Initial Problem

Start: n_eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: n_eval_realheapsort_step2_0___78, n_eval_realheapsort_step2_10___65, n_eval_realheapsort_step2_11___64, n_eval_realheapsort_step2_12___63, n_eval_realheapsort_step2_1___77, n_eval_realheapsort_step2_2___76, n_eval_realheapsort_step2_3___72, n_eval_realheapsort_step2_4___71, n_eval_realheapsort_step2_58___2, n_eval_realheapsort_step2_58___24, n_eval_realheapsort_step2_58___40, n_eval_realheapsort_step2_58___57, n_eval_realheapsort_step2_59___1, n_eval_realheapsort_step2_59___23, n_eval_realheapsort_step2_59___39, n_eval_realheapsort_step2_59___56, n_eval_realheapsort_step2_5___70, n_eval_realheapsort_step2_6___69, n_eval_realheapsort_step2_7___68, n_eval_realheapsort_step2_8___67, n_eval_realheapsort_step2_9___66, n_eval_realheapsort_step2_bb0_in___79, n_eval_realheapsort_step2_bb10_in___11, n_eval_realheapsort_step2_bb10_in___13, n_eval_realheapsort_step2_bb10_in___17, n_eval_realheapsort_step2_bb10_in___27, n_eval_realheapsort_step2_bb10_in___29, n_eval_realheapsort_step2_bb10_in___31, n_eval_realheapsort_step2_bb10_in___45, n_eval_realheapsort_step2_bb10_in___5, n_eval_realheapsort_step2_bb10_in___7, n_eval_realheapsort_step2_bb11_in___26, n_eval_realheapsort_step2_bb11_in___3, n_eval_realheapsort_step2_bb11_in___42, n_eval_realheapsort_step2_bb11_in___59, n_eval_realheapsort_step2_bb12_in___54, n_eval_realheapsort_step2_bb12_in___75, n_eval_realheapsort_step2_bb1_in___74, n_eval_realheapsort_step2_bb2_in___38, n_eval_realheapsort_step2_bb2_in___55, n_eval_realheapsort_step2_bb2_in___62, n_eval_realheapsort_step2_bb3_in___37, n_eval_realheapsort_step2_bb3_in___53, n_eval_realheapsort_step2_bb3_in___61, n_eval_realheapsort_step2_bb4_in___10, n_eval_realheapsort_step2_bb4_in___16, n_eval_realheapsort_step2_bb4_in___4, n_eval_realheapsort_step2_bb4_in___43, n_eval_realheapsort_step2_bb4_in___44, n_eval_realheapsort_step2_bb4_in___51, n_eval_realheapsort_step2_bb4_in___60, n_eval_realheapsort_step2_bb5_in___15, n_eval_realheapsort_step2_bb5_in___25, n_eval_realheapsort_step2_bb5_in___41, n_eval_realheapsort_step2_bb5_in___58, n_eval_realheapsort_step2_bb5_in___9, n_eval_realheapsort_step2_bb6_in___22, n_eval_realheapsort_step2_bb6_in___36, n_eval_realheapsort_step2_bb6_in___50, n_eval_realheapsort_step2_bb7_in___20, n_eval_realheapsort_step2_bb7_in___21, n_eval_realheapsort_step2_bb7_in___34, n_eval_realheapsort_step2_bb7_in___35, n_eval_realheapsort_step2_bb7_in___48, n_eval_realheapsort_step2_bb7_in___49, n_eval_realheapsort_step2_bb8_in___19, n_eval_realheapsort_step2_bb8_in___33, n_eval_realheapsort_step2_bb8_in___47, n_eval_realheapsort_step2_bb9_in___12, n_eval_realheapsort_step2_bb9_in___14, n_eval_realheapsort_step2_bb9_in___18, n_eval_realheapsort_step2_bb9_in___28, n_eval_realheapsort_step2_bb9_in___30, n_eval_realheapsort_step2_bb9_in___32, n_eval_realheapsort_step2_bb9_in___46, n_eval_realheapsort_step2_bb9_in___6, n_eval_realheapsort_step2_bb9_in___8, n_eval_realheapsort_step2_start, n_eval_realheapsort_step2_stop___52, n_eval_realheapsort_step2_stop___73
Transitions:
0:n_eval_realheapsort_step2_0___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_1___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
1:n_eval_realheapsort_step2_10___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_11___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
2:n_eval_realheapsort_step2_11___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_12___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
3:n_eval_realheapsort_step2_12___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___62(Arg_0,Arg_1,Arg_2,0,Arg_4):|:2<Arg_1
4:n_eval_realheapsort_step2_1___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
5:n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
6:n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb1_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:n_eval_realheapsort_step2_3___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_4___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
8:n_eval_realheapsort_step2_4___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_5___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
9:n_eval_realheapsort_step2_58___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
10:n_eval_realheapsort_step2_58___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<2+Arg_0+Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
11:n_eval_realheapsort_step2_58___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
12:n_eval_realheapsort_step2_58___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<2+Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2
13:n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
14:n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:0<2+Arg_0+Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
15:n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
16:n_eval_realheapsort_step2_59___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___55(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_1<2+Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2
17:n_eval_realheapsort_step2_5___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_6___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
18:n_eval_realheapsort_step2_6___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_7___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
19:n_eval_realheapsort_step2_7___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_8___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
20:n_eval_realheapsort_step2_8___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_9___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
21:n_eval_realheapsort_step2_9___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_10___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
22:n_eval_realheapsort_step2_bb0_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_0___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
23:n_eval_realheapsort_step2_bb10_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
24:n_eval_realheapsort_step2_bb10_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
25:n_eval_realheapsort_step2_bb10_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
26:n_eval_realheapsort_step2_bb10_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
27:n_eval_realheapsort_step2_bb10_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
28:n_eval_realheapsort_step2_bb10_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
29:n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
30:n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
31:n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
32:n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___24(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
33:n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___2(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
34:n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___40(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
35:n_eval_realheapsort_step2_bb11_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___57(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+Arg_3 && Arg_2<=0 && 0<=Arg_2
36:n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_stop___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<2+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
37:n_eval_realheapsort_step2_bb12_in___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_stop___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
38:n_eval_realheapsort_step2_bb1_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_3___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
39:n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<2+Arg_3
40:n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_0<=Arg_3 && Arg_3<=Arg_0 && 2+Arg_3<=Arg_1
41:n_eval_realheapsort_step2_bb2_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<2+Arg_3
42:n_eval_realheapsort_step2_bb2_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 2+Arg_3<=Arg_1
43:n_eval_realheapsort_step2_bb2_in___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_1
44:n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_0<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0
45:n_eval_realheapsort_step2_bb3_in___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___51(Arg_0,Arg_1,0,Arg_3,Arg_4):|:Arg_1<3+Arg_0 && 2+Arg_0<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0
46:n_eval_realheapsort_step2_bb3_in___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2<=Arg_1 && Arg_3<=0 && 0<=Arg_3
47:n_eval_realheapsort_step2_bb4_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
48:n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
49:n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+2*Arg_2+Arg_3 && Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
50:n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
51:n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1
52:n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<3+2*Arg_2+Arg_3
53:n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
54:n_eval_realheapsort_step2_bb4_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<3+2*Arg_2+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
55:n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
56:n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1
57:n_eval_realheapsort_step2_bb5_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<Arg_1
58:n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<Arg_1
59:n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_1+Arg_3<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
60:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1
61:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___35(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
62:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1
63:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
64:n_eval_realheapsort_step2_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
65:n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
66:n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
67:n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
68:n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
69:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
70:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
71:n_eval_realheapsort_step2_bb7_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
72:n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
73:n_eval_realheapsort_step2_bb7_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
74:n_eval_realheapsort_step2_bb7_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
75:n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
76:n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2
77:n_eval_realheapsort_step2_bb8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
78:n_eval_realheapsort_step2_bb8_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
79:n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
80:n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
81:n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___10(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
82:n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
83:n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
84:n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
85:n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
86:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
87:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
88:n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
89:n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
90:n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
91:n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
92:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
93:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
94:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
95:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
96:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
97:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
98:n_eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb0_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)

Preprocessing

Cut unsatisfiable transition 42: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb3_in___53

Cut unreachable locations [n_eval_realheapsort_step2_bb3_in___53; n_eval_realheapsort_step2_bb4_in___51] from the program graph

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_4___71

Found invariant 2+Arg_3<=Arg_1 && Arg_1<=2+Arg_3 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb11_in___59

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_3___72

Found invariant 1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 for location n_eval_realheapsort_step2_59___23

Found invariant Arg_3<=0 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb2_in___62

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___16

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb7_in___34

Found invariant Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___4

Found invariant 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb8_in___47

Found invariant Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb11_in___26

Found invariant 3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb5_in___9

Found invariant 3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb6_in___22

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___13

Found invariant 2+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___60

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb4_in___43

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_8___67

Found invariant Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___44

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___18

Found invariant 3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___10

Found invariant Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___45

Found invariant Arg_3<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_1<=1+Arg_0 for location n_eval_realheapsort_step2_bb12_in___54

Found invariant 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb7_in___48

Found invariant 3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___12

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb6_in___36

Found invariant Arg_3<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_1<=1+Arg_0 for location n_eval_realheapsort_step2_stop___52

Found invariant Arg_1<=2 for location n_eval_realheapsort_step2_bb12_in___75

Found invariant Arg_1<=2 for location n_eval_realheapsort_step2_stop___73

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_7___68

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb11_in___42

Found invariant 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb5_in___58

Found invariant Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_59___1

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_9___66

Found invariant Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_58___2

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_6___69

Found invariant Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb7_in___21

Found invariant 3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___11

Found invariant Arg_3<=Arg_0 && Arg_0<=Arg_3 for location n_eval_realheapsort_step2_bb2_in___38

