Initial Problem

Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_cut___11, n_cut___13, n_cut___16, n_cut___19, n_cut___22, n_cut___25, n_cut___3, n_cut___30, n_cut___34, n_cut___5, n_cut___9, n_lbl42___18, n_lbl42___21, n_lbl42___29, n_lbl42___33, n_lbl42___8, n_lbl72___15, n_lbl72___2, n_lbl72___24, n_lbl72___28, n_lbl72___32, n_lbl72___7, n_start0, n_start___35, n_stop___1, n_stop___10, n_stop___12, n_stop___14, n_stop___17, n_stop___20, n_stop___23, n_stop___26, n_stop___27, n_stop___31, n_stop___4, n_stop___6
Transitions:
0:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
1:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
2:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
3:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___10(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
4:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
5:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
6:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
7:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___12(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
10:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
11:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___14(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
12:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
13:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
14:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
15:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___17(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
16:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
17:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
18:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
19:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___20(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
20:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
21:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
22:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
23:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___23(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
24:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
25:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
26:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
27:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
28:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
29:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
30:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
31:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___26(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
32:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
33:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
34:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
35:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___27(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
36:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
37:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
38:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
39:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
40:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
41:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
42:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
43:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
44:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
45:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
46:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
47:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
48:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
49:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
50:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
51:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
52:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
53:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
54:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___8(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
55:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
56:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
57:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___8(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
58:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
59:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
60:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
61:n_lbl72___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
62:n_lbl72___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
63:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
64:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
65:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
66:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
67:n_lbl72___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
68:n_lbl72___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
69:n_lbl72___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
70:n_lbl72___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
71:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___35(Arg_0,Arg_2,Arg_2,Arg_0,Arg_5,Arg_5,Arg_7,Arg_7)
72:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___34(Arg_0,Arg_1,Arg_1,Arg_0-1,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
73:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___33(Arg_0,Arg_1-1,Arg_1,Arg_0,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
74:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___32(Arg_0,Arg_1+1,Arg_1,Arg_0-1,Arg_1,Arg_4,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
75:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___31(Arg_0,Arg_1,Arg_1,Arg_0,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6

Preprocessing

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 for location n_cut___3

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=0 && 1+Arg_3<=Arg_0 && 1+Arg_0+Arg_3<=0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_0<=0 && 0<=Arg_0 for location n_stop___27

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___19

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_cut___5

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 for location n_lbl72___28

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___16

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___22

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl72___24

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___13

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 for location n_cut___34

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___25

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=0 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 for location n_stop___26

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___29

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_stop___12

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_stop___23

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location n_lbl42___33

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=0 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_stop___17

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___18

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && Arg_0<=1+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && Arg_0<=1+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0+Arg_3<=0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_stop___4

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location n_lbl42___8

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 for location n_cut___11

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location n_cut___9

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl72___15

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_stop___20

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && 0<=Arg_0 for location n_lbl72___32

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_0 && 1+Arg_0+Arg_3<=0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_stop___1

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 for location n_stop___10

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=0 && Arg_3<=Arg_0 && 2+Arg_0+Arg_3<=0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_0<=0 for location n_stop___31

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_lbl72___7

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_start___35

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___21

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 for location n_cut___30

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0+Arg_3<=0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_stop___6

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 for location n_lbl72___2

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=0 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_stop___14

Problem after Preprocessing

Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_cut___11, n_cut___13, n_cut___16, n_cut___19, n_cut___22, n_cut___25, n_cut___3, n_cut___30, n_cut___34, n_cut___5, n_cut___9, n_lbl42___18, n_lbl42___21, n_lbl42___29, n_lbl42___33, n_lbl42___8, n_lbl72___15, n_lbl72___2, n_lbl72___24, n_lbl72___28, n_lbl72___32, n_lbl72___7, n_start0, n_start___35, n_stop___1, n_stop___10, n_stop___12, n_stop___14, n_stop___17, n_stop___20, n_stop___23, n_stop___26, n_stop___27, n_stop___31, n_stop___4, n_stop___6
Transitions:
0:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
1:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
2:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
3:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___10(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
4:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
5:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
6:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
7:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___12(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
10:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
11:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___14(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
12:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
13:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
14:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
15:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___17(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
16:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
17:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
18:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
19:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___20(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
20:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
21:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
22:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
23:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___23(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
24:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
25:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
26:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
27:n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
28:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
29:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
30:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
31:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___26(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
32:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
33:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
34:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
35:n_cut___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___27(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 0<=Arg_0 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
36:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
37:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
38:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
39:n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
40:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
41:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
42:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
43:n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_2,-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
44:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
45:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
46:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
47:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
48:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
49:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
50:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
51:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
52:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
53:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
54:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___8(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
55:n_lbl42___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
56:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___9(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
57:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___8(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
58:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6
59:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
60:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
61:n_lbl72___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
62:n_lbl72___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
63:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
64:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
65:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
66:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
67:n_lbl72___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
68:n_lbl72___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
69:n_lbl72___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
70:n_lbl72___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
71:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___35(Arg_0,Arg_2,Arg_2,Arg_0,Arg_5,Arg_5,Arg_7,Arg_7)
72:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___34(Arg_0,Arg_1,Arg_1,Arg_0-1,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
73:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___33(Arg_0,Arg_1-1,Arg_1,Arg_0,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
74:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___32(Arg_0,Arg_1+1,Arg_1,Arg_0-1,Arg_1,Arg_4,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
75:n_start___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___31(Arg_0,Arg_1,Arg_1,Arg_0,Arg_4,Arg_4,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6

MPRF for transition 62:n_lbl72___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_2+Arg_7+3 {O(n)}

MPRF:

n_lbl72___2 [Arg_6+1-Arg_1 ]

MPRF for transition 57:n_lbl42___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___8(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_2+3 {O(n)}

MPRF:

n_lbl42___8 [Arg_1+1 ]

MPRF for transition 70:n_lbl72___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_2+3*Arg_7+11 {O(n)}

MPRF:

n_lbl72___7 [Arg_6+1-Arg_1 ]

MPRF for transition 28:n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___30(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_cut___30 [Arg_3+1 ]

MPRF for transition 20:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+15 {O(n)}

MPRF:

n_cut___25 [Arg_3+1 ]
n_lbl42___29 [Arg_3 ]

MPRF for transition 21:n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_2+21 {O(n)}

MPRF:

n_cut___25 [Arg_1+1 ]
n_lbl42___29 [Arg_1+1 ]

MPRF for transition 50:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___25(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+18 {O(n)}

MPRF:

n_cut___25 [Arg_3+1 ]
n_lbl42___29 [Arg_3+1 ]

MPRF for transition 51:n_lbl42___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___29(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_2+20 {O(n)}

MPRF:

n_cut___25 [Arg_1 ]
n_lbl42___29 [Arg_1+1 ]

MPRF for transition 0:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+23 {O(n)}

MPRF:

n_cut___11 [Arg_3+1 ]
n_lbl72___28 [Arg_3+1 ]

MPRF for transition 2:n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+23 {O(n)}

MPRF:

n_cut___11 [Arg_3+1 ]
n_lbl72___28 [Arg_3+1 ]

MPRF for transition 65:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

11*Arg_2+11*Arg_7+28 {O(n)}

MPRF:

n_cut___11 [Arg_6+1-Arg_1 ]
n_lbl72___28 [Arg_7+2-Arg_1 ]

MPRF for transition 66:n_lbl72___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___28(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

11*Arg_2+11*Arg_7+24 {O(n)}

MPRF:

n_cut___11 [Arg_6-Arg_1 ]
n_lbl72___28 [Arg_6+1-Arg_1 ]

MPRF for transition 4:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_3 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3 ]
n_lbl72___24 [Arg_3 ]

MPRF for transition 5:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3 ]
n_lbl72___24 [Arg_3 ]

MPRF for transition 6:n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_3 ]
n_cut___19 [Arg_3+1 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3 ]
n_lbl72___24 [Arg_3 ]

MPRF for transition 8:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3 ]
n_lbl72___24 [Arg_3 ]

MPRF for transition 9:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_3+1 ]
n_cut___22 [Arg_3 ]
n_lbl72___24 [Arg_3 ]

MPRF for transition 10:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+96*Arg_7+257 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3+2 ]
n_lbl42___18 [Arg_3+1 ]
n_lbl42___21 [Arg_3+Arg_7+1-Arg_6 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_3+1 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 12:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

