Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: C_P, D_P, E_P, F_P, H_P, NoDet0
Locations: n_f0, n_f12___27, n_f12___33, n_f12___36, n_f15___26, n_f15___30, n_f15___31, n_f15___32, n_f15___35, n_f28___12, n_f28___16, n_f28___2, n_f28___29, n_f28___34, n_f28___6, n_f30___25, n_f42___24, n_f59___10, n_f59___20, n_f59___22, n_f59___23, n_f69___18, n_f69___19, n_f69___21, n_f69___8, n_f69___9, n_f71___11, n_f71___17, n_f71___3, n_f71___4, n_f71___7, n_f73___14, n_f73___15, n_f82___1, n_f82___13, n_f82___28, n_f82___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
1:n_f12___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___30(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
2:n_f12___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
3:n_f12___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___30(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
4:n_f12___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
5:n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___35(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_0
6:n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1
7:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___27(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
8:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
9:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
10:n_f15___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
11:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___27(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3
12:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
13:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
14:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
15:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
16:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___32(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
17:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
18:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
19:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f15___32(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
20:n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0
21:n_f28___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f82___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
22:n_f28___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f82___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
23:n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f82___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
24:n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0
25:n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f82___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
26:n_f28___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f82___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
27:n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f42___24(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1
28:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
29:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
30:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_3):|:1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3
31:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
32:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
33:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
34:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
35:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
36:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
37:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,H_P,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
38:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
39:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
40:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
41:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
42:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
43:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
44:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
45:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
46:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
47:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
48:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
49:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___16(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_3 && Arg_3<=Arg_0
50:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___14(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
51:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
52:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___16(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
53:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___14(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
54:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
55:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___2(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
56:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___14(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
57:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
58:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___6(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
59:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___14(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
60:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
61:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___6(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
62:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___14(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
63:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,Arg_10):|:1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
64:n_f73___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1
65:n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1

Preprocessing

Eliminate variables {NoDet0,Arg_6,Arg_8,Arg_9} that do not contribute to the problem

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f30___25

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___7

Found invariant Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f15___32

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f59___22

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f69___18

Found invariant 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 for location n_f82___28

Found invariant 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f69___19

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f71___17

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___8

Found invariant 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f73___15

Found invariant 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f15___30

Found invariant Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f28___2

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f59___10

Found invariant 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___9

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 for location n_f12___27

Found invariant Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_f28___29

Found invariant Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f28___16

Found invariant 1<=0 for location n_f73___14

Found invariant 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___4

Found invariant 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f59___23

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 for location n_f15___31

Found invariant 1+Arg_0<=Arg_1 for location n_f28___34

Found invariant Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f69___21

Found invariant Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f15___35

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f42___24

Found invariant Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f59___20

Found invariant Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f71___3

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 for location n_f15___26

Found invariant Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f82___5

Found invariant 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f71___11

Found invariant Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 for location n_f12___33

Found invariant Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f82___1

Found invariant Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f82___13

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f28___12

Found invariant Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 for location n_f28___6

Cut unsatisfiable transition 182: n_f71___11->n_f73___14

Cut unsatisfiable transition 185: n_f71___17->n_f73___14

Cut unsatisfiable transition 188: n_f71___3->n_f73___14

Cut unsatisfiable transition 191: n_f71___4->n_f73___14

Cut unsatisfiable transition 194: n_f71___7->n_f73___14

Cut unsatisfiable transition 196: n_f73___14->n_f28___29

Cut unreachable locations [n_f73___14] from the program graph

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_7, Arg_10
Temp_Vars: C_P, D_P, E_P, F_P, H_P
Locations: n_f0, n_f12___27, n_f12___33, n_f12___36, n_f15___26, n_f15___30, n_f15___31, n_f15___32, n_f15___35, n_f28___12, n_f28___16, n_f28___2, n_f28___29, n_f28___34, n_f28___6, n_f30___25, n_f42___24, n_f59___10, n_f59___20, n_f59___22, n_f59___23, n_f69___18, n_f69___19, n_f69___21, n_f69___8, n_f69___9, n_f71___11, n_f71___17, n_f71___3, n_f71___4, n_f71___7, n_f73___15, n_f82___1, n_f82___13, n_f82___28, n_f82___5
Transitions:
132:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10)
133:n_f12___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___30(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
134:n_f12___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
135:n_f12___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___30(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0
136:n_f12___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1
137:n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___35(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_0
138:n_f12___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1
139:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___27(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
140:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
141:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
142:n_f15___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
143:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___27(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3
144:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
145:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
146:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
147:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
148:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___32(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
149:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
150:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P
151:n_f15___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___32(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3
152:n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0
153:n_f28___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f82___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
154:n_f28___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f82___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=1+Arg_10 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && Arg_0<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
155:n_f28___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f82___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
156:n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0
157:n_f28___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f82___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
158:n_f28___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f82___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && 2+Arg_10<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_7 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_10<=Arg_0 && Arg_10<=Arg_1 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_3
159:n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f42___24(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1
160:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
161:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
162:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3
163:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
164:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
165:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
166:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
167:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
168:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
169:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7
170:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7
171:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
172:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
173:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
174:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1
175:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
176:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3
177:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
178:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0
179:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
180:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1
181:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___16(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && Arg_0<=Arg_3 && Arg_3<=Arg_0
183:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
184:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___16(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
186:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
187:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___2(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
189:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
190:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___6(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0
192:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
193:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___6(Arg_0,Arg_1,Arg_2,Arg_0+1,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
195:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
197:n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_7,Arg_10):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1

MPRF for transition 148:n_f15___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___32(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && Arg_3<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

Arg_0+Arg_3+3 {O(n)}

MPRF:

n_f15___32 [Arg_0+2-Arg_3 ]

MPRF for transition 140:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+10 {O(n)}

MPRF:

n_f15___26 [Arg_0+2-Arg_3 ]
n_f15___31 [Arg_0+1-Arg_3 ]

MPRF for transition 141:n_f15___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P of depth 1:

new bound:

4*Arg_0+4*Arg_3+8 {O(n)}

MPRF:

n_f15___26 [Arg_0+1-Arg_3 ]
n_f15___31 [Arg_0-Arg_3 ]

MPRF for transition 144:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___26(Arg_0,Arg_1,Arg_2,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && E_P<=Arg_2 && D_P<=1+Arg_0 && E_P<=F_P && F_P<=E_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f15___26 [Arg_0+1-Arg_3 ]
n_f15___31 [Arg_0+2-Arg_3 ]

MPRF for transition 145:n_f15___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___31(Arg_0,Arg_1,C_P,D_P,E_P,F_P,Arg_7,Arg_10):|:Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_3<=1+Arg_0 && Arg_5<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 && C_P<=E_P && E_P<=C_P of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f15___26 [Arg_0+1-Arg_3 ]
n_f15___31 [Arg_0+2-Arg_3 ]

MPRF for transition 135:n_f12___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f15___30(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 of depth 1:

new bound:

104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}

MPRF:

n_f15___30 [Arg_3-Arg_1 ]
n_f12___33 [Arg_3+1-Arg_1 ]

MPRF for transition 142:n_f15___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f12___33(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

30*Arg_0+30*Arg_1+12 {O(n)}

MPRF:

n_f15___30 [Arg_0+1-Arg_1 ]
n_f12___33 [Arg_0+1-Arg_1 ]

MPRF for transition 152:n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_0 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___3 [Arg_1-Arg_3 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3 ]
n_f28___12 [Arg_1+1-Arg_3 ]

MPRF for transition 159:n_f30___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f42___24(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3-1 ]
n_f59___10 [Arg_1-Arg_3-1 ]
n_f59___22 [Arg_1-Arg_3-1 ]
n_f59___20 [Arg_1-Arg_3-1 ]
n_f59___23 [Arg_1-Arg_3-1 ]
n_f69___18 [Arg_0+Arg_1-Arg_3-Arg_7 ]
n_f69___19 [Arg_1-Arg_3-1 ]
n_f69___21 [Arg_1-Arg_10-1 ]
n_f69___8 [Arg_1-Arg_3-1 ]
n_f69___9 [Arg_1-Arg_3-1 ]
n_f71___11 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_3-1 ]
n_f71___4 [Arg_1-Arg_3-1 ]
n_f71___7 [Arg_1-Arg_3-1 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 160:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_1+1-Arg_3 ]
n_f42___24 [Arg_1+1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_3 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___3 [Arg_1-Arg_10 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3 ]
n_f28___12 [Arg_1+1-Arg_3 ]

MPRF for transition 161:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_10+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_10-Arg_3 ]
n_f42___24 [Arg_10-Arg_3 ]
n_f59___10 [Arg_10-Arg_3 ]
n_f59___22 [Arg_10-Arg_3 ]
n_f59___20 [Arg_10-Arg_3-1 ]
n_f59___23 [Arg_10-Arg_3-1 ]
n_f69___18 [Arg_10-Arg_3-1 ]
n_f69___19 [Arg_10-Arg_3-1 ]
n_f69___21 [-1 ]
n_f69___8 [Arg_10-Arg_3 ]
n_f69___9 [Arg_10-Arg_3 ]
n_f71___11 [Arg_10-Arg_3-1 ]
n_f71___17 [Arg_10-Arg_3-1 ]
n_f71___3 [-1 ]
n_f71___4 [Arg_10-Arg_3 ]
n_f71___7 [Arg_10-Arg_3 ]
n_f73___15 [Arg_10-Arg_3-1 ]
n_f28___12 [Arg_10-Arg_3 ]