Found invariant Arg_3<=0 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb3_in___61

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 for location n_eval_realheapsort_step2_58___40

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb8_in___19

Found invariant Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___46

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_11___64

Found invariant Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___8

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb5_in___15

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb8_in___33

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___14

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_10___65

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_12___63

Found invariant 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=2+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_59___56

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_5___70

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___17

Found invariant Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___5

Found invariant 2+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && 2+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb3_in___37

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb5_in___41

Found invariant 1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 for location n_eval_realheapsort_step2_58___24

Found invariant 4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb7_in___20

Found invariant 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb2_in___55

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 for location n_eval_realheapsort_step2_59___39

Found invariant 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb6_in___50

Found invariant 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb7_in___49

Found invariant 2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=2+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_58___57

Found invariant Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_eval_realheapsort_step2_bb5_in___25

Found invariant Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___7

Found invariant Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 for location n_eval_realheapsort_step2_bb11_in___3

Found invariant 3<=Arg_1 for location n_eval_realheapsort_step2_bb1_in___74

Found invariant Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_eval_realheapsort_step2_bb7_in___35

Found invariant Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___6

Problem after Preprocessing

Start: n_eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: n_eval_realheapsort_step2_0___78, n_eval_realheapsort_step2_10___65, n_eval_realheapsort_step2_11___64, n_eval_realheapsort_step2_12___63, n_eval_realheapsort_step2_1___77, n_eval_realheapsort_step2_2___76, n_eval_realheapsort_step2_3___72, n_eval_realheapsort_step2_4___71, n_eval_realheapsort_step2_58___2, n_eval_realheapsort_step2_58___24, n_eval_realheapsort_step2_58___40, n_eval_realheapsort_step2_58___57, n_eval_realheapsort_step2_59___1, n_eval_realheapsort_step2_59___23, n_eval_realheapsort_step2_59___39, n_eval_realheapsort_step2_59___56, n_eval_realheapsort_step2_5___70, n_eval_realheapsort_step2_6___69, n_eval_realheapsort_step2_7___68, n_eval_realheapsort_step2_8___67, n_eval_realheapsort_step2_9___66, n_eval_realheapsort_step2_bb0_in___79, n_eval_realheapsort_step2_bb10_in___11, n_eval_realheapsort_step2_bb10_in___13, n_eval_realheapsort_step2_bb10_in___17, n_eval_realheapsort_step2_bb10_in___27, n_eval_realheapsort_step2_bb10_in___29, n_eval_realheapsort_step2_bb10_in___31, n_eval_realheapsort_step2_bb10_in___45, n_eval_realheapsort_step2_bb10_in___5, n_eval_realheapsort_step2_bb10_in___7, n_eval_realheapsort_step2_bb11_in___26, n_eval_realheapsort_step2_bb11_in___3, n_eval_realheapsort_step2_bb11_in___42, n_eval_realheapsort_step2_bb11_in___59, n_eval_realheapsort_step2_bb12_in___54, n_eval_realheapsort_step2_bb12_in___75, n_eval_realheapsort_step2_bb1_in___74, n_eval_realheapsort_step2_bb2_in___38, n_eval_realheapsort_step2_bb2_in___55, n_eval_realheapsort_step2_bb2_in___62, n_eval_realheapsort_step2_bb3_in___37, n_eval_realheapsort_step2_bb3_in___61, n_eval_realheapsort_step2_bb4_in___10, n_eval_realheapsort_step2_bb4_in___16, n_eval_realheapsort_step2_bb4_in___4, n_eval_realheapsort_step2_bb4_in___43, n_eval_realheapsort_step2_bb4_in___44, n_eval_realheapsort_step2_bb4_in___60, n_eval_realheapsort_step2_bb5_in___15, n_eval_realheapsort_step2_bb5_in___25, n_eval_realheapsort_step2_bb5_in___41, n_eval_realheapsort_step2_bb5_in___58, n_eval_realheapsort_step2_bb5_in___9, n_eval_realheapsort_step2_bb6_in___22, n_eval_realheapsort_step2_bb6_in___36, n_eval_realheapsort_step2_bb6_in___50, n_eval_realheapsort_step2_bb7_in___20, n_eval_realheapsort_step2_bb7_in___21, n_eval_realheapsort_step2_bb7_in___34, n_eval_realheapsort_step2_bb7_in___35, n_eval_realheapsort_step2_bb7_in___48, n_eval_realheapsort_step2_bb7_in___49, n_eval_realheapsort_step2_bb8_in___19, n_eval_realheapsort_step2_bb8_in___33, n_eval_realheapsort_step2_bb8_in___47, n_eval_realheapsort_step2_bb9_in___12, n_eval_realheapsort_step2_bb9_in___14, n_eval_realheapsort_step2_bb9_in___18, n_eval_realheapsort_step2_bb9_in___28, n_eval_realheapsort_step2_bb9_in___30, n_eval_realheapsort_step2_bb9_in___32, n_eval_realheapsort_step2_bb9_in___46, n_eval_realheapsort_step2_bb9_in___6, n_eval_realheapsort_step2_bb9_in___8, n_eval_realheapsort_step2_start, n_eval_realheapsort_step2_stop___52, n_eval_realheapsort_step2_stop___73
Transitions:
0:n_eval_realheapsort_step2_0___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_1___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
1:n_eval_realheapsort_step2_10___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_11___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
2:n_eval_realheapsort_step2_11___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_12___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
3:n_eval_realheapsort_step2_12___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___62(Arg_0,Arg_1,Arg_2,0,Arg_4):|:3<=Arg_1 && 2<Arg_1
4:n_eval_realheapsort_step2_1___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
5:n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
6:n_eval_realheapsort_step2_2___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb1_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:n_eval_realheapsort_step2_3___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_4___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
8:n_eval_realheapsort_step2_4___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_5___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
9:n_eval_realheapsort_step2_58___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 && Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
10:n_eval_realheapsort_step2_58___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 && 0<2+Arg_0+Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
11:n_eval_realheapsort_step2_58___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 && Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
12:n_eval_realheapsort_step2_58___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=2+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && Arg_1<2+Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2
13:n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 && Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
14:n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 && 0<2+Arg_0+Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
15:n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 && Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2
16:n_eval_realheapsort_step2_59___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___55(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:2+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=2+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && Arg_1<2+Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2
17:n_eval_realheapsort_step2_5___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_6___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
18:n_eval_realheapsort_step2_6___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_7___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
19:n_eval_realheapsort_step2_7___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_8___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
20:n_eval_realheapsort_step2_8___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_9___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
21:n_eval_realheapsort_step2_9___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_10___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
22:n_eval_realheapsort_step2_bb0_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_0___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
23:n_eval_realheapsort_step2_bb10_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
24:n_eval_realheapsort_step2_bb10_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
25:n_eval_realheapsort_step2_bb10_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
26:n_eval_realheapsort_step2_bb10_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
27:n_eval_realheapsort_step2_bb10_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
28:n_eval_realheapsort_step2_bb10_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
29:n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
30:n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
31:n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
32:n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___24(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
33:n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___2(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
34:n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___40(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_1<3+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
35:n_eval_realheapsort_step2_bb11_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___57(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_1<=2+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<3+Arg_3 && Arg_2<=0 && 0<=Arg_2
36:n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_stop___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_1<=1+Arg_0 && Arg_1<2+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
37:n_eval_realheapsort_step2_bb12_in___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_stop___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2 && Arg_1<=2
38:n_eval_realheapsort_step2_bb1_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_3___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 2<Arg_1
39:n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<2+Arg_3
40:n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 2+Arg_3<=Arg_1
41:n_eval_realheapsort_step2_bb2_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb12_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && Arg_1<3+Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<2+Arg_3
43:n_eval_realheapsort_step2_bb2_in___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=0 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_1 && 2+Arg_3<=Arg_1 && Arg_3<=0 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_1
44:n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && 2+Arg_0<=Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0
46:n_eval_realheapsort_step2_bb3_in___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,0,Arg_3,Arg_4):|:Arg_3<=0 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_1 && 2<=Arg_1 && Arg_3<=0 && 0<=Arg_3
47:n_eval_realheapsort_step2_bb4_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
48:n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
49:n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3 && Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
50:n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
51:n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1
52:n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<3+2*Arg_2+Arg_3
53:n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1
55:n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3
56:n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1
57:n_eval_realheapsort_step2_bb5_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<Arg_1
58:n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 3+2*Arg_2+Arg_3<Arg_1
59:n_eval_realheapsort_step2_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
60:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1
61:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___35(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
62:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1
63:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
64:n_eval_realheapsort_step2_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
65:n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
66:n_eval_realheapsort_step2_bb6_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
67:n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
68:n_eval_realheapsort_step2_bb6_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
69:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
70:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
71:n_eval_realheapsort_step2_bb7_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
72:n_eval_realheapsort_step2_bb7_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
73:n_eval_realheapsort_step2_bb7_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
74:n_eval_realheapsort_step2_bb7_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
75:n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
76:n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2
77:n_eval_realheapsort_step2_bb8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
78:n_eval_realheapsort_step2_bb8_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 3+2*Arg_2+Arg_3<Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
79:n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2
80:n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
81:n_eval_realheapsort_step2_bb9_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___10(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+Arg_2+Arg_3<=0 && 3+Arg_1+Arg_3<=0 && 0<=3+Arg_2+Arg_3 && 0<=3+Arg_1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1+Arg_3+3<=0 && 0<=3+Arg_1+Arg_3
82:n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
83:n_eval_realheapsort_step2_bb9_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+2<=Arg_4 && Arg_4<=2+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
84:n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
85:n_eval_realheapsort_step2_bb9_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___16(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:4+Arg_2+Arg_3<=0 && 4+Arg_1+Arg_3<=0 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 3+Arg_1+Arg_3<0 && 2*Arg_1+1<=Arg_4 && Arg_4<=1+2*Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
86:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
87:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
88:n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
89:n_eval_realheapsort_step2_bb9_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2
90:n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
91:n_eval_realheapsort_step2_bb9_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3+2*Arg_2+Arg_3<Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2
92:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
93:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2
94:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
95:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1
96:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
97:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2
98:n_eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb0_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)