288*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_0+Arg_3 ]
n_cut___19 [Arg_0+Arg_3+1 ]
n_lbl42___18 [Arg_0+Arg_3 ]
n_lbl42___21 [Arg_0+Arg_3 ]
n_cut___13 [Arg_0+Arg_3 ]
n_lbl72___15 [Arg_0+Arg_3 ]
n_cut___22 [Arg_0+Arg_3 ]
n_lbl72___24 [Arg_0+Arg_3 ]

MPRF for transition 13:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

288*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_0+Arg_3 ]
n_cut___19 [Arg_0+Arg_3+1 ]
n_lbl42___18 [Arg_0+Arg_3-1 ]
n_lbl42___21 [Arg_0+Arg_3 ]
n_cut___13 [Arg_0+Arg_3 ]
n_lbl72___15 [Arg_0+Arg_3 ]
n_cut___22 [Arg_0+Arg_3 ]
n_lbl72___24 [Arg_0+Arg_3 ]

MPRF for transition 14:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

288*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_0+Arg_3 ]
n_cut___19 [Arg_0+Arg_3+1 ]
n_lbl42___18 [Arg_0+Arg_3 ]
n_lbl42___21 [Arg_0+Arg_3 ]
n_cut___13 [Arg_0+Arg_3 ]
n_lbl72___15 [Arg_0+Arg_3 ]
n_cut___22 [Arg_0+Arg_3 ]
n_lbl72___24 [Arg_0+Arg_3 ]

MPRF for transition 16:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

288*Arg_0+249 {O(n)}

MPRF:

n_cut___16 [Arg_0+Arg_3 ]
n_cut___19 [Arg_0+Arg_3 ]
n_lbl42___18 [Arg_0+Arg_3 ]
n_lbl42___21 [Arg_0+Arg_3 ]
n_cut___13 [Arg_0+Arg_3 ]
n_lbl72___15 [Arg_0+Arg_3 ]
n_cut___22 [Arg_0+Arg_3 ]
n_lbl72___24 [Arg_0+Arg_3 ]

MPRF for transition 17:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___21(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+254 {O(n)}

MPRF:

n_cut___16 [Arg_3 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 18:n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_1 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+254 {O(n)}

MPRF:

n_cut___16 [Arg_3 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 44:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3+1 ]
n_lbl42___18 [Arg_3+1 ]
n_lbl42___21 [Arg_3+1 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_1+Arg_3-Arg_4 ]

MPRF for transition 46:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___15(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+96*Arg_7+257 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3+2 ]
n_lbl42___18 [Arg_3+1 ]
n_lbl42___21 [Arg_3+Arg_6+1-Arg_7 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_3+1 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 47:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+257 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3+1 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 48:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3+1 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_1+Arg_3-Arg_4 ]

MPRF for transition 49:n_lbl42___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_1<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+257 {O(n)}

MPRF:

n_cut___16 [Arg_3 ]
n_cut___19 [Arg_3 ]
n_lbl42___18 [Arg_3 ]
n_lbl42___21 [Arg_3+1 ]
n_cut___13 [Arg_3 ]
n_lbl72___15 [Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 59:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

150*Arg_7+18*Arg_2+432*Arg_0+566 {O(n)}

MPRF:

n_cut___16 [Arg_0+2*Arg_3+Arg_6+1 ]
n_cut___19 [Arg_0+2*Arg_3+Arg_6+1 ]
n_lbl42___18 [Arg_0+2*Arg_3+Arg_7+1 ]
n_lbl42___21 [Arg_0+2*Arg_3+Arg_7+1 ]
n_cut___13 [Arg_0+2*Arg_3+Arg_6+1 ]
n_lbl72___15 [Arg_0+2*Arg_3+Arg_6+3 ]
n_cut___22 [Arg_0+Arg_1+2*Arg_3+Arg_6-Arg_4 ]
n_lbl72___24 [Arg_0+2*Arg_3+Arg_6+1 ]

MPRF for transition 60:n_lbl72___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_6 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

144*Arg_0+192*Arg_7+257 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_cut___19 [Arg_3+1 ]
n_lbl42___18 [Arg_3+1 ]
n_lbl42___21 [Arg_3+2*Arg_7+1-2*Arg_6 ]
n_cut___13 [Arg_3+1 ]
n_lbl72___15 [Arg_3+2 ]
n_cut___22 [Arg_3+1 ]
n_lbl72___24 [Arg_3+1 ]

MPRF for transition 63:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

288*Arg_0+253 {O(n)}

MPRF:

n_cut___16 [Arg_0+Arg_3 ]
n_cut___19 [Arg_0+Arg_3 ]
n_lbl42___18 [Arg_0+Arg_3 ]
n_lbl42___21 [Arg_0+Arg_3 ]
n_cut___13 [Arg_0+Arg_3 ]
n_lbl72___15 [Arg_0+Arg_1+Arg_3-Arg_4 ]
n_cut___22 [Arg_0+Arg_3 ]
n_lbl72___24 [Arg_0+Arg_3+1 ]

MPRF for transition 45:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_1<=Arg_6 && Arg_3<=Arg_0 && 0<=Arg_1 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

295488*Arg_0*Arg_0+98496*Arg_0*Arg_7+167*Arg_2+604782*Arg_0+86600*Arg_7+303800 {O(n^2)}

MPRF:

n_cut___22 [Arg_0+2*Arg_3+Arg_6-1 ]
n_cut___16 [Arg_0+Arg_1+2*Arg_3-1 ]
n_cut___19 [Arg_0+Arg_1+2*Arg_3 ]
n_lbl42___18 [Arg_0+Arg_1+2*Arg_3 ]
n_lbl42___21 [Arg_0+2*Arg_3+Arg_4-1 ]
n_cut___13 [Arg_0+Arg_1+2*Arg_3-1 ]
n_lbl72___15 [Arg_0+2*Arg_3+Arg_4+1 ]
n_lbl72___24 [Arg_0+2*Arg_3 ]

MPRF for transition 64:n_lbl72___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___24(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

98496*Arg_0*Arg_7+576*Arg_0+86673*Arg_7+93*Arg_2+721 {O(n^2)}

MPRF:

n_cut___22 [Arg_6+2 ]
n_cut___16 [Arg_6 ]
n_cut___19 [Arg_4+Arg_6+1-Arg_1 ]
n_lbl42___18 [Arg_6 ]
n_lbl42___21 [Arg_7+2 ]
n_cut___13 [Arg_6 ]
n_lbl72___15 [Arg_7 ]
n_lbl72___24 [Arg_6+1-Arg_1 ]