MPRF for transition 162:n_f42___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_3):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_10+1-Arg_3 ]
n_f42___24 [Arg_10+1-Arg_3 ]
n_f59___10 [Arg_10-Arg_3 ]
n_f59___22 [Arg_10-Arg_3 ]
n_f59___20 [Arg_10-Arg_3 ]
n_f59___23 [Arg_10-Arg_3 ]
n_f69___18 [Arg_10-Arg_3 ]
n_f69___19 [Arg_10-Arg_3 ]
n_f69___21 [0 ]
n_f69___8 [Arg_10-Arg_3 ]
n_f69___9 [Arg_10-Arg_3 ]
n_f71___11 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___3 [0 ]
n_f71___4 [Arg_10-Arg_3 ]
n_f71___7 [Arg_10-Arg_3 ]
n_f73___15 [Arg_10-Arg_3 ]
n_f28___12 [Arg_10+1-Arg_3 ]

MPRF for transition 163:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

2*Arg_1+Arg_10+Arg_7 {O(n)}

MPRF:

n_f30___25 [2*Arg_1-Arg_7-Arg_10 ]
n_f42___24 [2*Arg_1-Arg_7-Arg_10 ]
n_f59___10 [2*Arg_1-Arg_7-Arg_10 ]
n_f59___22 [2*Arg_1-Arg_7-Arg_10 ]
n_f59___20 [2*Arg_1-Arg_0-Arg_10 ]
n_f59___23 [2*Arg_1-Arg_7-Arg_10 ]
n_f69___18 [2*Arg_1-Arg_0-Arg_10 ]
n_f69___19 [2*Arg_1-Arg_7-Arg_10 ]
n_f69___21 [2*Arg_1-Arg_7-Arg_10 ]
n_f69___8 [2*Arg_1-Arg_7-Arg_10 ]
n_f69___9 [2*Arg_1-Arg_7-Arg_10 ]
n_f71___11 [2*Arg_1-Arg_7-Arg_10 ]
n_f71___17 [2*Arg_1-Arg_0-Arg_10 ]
n_f71___3 [2*Arg_1-Arg_7-Arg_10 ]
n_f71___4 [2*Arg_1-Arg_7-Arg_10 ]
n_f71___7 [2*Arg_1-Arg_7-Arg_10 ]
n_f73___15 [2*Arg_1-Arg_7-Arg_10 ]
n_f28___12 [2*Arg_1-Arg_7-Arg_10 ]

MPRF for transition 164:n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0+1-Arg_3 ]
n_f59___22 [Arg_0+1-Arg_3 ]
n_f59___20 [Arg_0-Arg_3 ]
n_f59___23 [Arg_0-Arg_3 ]
n_f69___18 [Arg_7-Arg_3-1 ]
n_f69___19 [Arg_0-Arg_3 ]
n_f69___21 [Arg_0-Arg_3 ]
n_f69___8 [Arg_0-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___3 [Arg_0-Arg_3 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_0-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 165:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_1+Arg_7 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_7 ]
n_f42___24 [Arg_1-Arg_7 ]
n_f59___10 [Arg_1-Arg_0 ]
n_f59___22 [Arg_1-Arg_7 ]
n_f59___20 [Arg_1+1-Arg_7 ]
n_f59___23 [Arg_1-Arg_7 ]
n_f69___18 [Arg_1-Arg_7 ]
n_f69___19 [Arg_1-Arg_7 ]
n_f69___21 [Arg_1-Arg_7 ]
n_f69___8 [Arg_1-Arg_0 ]
n_f69___9 [Arg_1-Arg_7 ]
n_f71___11 [Arg_1-Arg_7 ]
n_f71___17 [Arg_1-Arg_7 ]
n_f71___3 [Arg_1-Arg_7 ]
n_f71___4 [Arg_1-Arg_7 ]
n_f71___7 [Arg_1-Arg_0 ]
n_f73___15 [Arg_1-Arg_7 ]
n_f28___12 [Arg_1-Arg_7 ]

MPRF for transition 166:n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

2*Arg_1+Arg_0+Arg_7 {O(n)}

MPRF:

n_f30___25 [2*Arg_1-Arg_0-Arg_7 ]
n_f42___24 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___10 [2*Arg_1-2*Arg_0 ]
n_f59___22 [2*Arg_1-Arg_0-Arg_7 ]
n_f59___20 [2*Arg_1+1-Arg_0-Arg_7 ]
n_f59___23 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___18 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___19 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___21 [2*Arg_1-Arg_0-Arg_7 ]
n_f69___8 [2*Arg_1-2*Arg_0 ]
n_f69___9 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___11 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___17 [2*Arg_1+1-2*Arg_7 ]
n_f71___3 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___4 [2*Arg_1-Arg_0-Arg_7 ]
n_f71___7 [2*Arg_1-2*Arg_0 ]
n_f73___15 [2*Arg_1-Arg_0-Arg_7 ]
n_f28___12 [2*Arg_1-Arg_0-Arg_7 ]

MPRF for transition 167:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0-Arg_3 ]
n_f59___22 [Arg_0+1-Arg_3 ]
n_f59___20 [Arg_0+1-Arg_3 ]
n_f59___23 [Arg_0+1-Arg_3 ]
n_f69___18 [Arg_7-Arg_3 ]
n_f69___19 [Arg_0+1-Arg_3 ]
n_f69___21 [Arg_0+1-Arg_10 ]
n_f69___8 [Arg_0-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0+1-Arg_3 ]
n_f71___17 [Arg_7-Arg_3 ]
n_f71___3 [Arg_0+1-Arg_3 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_0-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 168:n_f59___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0+1-Arg_3 ]
n_f59___22 [Arg_0+1-Arg_3 ]
n_f59___20 [Arg_0-Arg_3 ]
n_f59___23 [Arg_0-Arg_3 ]
n_f69___18 [Arg_0-Arg_3 ]
n_f69___19 [Arg_0-Arg_3 ]
n_f69___21 [Arg_0-Arg_10 ]
n_f69___8 [Arg_7-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___3 [Arg_0-Arg_3 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_7-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 169:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f59___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,H_P,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && H_P<=1+Arg_0 && Arg_7+1<=H_P && H_P<=1+Arg_7 of depth 1:

new bound:

Arg_1+Arg_7+1 {O(n)}

MPRF:

n_f30___25 [Arg_1+1-Arg_7 ]
n_f42___24 [Arg_1+1-Arg_7 ]
n_f59___10 [Arg_1+1-Arg_7 ]
n_f59___22 [Arg_1+1-Arg_7 ]
n_f59___20 [Arg_1+1-Arg_7 ]
n_f59___23 [Arg_1+1-Arg_7 ]
n_f69___18 [Arg_1-Arg_0 ]
n_f69___19 [Arg_1+1-Arg_7 ]
n_f69___21 [Arg_1+1-Arg_7 ]
n_f69___8 [Arg_1+1-Arg_7 ]
n_f69___9 [Arg_1+1-Arg_7 ]
n_f71___11 [Arg_1+1-Arg_7 ]
n_f71___17 [Arg_1-Arg_0 ]
n_f71___3 [Arg_1+1-Arg_7 ]
n_f71___4 [Arg_1+1-Arg_7 ]
n_f71___7 [Arg_1-Arg_0 ]
n_f73___15 [Arg_1+1-Arg_7 ]
n_f28___12 [Arg_1+1-Arg_7 ]

MPRF for transition 170:n_f59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0-Arg_3 ]
n_f59___22 [Arg_0-Arg_3 ]
n_f59___20 [Arg_0+1-Arg_3 ]
n_f59___23 [Arg_0+1-Arg_3 ]
n_f69___18 [Arg_0+1-Arg_3 ]
n_f69___19 [Arg_0-Arg_3 ]
n_f69___21 [Arg_0-Arg_10 ]
n_f69___8 [Arg_0-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0-Arg_3 ]
n_f71___17 [Arg_7-Arg_3 ]
n_f71___3 [Arg_0-Arg_10 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_0-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 171:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_10 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 172:n_f69___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_10 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 173:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3-1 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3-1 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10-1 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_10-1 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 174:n_f69___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

2*Arg_1+Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [2*Arg_1+1-Arg_0-Arg_3 ]
n_f42___24 [2*Arg_1+1-Arg_0-Arg_3 ]
n_f59___10 [2*Arg_1-Arg_0-Arg_3 ]
n_f59___22 [2*Arg_1-Arg_0-Arg_3 ]
n_f59___20 [2*Arg_1-Arg_0-Arg_3 ]
n_f59___23 [2*Arg_1+1-Arg_0-Arg_3 ]
n_f69___18 [2*Arg_1-Arg_0-Arg_3 ]
n_f69___19 [2*Arg_1+1-Arg_0-Arg_3 ]
n_f69___21 [2*Arg_1-Arg_0-Arg_3 ]
n_f69___8 [2*Arg_1-Arg_0-Arg_3 ]
n_f69___9 [2*Arg_1-Arg_0-Arg_3 ]
n_f71___11 [2*Arg_1-Arg_0-Arg_3 ]
n_f71___17 [2*Arg_1-Arg_0-Arg_3 ]
n_f71___3 [2*Arg_1-Arg_0-Arg_10 ]
n_f71___4 [2*Arg_1-Arg_0-Arg_3 ]
n_f71___7 [2*Arg_1+1-Arg_3-Arg_7 ]
n_f73___15 [2*Arg_1-Arg_0-Arg_3 ]
n_f28___12 [2*Arg_1+1-Arg_0-Arg_3 ]

