: n_f9___5->n_f9___4, Arg_1: 2*Arg_1 {O(n)}
212: n_f9___5->n_f9___4, Arg_3: 3*Arg_3+Arg_0+7 {O(n)}
212: n_f9___5->n_f9___4, Arg_7: 2*Arg_7 {O(n)}
212: n_f9___5->n_f9___4, Arg_10: 2*Arg_10 {O(n)}
213: n_f9___5->n_f9___5, Arg_0: Arg_0 {O(n)}
213: n_f9___5->n_f9___5, Arg_1: Arg_1 {O(n)}
213: n_f9___5->n_f9___5, Arg_2: 0 {O(1)}
213: n_f9___5->n_f9___5, Arg_3: 2*Arg_3+Arg_0+4 {O(n)}
213: n_f9___5->n_f9___5, Arg_7: Arg_7 {O(n)}
213: n_f9___5->n_f9___5, Arg_10: Arg_10 {O(n)}