MPRF for transition 9:n_eval_realheapsort_step2_58___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 && Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [2 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [3 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [Arg_2+2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___3 [Arg_2+3-Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2-Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-1 ]

MPRF for transition 13:n_eval_realheapsort_step2_59___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=3+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+Arg_0 && 2+Arg_0<=Arg_1 && Arg_1<=1+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [3 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_58___2 [Arg_4+3-Arg_2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [Arg_1+1-Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___3 [Arg_4+3-Arg_2 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [Arg_1+1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3 ]

MPRF for transition 29:n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [2*Arg_2 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_58___2 [2*Arg_4 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [2*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [2 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [2 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-1 ]

MPRF for transition 30:n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_0 ]
n_eval_realheapsort_step2_58___2 [2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [2 ]
n_eval_realheapsort_step2_bb11_in___3 [2 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___12 [-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3-1 ]

MPRF for transition 31:n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1+3 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0-3 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_58___2 [Arg_1+1-Arg_0-3*Arg_4 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0-3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___4 [Arg_1-Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___3 [Arg_1-3*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1-1 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___5 [Arg_1-Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-4 ]

MPRF for transition 33:n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___2(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [3*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [3 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3-1 ]

MPRF for transition 40:n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 2+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1+1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_59___23 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_58___24 [Arg_2+1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [Arg_1+1-Arg_2-Arg_3 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [4-Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [Arg_1+1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [Arg_1+Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [4-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3 ]

MPRF for transition 44:n_eval_realheapsort_step2_bb3_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && 2+Arg_0<=Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [3*Arg_4+3-3*Arg_2 ]
n_eval_realheapsort_step2_59___23 [Arg_2+1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_58___2 [3*Arg_4 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [3 ]
n_eval_realheapsort_step2_bb11_in___3 [3*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1+2*Arg_4-2*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1+2*Arg_4-2*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1+2*Arg_4-2*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [Arg_1+Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1+2*Arg_4-2*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1+2*Arg_4-2*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb9_in___12 [Arg_1+Arg_2+3 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3 ]

MPRF for transition 49:n_eval_realheapsort_step2_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=1 && 1<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3 && Arg_1<=2+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3 of depth 1:

new bound:

Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0-2*Arg_2 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_0-2 ]
n_eval_realheapsort_step2_58___2 [2-2*Arg_2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_bb4_in___4 [1 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___49 [1 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2-Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___5 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-3 ]

MPRF for transition 56:n_eval_realheapsort_step2_bb4_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [4*Arg_4+4-4*Arg_2 ]
n_eval_realheapsort_step2_59___23 [Arg_2+2-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1+2-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_58___2 [4*Arg_4 ]
n_eval_realheapsort_step2_58___40 [Arg_1+2-Arg_0 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1+2-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1+2-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [4*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___3 [4*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [3*Arg_2+Arg_3+7 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [3*Arg_2+Arg_3+7 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+4 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [4 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [3*Arg_2+Arg_3+7 ]
n_eval_realheapsort_step2_bb4_in___10 [3*Arg_1+Arg_3+7 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [4*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [4 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2+1-Arg_3 ]

MPRF for transition 62:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 of depth 1:

new bound:

3*Arg_1+3 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [4*Arg_1-3*Arg_0-Arg_3 ]
n_eval_realheapsort_step2_59___23 [3*Arg_2+3-3*Arg_0 ]
n_eval_realheapsort_step2_59___39 [3*Arg_1+3-3*Arg_0 ]
n_eval_realheapsort_step2_58___24 [3*Arg_1+3-3*Arg_0 ]
n_eval_realheapsort_step2_58___2 [Arg_1+6*Arg_2-Arg_3 ]
n_eval_realheapsort_step2_58___40 [3*Arg_1+3-3*Arg_0 ]
n_eval_realheapsort_step2_bb2_in___38 [3*Arg_1+3-3*Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [3*Arg_1+3-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [9 ]
n_eval_realheapsort_step2_bb11_in___3 [9 ]
n_eval_realheapsort_step2_bb11_in___42 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [3*Arg_1+3-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [3*Arg_1+3-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___22 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___34 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [6*Arg_4+9 ]
n_eval_realheapsort_step2_bb7_in___48 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [12 ]
n_eval_realheapsort_step2_bb8_in___19 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [4*Arg_2+3-2*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___10 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___13 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [3*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [6*Arg_2+9 ]
n_eval_realheapsort_step2_bb10_in___29 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [9 ]
n_eval_realheapsort_step2_bb9_in___6 [3*Arg_1+3-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___7 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [3*Arg_1-3*Arg_3 ]

MPRF for transition 63:n_eval_realheapsort_step2_bb5_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 of depth 1:

new bound:

5*Arg_1+5 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_0+3*Arg_1-4*Arg_3-5 ]
n_eval_realheapsort_step2_59___23 [5*Arg_1-5*Arg_0-5 ]
n_eval_realheapsort_step2_59___39 [5*Arg_1-5*Arg_3-10 ]
n_eval_realheapsort_step2_58___24 [5*Arg_2-5*Arg_3-10 ]
n_eval_realheapsort_step2_58___2 [11*Arg_2+2*Arg_3-2*Arg_1 ]
n_eval_realheapsort_step2_58___40 [5*Arg_1-5*Arg_3-10 ]
n_eval_realheapsort_step2_bb2_in___38 [5*Arg_1-5*Arg_0-5 ]
n_eval_realheapsort_step2_bb3_in___37 [5*Arg_1-5*Arg_0-5 ]
n_eval_realheapsort_step2_bb4_in___4 [Arg_3+8*Arg_4-Arg_1 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_3+11*Arg_4-2*Arg_1 ]
n_eval_realheapsort_step2_bb11_in___42 [5*Arg_1-5*Arg_3-10 ]
n_eval_realheapsort_step2_bb4_in___43 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb11_in___26 [5*Arg_2-5*Arg_3-10 ]
n_eval_realheapsort_step2_bb4_in___60 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb5_in___15 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___25 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___41 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___58 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb5_in___9 [7*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___22 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb6_in___36 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb6_in___50 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___20 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb7_in___21 [15*Arg_2+9-5*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___34 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb7_in___35 [10*Arg_2+9 ]
n_eval_realheapsort_step2_bb7_in___48 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___49 [9 ]
n_eval_realheapsort_step2_bb8_in___19 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb8_in___33 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb8_in___47 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___11 [-10*Arg_3-21 ]
n_eval_realheapsort_step2_bb9_in___12 [15*Arg_2+9-5*Arg_1 ]
n_eval_realheapsort_step2_bb4_in___10 [7*Arg_2-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___13 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___14 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___17 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___18 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb4_in___16 [5*Arg_2-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___27 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___28 [10*Arg_2+9 ]
n_eval_realheapsort_step2_bb10_in___29 [5*Arg_1+6*Arg_2-5*Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___30 [5*Arg_1+6*Arg_2-5*Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___31 [5*Arg_1+12*Arg_2-5*Arg_3-6*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___32 [5*Arg_1+12*Arg_2-5*Arg_3-6*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___45 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___46 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___5 [Arg_3+8*Arg_4-Arg_1 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_3+12-Arg_1 ]
n_eval_realheapsort_step2_bb10_in___7 [5*Arg_1-5*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___8 [5*Arg_1-5*Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___44 [5*Arg_2-5*Arg_3-6 ]

MPRF for transition 69:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1+1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1+Arg_2-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2+1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [Arg_1+Arg_4-Arg_0 ]
n_eval_realheapsort_step2_58___40 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [3 ]
n_eval_realheapsort_step2_bb11_in___3 [3 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_4+1-2*Arg_2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3 ]

MPRF for transition 70:n_eval_realheapsort_step2_bb6_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

2*Arg_1+4 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [2*Arg_2-2*Arg_0-4 ]
n_eval_realheapsort_step2_59___39 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_58___24 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb2_in___38 [2*Arg_1-2*Arg_0-4 ]
n_eval_realheapsort_step2_bb3_in___37 [2*Arg_1-2*Arg_0-4 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb4_in___43 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb11_in___26 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb4_in___60 [2*Arg_1-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___15 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___25 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___41 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___58 [2*Arg_1-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___9 [4*Arg_1 ]
n_eval_realheapsort_step2_bb6_in___22 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb6_in___36 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb6_in___50 [2*Arg_1-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___20 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb7_in___21 [4*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___34 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb7_in___35 [4*Arg_2 ]
n_eval_realheapsort_step2_bb7_in___48 [2*Arg_1-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb8_in___33 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb8_in___47 [2*Arg_1-2*Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___12 [4*Arg_1 ]
n_eval_realheapsort_step2_bb4_in___10 [4*Arg_1 ]
n_eval_realheapsort_step2_bb10_in___13 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___14 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_4-2*Arg_3-7 ]
n_eval_realheapsort_step2_bb9_in___18 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb4_in___16 [2*Arg_2-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___27 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___29 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___30 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___31 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___32 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb10_in___45 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___46 [2*Arg_1-2*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___7 [2*Arg_1-2*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___8 [2*Arg_1-2*Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___44 [2*Arg_2-2*Arg_3-6 ]