MPRF for transition 175:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___3 [Arg_1-Arg_10-1 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_0+Arg_1-Arg_3-Arg_7 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 176:n_f69___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_10 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___3 [Arg_1-Arg_10-1 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 177:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_1+Arg_7 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_7 ]
n_f42___24 [Arg_1-Arg_7 ]
n_f59___10 [Arg_1-Arg_0 ]
n_f59___22 [Arg_1-Arg_7 ]
n_f59___20 [Arg_1-Arg_0 ]
n_f59___23 [Arg_1-Arg_7 ]
n_f69___18 [Arg_1-Arg_7 ]
n_f69___19 [Arg_1-Arg_7 ]
n_f69___21 [Arg_1-Arg_7 ]
n_f69___8 [Arg_1+Arg_7-2*Arg_0-1 ]
n_f69___9 [Arg_1-Arg_7 ]
n_f71___11 [Arg_1-Arg_7 ]
n_f71___17 [Arg_1-Arg_7 ]
n_f71___3 [Arg_1-Arg_7 ]
n_f71___4 [Arg_1-Arg_7 ]
n_f71___7 [Arg_1+Arg_7-2*Arg_0-2 ]
n_f73___15 [Arg_1-Arg_7 ]
n_f28___12 [Arg_1-Arg_7 ]

MPRF for transition 178:n_f69___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0+1-Arg_3 ]
n_f59___22 [Arg_0+1-Arg_3 ]
n_f59___20 [Arg_0-Arg_3 ]
n_f59___23 [Arg_0-Arg_3 ]
n_f69___18 [Arg_0-Arg_3 ]
n_f69___19 [Arg_0-Arg_3 ]
n_f69___21 [Arg_0-Arg_3 ]
n_f69___8 [Arg_7-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0-Arg_3 ]
n_f71___17 [Arg_7-Arg_3-1 ]
n_f71___3 [Arg_0-Arg_10 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_7-Arg_3-1 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 179:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0-Arg_3 ]
n_f59___22 [Arg_0+1-Arg_3 ]
n_f59___20 [Arg_0-Arg_3 ]
n_f59___23 [Arg_0-Arg_3 ]
n_f69___18 [Arg_0-Arg_3 ]
n_f69___19 [Arg_0-Arg_3 ]
n_f69___21 [Arg_0-Arg_3 ]
n_f69___8 [Arg_0-Arg_3 ]
n_f69___9 [Arg_0+1-Arg_3 ]
n_f71___11 [Arg_0-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___3 [Arg_0-Arg_10 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_0-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 180:n_f69___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3-1 ]
n_f59___23 [Arg_1-Arg_3-1 ]
n_f69___18 [Arg_0+Arg_1-Arg_3-Arg_7 ]
n_f69___19 [Arg_1-Arg_3-1 ]
n_f69___21 [Arg_1-Arg_10-1 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_10-1 ]
n_f71___4 [Arg_1-Arg_3-1 ]
n_f71___7 [Arg_1+Arg_7-Arg_0-Arg_3-1 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 183:n_f71___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_7 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_3 ]
n_f42___24 [Arg_0+1-Arg_3 ]
n_f59___10 [Arg_0-Arg_3 ]
n_f59___22 [Arg_0-Arg_3 ]
n_f59___20 [Arg_0+1-Arg_3 ]
n_f59___23 [Arg_0+1-Arg_3 ]
n_f69___18 [Arg_7-Arg_3 ]
n_f69___19 [Arg_0+1-Arg_3 ]
n_f69___21 [Arg_0-Arg_3 ]
n_f69___8 [Arg_0-Arg_3 ]
n_f69___9 [Arg_0-Arg_3 ]
n_f71___11 [Arg_0+1-Arg_3 ]
n_f71___17 [Arg_0-Arg_3 ]
n_f71___3 [Arg_0-Arg_10 ]
n_f71___4 [Arg_0-Arg_3 ]
n_f71___7 [Arg_0-Arg_3 ]
n_f73___15 [Arg_0-Arg_3 ]
n_f28___12 [Arg_0+1-Arg_3 ]

MPRF for transition 186:n_f71___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_7+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_7 ]
n_f42___24 [Arg_0+1-Arg_7 ]
n_f59___10 [0 ]
n_f59___22 [Arg_0+1-Arg_7 ]
n_f59___20 [1 ]
n_f59___23 [Arg_0+1-Arg_7 ]
n_f69___18 [1 ]
n_f69___19 [Arg_0+1-Arg_7 ]
n_f69___21 [Arg_0+1-Arg_7 ]
n_f69___8 [0 ]
n_f69___9 [Arg_0+1-Arg_7 ]
n_f71___11 [Arg_0+1-Arg_7 ]
n_f71___17 [1 ]
n_f71___3 [Arg_0+1-Arg_7 ]
n_f71___4 [Arg_0+1-Arg_7 ]
n_f71___7 [0 ]
n_f73___15 [Arg_0+1-Arg_7 ]
n_f28___12 [Arg_0+1-Arg_7 ]

MPRF for transition 189:n_f71___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_3<=Arg_10 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_10<=Arg_1 && Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_10 && Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_10+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_10+1-Arg_3 ]
n_f42___24 [Arg_10+1-Arg_3 ]
n_f59___10 [Arg_10-Arg_3 ]
n_f59___22 [Arg_10-Arg_3 ]
n_f59___20 [Arg_10-Arg_3 ]
n_f59___23 [Arg_10-Arg_3 ]
n_f69___18 [Arg_10-Arg_3 ]
n_f69___19 [Arg_10-Arg_3 ]
n_f69___21 [1 ]
n_f69___8 [Arg_10-Arg_3 ]
n_f69___9 [Arg_10-Arg_3 ]
n_f71___11 [Arg_10-Arg_3 ]
n_f71___17 [Arg_10-Arg_3 ]
n_f71___3 [1 ]
n_f71___4 [Arg_10-Arg_3 ]
n_f71___7 [Arg_10-Arg_3 ]
n_f73___15 [Arg_10-Arg_3 ]
n_f28___12 [Arg_10+1-Arg_3 ]

MPRF for transition 192:n_f71___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_7 && 1+Arg_10<=Arg_3 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_1+Arg_3 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3 ]
n_f42___24 [Arg_1-Arg_3 ]
n_f59___10 [Arg_1-Arg_3 ]
n_f59___22 [Arg_1-Arg_3 ]
n_f59___20 [Arg_1-Arg_3 ]
n_f59___23 [Arg_1-Arg_3 ]
n_f69___18 [Arg_1-Arg_3 ]
n_f69___19 [Arg_1-Arg_3 ]
n_f69___21 [Arg_1-Arg_3 ]
n_f69___8 [Arg_1-Arg_3 ]
n_f69___9 [Arg_1-Arg_3 ]
n_f71___11 [Arg_1-Arg_3 ]
n_f71___17 [Arg_1-Arg_3 ]
n_f71___3 [Arg_1-Arg_3 ]
n_f71___4 [Arg_1-Arg_3 ]
n_f71___7 [Arg_1-Arg_3 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3 ]

MPRF for transition 195:n_f71___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f73___15(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_7,Arg_10):|:Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 2+Arg_10<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 1+Arg_10<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 2+Arg_10<=Arg_1 && 1+Arg_10<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_10<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && 1+D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

Arg_0+Arg_7+1 {O(n)}

MPRF:

n_f30___25 [Arg_0+1-Arg_7 ]
n_f42___24 [Arg_0+1-Arg_7 ]
n_f59___10 [1 ]
n_f59___22 [Arg_0+1-Arg_7 ]
n_f59___20 [0 ]
n_f59___23 [Arg_0+1-Arg_7 ]
n_f69___18 [0 ]
n_f69___19 [Arg_0+1-Arg_7 ]
n_f69___21 [Arg_0+1-Arg_7 ]
n_f69___8 [1 ]
n_f69___9 [Arg_0+1-Arg_7 ]
n_f71___11 [Arg_0+1-Arg_7 ]
n_f71___17 [Arg_0+1-Arg_7 ]
n_f71___3 [Arg_0+1-Arg_7 ]
n_f71___4 [Arg_0+1-Arg_7 ]
n_f71___7 [1 ]
n_f73___15 [Arg_0+1-Arg_7 ]
n_f28___12 [Arg_0+1-Arg_7 ]

MPRF for transition 197:n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_7,Arg_10) -> n_f28___12(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_7,Arg_10):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