All Bounds

Timebounds

Overall timebound:196992*Arg_0*Arg_7+295488*Arg_0*Arg_0+173845*Arg_7+609283*Arg_0+695*Arg_2+310904 {O(n^2)}
0: n_cut___11->n_cut___11: 9*Arg_0+23 {O(n)}
1: n_cut___11->n_lbl42___21: 1 {O(1)}
2: n_cut___11->n_lbl72___28: 9*Arg_0+23 {O(n)}
3: n_cut___11->n_stop___10: 1 {O(1)}
4: n_cut___13->n_cut___13: 144*Arg_0+249 {O(n)}
5: n_cut___13->n_lbl42___18: 144*Arg_0+249 {O(n)}
6: n_cut___13->n_lbl72___24: 144*Arg_0+249 {O(n)}
7: n_cut___13->n_stop___12: 1 {O(1)}
8: n_cut___16->n_cut___16: 144*Arg_0+249 {O(n)}
9: n_cut___16->n_lbl42___18: 144*Arg_0+249 {O(n)}
10: n_cut___16->n_lbl72___15: 144*Arg_0+96*Arg_7+257 {O(n)}
11: n_cut___16->n_stop___14: 1 {O(1)}
12: n_cut___19->n_cut___19: 288*Arg_0+249 {O(n)}
13: n_cut___19->n_lbl42___18: 288*Arg_0+249 {O(n)}
14: n_cut___19->n_lbl72___24: 288*Arg_0+249 {O(n)}
15: n_cut___19->n_stop___17: 1 {O(1)}
16: n_cut___22->n_cut___22: 288*Arg_0+249 {O(n)}
17: n_cut___22->n_lbl42___21: 144*Arg_0+254 {O(n)}
18: n_cut___22->n_lbl72___24: 144*Arg_0+254 {O(n)}
19: n_cut___22->n_stop___20: 1 {O(1)}
20: n_cut___25->n_cut___25: 9*Arg_0+15 {O(n)}
21: n_cut___25->n_lbl42___29: 9*Arg_2+21 {O(n)}
22: n_cut___25->n_lbl72___24: 1 {O(1)}
23: n_cut___25->n_stop___23: 1 {O(1)}
24: n_cut___3->n_cut___11: 1 {O(1)}
25: n_cut___3->n_lbl42___21: 1 {O(1)}
26: n_cut___3->n_lbl72___28: 1 {O(1)}
27: n_cut___3->n_stop___1: 1 {O(1)}
28: n_cut___30->n_cut___30: Arg_0+3 {O(n)}
29: n_cut___30->n_lbl42___29: 1 {O(1)}
30: n_cut___30->n_lbl72___28: 1 {O(1)}
31: n_cut___30->n_stop___26: 1 {O(1)}
32: n_cut___34->n_cut___30: 1 {O(1)}
33: n_cut___34->n_lbl42___29: 1 {O(1)}
34: n_cut___34->n_lbl72___28: 1 {O(1)}
35: n_cut___34->n_stop___27: 1 {O(1)}
36: n_cut___5->n_cut___22: 1 {O(1)}
37: n_cut___5->n_lbl42___21: 1 {O(1)}
38: n_cut___5->n_lbl72___24: 1 {O(1)}
39: n_cut___5->n_stop___4: 1 {O(1)}
40: n_cut___9->n_cut___25: 1 {O(1)}
41: n_cut___9->n_lbl42___29: 1 {O(1)}
42: n_cut___9->n_lbl72___24: 1 {O(1)}
43: n_cut___9->n_stop___6: 1 {O(1)}
44: n_lbl42___18->n_cut___16: 144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}
45: n_lbl42___18->n_lbl42___18: 295488*Arg_0*Arg_0+98496*Arg_0*Arg_7+167*Arg_2+604782*Arg_0+86600*Arg_7+303800 {O(n^2)}
46: n_lbl42___18->n_lbl72___15: 144*Arg_0+96*Arg_7+257 {O(n)}
47: n_lbl42___21->n_cut___19: 144*Arg_0+257 {O(n)}
48: n_lbl42___21->n_lbl42___18: 144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}
49: n_lbl42___21->n_lbl72___24: 144*Arg_0+257 {O(n)}
50: n_lbl42___29->n_cut___25: 9*Arg_0+18 {O(n)}
51: n_lbl42___29->n_lbl42___29: 9*Arg_2+20 {O(n)}
52: n_lbl42___29->n_lbl72___24: 1 {O(1)}
53: n_lbl42___33->n_cut___9: 1 {O(1)}
54: n_lbl42___33->n_lbl42___8: 1 {O(1)}
55: n_lbl42___33->n_lbl72___7: 1 {O(1)}
56: n_lbl42___8->n_cut___9: 1 {O(1)}
57: n_lbl42___8->n_lbl42___8: Arg_2+3 {O(n)}
58: n_lbl42___8->n_lbl72___7: 1 {O(1)}
59: n_lbl72___15->n_cut___13: 150*Arg_7+18*Arg_2+432*Arg_0+566 {O(n)}
60: n_lbl72___15->n_lbl72___24: 144*Arg_0+192*Arg_7+257 {O(n)}
61: n_lbl72___2->n_cut___3: 1 {O(1)}
62: n_lbl72___2->n_lbl72___2: Arg_2+Arg_7+3 {O(n)}
63: n_lbl72___24->n_cut___22: 288*Arg_0+253 {O(n)}
64: n_lbl72___24->n_lbl72___24: 98496*Arg_0*Arg_7+576*Arg_0+86673*Arg_7+93*Arg_2+721 {O(n^2)}
65: n_lbl72___28->n_cut___11: 11*Arg_2+11*Arg_7+28 {O(n)}
66: n_lbl72___28->n_lbl72___28: 11*Arg_2+11*Arg_7+24 {O(n)}
67: n_lbl72___32->n_cut___3: 1 {O(1)}
68: n_lbl72___32->n_lbl72___2: 1 {O(1)}
69: n_lbl72___7->n_cut___5: 1 {O(1)}
70: n_lbl72___7->n_lbl72___7: 3*Arg_2+3*Arg_7+11 {O(n)}
71: n_start0->n_start___35: 1 {O(1)}
72: n_start___35->n_cut___34: 1 {O(1)}
73: n_start___35->n_lbl42___33: 1 {O(1)}
74: n_start___35->n_lbl72___32: 1 {O(1)}
75: n_start___35->n_stop___31: 1 {O(1)}

Costbounds

Overall costbound: 196992*Arg_0*Arg_7+295488*Arg_0*Arg_0+173845*Arg_7+609283*Arg_0+695*Arg_2+310904 {O(n^2)}
0: n_cut___11->n_cut___11: 9*Arg_0+23 {O(n)}
1: n_cut___11->n_lbl42___21: 1 {O(1)}
2: n_cut___11->n_lbl72___28: 9*Arg_0+23 {O(n)}
3: n_cut___11->n_stop___10: 1 {O(1)}
4: n_cut___13->n_cut___13: 144*Arg_0+249 {O(n)}
5: n_cut___13->n_lbl42___18: 144*Arg_0+249 {O(n)}
6: n_cut___13->n_lbl72___24: 144*Arg_0+249 {O(n)}
7: n_cut___13->n_stop___12: 1 {O(1)}
8: n_cut___16->n_cut___16: 144*Arg_0+249 {O(n)}
9: n_cut___16->n_lbl42___18: 144*Arg_0+249 {O(n)}
10: n_cut___16->n_lbl72___15: 144*Arg_0+96*Arg_7+257 {O(n)}
11: n_cut___16->n_stop___14: 1 {O(1)}
12: n_cut___19->n_cut___19: 288*Arg_0+249 {O(n)}
13: n_cut___19->n_lbl42___18: 288*Arg_0+249 {O(n)}
14: n_cut___19->n_lbl72___24: 288*Arg_0+249 {O(n)}
15: n_cut___19->n_stop___17: 1 {O(1)}
16: n_cut___22->n_cut___22: 288*Arg_0+249 {O(n)}
17: n_cut___22->n_lbl42___21: 144*Arg_0+254 {O(n)}
18: n_cut___22->n_lbl72___24: 144*Arg_0+254 {O(n)}
19: n_cut___22->n_stop___20: 1 {O(1)}
20: n_cut___25->n_cut___25: 9*Arg_0+15 {O(n)}
21: n_cut___25->n_lbl42___29: 9*Arg_2+21 {O(n)}
22: n_cut___25->n_lbl72___24: 1 {O(1)}
23: n_cut___25->n_stop___23: 1 {O(1)}
24: n_cut___3->n_cut___11: 1 {O(1)}
25: n_cut___3->n_lbl42___21: 1 {O(1)}
26: n_cut___3->n_lbl72___28: 1 {O(1)}
27: n_cut___3->n_stop___1: 1 {O(1)}
28: n_cut___30->n_cut___30: Arg_0+3 {O(n)}
29: n_cut___30->n_lbl42___29: 1 {O(1)}
30: n_cut___30->n_lbl72___28: 1 {O(1)}
31: n_cut___30->n_stop___26: 1 {O(1)}
32: n_cut___34->n_cut___30: 1 {O(1)}
33: n_cut___34->n_lbl42___29: 1 {O(1)}
34: n_cut___34->n_lbl72___28: 1 {O(1)}
35: n_cut___34->n_stop___27: 1 {O(1)}
36: n_cut___5->n_cut___22: 1 {O(1)}
37: n_cut___5->n_lbl42___21: 1 {O(1)}
38: n_cut___5->n_lbl72___24: 1 {O(1)}
39: n_cut___5->n_stop___4: 1 {O(1)}
40: n_cut___9->n_cut___25: 1 {O(1)}
41: n_cut___9->n_lbl42___29: 1 {O(1)}
42: n_cut___9->n_lbl72___24: 1 {O(1)}
43: n_cut___9->n_stop___6: 1 {O(1)}
44: n_lbl42___18->n_cut___16: 144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}
45: n_lbl42___18->n_lbl42___18: 295488*Arg_0*Arg_0+98496*Arg_0*Arg_7+167*Arg_2+604782*Arg_0+86600*Arg_7+303800 {O(n^2)}
46: n_lbl42___18->n_lbl72___15: 144*Arg_0+96*Arg_7+257 {O(n)}
47: n_lbl42___21->n_cut___19: 144*Arg_0+257 {O(n)}
48: n_lbl42___21->n_lbl42___18: 144*Arg_0+186*Arg_2+6*Arg_7+648 {O(n)}
49: n_lbl42___21->n_lbl72___24: 144*Arg_0+257 {O(n)}
50: n_lbl42___29->n_cut___25: 9*Arg_0+18 {O(n)}
51: n_lbl42___29->n_lbl42___29: 9*Arg_2+20 {O(n)}
52: n_lbl42___29->n_lbl72___24: 1 {O(1)}
53: n_lbl42___33->n_cut___9: 1 {O(1)}
54: n_lbl42___33->n_lbl42___8: 1 {O(1)}
55: n_lbl42___33->n_lbl72___7: 1 {O(1)}
56: n_lbl42___8->n_cut___9: 1 {O(1)}
57: n_lbl42___8->n_lbl42___8: Arg_2+3 {O(n)}
58: n_lbl42___8->n_lbl72___7: 1 {O(1)}
59: n_lbl72___15->n_cut___13: 150*Arg_7+18*Arg_2+432*Arg_0+566 {O(n)}
60: n_lbl72___15->n_lbl72___24: 144*Arg_0+192*Arg_7+257 {O(n)}
61: n_lbl72___2->n_cut___3: 1 {O(1)}
62: n_lbl72___2->n_lbl72___2: Arg_2+Arg_7+3 {O(n)}
63: n_lbl72___24->n_cut___22: 288*Arg_0+253 {O(n)}
64: n_lbl72___24->n_lbl72___24: 98496*Arg_0*Arg_7+576*Arg_0+86673*Arg_7+93*Arg_2+721 {O(n^2)}
65: n_lbl72___28->n_cut___11: 11*Arg_2+11*Arg_7+28 {O(n)}
66: n_lbl72___28->n_lbl72___28: 11*Arg_2+11*Arg_7+24 {O(n)}
67: n_lbl72___32->n_cut___3: 1 {O(1)}
68: n_lbl72___32->n_lbl72___2: 1 {O(1)}
69: n_lbl72___7->n_cut___5: 1 {O(1)}
70: n_lbl72___7->n_lbl72___7: 3*Arg_2+3*Arg_7+11 {O(n)}
71: n_start0->n_start___35: 1 {O(1)}
72: n_start___35->n_cut___34: 1 {O(1)}
73: n_start___35->n_lbl42___33: 1 {O(1)}
74: n_start___35->n_lbl72___32: 1 {O(1)}
75: n_start___35->n_stop___31: 1 {O(1)}