MPRF for transition 75:n_eval_realheapsort_step2_bb7_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1+3 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0-2*Arg_4 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0-3 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_0-3 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0-3 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___21 [Arg_1+Arg_2-1 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_1-1 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2-1 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-4 ]

MPRF for transition 76:n_eval_realheapsort_step2_bb7_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1+2*Arg_4-Arg_0-2 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_58___24 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [2*Arg_2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [2 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [2 ]
n_eval_realheapsort_step2_bb9_in___6 [2 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3-1 ]

MPRF for transition 79:n_eval_realheapsort_step2_bb8_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1+1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1+3*Arg_4-Arg_0-2*Arg_2 ]
n_eval_realheapsort_step2_59___23 [Arg_2+1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2+1-Arg_0 ]
n_eval_realheapsort_step2_58___2 [3*Arg_4 ]
n_eval_realheapsort_step2_58___40 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [3 ]
n_eval_realheapsort_step2_bb11_in___3 [3 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3 ]

MPRF for transition 92:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

3*Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [5*Arg_1-3*Arg_0-6*Arg_2-2*Arg_3 ]
n_eval_realheapsort_step2_59___23 [3*Arg_2-3*Arg_0 ]
n_eval_realheapsort_step2_59___39 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_58___24 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_58___2 [2*Arg_1+6-6*Arg_2-2*Arg_3 ]
n_eval_realheapsort_step2_58___40 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb2_in___38 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [2*Arg_1-2*Arg_3 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_1-2*Arg_3 ]
n_eval_realheapsort_step2_bb11_in___42 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___43 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb11_in___26 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___60 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___25 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___41 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___58 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [6*Arg_1+6 ]
n_eval_realheapsort_step2_bb6_in___22 [3*Arg_2-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___36 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___50 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___21 [6*Arg_2+6 ]
n_eval_realheapsort_step2_bb7_in___34 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___35 [6*Arg_2+6 ]
n_eval_realheapsort_step2_bb7_in___48 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [6 ]
n_eval_realheapsort_step2_bb8_in___19 [3*Arg_2-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___33 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___47 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [6*Arg_2-3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___12 [6*Arg_2-3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___10 [6*Arg_1+6 ]
n_eval_realheapsort_step2_bb10_in___13 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___14 [3*Arg_2-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___17 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___18 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___16 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___27 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___28 [6*Arg_2+6 ]
n_eval_realheapsort_step2_bb10_in___29 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___30 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___31 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___32 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___45 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___46 [3*Arg_1-3*Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___5 [2*Arg_1-2*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_1-2*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___7 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___8 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [3*Arg_2-3*Arg_3-3 ]

MPRF for transition 93:n_eval_realheapsort_step2_bb9_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

4*Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [4*Arg_1-4*Arg_0 ]
n_eval_realheapsort_step2_59___23 [4*Arg_2-4*Arg_0 ]
n_eval_realheapsort_step2_59___39 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_58___24 [4*Arg_1-4*Arg_0 ]
n_eval_realheapsort_step2_58___2 [8*Arg_2+8-8*Arg_4 ]
n_eval_realheapsort_step2_58___40 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb2_in___38 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [8*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [8*Arg_2+8-8*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___43 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb11_in___26 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___60 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___25 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___41 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___58 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [8*Arg_1+8 ]
n_eval_realheapsort_step2_bb6_in___22 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___36 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___50 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___21 [8*Arg_2+8 ]
n_eval_realheapsort_step2_bb7_in___34 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___35 [8*Arg_4+8 ]
n_eval_realheapsort_step2_bb7_in___48 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [8 ]
n_eval_realheapsort_step2_bb8_in___19 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___33 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___47 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [8*Arg_1+8 ]
n_eval_realheapsort_step2_bb9_in___12 [8*Arg_2+8 ]
n_eval_realheapsort_step2_bb4_in___10 [8*Arg_1+8 ]
n_eval_realheapsort_step2_bb10_in___13 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___14 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___17 [2*Arg_4-4*Arg_3-6 ]
n_eval_realheapsort_step2_bb9_in___18 [12*Arg_2-4*Arg_3-4*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___16 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___27 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___28 [8*Arg_2+8 ]
n_eval_realheapsort_step2_bb10_in___29 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___30 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___31 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___32 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___45 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___46 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [8*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [8 ]
n_eval_realheapsort_step2_bb10_in___7 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___8 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [4*Arg_2-4*Arg_3-4 ]

MPRF for transition 94:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_58___2 [2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb4_in___4 [2*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [3 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_2-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___10 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [2 ]
n_eval_realheapsort_step2_bb9_in___6 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3 ]

MPRF for transition 95:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3+Arg_3<=Arg_1 && Arg_1<=3+Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_4<=1 && 1<=Arg_4 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_3+Arg_4-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_0-2 ]
n_eval_realheapsort_step2_58___2 [Arg_3+3*Arg_4-Arg_1 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_0-2 ]
n_eval_realheapsort_step2_bb4_in___4 [3*Arg_2+Arg_3-Arg_1 ]
n_eval_realheapsort_step2_bb11_in___3 [3*Arg_2+Arg_3+3*Arg_4-Arg_1-3 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___49 [1 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___11 [2*Arg_1 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_1 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_2-Arg_3-3 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___5 [3*Arg_4-2 ]
n_eval_realheapsort_step2_bb9_in___6 [1 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_1-Arg_3-3 ]

MPRF for transition 96:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_59___23 [Arg_2-Arg_0 ]
n_eval_realheapsort_step2_59___39 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_58___24 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_58___2 [2 ]
n_eval_realheapsort_step2_58___40 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb2_in___38 [Arg_1-Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___43 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb11_in___26 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___60 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___58 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb6_in___22 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___36 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb6_in___50 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___21 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb7_in___34 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb7_in___48 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [2 ]
n_eval_realheapsort_step2_bb8_in___19 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___33 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [Arg_1+Arg_2+2 ]
n_eval_realheapsort_step2_bb9_in___12 [2*Arg_2+2 ]
n_eval_realheapsort_step2_bb4_in___10 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___13 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb4_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___27 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___29 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___30 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___31 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___32 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___45 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___46 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [2 ]
n_eval_realheapsort_step2_bb10_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [Arg_2-Arg_3-1 ]

MPRF for transition 97:n_eval_realheapsort_step2_bb9_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 3+Arg_3<Arg_1 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

4*Arg_1 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [8 ]
n_eval_realheapsort_step2_59___23 [4*Arg_1-4*Arg_0 ]
n_eval_realheapsort_step2_59___39 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_58___24 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_58___2 [8 ]
n_eval_realheapsort_step2_58___40 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb2_in___38 [4*Arg_1-4*Arg_0 ]
n_eval_realheapsort_step2_bb3_in___37 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___4 [8*Arg_2 ]
n_eval_realheapsort_step2_bb11_in___3 [8*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___43 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb11_in___26 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___60 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___15 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___25 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___41 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___58 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___9 [8*Arg_1+8 ]
n_eval_realheapsort_step2_bb6_in___22 [4*Arg_2-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___36 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb6_in___50 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___20 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___21 [8*Arg_2+8 ]
n_eval_realheapsort_step2_bb7_in___34 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb7_in___35 [8*Arg_4+8 ]
n_eval_realheapsort_step2_bb7_in___48 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___49 [8 ]
n_eval_realheapsort_step2_bb8_in___19 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___33 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb8_in___47 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___11 [8*Arg_2-4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___12 [8*Arg_2-4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___10 [8*Arg_1+8 ]
n_eval_realheapsort_step2_bb10_in___13 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___14 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___17 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___18 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb4_in___16 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___27 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___29 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___30 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___31 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___32 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb10_in___45 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___46 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___5 [8*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___6 [8 ]
n_eval_realheapsort_step2_bb10_in___7 [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb9_in___8 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___44 [4*Arg_2-4*Arg_3-4 ]

MPRF for transition 10:n_eval_realheapsort_step2_58___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 && 0<2+Arg_0+Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:

new bound:

13*Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [1 ]
n_eval_realheapsort_step2_bb10_in___7 [1 ]
n_eval_realheapsort_step2_58___24 [1 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [0 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [0 ]
n_eval_realheapsort_step2_bb4_in___43 [1 ]
n_eval_realheapsort_step2_bb11_in___26 [1 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [1 ]
n_eval_realheapsort_step2_bb5_in___25 [1 ]
n_eval_realheapsort_step2_bb5_in___41 [1 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [1 ]
n_eval_realheapsort_step2_bb6_in___22 [1 ]
n_eval_realheapsort_step2_bb6_in___36 [1 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [1 ]
n_eval_realheapsort_step2_bb7_in___21 [1 ]
n_eval_realheapsort_step2_bb7_in___34 [1 ]
n_eval_realheapsort_step2_bb7_in___35 [Arg_1-2*Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [1 ]
n_eval_realheapsort_step2_bb8_in___33 [1 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [1 ]
n_eval_realheapsort_step2_bb9_in___12 [1 ]
n_eval_realheapsort_step2_bb4_in___10 [1 ]
n_eval_realheapsort_step2_bb10_in___13 [1 ]
n_eval_realheapsort_step2_bb9_in___14 [1 ]
n_eval_realheapsort_step2_bb10_in___17 [1 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_4-2*Arg_2 ]
n_eval_realheapsort_step2_bb4_in___16 [1 ]
n_eval_realheapsort_step2_bb10_in___27 [1 ]
n_eval_realheapsort_step2_bb9_in___28 [1 ]
n_eval_realheapsort_step2_bb10_in___29 [1 ]
n_eval_realheapsort_step2_bb9_in___30 [1 ]
n_eval_realheapsort_step2_bb10_in___31 [1 ]
n_eval_realheapsort_step2_bb9_in___32 [1 ]
n_eval_realheapsort_step2_bb4_in___44 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 11:n_eval_realheapsort_step2_58___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 && Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