Arg_1+Arg_3+1 {O(n)}

MPRF:

n_f30___25 [Arg_1-Arg_3-1 ]
n_f42___24 [Arg_1-Arg_3-1 ]
n_f59___10 [Arg_1-Arg_3-1 ]
n_f59___22 [Arg_1-Arg_3-1 ]
n_f59___20 [Arg_1-Arg_3-1 ]
n_f59___23 [Arg_1-Arg_3-1 ]
n_f69___18 [Arg_1-Arg_3-1 ]
n_f69___19 [Arg_1-Arg_3-1 ]
n_f69___21 [Arg_1-Arg_10-1 ]
n_f69___8 [Arg_1-Arg_3-1 ]
n_f69___9 [Arg_1-Arg_3-1 ]
n_f71___11 [Arg_1-Arg_3-1 ]
n_f71___17 [Arg_1-Arg_3-1 ]
n_f71___3 [Arg_1-Arg_3-1 ]
n_f71___4 [Arg_1-Arg_3-1 ]
n_f71___7 [Arg_1-Arg_3-1 ]
n_f73___15 [Arg_1-Arg_3-1 ]
n_f28___12 [Arg_1-Arg_3-1 ]

All Bounds

Timebounds

Overall timebound:132*Arg_0+143*Arg_3+4*Arg_10+7*Arg_7+80*Arg_1+352 {O(n)}
132: n_f0->n_f12___36: 1 {O(1)}
133: n_f12___27->n_f15___30: 1 {O(1)}
134: n_f12___27->n_f28___29: 1 {O(1)}
135: n_f12___33->n_f15___30: 104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}
136: n_f12___33->n_f28___29: 1 {O(1)}
137: n_f12___36->n_f15___35: 1 {O(1)}
138: n_f12___36->n_f28___34: 1 {O(1)}
139: n_f15___26->n_f12___27: 1 {O(1)}
140: n_f15___26->n_f15___26: 4*Arg_0+4*Arg_3+10 {O(n)}
141: n_f15___26->n_f15___31: 4*Arg_0+4*Arg_3+8 {O(n)}
142: n_f15___30->n_f12___33: 30*Arg_0+30*Arg_1+12 {O(n)}
143: n_f15___31->n_f12___27: 1 {O(1)}
144: n_f15___31->n_f15___26: 4*Arg_0+4*Arg_3+12 {O(n)}
145: n_f15___31->n_f15___31: 4*Arg_0+4*Arg_3+12 {O(n)}
146: n_f15___32->n_f12___33: 1 {O(1)}
147: n_f15___32->n_f15___31: 1 {O(1)}
148: n_f15___32->n_f15___32: Arg_0+Arg_3+3 {O(n)}
149: n_f15___35->n_f12___33: 1 {O(1)}
150: n_f15___35->n_f15___31: 1 {O(1)}
151: n_f15___35->n_f15___32: 1 {O(1)}
152: n_f28___12->n_f30___25: Arg_1+Arg_3 {O(n)}
153: n_f28___16->n_f82___13: 1 {O(1)}
154: n_f28___2->n_f82___1: 1 {O(1)}
155: n_f28___29->n_f82___28: 1 {O(1)}
156: n_f28___34->n_f30___25: 1 {O(1)}
157: n_f28___34->n_f82___28: 1 {O(1)}
158: n_f28___6->n_f82___5: 1 {O(1)}
159: n_f30___25->n_f42___24: Arg_1+Arg_3 {O(n)}
160: n_f42___24->n_f59___22: Arg_1+Arg_3+1 {O(n)}
161: n_f42___24->n_f59___23: Arg_10+Arg_3 {O(n)}
162: n_f42___24->n_f69___21: Arg_10+Arg_3+1 {O(n)}
163: n_f59___10->n_f59___10: 2*Arg_1+Arg_10+Arg_7 {O(n)}
164: n_f59___10->n_f69___8: Arg_0+Arg_3+1 {O(n)}
165: n_f59___20->n_f59___20: Arg_1+Arg_7 {O(n)}
166: n_f59___20->n_f69___18: 2*Arg_1+Arg_0+Arg_7 {O(n)}
167: n_f59___22->n_f59___10: Arg_0+Arg_3+1 {O(n)}
168: n_f59___22->n_f69___9: Arg_0+Arg_3+1 {O(n)}
169: n_f59___23->n_f59___20: Arg_1+Arg_7+1 {O(n)}
170: n_f59___23->n_f69___19: Arg_0+Arg_3+1 {O(n)}
171: n_f69___18->n_f71___17: Arg_1+Arg_3 {O(n)}
172: n_f69___18->n_f71___17: Arg_1+Arg_3 {O(n)}
173: n_f69___19->n_f71___11: Arg_1+Arg_3 {O(n)}
174: n_f69___19->n_f71___11: 2*Arg_1+Arg_0+Arg_3+1 {O(n)}
175: n_f69___21->n_f71___3: Arg_1+Arg_3 {O(n)}
176: n_f69___21->n_f71___3: Arg_1+Arg_3 {O(n)}
177: n_f69___8->n_f71___7: Arg_1+Arg_7 {O(n)}
178: n_f69___8->n_f71___7: Arg_0+Arg_3+1 {O(n)}
179: n_f69___9->n_f71___4: Arg_0+Arg_3+1 {O(n)}
180: n_f69___9->n_f71___4: Arg_1+Arg_3 {O(n)}
181: n_f71___11->n_f28___16: 1 {O(1)}
183: n_f71___11->n_f73___15: Arg_0+Arg_3+1 {O(n)}
184: n_f71___17->n_f28___16: 1 {O(1)}
186: n_f71___17->n_f73___15: Arg_0+Arg_7+1 {O(n)}
187: n_f71___3->n_f28___2: 1 {O(1)}
189: n_f71___3->n_f73___15: Arg_10+Arg_3+1 {O(n)}
190: n_f71___4->n_f28___6: 1 {O(1)}
192: n_f71___4->n_f73___15: Arg_1+Arg_3 {O(n)}
193: n_f71___7->n_f28___6: 1 {O(1)}
195: n_f71___7->n_f73___15: Arg_0+Arg_7+1 {O(n)}
197: n_f73___15->n_f28___12: Arg_1+Arg_3+1 {O(n)}

Costbounds

Overall costbound: 132*Arg_0+143*Arg_3+4*Arg_10+7*Arg_7+80*Arg_1+352 {O(n)}
132: n_f0->n_f12___36: 1 {O(1)}
133: n_f12___27->n_f15___30: 1 {O(1)}
134: n_f12___27->n_f28___29: 1 {O(1)}
135: n_f12___33->n_f15___30: 104*Arg_3+30*Arg_1+74*Arg_0+256 {O(n)}
136: n_f12___33->n_f28___29: 1 {O(1)}
137: n_f12___36->n_f15___35: 1 {O(1)}
138: n_f12___36->n_f28___34: 1 {O(1)}
139: n_f15___26->n_f12___27: 1 {O(1)}
140: n_f15___26->n_f15___26: 4*Arg_0+4*Arg_3+10 {O(n)}
141: n_f15___26->n_f15___31: 4*Arg_0+4*Arg_3+8 {O(n)}
142: n_f15___30->n_f12___33: 30*Arg_0+30*Arg_1+12 {O(n)}
143: n_f15___31->n_f12___27: 1 {O(1)}
144: n_f15___31->n_f15___26: 4*Arg_0+4*Arg_3+12 {O(n)}
145: n_f15___31->n_f15___31: 4*Arg_0+4*Arg_3+12 {O(n)}
146: n_f15___32->n_f12___33: 1 {O(1)}
147: n_f15___32->n_f15___31: 1 {O(1)}
148: n_f15___32->n_f15___32: Arg_0+Arg_3+3 {O(n)}
149: n_f15___35->n_f12___33: 1 {O(1)}
150: n_f15___35->n_f15___31: 1 {O(1)}
151: n_f15___35->n_f15___32: 1 {O(1)}
152: n_f28___12->n_f30___25: Arg_1+Arg_3 {O(n)}
153: n_f28___16->n_f82___13: 1 {O(1)}
154: n_f28___2->n_f82___1: 1 {O(1)}
155: n_f28___29->n_f82___28: 1 {O(1)}
156: n_f28___34->n_f30___25: 1 {O(1)}
157: n_f28___34->n_f82___28: 1 {O(1)}
158: n_f28___6->n_f82___5: 1 {O(1)}
159: n_f30___25->n_f42___24: Arg_1+Arg_3 {O(n)}
160: n_f42___24->n_f59___22: Arg_1+Arg_3+1 {O(n)}
161: n_f42___24->n_f59___23: Arg_10+Arg_3 {O(n)}
162: n_f42___24->n_f69___21: Arg_10+Arg_3+1 {O(n)}
163: n_f59___10->n_f59___10: 2*Arg_1+Arg_10+Arg_7 {O(n)}
164: n_f59___10->n_f69___8: Arg_0+Arg_3+1 {O(n)}
165: n_f59___20->n_f59___20: Arg_1+Arg_7 {O(n)}
166: n_f59___20->n_f69___18: 2*Arg_1+Arg_0+Arg_7 {O(n)}
167: n_f59___22->n_f59___10: Arg_0+Arg_3+1 {O(n)}
168: n_f59___22->n_f69___9: Arg_0+Arg_3+1 {O(n)}
169: n_f59___23->n_f59___20: Arg_1+Arg_7+1 {O(n)}
170: n_f59___23->n_f69___19: Arg_0+Arg_3+1 {O(n)}
171: n_f69___18->n_f71___17: Arg_1+Arg_3 {O(n)}
172: n_f69___18->n_f71___17: Arg_1+Arg_3 {O(n)}
173: n_f69___19->n_f71___11: Arg_1+Arg_3 {O(n)}
174: n_f69___19->n_f71___11: 2*Arg_1+Arg_0+Arg_3+1 {O(n)}
175: n_f69___21->n_f71___3: Arg_1+Arg_3 {O(n)}
176: n_f69___21->n_f71___3: Arg_1+Arg_3 {O(n)}
177: n_f69___8->n_f71___7: Arg_1+Arg_7 {O(n)}
178: n_f69___8->n_f71___7: Arg_0+Arg_3+1 {O(n)}
179: n_f69___9->n_f71___4: Arg_0+Arg_3+1 {O(n)}
180: n_f69___9->n_f71___4: Arg_1+Arg_3 {O(n)}
181: n_f71___11->n_f28___16: 1 {O(1)}
183: n_f71___11->n_f73___15: Arg_0+Arg_3+1 {O(n)}
184: n_f71___17->n_f28___16: 1 {O(1)}
186: n_f71___17->n_f73___15: Arg_0+Arg_7+1 {O(n)}
187: n_f71___3->n_f28___2: 1 {O(1)}
189: n_f71___3->n_f73___15: Arg_10+Arg_3+1 {O(n)}
190: n_f71___4->n_f28___6: 1 {O(1)}
192: n_f71___4->n_f73___15: Arg_1+Arg_3 {O(n)}
193: n_f71___7->n_f28___6: 1 {O(1)}
195: n_f71___7->n_f73___15: Arg_0+Arg_7+1 {O(n)}
197: n_f73___15->n_f28___12: Arg_1+Arg_3+1 {O(n)}