Sizebounds

0: n_cut___11->n_cut___11, Arg_0: 18*Arg_0 {O(n)}
0: n_cut___11->n_cut___11, Arg_1: 15*Arg_7+33*Arg_2+9*Arg_0+89 {O(n)}
0: n_cut___11->n_cut___11, Arg_2: 18*Arg_2 {O(n)}
0: n_cut___11->n_cut___11, Arg_3: 18*Arg_0+39 {O(n)}
0: n_cut___11->n_cut___11, Arg_4: 18*Arg_0+32*Arg_7+77*Arg_2+207 {O(n)}
0: n_cut___11->n_cut___11, Arg_5: 18*Arg_5 {O(n)}
0: n_cut___11->n_cut___11, Arg_6: 18*Arg_7 {O(n)}
0: n_cut___11->n_cut___11, Arg_7: 39*Arg_7 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_0: 39*Arg_0 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_1: 18*Arg_0+31*Arg_7+70*Arg_2+189 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_2: 39*Arg_2 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_3: 39*Arg_0+83 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_4: 154*Arg_2+36*Arg_0+64*Arg_7+414 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_5: 39*Arg_5 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_6: 39*Arg_7 {O(n)}
1: n_cut___11->n_lbl42___21, Arg_7: 39*Arg_7 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_0: 18*Arg_0 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_1: 15*Arg_7+33*Arg_2+9*Arg_0+89 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_2: 18*Arg_2 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_3: 18*Arg_0+39 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_4: 18*Arg_0+31*Arg_7+70*Arg_2+186 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_5: 18*Arg_5 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_6: 18*Arg_7 {O(n)}
2: n_cut___11->n_lbl72___28, Arg_7: 39*Arg_7 {O(n)}
3: n_cut___11->n_stop___10, Arg_0: 39*Arg_0 {O(n)}
3: n_cut___11->n_stop___10, Arg_1: 18*Arg_0+31*Arg_7+70*Arg_2+186 {O(n)}
3: n_cut___11->n_stop___10, Arg_2: 39*Arg_2 {O(n)}
3: n_cut___11->n_stop___10, Arg_3: 1 {O(1)}
3: n_cut___11->n_stop___10, Arg_4: 154*Arg_2+36*Arg_0+64*Arg_7+414 {O(n)}
3: n_cut___11->n_stop___10, Arg_5: 39*Arg_5 {O(n)}
3: n_cut___11->n_stop___10, Arg_6: 39*Arg_7 {O(n)}
3: n_cut___11->n_stop___10, Arg_7: 39*Arg_7 {O(n)}
4: n_cut___13->n_cut___13, Arg_0: 342*Arg_0 {O(n)}
4: n_cut___13->n_cut___13, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
4: n_cut___13->n_cut___13, Arg_2: 342*Arg_2 {O(n)}
4: n_cut___13->n_cut___13, Arg_3: 342*Arg_0+598 {O(n)}
4: n_cut___13->n_cut___13, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7366 {O(n^2)}
4: n_cut___13->n_cut___13, Arg_5: 342*Arg_5 {O(n)}
4: n_cut___13->n_cut___13, Arg_6: 342*Arg_7 {O(n)}
4: n_cut___13->n_cut___13, Arg_7: 684*Arg_7 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_0: 342*Arg_0 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
5: n_cut___13->n_lbl42___18, Arg_2: 342*Arg_2 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_3: 342*Arg_0+598 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_4: 393984*Arg_0*Arg_7+2220*Arg_2+348708*Arg_7+7128*Arg_0+14732 {O(n^2)}
5: n_cut___13->n_lbl42___18, Arg_5: 342*Arg_5 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_6: 342*Arg_7 {O(n)}
5: n_cut___13->n_lbl42___18, Arg_7: 684*Arg_7 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
6: n_cut___13->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
6: n_cut___13->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
6: n_cut___13->n_lbl72___24, Arg_7: 684*Arg_7 {O(n)}
7: n_cut___13->n_stop___12, Arg_0: 684*Arg_0 {O(n)}
7: n_cut___13->n_stop___12, Arg_1: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
7: n_cut___13->n_stop___12, Arg_2: 684*Arg_2 {O(n)}
7: n_cut___13->n_stop___12, Arg_3: 1 {O(1)}
7: n_cut___13->n_stop___12, Arg_4: 393984*Arg_0*Arg_7+2220*Arg_2+348708*Arg_7+7128*Arg_0+14732 {O(n^2)}
7: n_cut___13->n_stop___12, Arg_5: 684*Arg_5 {O(n)}
7: n_cut___13->n_stop___12, Arg_6: 684*Arg_7 {O(n)}
7: n_cut___13->n_stop___12, Arg_7: 684*Arg_7 {O(n)}
8: n_cut___16->n_cut___16, Arg_0: 342*Arg_0 {O(n)}
8: n_cut___16->n_cut___16, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
8: n_cut___16->n_cut___16, Arg_2: 342*Arg_2 {O(n)}
8: n_cut___16->n_cut___16, Arg_3: 342*Arg_0+598 {O(n)}
8: n_cut___16->n_cut___16, Arg_4: 7879680*Arg_0*Arg_7+142776*Arg_0+46626*Arg_2+6974640*Arg_7+300250 {O(n^2)}
8: n_cut___16->n_cut___16, Arg_5: 342*Arg_5 {O(n)}
8: n_cut___16->n_cut___16, Arg_6: 342*Arg_7 {O(n)}
8: n_cut___16->n_cut___16, Arg_7: 684*Arg_7 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_0: 342*Arg_0 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
9: n_cut___16->n_lbl42___18, Arg_2: 342*Arg_2 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_3: 342*Arg_0+598 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_4: 7879680*Arg_0*Arg_7+142776*Arg_0+46626*Arg_2+6974640*Arg_7+300250 {O(n^2)}
9: n_cut___16->n_lbl42___18, Arg_5: 342*Arg_5 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_6: 342*Arg_7 {O(n)}
9: n_cut___16->n_lbl42___18, Arg_7: 684*Arg_7 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_0: 342*Arg_0 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
10: n_cut___16->n_lbl72___15, Arg_2: 342*Arg_2 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_3: 342*Arg_0+598 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
10: n_cut___16->n_lbl72___15, Arg_5: 342*Arg_5 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_6: 342*Arg_7 {O(n)}
10: n_cut___16->n_lbl72___15, Arg_7: 684*Arg_7 {O(n)}
11: n_cut___16->n_stop___14, Arg_0: 684*Arg_0 {O(n)}
11: n_cut___16->n_stop___14, Arg_1: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
11: n_cut___16->n_stop___14, Arg_2: 684*Arg_2 {O(n)}
11: n_cut___16->n_stop___14, Arg_3: 1 {O(1)}
11: n_cut___16->n_stop___14, Arg_4: 15759360*Arg_0*Arg_7+13949280*Arg_7+285552*Arg_0+93252*Arg_2+600500 {O(n^2)}
11: n_cut___16->n_stop___14, Arg_5: 684*Arg_5 {O(n)}
11: n_cut___16->n_stop___14, Arg_6: 684*Arg_7 {O(n)}
11: n_cut___16->n_stop___14, Arg_7: 684*Arg_7 {O(n)}
12: n_cut___19->n_cut___19, Arg_0: 342*Arg_0 {O(n)}
12: n_cut___19->n_cut___19, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
12: n_cut___19->n_cut___19, Arg_2: 342*Arg_2 {O(n)}
12: n_cut___19->n_cut___19, Arg_3: 342*Arg_0+598 {O(n)}
12: n_cut___19->n_cut___19, Arg_4: 1181952*Arg_0*Arg_7+1046204*Arg_7+21420*Arg_0+7031*Arg_2+45131 {O(n^2)}
12: n_cut___19->n_cut___19, Arg_5: 342*Arg_5 {O(n)}
12: n_cut___19->n_cut___19, Arg_6: 342*Arg_7 {O(n)}
12: n_cut___19->n_cut___19, Arg_7: 684*Arg_7 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_0: 342*Arg_0 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
13: n_cut___19->n_lbl42___18, Arg_2: 342*Arg_2 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_3: 342*Arg_0+598 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_4: 2363904*Arg_0*Arg_7+14062*Arg_2+2092408*Arg_7+42840*Arg_0+90262 {O(n^2)}
13: n_cut___19->n_lbl42___18, Arg_5: 342*Arg_5 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_6: 342*Arg_7 {O(n)}
13: n_cut___19->n_lbl42___18, Arg_7: 684*Arg_7 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
14: n_cut___19->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
14: n_cut___19->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
14: n_cut___19->n_lbl72___24, Arg_7: 684*Arg_7 {O(n)}
15: n_cut___19->n_stop___17, Arg_0: 684*Arg_0 {O(n)}
15: n_cut___19->n_stop___17, Arg_1: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
15: n_cut___19->n_stop___17, Arg_2: 684*Arg_2 {O(n)}