39*Arg_1+6 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [3 ]
n_eval_realheapsort_step2_58___24 [0 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [3 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [3 ]
n_eval_realheapsort_step2_bb4_in___43 [3 ]
n_eval_realheapsort_step2_bb11_in___26 [0 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [3 ]
n_eval_realheapsort_step2_bb5_in___25 [3 ]
n_eval_realheapsort_step2_bb5_in___41 [3 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [3 ]
n_eval_realheapsort_step2_bb6_in___22 [3 ]
n_eval_realheapsort_step2_bb6_in___36 [3 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [3 ]
n_eval_realheapsort_step2_bb7_in___21 [3 ]
n_eval_realheapsort_step2_bb7_in___34 [3 ]
n_eval_realheapsort_step2_bb7_in___35 [3 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [3 ]
n_eval_realheapsort_step2_bb8_in___33 [3 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [3 ]
n_eval_realheapsort_step2_bb9_in___12 [3 ]
n_eval_realheapsort_step2_bb4_in___10 [3 ]
n_eval_realheapsort_step2_bb10_in___13 [3 ]
n_eval_realheapsort_step2_bb9_in___14 [3 ]
n_eval_realheapsort_step2_bb10_in___17 [3 ]
n_eval_realheapsort_step2_bb9_in___18 [3 ]
n_eval_realheapsort_step2_bb4_in___16 [3 ]
n_eval_realheapsort_step2_bb10_in___27 [3 ]
n_eval_realheapsort_step2_bb9_in___28 [3 ]
n_eval_realheapsort_step2_bb10_in___29 [3 ]
n_eval_realheapsort_step2_bb9_in___30 [3 ]
n_eval_realheapsort_step2_bb10_in___31 [3 ]
n_eval_realheapsort_step2_bb9_in___32 [3 ]
n_eval_realheapsort_step2_bb4_in___44 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 14:n_eval_realheapsort_step2_59___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=2+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=1+Arg_0+Arg_2 && 0<=1+Arg_0+Arg_1 && 0<2+Arg_0+Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 of depth 1:

new bound:

13*Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [1 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [1 ]
n_eval_realheapsort_step2_bb10_in___7 [1 ]
n_eval_realheapsort_step2_58___24 [1 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [0 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [0 ]
n_eval_realheapsort_step2_bb4_in___43 [1 ]
n_eval_realheapsort_step2_bb11_in___26 [1 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [1 ]
n_eval_realheapsort_step2_bb5_in___25 [1 ]
n_eval_realheapsort_step2_bb5_in___41 [1 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [1 ]
n_eval_realheapsort_step2_bb6_in___22 [1 ]
n_eval_realheapsort_step2_bb6_in___36 [1 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [1 ]
n_eval_realheapsort_step2_bb7_in___21 [1 ]
n_eval_realheapsort_step2_bb7_in___34 [1 ]
n_eval_realheapsort_step2_bb7_in___35 [2*Arg_2+Arg_3+4-Arg_1 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [1 ]
n_eval_realheapsort_step2_bb8_in___33 [1 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [1 ]
n_eval_realheapsort_step2_bb9_in___12 [1 ]
n_eval_realheapsort_step2_bb4_in___10 [1 ]
n_eval_realheapsort_step2_bb10_in___13 [2*Arg_1+1-2*Arg_2 ]
n_eval_realheapsort_step2_bb9_in___14 [Arg_4-2*Arg_2-1 ]
n_eval_realheapsort_step2_bb10_in___17 [Arg_4-2*Arg_2 ]
n_eval_realheapsort_step2_bb9_in___18 [Arg_4-2*Arg_2 ]
n_eval_realheapsort_step2_bb4_in___16 [1 ]
n_eval_realheapsort_step2_bb10_in___27 [1 ]
n_eval_realheapsort_step2_bb9_in___28 [1 ]
n_eval_realheapsort_step2_bb10_in___29 [1 ]
n_eval_realheapsort_step2_bb9_in___30 [1 ]
n_eval_realheapsort_step2_bb10_in___31 [1 ]
n_eval_realheapsort_step2_bb9_in___32 [1 ]
n_eval_realheapsort_step2_bb4_in___44 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 15:n_eval_realheapsort_step2_59___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_0<=1+Arg_3 && Arg_1<2+Arg_0+2*Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

39*Arg_1+6 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [3 ]
n_eval_realheapsort_step2_bb10_in___45 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [3 ]
n_eval_realheapsort_step2_58___24 [0 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [3 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [3 ]
n_eval_realheapsort_step2_bb4_in___43 [3 ]
n_eval_realheapsort_step2_bb11_in___26 [0 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [3 ]
n_eval_realheapsort_step2_bb5_in___25 [3 ]
n_eval_realheapsort_step2_bb5_in___41 [3 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [3 ]
n_eval_realheapsort_step2_bb6_in___22 [3 ]
n_eval_realheapsort_step2_bb6_in___36 [3 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [3 ]
n_eval_realheapsort_step2_bb7_in___21 [3 ]
n_eval_realheapsort_step2_bb7_in___34 [3 ]
n_eval_realheapsort_step2_bb7_in___35 [3 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [3 ]
n_eval_realheapsort_step2_bb8_in___33 [3 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [3 ]
n_eval_realheapsort_step2_bb9_in___12 [3 ]
n_eval_realheapsort_step2_bb4_in___10 [3 ]
n_eval_realheapsort_step2_bb10_in___13 [3 ]
n_eval_realheapsort_step2_bb9_in___14 [3 ]
n_eval_realheapsort_step2_bb10_in___17 [3 ]
n_eval_realheapsort_step2_bb9_in___18 [3 ]
n_eval_realheapsort_step2_bb4_in___16 [3 ]
n_eval_realheapsort_step2_bb10_in___27 [3 ]
n_eval_realheapsort_step2_bb9_in___28 [3 ]
n_eval_realheapsort_step2_bb10_in___29 [3 ]
n_eval_realheapsort_step2_bb9_in___30 [3 ]
n_eval_realheapsort_step2_bb10_in___31 [3 ]
n_eval_realheapsort_step2_bb9_in___32 [3 ]
n_eval_realheapsort_step2_bb4_in___44 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 32:n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___24(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<3+Arg_1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1 of depth 1:

new bound:

13*Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [1 ]
n_eval_realheapsort_step2_bb10_in___7 [1 ]
n_eval_realheapsort_step2_58___24 [0 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [0 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [0 ]
n_eval_realheapsort_step2_bb4_in___43 [1 ]
n_eval_realheapsort_step2_bb11_in___26 [1 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [1 ]
n_eval_realheapsort_step2_bb5_in___25 [1 ]
n_eval_realheapsort_step2_bb5_in___41 [1 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [1 ]
n_eval_realheapsort_step2_bb6_in___22 [1 ]
n_eval_realheapsort_step2_bb6_in___36 [1 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [1 ]
n_eval_realheapsort_step2_bb7_in___21 [1 ]
n_eval_realheapsort_step2_bb7_in___34 [1 ]
n_eval_realheapsort_step2_bb7_in___35 [Arg_1-2*Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [1 ]
n_eval_realheapsort_step2_bb8_in___33 [1 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [1 ]
n_eval_realheapsort_step2_bb9_in___12 [1 ]
n_eval_realheapsort_step2_bb4_in___10 [1 ]
n_eval_realheapsort_step2_bb10_in___13 [1 ]
n_eval_realheapsort_step2_bb9_in___14 [1 ]
n_eval_realheapsort_step2_bb10_in___17 [1 ]
n_eval_realheapsort_step2_bb9_in___18 [1 ]
n_eval_realheapsort_step2_bb4_in___16 [1 ]
n_eval_realheapsort_step2_bb10_in___27 [1 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-2*Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___29 [1 ]
n_eval_realheapsort_step2_bb9_in___30 [1 ]
n_eval_realheapsort_step2_bb10_in___31 [1 ]
n_eval_realheapsort_step2_bb9_in___32 [1 ]
n_eval_realheapsort_step2_bb4_in___44 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 34:n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_58___40(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_1<3+2*Arg_2+Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

39*Arg_1+8 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [2*Arg_4 ]
n_eval_realheapsort_step2_59___23 [2 ]
n_eval_realheapsort_step2_59___39 [2 ]
n_eval_realheapsort_step2_bb10_in___45 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [3 ]
n_eval_realheapsort_step2_58___24 [2 ]
n_eval_realheapsort_step2_58___2 [2*Arg_4 ]
n_eval_realheapsort_step2_58___40 [2 ]
n_eval_realheapsort_step2_bb2_in___38 [2 ]
n_eval_realheapsort_step2_bb3_in___37 [2 ]
n_eval_realheapsort_step2_bb4_in___4 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___3 [2*Arg_4 ]
n_eval_realheapsort_step2_bb11_in___42 [3 ]
n_eval_realheapsort_step2_bb4_in___43 [3 ]
n_eval_realheapsort_step2_bb11_in___26 [2 ]
n_eval_realheapsort_step2_bb4_in___60 [2 ]
n_eval_realheapsort_step2_bb5_in___15 [3 ]
n_eval_realheapsort_step2_bb5_in___25 [3 ]
n_eval_realheapsort_step2_bb5_in___41 [3 ]
n_eval_realheapsort_step2_bb5_in___58 [2 ]
n_eval_realheapsort_step2_bb5_in___9 [-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___22 [3 ]
n_eval_realheapsort_step2_bb6_in___36 [3 ]
n_eval_realheapsort_step2_bb6_in___50 [2 ]
n_eval_realheapsort_step2_bb7_in___20 [3 ]
n_eval_realheapsort_step2_bb7_in___21 [-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___34 [3 ]
n_eval_realheapsort_step2_bb7_in___35 [3 ]
n_eval_realheapsort_step2_bb7_in___48 [2 ]
n_eval_realheapsort_step2_bb9_in___46 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb7_in___49 [2 ]
n_eval_realheapsort_step2_bb8_in___19 [3 ]
n_eval_realheapsort_step2_bb8_in___33 [3 ]
n_eval_realheapsort_step2_bb8_in___47 [2 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [3 ]
n_eval_realheapsort_step2_bb9_in___12 [3 ]
n_eval_realheapsort_step2_bb4_in___10 [-Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___13 [3 ]
n_eval_realheapsort_step2_bb9_in___14 [3 ]
n_eval_realheapsort_step2_bb10_in___17 [3 ]
n_eval_realheapsort_step2_bb9_in___18 [2*Arg_4+1-4*Arg_1 ]
n_eval_realheapsort_step2_bb4_in___16 [3 ]
n_eval_realheapsort_step2_bb10_in___27 [3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_4+2-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___29 [3 ]
n_eval_realheapsort_step2_bb9_in___30 [3 ]
n_eval_realheapsort_step2_bb10_in___31 [3 ]
n_eval_realheapsort_step2_bb9_in___32 [3 ]
n_eval_realheapsort_step2_bb4_in___44 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [2 ]
n_eval_realheapsort_step2_bb10_in___5 [2*Arg_4 ]