Sizebounds

132: n_f0->n_f12___36, Arg_0: Arg_0 {O(n)}
132: n_f0->n_f12___36, Arg_1: Arg_1 {O(n)}
132: n_f0->n_f12___36, Arg_2: Arg_2 {O(n)}
132: n_f0->n_f12___36, Arg_3: Arg_3 {O(n)}
132: n_f0->n_f12___36, Arg_4: Arg_4 {O(n)}
132: n_f0->n_f12___36, Arg_5: Arg_5 {O(n)}
132: n_f0->n_f12___36, Arg_7: Arg_7 {O(n)}
132: n_f0->n_f12___36, Arg_10: Arg_10 {O(n)}
133: n_f12___27->n_f15___30, Arg_0: 27*Arg_0 {O(n)}
133: n_f12___27->n_f15___30, Arg_1: 27*Arg_1+6 {O(n)}
133: n_f12___27->n_f15___30, Arg_2: 0 {O(1)}
133: n_f12___27->n_f15___30, Arg_3: 100*Arg_3+73*Arg_0+240 {O(n)}
133: n_f12___27->n_f15___30, Arg_7: 27*Arg_7 {O(n)}
133: n_f12___27->n_f15___30, Arg_10: 27*Arg_10 {O(n)}
134: n_f12___27->n_f28___29, Arg_0: 27*Arg_0 {O(n)}
134: n_f12___27->n_f28___29, Arg_1: 27*Arg_1+6 {O(n)}
134: n_f12___27->n_f28___29, Arg_3: 100*Arg_3+73*Arg_0+240 {O(n)}
134: n_f12___27->n_f28___29, Arg_7: 27*Arg_7 {O(n)}
134: n_f12___27->n_f28___29, Arg_10: 27*Arg_10 {O(n)}
135: n_f12___33->n_f15___30, Arg_0: 30*Arg_0 {O(n)}
135: n_f12___33->n_f15___30, Arg_1: 30*Arg_0+60*Arg_1+21 {O(n)}
135: n_f12___33->n_f15___30, Arg_2: 0 {O(1)}
135: n_f12___33->n_f15___30, Arg_3: 104*Arg_3+74*Arg_0+245 {O(n)}
135: n_f12___33->n_f15___30, Arg_7: 30*Arg_7 {O(n)}
135: n_f12___33->n_f15___30, Arg_10: 30*Arg_10 {O(n)}
136: n_f12___33->n_f28___29, Arg_0: 33*Arg_0 {O(n)}
136: n_f12___33->n_f28___29, Arg_1: 30*Arg_0+63*Arg_1+24 {O(n)}
136: n_f12___33->n_f28___29, Arg_2: 0 {O(1)}
136: n_f12___33->n_f28___29, Arg_3: 108*Arg_3+75*Arg_0+250 {O(n)}
136: n_f12___33->n_f28___29, Arg_7: 33*Arg_7 {O(n)}
136: n_f12___33->n_f28___29, Arg_10: 33*Arg_10 {O(n)}
137: n_f12___36->n_f15___35, Arg_0: Arg_0 {O(n)}
137: n_f12___36->n_f15___35, Arg_1: Arg_1 {O(n)}
137: n_f12___36->n_f15___35, Arg_2: 0 {O(1)}
137: n_f12___36->n_f15___35, Arg_3: Arg_3 {O(n)}
137: n_f12___36->n_f15___35, Arg_4: Arg_4 {O(n)}
137: n_f12___36->n_f15___35, Arg_5: Arg_5 {O(n)}
137: n_f12___36->n_f15___35, Arg_7: Arg_7 {O(n)}
137: n_f12___36->n_f15___35, Arg_10: Arg_10 {O(n)}
138: n_f12___36->n_f28___34, Arg_0: Arg_0 {O(n)}
138: n_f12___36->n_f28___34, Arg_1: Arg_1 {O(n)}
138: n_f12___36->n_f28___34, Arg_2: Arg_2 {O(n)}
138: n_f12___36->n_f28___34, Arg_3: Arg_3 {O(n)}
138: n_f12___36->n_f28___34, Arg_4: Arg_4 {O(n)}
138: n_f12___36->n_f28___34, Arg_5: Arg_5 {O(n)}
138: n_f12___36->n_f28___34, Arg_7: Arg_7 {O(n)}
138: n_f12___36->n_f28___34, Arg_10: Arg_10 {O(n)}
139: n_f15___26->n_f12___27, Arg_0: 12*Arg_0 {O(n)}
139: n_f15___26->n_f12___27, Arg_1: 12*Arg_1+2 {O(n)}
139: n_f15___26->n_f12___27, Arg_3: 36*Arg_0+48*Arg_3+116 {O(n)}
139: n_f15___26->n_f12___27, Arg_7: 12*Arg_7 {O(n)}
139: n_f15___26->n_f12___27, Arg_10: 12*Arg_10 {O(n)}
140: n_f15___26->n_f15___26, Arg_0: 6*Arg_0 {O(n)}
140: n_f15___26->n_f15___26, Arg_1: 6*Arg_1 {O(n)}
140: n_f15___26->n_f15___26, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
140: n_f15___26->n_f15___26, Arg_7: 6*Arg_7 {O(n)}
140: n_f15___26->n_f15___26, Arg_10: 6*Arg_10 {O(n)}
141: n_f15___26->n_f15___31, Arg_0: 6*Arg_0 {O(n)}
141: n_f15___26->n_f15___31, Arg_1: 6*Arg_1 {O(n)}
141: n_f15___26->n_f15___31, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
141: n_f15___26->n_f15___31, Arg_7: 6*Arg_7 {O(n)}
141: n_f15___26->n_f15___31, Arg_10: 6*Arg_10 {O(n)}
142: n_f15___30->n_f12___33, Arg_0: 30*Arg_0 {O(n)}
142: n_f15___30->n_f12___33, Arg_1: 30*Arg_0+60*Arg_1+21 {O(n)}
142: n_f15___30->n_f12___33, Arg_2: 0 {O(1)}
142: n_f15___30->n_f12___33, Arg_3: 104*Arg_3+74*Arg_0+245 {O(n)}
142: n_f15___30->n_f12___33, Arg_7: 30*Arg_7 {O(n)}
142: n_f15___30->n_f12___33, Arg_10: 30*Arg_10 {O(n)}
143: n_f15___31->n_f12___27, Arg_0: 15*Arg_0 {O(n)}
143: n_f15___31->n_f12___27, Arg_1: 15*Arg_1+4 {O(n)}
143: n_f15___31->n_f12___27, Arg_3: 37*Arg_0+52*Arg_3+124 {O(n)}
143: n_f15___31->n_f12___27, Arg_7: 15*Arg_7 {O(n)}
143: n_f15___31->n_f12___27, Arg_10: 15*Arg_10 {O(n)}
144: n_f15___31->n_f15___26, Arg_0: 6*Arg_0 {O(n)}
144: n_f15___31->n_f15___26, Arg_1: 6*Arg_1 {O(n)}
144: n_f15___31->n_f15___26, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
144: n_f15___31->n_f15___26, Arg_7: 6*Arg_7 {O(n)}
144: n_f15___31->n_f15___26, Arg_10: 6*Arg_10 {O(n)}
145: n_f15___31->n_f15___31, Arg_0: 6*Arg_0 {O(n)}
145: n_f15___31->n_f15___31, Arg_1: 6*Arg_1 {O(n)}
145: n_f15___31->n_f15___31, Arg_3: 18*Arg_0+24*Arg_3+58 {O(n)}
145: n_f15___31->n_f15___31, Arg_7: 6*Arg_7 {O(n)}
145: n_f15___31->n_f15___31, Arg_10: 6*Arg_10 {O(n)}
146: n_f15___32->n_f12___33, Arg_0: 2*Arg_0 {O(n)}
146: n_f15___32->n_f12___33, Arg_1: 2*Arg_1+2 {O(n)}
146: n_f15___32->n_f12___33, Arg_2: 0 {O(1)}
146: n_f15___32->n_f12___33, Arg_3: 3*Arg_3+Arg_0+5 {O(n)}
146: n_f15___32->n_f12___33, Arg_7: 2*Arg_7 {O(n)}
146: n_f15___32->n_f12___33, Arg_10: 2*Arg_10 {O(n)}
147: n_f15___32->n_f15___31, Arg_0: 2*Arg_0 {O(n)}
147: n_f15___32->n_f15___31, Arg_1: 2*Arg_1 {O(n)}
147: n_f15___32->n_f15___31, Arg_3: 3*Arg_3+Arg_0+7 {O(n)}
147: n_f15___32->n_f15___31, Arg_7: 2*Arg_7 {O(n)}
147: n_f15___32->n_f15___31, Arg_10: 2*Arg_10 {O(n)}
148: n_f15___32->n_f15___32, Arg_0: Arg_0 {O(n)}
148: n_f15___32->n_f15___32, Arg_1: Arg_1 {O(n)}
148: n_f15___32->n_f15___32, Arg_2: 0 {O(1)}
148: n_f15___32->n_f15___32, Arg_3: 2*Arg_3+Arg_0+4 {O(n)}
148: n_f15___32->n_f15___32, Arg_7: Arg_7 {O(n)}
148: n_f15___32->n_f15___32, Arg_10: Arg_10 {O(n)}
149: n_f15___35->n_f12___33, Arg_0: Arg_0 {O(n)}
149: n_f15___35->n_f12___33, Arg_1: Arg_1+1 {O(n)}
149: n_f15___35->n_f12___33, Arg_2: 0 {O(1)}
149: n_f15___35->n_f12___33, Arg_3: Arg_3 {O(n)}
149: n_f15___35->n_f12___33, Arg_4: Arg_4 {O(n)}
149: n_f15___35->n_f12___33, Arg_5: Arg_5 {O(n)}
149: n_f15___35->n_f12___33, Arg_7: Arg_7 {O(n)}
149: n_f15___35->n_f12___33, Arg_10: Arg_10 {O(n)}
150: n_f15___35->n_f15___31, Arg_0: Arg_0 {O(n)}
150: n_f15___35->n_f15___31, Arg_1: Arg_1 {O(n)}
150: n_f15___35->n_f15___31, Arg_3: Arg_3+1 {O(n)}
150: n_f15___35->n_f15___31, Arg_7: Arg_7 {O(n)}
150: n_f15___35->n_f15___31, Arg_10: Arg_10 {O(n)}
151: n_f15___35->n_f15___32, Arg_0: Arg_0 {O(n)}
151: n_f15___35->n_f15___32, Arg_1: Arg_1 {O(n)}
151: n_f15___35->n_f15___32, Arg_2: 0 {O(1)}
151: n_f15___35->n_f15___32, Arg_3: Arg_3+1 {O(n)}
151: n_f15___35->n_f15___32, Arg_7: Arg_7 {O(n)}