15: n_cut___19->n_stop___17, Arg_3: 1 {O(1)}
15: n_cut___19->n_stop___17, Arg_4: 2363904*Arg_0*Arg_7+14062*Arg_2+2092408*Arg_7+42840*Arg_0+90262 {O(n^2)}
15: n_cut___19->n_stop___17, Arg_5: 684*Arg_5 {O(n)}
15: n_cut___19->n_stop___17, Arg_6: 684*Arg_7 {O(n)}
15: n_cut___19->n_stop___17, Arg_7: 684*Arg_7 {O(n)}
16: n_cut___22->n_cut___22, Arg_0: 342*Arg_0 {O(n)}
16: n_cut___22->n_cut___22, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
16: n_cut___22->n_cut___22, Arg_2: 342*Arg_2 {O(n)}
16: n_cut___22->n_cut___22, Arg_3: 342*Arg_0+598 {O(n)}
16: n_cut___22->n_cut___22, Arg_4: 590976*Arg_0*Arg_7+10692*Arg_0+3432*Arg_2+523068*Arg_7+22337 {O(n^2)}
16: n_cut___22->n_cut___22, Arg_5: 342*Arg_5 {O(n)}
16: n_cut___22->n_cut___22, Arg_6: 342*Arg_7 {O(n)}
16: n_cut___22->n_cut___22, Arg_7: 690*Arg_7 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_0: 342*Arg_0 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
17: n_cut___22->n_lbl42___21, Arg_2: 342*Arg_2 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_3: 342*Arg_0+598 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_4: 1181952*Arg_0*Arg_7+1046136*Arg_7+21384*Arg_0+6864*Arg_2+44674 {O(n^2)}
17: n_cut___22->n_lbl42___21, Arg_5: 342*Arg_5 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_6: 342*Arg_7 {O(n)}
17: n_cut___22->n_lbl42___21, Arg_7: 690*Arg_7 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
18: n_cut___22->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_4: 196992*Arg_0*Arg_7+1119*Arg_2+174357*Arg_7+3564*Arg_0+7393 {O(n^2)}
18: n_cut___22->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
18: n_cut___22->n_lbl72___24, Arg_7: 690*Arg_7 {O(n)}
19: n_cut___22->n_stop___20, Arg_0: 690*Arg_0 {O(n)}
19: n_cut___22->n_stop___20, Arg_1: 196992*Arg_0*Arg_7+1119*Arg_2+174357*Arg_7+3564*Arg_0+7393 {O(n^2)}
19: n_cut___22->n_stop___20, Arg_2: 690*Arg_2 {O(n)}
19: n_cut___22->n_stop___20, Arg_3: 1 {O(1)}
19: n_cut___22->n_stop___20, Arg_4: 1181952*Arg_0*Arg_7+1046136*Arg_7+21384*Arg_0+6864*Arg_2+44674 {O(n^2)}
19: n_cut___22->n_stop___20, Arg_5: 690*Arg_5 {O(n)}
19: n_cut___22->n_stop___20, Arg_6: 690*Arg_7 {O(n)}
19: n_cut___22->n_stop___20, Arg_7: 690*Arg_7 {O(n)}
20: n_cut___25->n_cut___25, Arg_0: 18*Arg_0 {O(n)}
20: n_cut___25->n_cut___25, Arg_1: 18*Arg_2+35 {O(n)}
20: n_cut___25->n_cut___25, Arg_2: 18*Arg_2 {O(n)}
20: n_cut___25->n_cut___25, Arg_3: 18*Arg_0+29 {O(n)}
20: n_cut___25->n_cut___25, Arg_4: 18*Arg_5 {O(n)}
20: n_cut___25->n_cut___25, Arg_5: 18*Arg_5 {O(n)}
20: n_cut___25->n_cut___25, Arg_6: 18*Arg_7 {O(n)}
20: n_cut___25->n_cut___25, Arg_7: 39*Arg_7 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_0: 18*Arg_0 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_1: 18*Arg_2+35 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_2: 18*Arg_2 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_3: 18*Arg_0+29 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_4: 18*Arg_5 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_5: 18*Arg_5 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_6: 18*Arg_7 {O(n)}
21: n_cut___25->n_lbl42___29, Arg_7: 39*Arg_7 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_0: 39*Arg_0 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_1: 39*Arg_2+79 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_2: 39*Arg_2 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_3: 39*Arg_0+66 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_4: 39*Arg_2+76 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_5: 39*Arg_5 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_6: 39*Arg_7 {O(n)}
22: n_cut___25->n_lbl72___24, Arg_7: 39*Arg_7 {O(n)}
23: n_cut___25->n_stop___23, Arg_0: 39*Arg_0 {O(n)}
23: n_cut___25->n_stop___23, Arg_1: 39*Arg_2+76 {O(n)}
23: n_cut___25->n_stop___23, Arg_2: 39*Arg_2 {O(n)}
23: n_cut___25->n_stop___23, Arg_3: 1 {O(1)}
23: n_cut___25->n_stop___23, Arg_4: 39*Arg_5 {O(n)}
23: n_cut___25->n_stop___23, Arg_5: 39*Arg_5 {O(n)}
23: n_cut___25->n_stop___23, Arg_6: 39*Arg_7 {O(n)}
23: n_cut___25->n_stop___23, Arg_7: 39*Arg_7 {O(n)}
24: n_cut___3->n_cut___11, Arg_0: 3*Arg_0 {O(n)}
24: n_cut___3->n_cut___11, Arg_1: 4*Arg_2+Arg_7+8 {O(n)}
24: n_cut___3->n_cut___11, Arg_2: 3*Arg_2 {O(n)}
24: n_cut___3->n_cut___11, Arg_3: 3*Arg_0+5 {O(n)}
24: n_cut___3->n_cut___11, Arg_4: 4*Arg_2+Arg_7+11 {O(n)}
24: n_cut___3->n_cut___11, Arg_5: 3*Arg_5 {O(n)}
24: n_cut___3->n_cut___11, Arg_6: 3*Arg_7 {O(n)}
24: n_cut___3->n_cut___11, Arg_7: 3*Arg_7 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_0: 3*Arg_0 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_1: 4*Arg_2+Arg_7+10 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_2: 3*Arg_2 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_3: 3*Arg_0+3 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_4: 4*Arg_2+Arg_7+11 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_5: 3*Arg_5 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_6: 3*Arg_7 {O(n)}
25: n_cut___3->n_lbl42___21, Arg_7: 3*Arg_7 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_0: 3*Arg_0 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_1: 4*Arg_2+Arg_7+10 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_2: 3*Arg_2 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_3: 3*Arg_0+5 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_4: 4*Arg_2+Arg_7+8 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_5: 3*Arg_5 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_6: 3*Arg_7 {O(n)}
26: n_cut___3->n_lbl72___28, Arg_7: 3*Arg_7 {O(n)}
27: n_cut___3->n_stop___1, Arg_0: 0 {O(1)}
27: n_cut___3->n_stop___1, Arg_1: 4*Arg_2+Arg_7+8 {O(n)}
27: n_cut___3->n_stop___1, Arg_2: 3*Arg_2 {O(n)}
27: n_cut___3->n_stop___1, Arg_3: 1 {O(1)}
27: n_cut___3->n_stop___1, Arg_4: 4*Arg_2+Arg_7+11 {O(n)}
27: n_cut___3->n_stop___1, Arg_5: 3*Arg_5 {O(n)}
27: n_cut___3->n_stop___1, Arg_6: 3*Arg_7 {O(n)}
27: n_cut___3->n_stop___1, Arg_7: 3*Arg_7 {O(n)}
28: n_cut___30->n_cut___30, Arg_0: Arg_0 {O(n)}
28: n_cut___30->n_cut___30, Arg_1: Arg_2 {O(n)}
28: n_cut___30->n_cut___30, Arg_2: Arg_2 {O(n)}
28: n_cut___30->n_cut___30, Arg_3: Arg_0+3 {O(n)}
28: n_cut___30->n_cut___30, Arg_4: Arg_5 {O(n)}
28: n_cut___30->n_cut___30, Arg_5: Arg_5 {O(n)}
28: n_cut___30->n_cut___30, Arg_6: Arg_7 {O(n)}
28: n_cut___30->n_cut___30, Arg_7: 2*Arg_7 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_0: 2*Arg_0 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_1: 2*Arg_2+2 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_2: 2*Arg_2 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_3: 2*Arg_0+5 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_4: 2*Arg_5 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_5: 2*Arg_5 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_6: 2*Arg_7 {O(n)}
29: n_cut___30->n_lbl42___29, Arg_7: 2*Arg_7 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_0: 2*Arg_0 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_1: 2*Arg_2+2 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_2: 2*Arg_2 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_3: 2*Arg_0+7 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_4: 2*Arg_2 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_5: 2*Arg_5 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_6: 2*Arg_7 {O(n)}