MPRF for transition 50:n_eval_realheapsort_step2_bb4_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<3+2*Arg_2+Arg_3 of depth 1:

new bound:

43*Arg_1+6 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [3 ]
n_eval_realheapsort_step2_bb10_in___7 [5-Arg_4 ]
n_eval_realheapsort_step2_58___24 [0 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [0 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [0 ]
n_eval_realheapsort_step2_bb4_in___43 [3 ]
n_eval_realheapsort_step2_bb11_in___26 [0 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [3 ]
n_eval_realheapsort_step2_bb5_in___25 [3 ]
n_eval_realheapsort_step2_bb5_in___41 [3 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [3 ]
n_eval_realheapsort_step2_bb6_in___22 [3 ]
n_eval_realheapsort_step2_bb6_in___36 [3 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [3 ]
n_eval_realheapsort_step2_bb7_in___21 [3 ]
n_eval_realheapsort_step2_bb7_in___34 [3 ]
n_eval_realheapsort_step2_bb7_in___35 [3 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [3 ]
n_eval_realheapsort_step2_bb8_in___33 [3 ]
n_eval_realheapsort_step2_bb8_in___47 [0 ]
n_eval_realheapsort_step2_bb9_in___8 [0 ]
n_eval_realheapsort_step2_bb10_in___11 [3 ]
n_eval_realheapsort_step2_bb9_in___12 [3 ]
n_eval_realheapsort_step2_bb4_in___10 [3 ]
n_eval_realheapsort_step2_bb10_in___13 [3 ]
n_eval_realheapsort_step2_bb9_in___14 [3 ]
n_eval_realheapsort_step2_bb10_in___17 [3 ]
n_eval_realheapsort_step2_bb9_in___18 [3 ]
n_eval_realheapsort_step2_bb4_in___16 [3 ]
n_eval_realheapsort_step2_bb10_in___27 [3 ]
n_eval_realheapsort_step2_bb9_in___28 [3 ]
n_eval_realheapsort_step2_bb10_in___29 [3 ]
n_eval_realheapsort_step2_bb9_in___30 [3 ]
n_eval_realheapsort_step2_bb10_in___31 [3 ]
n_eval_realheapsort_step2_bb9_in___32 [3 ]
n_eval_realheapsort_step2_bb4_in___44 [3 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_3+3*Arg_4-Arg_1 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

MPRF for transition 52:n_eval_realheapsort_step2_bb4_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb11_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<3+2*Arg_2+Arg_3 of depth 1:

new bound:

13*Arg_1+2 {O(n)}

MPRF:

n_eval_realheapsort_step2_59___1 [0 ]
n_eval_realheapsort_step2_59___23 [0 ]
n_eval_realheapsort_step2_59___39 [0 ]
n_eval_realheapsort_step2_bb10_in___45 [1 ]
n_eval_realheapsort_step2_bb10_in___7 [1 ]
n_eval_realheapsort_step2_58___24 [0 ]
n_eval_realheapsort_step2_58___2 [0 ]
n_eval_realheapsort_step2_58___40 [0 ]
n_eval_realheapsort_step2_bb2_in___38 [0 ]
n_eval_realheapsort_step2_bb3_in___37 [0 ]
n_eval_realheapsort_step2_bb4_in___4 [0 ]
n_eval_realheapsort_step2_bb11_in___3 [0 ]
n_eval_realheapsort_step2_bb11_in___42 [0 ]
n_eval_realheapsort_step2_bb4_in___43 [1 ]
n_eval_realheapsort_step2_bb11_in___26 [0 ]
n_eval_realheapsort_step2_bb4_in___60 [0 ]
n_eval_realheapsort_step2_bb5_in___15 [1 ]
n_eval_realheapsort_step2_bb5_in___25 [1 ]
n_eval_realheapsort_step2_bb5_in___41 [1 ]
n_eval_realheapsort_step2_bb5_in___58 [0 ]
n_eval_realheapsort_step2_bb5_in___9 [Arg_2+1-Arg_1 ]
n_eval_realheapsort_step2_bb6_in___22 [1 ]
n_eval_realheapsort_step2_bb6_in___36 [1 ]
n_eval_realheapsort_step2_bb6_in___50 [0 ]
n_eval_realheapsort_step2_bb7_in___20 [1 ]
n_eval_realheapsort_step2_bb7_in___21 [-Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___34 [1 ]
n_eval_realheapsort_step2_bb7_in___35 [Arg_1-Arg_3-2*Arg_4-2 ]
n_eval_realheapsort_step2_bb7_in___48 [0 ]
n_eval_realheapsort_step2_bb9_in___46 [0 ]
n_eval_realheapsort_step2_bb7_in___49 [0 ]
n_eval_realheapsort_step2_bb8_in___19 [1 ]
n_eval_realheapsort_step2_bb8_in___33 [1 ]
n_eval_realheapsort_step2_bb8_in___47 [Arg_3+4-Arg_1 ]
n_eval_realheapsort_step2_bb9_in___8 [Arg_3+4-Arg_1 ]
n_eval_realheapsort_step2_bb10_in___11 [1 ]
n_eval_realheapsort_step2_bb9_in___12 [Arg_1+Arg_3+4 ]
n_eval_realheapsort_step2_bb4_in___10 [1 ]
n_eval_realheapsort_step2_bb10_in___13 [1 ]
n_eval_realheapsort_step2_bb9_in___14 [1 ]
n_eval_realheapsort_step2_bb10_in___17 [1 ]
n_eval_realheapsort_step2_bb9_in___18 [1 ]
n_eval_realheapsort_step2_bb4_in___16 [1 ]
n_eval_realheapsort_step2_bb10_in___27 [1 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_1-2*Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___29 [1 ]
n_eval_realheapsort_step2_bb9_in___30 [1 ]
n_eval_realheapsort_step2_bb10_in___31 [1 ]
n_eval_realheapsort_step2_bb9_in___32 [1 ]
n_eval_realheapsort_step2_bb4_in___44 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_bb10_in___5 [0 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77: 1 {O(1)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64: 1 {O(1)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63: 1 {O(1)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62: 1 {O(1)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76: 1 {O(1)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75: 1 {O(1)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74: 1 {O(1)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71: 1 {O(1)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70: 1 {O(1)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1: Arg_1 {O(n)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23: 13*Arg_1+2 {O(n)}
11: n_eval_realheapsort_step2_58___40->n_eval_realheapsort_step2_59___39: 39*Arg_1+6 {O(n)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56: 1 {O(1)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38: Arg_1 {O(n)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38: 13*Arg_1+2 {O(n)}
15: n_eval_realheapsort_step2_59___39->n_eval_realheapsort_step2_bb2_in___38: 39*Arg_1+6 {O(n)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55: 1 {O(1)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69: 1 {O(1)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68: 1 {O(1)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67: 1 {O(1)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66: 1 {O(1)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65: 1 {O(1)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78: 1 {O(1)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
26: n_eval_realheapsort_step2_bb10_in___27->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
27: n_eval_realheapsort_step2_bb10_in___29->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
28: n_eval_realheapsort_step2_bb10_in___31->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43: Arg_1 {O(n)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4: Arg_1 {O(n)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43: Arg_1+3 {O(n)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24: 13*Arg_1+2 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2: Arg_1 {O(n)}
34: n_eval_realheapsort_step2_bb11_in___42->n_eval_realheapsort_step2_58___40: 39*Arg_1+8 {O(n)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57: 1 {O(1)}
36: n_eval_realheapsort_step2_bb12_in___54->n_eval_realheapsort_step2_stop___52: 1 {O(1)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73: 1 {O(1)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72: 1 {O(1)}
39: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb12_in___54: 1 {O(1)}
40: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb3_in___37: Arg_1 {O(n)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54: 1 {O(1)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61: 1 {O(1)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60: Arg_1 {O(n)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60: 1 {O(1)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9: inf {Infinity}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15: inf {Infinity}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3: Arg_1+2 {O(n)}
50: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb11_in___42: 43*Arg_1+6 {O(n)}
51: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb5_in___41: inf {Infinity}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26: 13*Arg_1+2 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25: inf {Infinity}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59: 1 {O(1)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58: Arg_1+2 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22: inf {Infinity}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22: inf {Infinity}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21: inf {Infinity}
60: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___36: inf {Infinity}
61: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___35: inf {Infinity}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50: 3*Arg_1+3 {O(n)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49: 5*Arg_1+5 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21: inf {Infinity}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20: inf {Infinity}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19: inf {Infinity}
67: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb7_in___34: inf {Infinity}
68: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb8_in___33: inf {Infinity}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48: Arg_1+1 {O(n)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47: 2*Arg_1+4 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18: inf {Infinity}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12: inf {Infinity}
73: n_eval_realheapsort_step2_bb7_in___34->n_eval_realheapsort_step2_bb9_in___32: inf {Infinity}
74: n_eval_realheapsort_step2_bb7_in___35->n_eval_realheapsort_step2_bb9_in___28: inf {Infinity}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46: Arg_1+3 {O(n)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6: Arg_1 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14: inf {Infinity}
78: n_eval_realheapsort_step2_bb8_in___33->n_eval_realheapsort_step2_bb9_in___30: inf {Infinity}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8: Arg_1+1 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11: inf {Infinity}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10: inf {Infinity}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13: inf {Infinity}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16: inf {Infinity}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17: inf {Infinity}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16: inf {Infinity}
86: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb10_in___27: inf {Infinity}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
88: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb10_in___29: inf {Infinity}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
90: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb10_in___31: inf {Infinity}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45: 3*Arg_1 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44: 4*Arg_1 {O(n)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5: Arg_1 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44: Arg_1+2 {O(n)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7: Arg_1 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44: 4*Arg_1 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77: 1 {O(1)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64: 1 {O(1)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63: 1 {O(1)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62: 1 {O(1)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76: 1 {O(1)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75: 1 {O(1)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74: 1 {O(1)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71: 1 {O(1)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70: 1 {O(1)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1: Arg_1 {O(n)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23: 13*Arg_1+2 {O(n)}
11: n_eval_realheapsort_step2_58___40->n_eval_realheapsort_step2_59___39: 39*Arg_1+6 {O(n)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56: 1 {O(1)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38: Arg_1 {O(n)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38: 13*Arg_1+2 {O(n)}
15: n_eval_realheapsort_step2_59___39->n_eval_realheapsort_step2_bb2_in___38: 39*Arg_1+6 {O(n)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55: 1 {O(1)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69: 1 {O(1)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68: 1 {O(1)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67: 1 {O(1)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66: 1 {O(1)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65: 1 {O(1)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78: 1 {O(1)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
26: n_eval_realheapsort_step2_bb10_in___27->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
27: n_eval_realheapsort_step2_bb10_in___29->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
28: n_eval_realheapsort_step2_bb10_in___31->n_eval_realheapsort_step2_bb4_in___43: inf {Infinity}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43: Arg_1 {O(n)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4: Arg_1 {O(n)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43: Arg_1+3 {O(n)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24: 13*Arg_1+2 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2: Arg_1 {O(n)}
34: n_eval_realheapsort_step2_bb11_in___42->n_eval_realheapsort_step2_58___40: 39*Arg_1+8 {O(n)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57: 1 {O(1)}
36: n_eval_realheapsort_step2_bb12_in___54->n_eval_realheapsort_step2_stop___52: 1 {O(1)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73: 1 {O(1)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72: 1 {O(1)}
39: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb12_in___54: 1 {O(1)}
40: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb3_in___37: Arg_1 {O(n)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54: 1 {O(1)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61: 1 {O(1)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60: Arg_1 {O(n)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60: 1 {O(1)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9: inf {Infinity}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15: inf {Infinity}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3: Arg_1+2 {O(n)}
50: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb11_in___42: 43*Arg_1+6 {O(n)}
51: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb5_in___41: inf {Infinity}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26: 13*Arg_1+2 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25: inf {Infinity}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59: 1 {O(1)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58: Arg_1+2 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22: inf {Infinity}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22: inf {Infinity}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21: inf {Infinity}
60: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___36: inf {Infinity}
61: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___35: inf {Infinity}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50: 3*Arg_1+3 {O(n)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49: 5*Arg_1+5 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21: inf {Infinity}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20: inf {Infinity}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19: inf {Infinity}
67: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb7_in___34: inf {Infinity}
68: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb8_in___33: inf {Infinity}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48: Arg_1+1 {O(n)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47: 2*Arg_1+4 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18: inf {Infinity}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12: inf {Infinity}
73: n_eval_realheapsort_step2_bb7_in___34->n_eval_realheapsort_step2_bb9_in___32: inf {Infinity}
74: n_eval_realheapsort_step2_bb7_in___35->n_eval_realheapsort_step2_bb9_in___28: inf {Infinity}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46: Arg_1+3 {O(n)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6: Arg_1 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14: inf {Infinity}
78: n_eval_realheapsort_step2_bb8_in___33->n_eval_realheapsort_step2_bb9_in___30: inf {Infinity}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8: Arg_1+1 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11: inf {Infinity}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10: inf {Infinity}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13: inf {Infinity}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16: inf {Infinity}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17: inf {Infinity}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16: inf {Infinity}
86: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb10_in___27: inf {Infinity}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
88: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb10_in___29: inf {Infinity}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
90: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb10_in___31: inf {Infinity}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44: inf {Infinity}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45: 3*Arg_1 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44: 4*Arg_1 {O(n)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5: Arg_1 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44: Arg_1+2 {O(n)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7: Arg_1 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44: 4*Arg_1 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79: 1 {O(1)}