151: n_f15___35->n_f15___32, Arg_10: Arg_10 {O(n)}
152: n_f28___12->n_f30___25, Arg_0: Arg_0 {O(n)}
152: n_f28___12->n_f30___25, Arg_1: Arg_1 {O(n)}
152: n_f28___12->n_f30___25, Arg_2: 0 {O(1)}
152: n_f28___12->n_f30___25, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
152: n_f28___12->n_f30___25, Arg_4: Arg_4 {O(n)}
152: n_f28___12->n_f30___25, Arg_5: Arg_5 {O(n)}
152: n_f28___12->n_f30___25, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
152: n_f28___12->n_f30___25, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
153: n_f28___16->n_f82___13, Arg_0: 4*Arg_0 {O(n)}
153: n_f28___16->n_f82___13, Arg_1: 4*Arg_1 {O(n)}
153: n_f28___16->n_f82___13, Arg_2: 0 {O(1)}
153: n_f28___16->n_f82___13, Arg_3: 4*Arg_0+4 {O(n)}
153: n_f28___16->n_f82___13, Arg_4: 4*Arg_4 {O(n)}
153: n_f28___16->n_f82___13, Arg_5: 4*Arg_5 {O(n)}
153: n_f28___16->n_f82___13, Arg_7: 16*Arg_1+16*Arg_7+4*Arg_0+4*Arg_10+4*Arg_3+8 {O(n)}
153: n_f28___16->n_f82___13, Arg_10: 16*Arg_3+4*Arg_10+8*Arg_1+8 {O(n)}
154: n_f28___2->n_f82___1, Arg_0: 2*Arg_0 {O(n)}
154: n_f28___2->n_f82___1, Arg_1: 2*Arg_1 {O(n)}
154: n_f28___2->n_f82___1, Arg_2: 0 {O(1)}
154: n_f28___2->n_f82___1, Arg_3: 2*Arg_0+2 {O(n)}
154: n_f28___2->n_f82___1, Arg_4: 2*Arg_4 {O(n)}
154: n_f28___2->n_f82___1, Arg_5: 2*Arg_5 {O(n)}
154: n_f28___2->n_f82___1, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
154: n_f28___2->n_f82___1, Arg_10: 2*Arg_1+4*Arg_3+2 {O(n)}
155: n_f28___29->n_f82___28, Arg_0: 60*Arg_0 {O(n)}
155: n_f28___29->n_f82___28, Arg_1: 30*Arg_0+90*Arg_1+30 {O(n)}
155: n_f28___29->n_f82___28, Arg_3: 148*Arg_0+208*Arg_3+490 {O(n)}
155: n_f28___29->n_f82___28, Arg_7: 60*Arg_7 {O(n)}
155: n_f28___29->n_f82___28, Arg_10: 60*Arg_10 {O(n)}
156: n_f28___34->n_f30___25, Arg_0: Arg_0 {O(n)}
156: n_f28___34->n_f30___25, Arg_1: Arg_1 {O(n)}
156: n_f28___34->n_f30___25, Arg_2: Arg_2 {O(n)}
156: n_f28___34->n_f30___25, Arg_3: Arg_3 {O(n)}
156: n_f28___34->n_f30___25, Arg_4: Arg_4 {O(n)}
156: n_f28___34->n_f30___25, Arg_5: Arg_5 {O(n)}
156: n_f28___34->n_f30___25, Arg_7: Arg_7 {O(n)}
156: n_f28___34->n_f30___25, Arg_10: Arg_10 {O(n)}
157: n_f28___34->n_f82___28, Arg_0: Arg_0 {O(n)}
157: n_f28___34->n_f82___28, Arg_1: Arg_1 {O(n)}
157: n_f28___34->n_f82___28, Arg_2: Arg_2 {O(n)}
157: n_f28___34->n_f82___28, Arg_3: Arg_3 {O(n)}
157: n_f28___34->n_f82___28, Arg_4: Arg_4 {O(n)}
157: n_f28___34->n_f82___28, Arg_5: Arg_5 {O(n)}
157: n_f28___34->n_f82___28, Arg_7: Arg_7 {O(n)}
157: n_f28___34->n_f82___28, Arg_10: Arg_10 {O(n)}
158: n_f28___6->n_f82___5, Arg_0: 4*Arg_0 {O(n)}
158: n_f28___6->n_f82___5, Arg_1: 4*Arg_1 {O(n)}
158: n_f28___6->n_f82___5, Arg_2: 0 {O(1)}
158: n_f28___6->n_f82___5, Arg_3: 4*Arg_0+4 {O(n)}
158: n_f28___6->n_f82___5, Arg_4: 4*Arg_4 {O(n)}
158: n_f28___6->n_f82___5, Arg_5: 4*Arg_5 {O(n)}
158: n_f28___6->n_f82___5, Arg_7: 16*Arg_1+16*Arg_7+4*Arg_0+4*Arg_10+4*Arg_3+8 {O(n)}
158: n_f28___6->n_f82___5, Arg_10: 16*Arg_3+4*Arg_10+8*Arg_1+8 {O(n)}
159: n_f30___25->n_f42___24, Arg_0: Arg_0 {O(n)}
159: n_f30___25->n_f42___24, Arg_1: Arg_1 {O(n)}
159: n_f30___25->n_f42___24, Arg_2: 0 {O(1)}
159: n_f30___25->n_f42___24, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
159: n_f30___25->n_f42___24, Arg_4: Arg_4 {O(n)}
159: n_f30___25->n_f42___24, Arg_5: Arg_5 {O(n)}
159: n_f30___25->n_f42___24, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
159: n_f30___25->n_f42___24, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
160: n_f42___24->n_f59___22, Arg_0: Arg_0 {O(n)}
160: n_f42___24->n_f59___22, Arg_1: Arg_1 {O(n)}
160: n_f42___24->n_f59___22, Arg_2: 0 {O(1)}
160: n_f42___24->n_f59___22, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
160: n_f42___24->n_f59___22, Arg_4: Arg_4 {O(n)}
160: n_f42___24->n_f59___22, Arg_5: Arg_5 {O(n)}
160: n_f42___24->n_f59___22, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
160: n_f42___24->n_f59___22, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
161: n_f42___24->n_f59___23, Arg_0: Arg_0 {O(n)}
161: n_f42___24->n_f59___23, Arg_1: Arg_1 {O(n)}
161: n_f42___24->n_f59___23, Arg_2: 0 {O(1)}
161: n_f42___24->n_f59___23, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
161: n_f42___24->n_f59___23, Arg_4: Arg_4 {O(n)}
161: n_f42___24->n_f59___23, Arg_5: Arg_5 {O(n)}
161: n_f42___24->n_f59___23, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
161: n_f42___24->n_f59___23, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
162: n_f42___24->n_f69___21, Arg_0: Arg_0 {O(n)}
162: n_f42___24->n_f69___21, Arg_1: Arg_1 {O(n)}
162: n_f42___24->n_f69___21, Arg_2: 0 {O(1)}
162: n_f42___24->n_f69___21, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
162: n_f42___24->n_f69___21, Arg_4: Arg_4 {O(n)}
162: n_f42___24->n_f69___21, Arg_5: Arg_5 {O(n)}
162: n_f42___24->n_f69___21, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
162: n_f42___24->n_f69___21, Arg_10: 2*Arg_3+Arg_1+1 {O(n)}
163: n_f59___10->n_f59___10, Arg_0: Arg_0 {O(n)}
163: n_f59___10->n_f59___10, Arg_1: Arg_1 {O(n)}
163: n_f59___10->n_f59___10, Arg_2: 0 {O(1)}
163: n_f59___10->n_f59___10, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
163: n_f59___10->n_f59___10, Arg_4: Arg_4 {O(n)}
163: n_f59___10->n_f59___10, Arg_5: Arg_5 {O(n)}
163: n_f59___10->n_f59___10, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
163: n_f59___10->n_f59___10, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
164: n_f59___10->n_f69___8, Arg_0: Arg_0 {O(n)}
164: n_f59___10->n_f69___8, Arg_1: Arg_1 {O(n)}
164: n_f59___10->n_f69___8, Arg_2: 0 {O(1)}
164: n_f59___10->n_f69___8, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
164: n_f59___10->n_f69___8, Arg_4: Arg_4 {O(n)}
164: n_f59___10->n_f69___8, Arg_5: Arg_5 {O(n)}
164: n_f59___10->n_f69___8, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
164: n_f59___10->n_f69___8, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
165: n_f59___20->n_f59___20, Arg_0: Arg_0 {O(n)}
165: n_f59___20->n_f59___20, Arg_1: Arg_1 {O(n)}
165: n_f59___20->n_f59___20, Arg_2: 0 {O(1)}
165: n_f59___20->n_f59___20, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
165: n_f59___20->n_f59___20, Arg_4: Arg_4 {O(n)}
165: n_f59___20->n_f59___20, Arg_5: Arg_5 {O(n)}