30: n_cut___30->n_lbl72___28, Arg_7: 2*Arg_7 {O(n)}
31: n_cut___30->n_stop___26, Arg_0: 2*Arg_0 {O(n)}
31: n_cut___30->n_stop___26, Arg_1: 2*Arg_2 {O(n)}
31: n_cut___30->n_stop___26, Arg_2: 2*Arg_2 {O(n)}
31: n_cut___30->n_stop___26, Arg_3: 1 {O(1)}
31: n_cut___30->n_stop___26, Arg_4: 2*Arg_5 {O(n)}
31: n_cut___30->n_stop___26, Arg_5: 2*Arg_5 {O(n)}
31: n_cut___30->n_stop___26, Arg_6: 2*Arg_7 {O(n)}
31: n_cut___30->n_stop___26, Arg_7: 2*Arg_7 {O(n)}
32: n_cut___34->n_cut___30, Arg_0: Arg_0 {O(n)}
32: n_cut___34->n_cut___30, Arg_1: Arg_2 {O(n)}
32: n_cut___34->n_cut___30, Arg_2: Arg_2 {O(n)}
32: n_cut___34->n_cut___30, Arg_3: Arg_0+2 {O(n)}
32: n_cut___34->n_cut___30, Arg_4: Arg_5 {O(n)}
32: n_cut___34->n_cut___30, Arg_5: Arg_5 {O(n)}
32: n_cut___34->n_cut___30, Arg_6: Arg_7 {O(n)}
32: n_cut___34->n_cut___30, Arg_7: Arg_7 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_0: Arg_0 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_1: Arg_2+1 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_2: Arg_2 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_3: Arg_0+1 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_4: Arg_5 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_5: Arg_5 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_6: Arg_7 {O(n)}
33: n_cut___34->n_lbl42___29, Arg_7: Arg_7 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_0: Arg_0 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_1: Arg_2+1 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_2: Arg_2 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_3: Arg_0+2 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_4: Arg_2 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_5: Arg_5 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_6: Arg_7 {O(n)}
34: n_cut___34->n_lbl72___28, Arg_7: Arg_7 {O(n)}
35: n_cut___34->n_stop___27, Arg_0: 0 {O(1)}
35: n_cut___34->n_stop___27, Arg_1: Arg_2 {O(n)}
35: n_cut___34->n_stop___27, Arg_2: Arg_2 {O(n)}
35: n_cut___34->n_stop___27, Arg_3: 1 {O(1)}
35: n_cut___34->n_stop___27, Arg_4: Arg_5 {O(n)}
35: n_cut___34->n_stop___27, Arg_5: Arg_5 {O(n)}
35: n_cut___34->n_stop___27, Arg_6: Arg_7 {O(n)}
35: n_cut___34->n_stop___27, Arg_7: Arg_7 {O(n)}
36: n_cut___5->n_cut___22, Arg_0: 6*Arg_0 {O(n)}
36: n_cut___5->n_cut___22, Arg_1: 3*Arg_7+9*Arg_2+29 {O(n)}
36: n_cut___5->n_cut___22, Arg_2: 6*Arg_2 {O(n)}
36: n_cut___5->n_cut___22, Arg_3: 6*Arg_0+7 {O(n)}
36: n_cut___5->n_cut___22, Arg_4: 3*Arg_7+9*Arg_2+32 {O(n)}
36: n_cut___5->n_cut___22, Arg_5: 6*Arg_5 {O(n)}
36: n_cut___5->n_cut___22, Arg_6: 6*Arg_7 {O(n)}
36: n_cut___5->n_cut___22, Arg_7: 6*Arg_7 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_0: 6*Arg_0 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_1: 3*Arg_7+9*Arg_2+30 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_2: 6*Arg_2 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_3: 6*Arg_0+6 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_4: 3*Arg_7+9*Arg_2+32 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_5: 6*Arg_5 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_6: 6*Arg_7 {O(n)}
37: n_cut___5->n_lbl42___21, Arg_7: 6*Arg_7 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_0: 6*Arg_0 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_1: 3*Arg_7+9*Arg_2+30 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_2: 6*Arg_2 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_3: 6*Arg_0+7 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_4: 3*Arg_7+9*Arg_2+29 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_5: 6*Arg_5 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_6: 6*Arg_7 {O(n)}
38: n_cut___5->n_lbl72___24, Arg_7: 6*Arg_7 {O(n)}
39: n_cut___5->n_stop___4, Arg_0: 0 {O(1)}
39: n_cut___5->n_stop___4, Arg_1: 3*Arg_7+9*Arg_2+29 {O(n)}
39: n_cut___5->n_stop___4, Arg_2: 6*Arg_2 {O(n)}
39: n_cut___5->n_stop___4, Arg_3: 1 {O(1)}
39: n_cut___5->n_stop___4, Arg_4: 3*Arg_7+9*Arg_2+32 {O(n)}
39: n_cut___5->n_stop___4, Arg_5: 6*Arg_5 {O(n)}
39: n_cut___5->n_stop___4, Arg_6: 6*Arg_7 {O(n)}
39: n_cut___5->n_stop___4, Arg_7: 6*Arg_7 {O(n)}
40: n_cut___9->n_cut___25, Arg_0: 3*Arg_0 {O(n)}
40: n_cut___9->n_cut___25, Arg_1: 3*Arg_2+6 {O(n)}
40: n_cut___9->n_cut___25, Arg_2: 3*Arg_2 {O(n)}
40: n_cut___9->n_cut___25, Arg_3: 3*Arg_0+5 {O(n)}
40: n_cut___9->n_cut___25, Arg_4: 3*Arg_5 {O(n)}
40: n_cut___9->n_cut___25, Arg_5: 3*Arg_5 {O(n)}
40: n_cut___9->n_cut___25, Arg_6: 3*Arg_7 {O(n)}
40: n_cut___9->n_cut___25, Arg_7: 3*Arg_7 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_0: 3*Arg_0 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_1: 3*Arg_2+8 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_2: 3*Arg_2 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_3: 3*Arg_0+3 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_4: 3*Arg_5 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_5: 3*Arg_5 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_6: 3*Arg_7 {O(n)}
41: n_cut___9->n_lbl42___29, Arg_7: 3*Arg_7 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_0: 3*Arg_0 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_1: 3*Arg_2+8 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_2: 3*Arg_2 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_3: 3*Arg_0+5 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_4: 3*Arg_2+6 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_5: 3*Arg_5 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_6: 3*Arg_7 {O(n)}
42: n_cut___9->n_lbl72___24, Arg_7: 3*Arg_7 {O(n)}
43: n_cut___9->n_stop___6, Arg_0: 0 {O(1)}
43: n_cut___9->n_stop___6, Arg_1: 3*Arg_2+6 {O(n)}
43: n_cut___9->n_stop___6, Arg_2: 3*Arg_2 {O(n)}
43: n_cut___9->n_stop___6, Arg_3: 1 {O(1)}
43: n_cut___9->n_stop___6, Arg_4: 3*Arg_5 {O(n)}
43: n_cut___9->n_stop___6, Arg_5: 3*Arg_5 {O(n)}
43: n_cut___9->n_stop___6, Arg_6: 3*Arg_7 {O(n)}
43: n_cut___9->n_stop___6, Arg_7: 3*Arg_7 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_0: 342*Arg_0 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
44: n_lbl42___18->n_cut___16, Arg_2: 342*Arg_2 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_3: 342*Arg_0+598 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_4: 7879680*Arg_0*Arg_7+142776*Arg_0+46626*Arg_2+6974640*Arg_7+300250 {O(n^2)}
44: n_lbl42___18->n_cut___16, Arg_5: 342*Arg_5 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_6: 342*Arg_7 {O(n)}
44: n_lbl42___18->n_cut___16, Arg_7: 1710*Arg_7 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_0: 342*Arg_0 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
45: n_lbl42___18->n_lbl42___18, Arg_2: 342*Arg_2 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_3: 342*Arg_0+598 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_4: 7879680*Arg_0*Arg_7+142776*Arg_0+46626*Arg_2+6974640*Arg_7+300250 {O(n^2)}
45: n_lbl42___18->n_lbl42___18, Arg_5: 342*Arg_5 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_6: 342*Arg_7 {O(n)}
45: n_lbl42___18->n_lbl42___18, Arg_7: 1710*Arg_7 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_0: 342*Arg_0 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