Sizebounds

0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77, Arg_0: Arg_0 {O(n)}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77, Arg_1: Arg_1 {O(n)}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77, Arg_2: Arg_2 {O(n)}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77, Arg_3: Arg_3 {O(n)}
0: n_eval_realheapsort_step2_0___78->n_eval_realheapsort_step2_1___77, Arg_4: Arg_4 {O(n)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64, Arg_0: Arg_0 {O(n)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64, Arg_1: Arg_1 {O(n)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64, Arg_2: Arg_2 {O(n)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64, Arg_3: Arg_3 {O(n)}
1: n_eval_realheapsort_step2_10___65->n_eval_realheapsort_step2_11___64, Arg_4: Arg_4 {O(n)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63, Arg_0: Arg_0 {O(n)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63, Arg_1: Arg_1 {O(n)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63, Arg_2: Arg_2 {O(n)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63, Arg_3: Arg_3 {O(n)}
2: n_eval_realheapsort_step2_11___64->n_eval_realheapsort_step2_12___63, Arg_4: Arg_4 {O(n)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62, Arg_0: Arg_0 {O(n)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62, Arg_1: Arg_1 {O(n)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62, Arg_2: Arg_2 {O(n)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62, Arg_3: 0 {O(1)}
3: n_eval_realheapsort_step2_12___63->n_eval_realheapsort_step2_bb2_in___62, Arg_4: Arg_4 {O(n)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76, Arg_0: Arg_0 {O(n)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76, Arg_1: Arg_1 {O(n)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76, Arg_2: Arg_2 {O(n)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76, Arg_3: Arg_3 {O(n)}
4: n_eval_realheapsort_step2_1___77->n_eval_realheapsort_step2_2___76, Arg_4: Arg_4 {O(n)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75, Arg_0: Arg_0 {O(n)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75, Arg_1: Arg_1 {O(n)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75, Arg_2: Arg_2 {O(n)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75, Arg_3: Arg_3 {O(n)}
5: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb12_in___75, Arg_4: Arg_4 {O(n)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74, Arg_0: Arg_0 {O(n)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74, Arg_1: Arg_1 {O(n)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74, Arg_2: Arg_2 {O(n)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74, Arg_3: Arg_3 {O(n)}
6: n_eval_realheapsort_step2_2___76->n_eval_realheapsort_step2_bb1_in___74, Arg_4: Arg_4 {O(n)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71, Arg_0: Arg_0 {O(n)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71, Arg_1: Arg_1 {O(n)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71, Arg_2: Arg_2 {O(n)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71, Arg_3: Arg_3 {O(n)}
7: n_eval_realheapsort_step2_3___72->n_eval_realheapsort_step2_4___71, Arg_4: Arg_4 {O(n)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70, Arg_0: Arg_0 {O(n)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70, Arg_1: Arg_1 {O(n)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70, Arg_2: Arg_2 {O(n)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70, Arg_3: Arg_3 {O(n)}
8: n_eval_realheapsort_step2_4___71->n_eval_realheapsort_step2_5___70, Arg_4: Arg_4 {O(n)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1, Arg_0: Arg_1+4 {O(n)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1, Arg_1: Arg_1 {O(n)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1, Arg_2: 1 {O(1)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1, Arg_3: Arg_1+3 {O(n)}
9: n_eval_realheapsort_step2_58___2->n_eval_realheapsort_step2_59___1, Arg_4: 1 {O(1)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23, Arg_0: 59*Arg_1+32 {O(n)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23, Arg_1: Arg_1 {O(n)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23, Arg_2: 6*Arg_1 {O(n)}
10: n_eval_realheapsort_step2_58___24->n_eval_realheapsort_step2_59___23, Arg_3: 59*Arg_1+32 {O(n)}
11: n_eval_realheapsort_step2_58___40->n_eval_realheapsort_step2_59___39, Arg_0: 59*Arg_1+32 {O(n)}
11: n_eval_realheapsort_step2_58___40->n_eval_realheapsort_step2_59___39, Arg_1: Arg_1 {O(n)}
11: n_eval_realheapsort_step2_58___40->n_eval_realheapsort_step2_59___39, Arg_3: 59*Arg_1+32 {O(n)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56, Arg_0: 59*Arg_1+33 {O(n)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56, Arg_1: Arg_1 {O(n)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56, Arg_2: 0 {O(1)}
12: n_eval_realheapsort_step2_58___57->n_eval_realheapsort_step2_59___56, Arg_3: 59*Arg_1+32 {O(n)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38, Arg_0: Arg_1+4 {O(n)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38, Arg_1: Arg_1 {O(n)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38, Arg_2: 1 {O(1)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38, Arg_3: Arg_1+4 {O(n)}
13: n_eval_realheapsort_step2_59___1->n_eval_realheapsort_step2_bb2_in___38, Arg_4: 1 {O(1)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38, Arg_0: 59*Arg_1+32 {O(n)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38, Arg_1: Arg_1 {O(n)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38, Arg_2: 6*Arg_1 {O(n)}
14: n_eval_realheapsort_step2_59___23->n_eval_realheapsort_step2_bb2_in___38, Arg_3: 59*Arg_1+32 {O(n)}
15: n_eval_realheapsort_step2_59___39->n_eval_realheapsort_step2_bb2_in___38, Arg_0: 59*Arg_1+32 {O(n)}
15: n_eval_realheapsort_step2_59___39->n_eval_realheapsort_step2_bb2_in___38, Arg_1: Arg_1 {O(n)}
15: n_eval_realheapsort_step2_59___39->n_eval_realheapsort_step2_bb2_in___38, Arg_3: 59*Arg_1+32 {O(n)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55, Arg_0: 59*Arg_1+33 {O(n)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55, Arg_1: Arg_1 {O(n)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55, Arg_2: 0 {O(1)}
16: n_eval_realheapsort_step2_59___56->n_eval_realheapsort_step2_bb2_in___55, Arg_3: 59*Arg_1+33 {O(n)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69, Arg_0: Arg_0 {O(n)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69, Arg_1: Arg_1 {O(n)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69, Arg_2: Arg_2 {O(n)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69, Arg_3: Arg_3 {O(n)}
17: n_eval_realheapsort_step2_5___70->n_eval_realheapsort_step2_6___69, Arg_4: Arg_4 {O(n)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68, Arg_0: Arg_0 {O(n)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68, Arg_1: Arg_1 {O(n)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68, Arg_2: Arg_2 {O(n)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68, Arg_3: Arg_3 {O(n)}
18: n_eval_realheapsort_step2_6___69->n_eval_realheapsort_step2_7___68, Arg_4: Arg_4 {O(n)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67, Arg_0: Arg_0 {O(n)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67, Arg_1: Arg_1 {O(n)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67, Arg_2: Arg_2 {O(n)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67, Arg_3: Arg_3 {O(n)}
19: n_eval_realheapsort_step2_7___68->n_eval_realheapsort_step2_8___67, Arg_4: Arg_4 {O(n)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66, Arg_0: Arg_0 {O(n)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66, Arg_1: Arg_1 {O(n)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66, Arg_2: Arg_2 {O(n)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66, Arg_3: Arg_3 {O(n)}