165: n_f59___20->n_f59___20, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
165: n_f59___20->n_f59___20, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
166: n_f59___20->n_f69___18, Arg_0: Arg_0 {O(n)}
166: n_f59___20->n_f69___18, Arg_1: Arg_1 {O(n)}
166: n_f59___20->n_f69___18, Arg_2: 0 {O(1)}
166: n_f59___20->n_f69___18, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
166: n_f59___20->n_f69___18, Arg_4: Arg_4 {O(n)}
166: n_f59___20->n_f69___18, Arg_5: Arg_5 {O(n)}
166: n_f59___20->n_f69___18, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
166: n_f59___20->n_f69___18, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
167: n_f59___22->n_f59___10, Arg_0: Arg_0 {O(n)}
167: n_f59___22->n_f59___10, Arg_1: Arg_1 {O(n)}
167: n_f59___22->n_f59___10, Arg_2: 0 {O(1)}
167: n_f59___22->n_f59___10, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
167: n_f59___22->n_f59___10, Arg_4: Arg_4 {O(n)}
167: n_f59___22->n_f59___10, Arg_5: Arg_5 {O(n)}
167: n_f59___22->n_f59___10, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
167: n_f59___22->n_f59___10, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
168: n_f59___22->n_f69___9, Arg_0: Arg_0 {O(n)}
168: n_f59___22->n_f69___9, Arg_1: Arg_1 {O(n)}
168: n_f59___22->n_f69___9, Arg_2: 0 {O(1)}
168: n_f59___22->n_f69___9, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
168: n_f59___22->n_f69___9, Arg_4: Arg_4 {O(n)}
168: n_f59___22->n_f69___9, Arg_5: Arg_5 {O(n)}
168: n_f59___22->n_f69___9, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
168: n_f59___22->n_f69___9, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
169: n_f59___23->n_f59___20, Arg_0: Arg_0 {O(n)}
169: n_f59___23->n_f59___20, Arg_1: Arg_1 {O(n)}
169: n_f59___23->n_f59___20, Arg_2: 0 {O(1)}
169: n_f59___23->n_f59___20, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
169: n_f59___23->n_f59___20, Arg_4: Arg_4 {O(n)}
169: n_f59___23->n_f59___20, Arg_5: Arg_5 {O(n)}
169: n_f59___23->n_f59___20, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
169: n_f59___23->n_f59___20, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
170: n_f59___23->n_f69___19, Arg_0: Arg_0 {O(n)}
170: n_f59___23->n_f69___19, Arg_1: Arg_1 {O(n)}
170: n_f59___23->n_f69___19, Arg_2: 0 {O(1)}
170: n_f59___23->n_f69___19, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
170: n_f59___23->n_f69___19, Arg_4: Arg_4 {O(n)}
170: n_f59___23->n_f69___19, Arg_5: Arg_5 {O(n)}
170: n_f59___23->n_f69___19, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
170: n_f59___23->n_f69___19, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
171: n_f69___18->n_f71___17, Arg_0: Arg_0 {O(n)}
171: n_f69___18->n_f71___17, Arg_1: Arg_1 {O(n)}
171: n_f69___18->n_f71___17, Arg_2: 0 {O(1)}
171: n_f69___18->n_f71___17, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
171: n_f69___18->n_f71___17, Arg_4: Arg_4 {O(n)}
171: n_f69___18->n_f71___17, Arg_5: Arg_5 {O(n)}
171: n_f69___18->n_f71___17, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
171: n_f69___18->n_f71___17, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
172: n_f69___18->n_f71___17, Arg_0: Arg_0 {O(n)}
172: n_f69___18->n_f71___17, Arg_1: Arg_1 {O(n)}
172: n_f69___18->n_f71___17, Arg_2: 0 {O(1)}
172: n_f69___18->n_f71___17, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
172: n_f69___18->n_f71___17, Arg_4: Arg_4 {O(n)}
172: n_f69___18->n_f71___17, Arg_5: Arg_5 {O(n)}
172: n_f69___18->n_f71___17, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
172: n_f69___18->n_f71___17, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
173: n_f69___19->n_f71___11, Arg_0: Arg_0 {O(n)}
173: n_f69___19->n_f71___11, Arg_1: Arg_1 {O(n)}
173: n_f69___19->n_f71___11, Arg_2: 0 {O(1)}
173: n_f69___19->n_f71___11, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
173: n_f69___19->n_f71___11, Arg_4: Arg_4 {O(n)}
173: n_f69___19->n_f71___11, Arg_5: Arg_5 {O(n)}
173: n_f69___19->n_f71___11, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
173: n_f69___19->n_f71___11, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
174: n_f69___19->n_f71___11, Arg_0: Arg_0 {O(n)}
174: n_f69___19->n_f71___11, Arg_1: Arg_1 {O(n)}
174: n_f69___19->n_f71___11, Arg_2: 0 {O(1)}
174: n_f69___19->n_f71___11, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
174: n_f69___19->n_f71___11, Arg_4: Arg_4 {O(n)}
174: n_f69___19->n_f71___11, Arg_5: Arg_5 {O(n)}
174: n_f69___19->n_f71___11, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
174: n_f69___19->n_f71___11, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
175: n_f69___21->n_f71___3, Arg_0: Arg_0 {O(n)}
175: n_f69___21->n_f71___3, Arg_1: Arg_1 {O(n)}
175: n_f69___21->n_f71___3, Arg_2: 0 {O(1)}
175: n_f69___21->n_f71___3, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
175: n_f69___21->n_f71___3, Arg_4: Arg_4 {O(n)}
175: n_f69___21->n_f71___3, Arg_5: Arg_5 {O(n)}
175: n_f69___21->n_f71___3, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
175: n_f69___21->n_f71___3, Arg_10: 2*Arg_3+Arg_1+1 {O(n)}
176: n_f69___21->n_f71___3, Arg_0: Arg_0 {O(n)}
176: n_f69___21->n_f71___3, Arg_1: Arg_1 {O(n)}
176: n_f69___21->n_f71___3, Arg_2: 0 {O(1)}
176: n_f69___21->n_f71___3, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
176: n_f69___21->n_f71___3, Arg_4: Arg_4 {O(n)}
176: n_f69___21->n_f71___3, Arg_5: Arg_5 {O(n)}
176: n_f69___21->n_f71___3, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
176: n_f69___21->n_f71___3, Arg_10: 2*Arg_3+Arg_1+1 {O(n)}
177: n_f69___8->n_f71___7, Arg_0: Arg_0 {O(n)}
177: n_f69___8->n_f71___7, Arg_1: Arg_1 {O(n)}
177: n_f69___8->n_f71___7, Arg_2: 0 {O(1)}
177: n_f69___8->n_f71___7, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
177: n_f69___8->n_f71___7, Arg_4: Arg_4 {O(n)}
177: n_f69___8->n_f71___7, Arg_5: Arg_5 {O(n)}
177: n_f69___8->n_f71___7, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
177: n_f69___8->n_f71___7, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
178: n_f69___8->n_f71___7, Arg_0: Arg_0 {O(n)}
178: n_f69___8->n_f71___7, Arg_1: Arg_1 {O(n)}
178: n_f69___8->n_f71___7, Arg_2: 0 {O(1)}
178: n_f69___8->n_f71___7, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
178: n_f69___8->n_f71___7, Arg_4: Arg_4 {O(n)}