46: n_lbl42___18->n_lbl72___15, Arg_2: 342*Arg_2 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_3: 342*Arg_0+598 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_4: 492480*Arg_0*Arg_7+2775*Arg_2+435885*Arg_7+8910*Arg_0+18410 {O(n^2)}
46: n_lbl42___18->n_lbl72___15, Arg_5: 342*Arg_5 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_6: 342*Arg_7 {O(n)}
46: n_lbl42___18->n_lbl72___15, Arg_7: 1710*Arg_7 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_0: 342*Arg_0 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
47: n_lbl42___21->n_cut___19, Arg_2: 342*Arg_2 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_3: 342*Arg_0+598 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_4: 1181952*Arg_0*Arg_7+1046204*Arg_7+21420*Arg_0+7031*Arg_2+45131 {O(n^2)}
47: n_lbl42___21->n_cut___19, Arg_5: 342*Arg_5 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_6: 342*Arg_7 {O(n)}
47: n_lbl42___21->n_cut___19, Arg_7: 390*Arg_7 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_0: 342*Arg_0 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
48: n_lbl42___21->n_lbl42___18, Arg_2: 342*Arg_2 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_3: 342*Arg_0+598 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_4: 1181952*Arg_0*Arg_7+1046204*Arg_7+21420*Arg_0+7031*Arg_2+45131 {O(n^2)}
48: n_lbl42___21->n_lbl42___18, Arg_5: 342*Arg_5 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_6: 342*Arg_7 {O(n)}
48: n_lbl42___21->n_lbl42___18, Arg_7: 390*Arg_7 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
49: n_lbl42___21->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_4: 98496*Arg_0*Arg_7+1800*Arg_0+638*Arg_2+87212*Arg_7+3911 {O(n^2)}
49: n_lbl42___21->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
49: n_lbl42___21->n_lbl72___24, Arg_7: 390*Arg_7 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_0: 18*Arg_0 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_1: 18*Arg_2+35 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_2: 18*Arg_2 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_3: 18*Arg_0+29 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_4: 18*Arg_5 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_5: 18*Arg_5 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_6: 18*Arg_7 {O(n)}
50: n_lbl42___29->n_cut___25, Arg_7: 42*Arg_7 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_0: 18*Arg_0 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_1: 18*Arg_2+35 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_2: 18*Arg_2 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_3: 18*Arg_0+29 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_4: 18*Arg_5 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_5: 18*Arg_5 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_6: 18*Arg_7 {O(n)}
51: n_lbl42___29->n_lbl42___29, Arg_7: 42*Arg_7 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_0: 42*Arg_0 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_1: 42*Arg_2+86 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_2: 42*Arg_2 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_3: 42*Arg_0+72 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_4: 42*Arg_2+81 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_5: 42*Arg_5 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_6: 42*Arg_7 {O(n)}
52: n_lbl42___29->n_lbl72___24, Arg_7: 42*Arg_7 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_0: Arg_0 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_1: Arg_2+1 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_2: Arg_2 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_3: Arg_0+1 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_4: Arg_5 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_5: Arg_5 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_6: Arg_7 {O(n)}
53: n_lbl42___33->n_cut___9, Arg_7: Arg_7 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_0: Arg_0 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_1: Arg_2+2 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_2: Arg_2 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_3: Arg_0 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_4: Arg_5 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_5: Arg_5 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_6: Arg_7 {O(n)}
54: n_lbl42___33->n_lbl42___8, Arg_7: Arg_7 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_0: Arg_0 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_1: Arg_2+2 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_2: Arg_2 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_3: Arg_0+1 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_4: Arg_2+1 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_5: Arg_5 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_6: Arg_7 {O(n)}
55: n_lbl42___33->n_lbl72___7, Arg_7: Arg_7 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_0: 2*Arg_0 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_1: 2*Arg_2+5 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_2: 2*Arg_2 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_3: 2*Arg_0+2 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_4: 2*Arg_5 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_5: 2*Arg_5 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_6: 2*Arg_7 {O(n)}
56: n_lbl42___8->n_cut___9, Arg_7: 2*Arg_7 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_0: Arg_0 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_1: Arg_2+3 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_2: Arg_2 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_3: Arg_0 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_4: Arg_5 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_5: Arg_5 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_6: Arg_7 {O(n)}
57: n_lbl42___8->n_lbl42___8, Arg_7: 2*Arg_7 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_0: 2*Arg_0 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_1: 2*Arg_2+7 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_2: 2*Arg_2 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_3: 2*Arg_0+2 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_4: 2*Arg_2+5 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_5: 2*Arg_5 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_6: 2*Arg_7 {O(n)}
58: n_lbl42___8->n_lbl72___7, Arg_7: 2*Arg_7 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_0: 342*Arg_0 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
59: n_lbl72___15->n_cut___13, Arg_2: 342*Arg_2 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_3: 342*Arg_0+598 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7366 {O(n^2)}
59: n_lbl72___15->n_cut___13, Arg_5: 342*Arg_5 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_6: 342*Arg_7 {O(n)}
59: n_lbl72___15->n_cut___13, Arg_7: 684*Arg_7 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
60: n_lbl72___15->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_4: 196992*Arg_0*Arg_7+1110*Arg_2+174354*Arg_7+3564*Arg_0+7364 {O(n^2)}
60: n_lbl72___15->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