178: n_f69___8->n_f71___7, Arg_5: Arg_5 {O(n)}
178: n_f69___8->n_f71___7, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
178: n_f69___8->n_f71___7, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
179: n_f69___9->n_f71___4, Arg_0: Arg_0 {O(n)}
179: n_f69___9->n_f71___4, Arg_1: Arg_1 {O(n)}
179: n_f69___9->n_f71___4, Arg_2: 0 {O(1)}
179: n_f69___9->n_f71___4, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
179: n_f69___9->n_f71___4, Arg_4: Arg_4 {O(n)}
179: n_f69___9->n_f71___4, Arg_5: Arg_5 {O(n)}
179: n_f69___9->n_f71___4, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
179: n_f69___9->n_f71___4, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
180: n_f69___9->n_f71___4, Arg_0: Arg_0 {O(n)}
180: n_f69___9->n_f71___4, Arg_1: Arg_1 {O(n)}
180: n_f69___9->n_f71___4, Arg_2: 0 {O(1)}
180: n_f69___9->n_f71___4, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
180: n_f69___9->n_f71___4, Arg_4: Arg_4 {O(n)}
180: n_f69___9->n_f71___4, Arg_5: Arg_5 {O(n)}
180: n_f69___9->n_f71___4, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
180: n_f69___9->n_f71___4, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
181: n_f71___11->n_f28___16, Arg_0: 2*Arg_0 {O(n)}
181: n_f71___11->n_f28___16, Arg_1: 2*Arg_1 {O(n)}
181: n_f71___11->n_f28___16, Arg_2: 0 {O(1)}
181: n_f71___11->n_f28___16, Arg_3: 2*Arg_0+2 {O(n)}
181: n_f71___11->n_f28___16, Arg_4: 2*Arg_4 {O(n)}
181: n_f71___11->n_f28___16, Arg_5: 2*Arg_5 {O(n)}
181: n_f71___11->n_f28___16, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
181: n_f71___11->n_f28___16, Arg_10: 2*Arg_10+4*Arg_1+8*Arg_3+4 {O(n)}
183: n_f71___11->n_f73___15, Arg_0: Arg_0 {O(n)}
183: n_f71___11->n_f73___15, Arg_1: Arg_1 {O(n)}
183: n_f71___11->n_f73___15, Arg_2: 0 {O(1)}
183: n_f71___11->n_f73___15, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
183: n_f71___11->n_f73___15, Arg_4: Arg_4 {O(n)}
183: n_f71___11->n_f73___15, Arg_5: Arg_5 {O(n)}
183: n_f71___11->n_f73___15, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
183: n_f71___11->n_f73___15, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
184: n_f71___17->n_f28___16, Arg_0: 2*Arg_0 {O(n)}
184: n_f71___17->n_f28___16, Arg_1: 2*Arg_1 {O(n)}
184: n_f71___17->n_f28___16, Arg_2: 0 {O(1)}
184: n_f71___17->n_f28___16, Arg_3: 2*Arg_0+2 {O(n)}
184: n_f71___17->n_f28___16, Arg_4: 2*Arg_4 {O(n)}
184: n_f71___17->n_f28___16, Arg_5: 2*Arg_5 {O(n)}
184: n_f71___17->n_f28___16, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
184: n_f71___17->n_f28___16, Arg_10: 2*Arg_10+4*Arg_1+8*Arg_3+4 {O(n)}
186: n_f71___17->n_f73___15, Arg_0: Arg_0 {O(n)}
186: n_f71___17->n_f73___15, Arg_1: Arg_1 {O(n)}
186: n_f71___17->n_f73___15, Arg_2: 0 {O(1)}
186: n_f71___17->n_f73___15, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
186: n_f71___17->n_f73___15, Arg_4: Arg_4 {O(n)}
186: n_f71___17->n_f73___15, Arg_5: Arg_5 {O(n)}
186: n_f71___17->n_f73___15, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
186: n_f71___17->n_f73___15, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
187: n_f71___3->n_f28___2, Arg_0: 2*Arg_0 {O(n)}
187: n_f71___3->n_f28___2, Arg_1: 2*Arg_1 {O(n)}
187: n_f71___3->n_f28___2, Arg_2: 0 {O(1)}
187: n_f71___3->n_f28___2, Arg_3: 2*Arg_0+2 {O(n)}
187: n_f71___3->n_f28___2, Arg_4: 2*Arg_4 {O(n)}
187: n_f71___3->n_f28___2, Arg_5: 2*Arg_5 {O(n)}
187: n_f71___3->n_f28___2, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
187: n_f71___3->n_f28___2, Arg_10: 2*Arg_1+4*Arg_3+2 {O(n)}
189: n_f71___3->n_f73___15, Arg_0: Arg_0 {O(n)}
189: n_f71___3->n_f73___15, Arg_1: Arg_1 {O(n)}
189: n_f71___3->n_f73___15, Arg_2: 0 {O(1)}
189: n_f71___3->n_f73___15, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
189: n_f71___3->n_f73___15, Arg_4: Arg_4 {O(n)}
189: n_f71___3->n_f73___15, Arg_5: Arg_5 {O(n)}
189: n_f71___3->n_f73___15, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
189: n_f71___3->n_f73___15, Arg_10: 2*Arg_1+4*Arg_3+2 {O(n)}
190: n_f71___4->n_f28___6, Arg_0: 2*Arg_0 {O(n)}
190: n_f71___4->n_f28___6, Arg_1: 2*Arg_1 {O(n)}
190: n_f71___4->n_f28___6, Arg_2: 0 {O(1)}
190: n_f71___4->n_f28___6, Arg_3: 2*Arg_0+2 {O(n)}
190: n_f71___4->n_f28___6, Arg_4: 2*Arg_4 {O(n)}
190: n_f71___4->n_f28___6, Arg_5: 2*Arg_5 {O(n)}
190: n_f71___4->n_f28___6, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
190: n_f71___4->n_f28___6, Arg_10: 2*Arg_10+4*Arg_1+8*Arg_3+4 {O(n)}
192: n_f71___4->n_f73___15, Arg_0: Arg_0 {O(n)}
192: n_f71___4->n_f73___15, Arg_1: Arg_1 {O(n)}
192: n_f71___4->n_f73___15, Arg_2: 0 {O(1)}
192: n_f71___4->n_f73___15, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
192: n_f71___4->n_f73___15, Arg_4: Arg_4 {O(n)}
192: n_f71___4->n_f73___15, Arg_5: Arg_5 {O(n)}
192: n_f71___4->n_f73___15, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
192: n_f71___4->n_f73___15, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
193: n_f71___7->n_f28___6, Arg_0: 2*Arg_0 {O(n)}
193: n_f71___7->n_f28___6, Arg_1: 2*Arg_1 {O(n)}
193: n_f71___7->n_f28___6, Arg_2: 0 {O(1)}
193: n_f71___7->n_f28___6, Arg_3: 2*Arg_0+2 {O(n)}
193: n_f71___7->n_f28___6, Arg_4: 2*Arg_4 {O(n)}
193: n_f71___7->n_f28___6, Arg_5: 2*Arg_5 {O(n)}
193: n_f71___7->n_f28___6, Arg_7: 2*Arg_0+2*Arg_10+2*Arg_3+8*Arg_1+8*Arg_7+4 {O(n)}
193: n_f71___7->n_f28___6, Arg_10: 2*Arg_10+4*Arg_1+8*Arg_3+4 {O(n)}
195: n_f71___7->n_f73___15, Arg_0: Arg_0 {O(n)}
195: n_f71___7->n_f73___15, Arg_1: Arg_1 {O(n)}
195: n_f71___7->n_f73___15, Arg_2: 0 {O(1)}
195: n_f71___7->n_f73___15, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
195: n_f71___7->n_f73___15, Arg_4: Arg_4 {O(n)}
195: n_f71___7->n_f73___15, Arg_5: Arg_5 {O(n)}
195: n_f71___7->n_f73___15, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
195: n_f71___7->n_f73___15, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}
197: n_f73___15->n_f28___12, Arg_0: Arg_0 {O(n)}
197: n_f73___15->n_f28___12, Arg_1: Arg_1 {O(n)}
197: n_f73___15->n_f28___12, Arg_2: 0 {O(1)}
197: n_f73___15->n_f28___12, Arg_3: 2*Arg_3+Arg_1+1 {O(n)}
197: n_f73___15->n_f28___12, Arg_4: Arg_4 {O(n)}
197: n_f73___15->n_f28___12, Arg_5: Arg_5 {O(n)}
197: n_f73___15->n_f28___12, Arg_7: 4*Arg_1+4*Arg_7+Arg_0+Arg_10+Arg_3+2 {O(n)}
197: n_f73___15->n_f28___12, Arg_10: 2*Arg_1+4*Arg_3+Arg_10+2 {O(n)}