60: n_lbl72___15->n_lbl72___24, Arg_7: 684*Arg_7 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_0: 2*Arg_0 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_1: 3*Arg_2+Arg_7+7 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_2: 2*Arg_2 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_3: 2*Arg_0+2 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_4: 3*Arg_2+Arg_7+9 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_5: 2*Arg_5 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_6: 2*Arg_7 {O(n)}
61: n_lbl72___2->n_cut___3, Arg_7: 2*Arg_7 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_0: Arg_0 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_1: 2*Arg_2+Arg_7+5 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_2: Arg_2 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_3: Arg_0+1 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_4: 3*Arg_2+Arg_7+7 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_5: Arg_5 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_6: Arg_7 {O(n)}
62: n_lbl72___2->n_lbl72___2, Arg_7: 2*Arg_7 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_0: 342*Arg_0 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
63: n_lbl72___24->n_cut___22, Arg_2: 342*Arg_2 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_3: 342*Arg_0+598 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_4: 590976*Arg_0*Arg_7+10692*Arg_0+3423*Arg_2+523065*Arg_7+22305 {O(n^2)}
63: n_lbl72___24->n_cut___22, Arg_5: 342*Arg_5 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_6: 342*Arg_7 {O(n)}
63: n_lbl72___24->n_cut___22, Arg_7: 2142*Arg_7 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_0: 342*Arg_0 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_1: 98496*Arg_0*Arg_7+1782*Arg_0+555*Arg_2+87177*Arg_7+3682 {O(n^2)}
64: n_lbl72___24->n_lbl72___24, Arg_2: 342*Arg_2 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_3: 342*Arg_0+598 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_4: 590976*Arg_0*Arg_7+10692*Arg_0+3423*Arg_2+523065*Arg_7+22295 {O(n^2)}
64: n_lbl72___24->n_lbl72___24, Arg_5: 342*Arg_5 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_6: 342*Arg_7 {O(n)}
64: n_lbl72___24->n_lbl72___24, Arg_7: 2142*Arg_7 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_0: 18*Arg_0 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_1: 15*Arg_7+33*Arg_2+9*Arg_0+89 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_2: 18*Arg_2 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_3: 18*Arg_0+39 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_4: 18*Arg_0+31*Arg_7+73*Arg_2+196 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_5: 18*Arg_5 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_6: 18*Arg_7 {O(n)}
65: n_lbl72___28->n_cut___11, Arg_7: 42*Arg_7 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_0: 18*Arg_0 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_1: 15*Arg_7+33*Arg_2+9*Arg_0+89 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_2: 18*Arg_2 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_3: 18*Arg_0+39 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_4: 18*Arg_0+31*Arg_7+73*Arg_2+191 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_5: 18*Arg_5 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_6: 18*Arg_7 {O(n)}
66: n_lbl72___28->n_lbl72___28, Arg_7: 42*Arg_7 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_0: Arg_0 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_1: Arg_2+1 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_2: Arg_2 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_3: Arg_0+1 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_4: Arg_2+2 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_5: Arg_5 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_6: Arg_7 {O(n)}
67: n_lbl72___32->n_cut___3, Arg_7: Arg_7 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_0: Arg_0 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_1: Arg_2+2 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_2: Arg_2 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_3: Arg_0+1 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_4: Arg_2+1 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_5: Arg_5 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_6: Arg_7 {O(n)}
68: n_lbl72___32->n_lbl72___2, Arg_7: Arg_7 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_0: 6*Arg_0 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_1: 3*Arg_7+9*Arg_2+29 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_2: 6*Arg_2 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_3: 6*Arg_0+6 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_4: 3*Arg_7+9*Arg_2+32 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_5: 6*Arg_5 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_6: 6*Arg_7 {O(n)}
69: n_lbl72___7->n_cut___5, Arg_7: 6*Arg_7 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_0: 3*Arg_0 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_1: 3*Arg_7+6*Arg_2+20 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_2: 3*Arg_2 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_3: 3*Arg_0+3 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_4: 3*Arg_7+9*Arg_2+29 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_5: 3*Arg_5 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_6: 3*Arg_7 {O(n)}
70: n_lbl72___7->n_lbl72___7, Arg_7: 6*Arg_7 {O(n)}
71: n_start0->n_start___35, Arg_0: Arg_0 {O(n)}
71: n_start0->n_start___35, Arg_1: Arg_2 {O(n)}
71: n_start0->n_start___35, Arg_2: Arg_2 {O(n)}
71: n_start0->n_start___35, Arg_3: Arg_0 {O(n)}
71: n_start0->n_start___35, Arg_4: Arg_5 {O(n)}
71: n_start0->n_start___35, Arg_5: Arg_5 {O(n)}
71: n_start0->n_start___35, Arg_6: Arg_7 {O(n)}
71: n_start0->n_start___35, Arg_7: Arg_7 {O(n)}
72: n_start___35->n_cut___34, Arg_0: Arg_0 {O(n)}
72: n_start___35->n_cut___34, Arg_1: Arg_2 {O(n)}
72: n_start___35->n_cut___34, Arg_2: Arg_2 {O(n)}
72: n_start___35->n_cut___34, Arg_3: Arg_0+1 {O(n)}
72: n_start___35->n_cut___34, Arg_4: Arg_5 {O(n)}
72: n_start___35->n_cut___34, Arg_5: Arg_5 {O(n)}
72: n_start___35->n_cut___34, Arg_6: Arg_7 {O(n)}
72: n_start___35->n_cut___34, Arg_7: Arg_7 {O(n)}
73: n_start___35->n_lbl42___33, Arg_0: Arg_0 {O(n)}
73: n_start___35->n_lbl42___33, Arg_1: Arg_2+1 {O(n)}
73: n_start___35->n_lbl42___33, Arg_2: Arg_2 {O(n)}
73: n_start___35->n_lbl42___33, Arg_3: Arg_0 {O(n)}
73: n_start___35->n_lbl42___33, Arg_4: Arg_5 {O(n)}
73: n_start___35->n_lbl42___33, Arg_5: Arg_5 {O(n)}
73: n_start___35->n_lbl42___33, Arg_6: Arg_7 {O(n)}
73: n_start___35->n_lbl42___33, Arg_7: Arg_7 {O(n)}
74: n_start___35->n_lbl72___32, Arg_0: Arg_0 {O(n)}
74: n_start___35->n_lbl72___32, Arg_1: Arg_2+1 {O(n)}
74: n_start___35->n_lbl72___32, Arg_2: Arg_2 {O(n)}
74: n_start___35->n_lbl72___32, Arg_3: Arg_0+1 {O(n)}
74: n_start___35->n_lbl72___32, Arg_4: Arg_2 {O(n)}
74: n_start___35->n_lbl72___32, Arg_5: Arg_5 {O(n)}
74: n_start___35->n_lbl72___32, Arg_6: Arg_7 {O(n)}
74: n_start___35->n_lbl72___32, Arg_7: Arg_7 {O(n)}
75: n_start___35->n_stop___31, Arg_0: Arg_0 {O(n)}
75: n_start___35->n_stop___31, Arg_1: Arg_2 {O(n)}
75: n_start___35->n_stop___31, Arg_2: Arg_2 {O(n)}
75: n_start___35->n_stop___31, Arg_3: Arg_0 {O(n)}
75: n_start___35->n_stop___31, Arg_4: Arg_5 {O(n)}
75: n_start___35->n_stop___31, Arg_5: Arg_5 {O(n)}
75: n_start___35->n_stop___31, Arg_6: Arg_7 {O(n)}
75: n_start___35->n_stop___31, Arg_7: Arg_7 {O(n)}