20: n_eval_realheapsort_step2_8___67->n_eval_realheapsort_step2_9___66, Arg_4: Arg_4 {O(n)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65, Arg_0: Arg_0 {O(n)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65, Arg_1: Arg_1 {O(n)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65, Arg_2: Arg_2 {O(n)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65, Arg_3: Arg_3 {O(n)}
21: n_eval_realheapsort_step2_9___66->n_eval_realheapsort_step2_10___65, Arg_4: Arg_4 {O(n)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78, Arg_0: Arg_0 {O(n)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78, Arg_1: Arg_1 {O(n)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78, Arg_2: Arg_2 {O(n)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78, Arg_3: Arg_3 {O(n)}
22: n_eval_realheapsort_step2_bb0_in___79->n_eval_realheapsort_step2_0___78, Arg_4: Arg_4 {O(n)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43, Arg_2: 14*Arg_1+4 {O(n)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 2*Arg_1+6 {O(n)}
23: n_eval_realheapsort_step2_bb10_in___11->n_eval_realheapsort_step2_bb4_in___43, Arg_4: 14*Arg_1+4 {O(n)}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43, Arg_2: 16*Arg_1+2 {O(n)}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
24: n_eval_realheapsort_step2_bb10_in___13->n_eval_realheapsort_step2_bb4_in___43, Arg_4: 16*Arg_1+2 {O(n)}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43, Arg_2: 16*Arg_1+2 {O(n)}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
25: n_eval_realheapsort_step2_bb10_in___17->n_eval_realheapsort_step2_bb4_in___43, Arg_4: 16*Arg_1+2 {O(n)}
26: n_eval_realheapsort_step2_bb10_in___27->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
26: n_eval_realheapsort_step2_bb10_in___27->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
26: n_eval_realheapsort_step2_bb10_in___27->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
27: n_eval_realheapsort_step2_bb10_in___29->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
27: n_eval_realheapsort_step2_bb10_in___29->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
27: n_eval_realheapsort_step2_bb10_in___29->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
28: n_eval_realheapsort_step2_bb10_in___31->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
28: n_eval_realheapsort_step2_bb10_in___31->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
28: n_eval_realheapsort_step2_bb10_in___31->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43, Arg_2: 1 {O(1)}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
29: n_eval_realheapsort_step2_bb10_in___45->n_eval_realheapsort_step2_bb4_in___43, Arg_4: 1 {O(1)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4, Arg_1: Arg_1 {O(n)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4, Arg_2: 1 {O(1)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4, Arg_3: Arg_1+3 {O(n)}
30: n_eval_realheapsort_step2_bb10_in___5->n_eval_realheapsort_step2_bb4_in___4, Arg_4: 1 {O(1)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43, Arg_1: Arg_1 {O(n)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43, Arg_2: 2 {O(1)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43, Arg_3: 59*Arg_1+32 {O(n)}
31: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___43, Arg_4: 2 {O(1)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24, Arg_0: 59*Arg_1+32 {O(n)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24, Arg_1: Arg_1 {O(n)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24, Arg_2: 6*Arg_1 {O(n)}
32: n_eval_realheapsort_step2_bb11_in___26->n_eval_realheapsort_step2_58___24, Arg_3: 59*Arg_1+32 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2, Arg_0: Arg_1+4 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2, Arg_1: Arg_1 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2, Arg_2: 1 {O(1)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2, Arg_3: Arg_1+3 {O(n)}
33: n_eval_realheapsort_step2_bb11_in___3->n_eval_realheapsort_step2_58___2, Arg_4: 1 {O(1)}
34: n_eval_realheapsort_step2_bb11_in___42->n_eval_realheapsort_step2_58___40, Arg_0: 59*Arg_1+32 {O(n)}
34: n_eval_realheapsort_step2_bb11_in___42->n_eval_realheapsort_step2_58___40, Arg_1: Arg_1 {O(n)}
34: n_eval_realheapsort_step2_bb11_in___42->n_eval_realheapsort_step2_58___40, Arg_3: 59*Arg_1+32 {O(n)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57, Arg_0: 59*Arg_1+33 {O(n)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57, Arg_1: Arg_1 {O(n)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57, Arg_2: 0 {O(1)}
35: n_eval_realheapsort_step2_bb11_in___59->n_eval_realheapsort_step2_58___57, Arg_3: 59*Arg_1+32 {O(n)}
36: n_eval_realheapsort_step2_bb12_in___54->n_eval_realheapsort_step2_stop___52, Arg_0: 177*Arg_1+97 {O(n)}
36: n_eval_realheapsort_step2_bb12_in___54->n_eval_realheapsort_step2_stop___52, Arg_1: 3*Arg_1 {O(n)}
36: n_eval_realheapsort_step2_bb12_in___54->n_eval_realheapsort_step2_stop___52, Arg_3: 177*Arg_1+97 {O(n)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73, Arg_0: Arg_0 {O(n)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73, Arg_1: Arg_1 {O(n)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73, Arg_2: Arg_2 {O(n)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73, Arg_3: Arg_3 {O(n)}
37: n_eval_realheapsort_step2_bb12_in___75->n_eval_realheapsort_step2_stop___73, Arg_4: Arg_4 {O(n)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72, Arg_0: Arg_0 {O(n)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72, Arg_1: Arg_1 {O(n)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72, Arg_2: Arg_2 {O(n)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72, Arg_3: Arg_3 {O(n)}
38: n_eval_realheapsort_step2_bb1_in___74->n_eval_realheapsort_step2_3___72, Arg_4: Arg_4 {O(n)}
39: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb12_in___54, Arg_0: 118*Arg_1+64 {O(n)}
39: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb12_in___54, Arg_1: 2*Arg_1 {O(n)}
39: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb12_in___54, Arg_3: 118*Arg_1+64 {O(n)}
40: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb3_in___37, Arg_0: 119*Arg_1+68 {O(n)}
40: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb3_in___37, Arg_1: Arg_1 {O(n)}
40: n_eval_realheapsort_step2_bb2_in___38->n_eval_realheapsort_step2_bb3_in___37, Arg_3: 59*Arg_1+32 {O(n)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54, Arg_0: 59*Arg_1+33 {O(n)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54, Arg_1: Arg_1 {O(n)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54, Arg_2: 0 {O(1)}
41: n_eval_realheapsort_step2_bb2_in___55->n_eval_realheapsort_step2_bb12_in___54, Arg_3: 59*Arg_1+33 {O(n)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61, Arg_0: Arg_0 {O(n)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61, Arg_1: Arg_1 {O(n)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61, Arg_2: Arg_2 {O(n)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61, Arg_3: 0 {O(1)}
43: n_eval_realheapsort_step2_bb2_in___62->n_eval_realheapsort_step2_bb3_in___61, Arg_4: Arg_4 {O(n)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60, Arg_0: 119*Arg_1+68 {O(n)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60, Arg_1: Arg_1 {O(n)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60, Arg_2: 0 {O(1)}
44: n_eval_realheapsort_step2_bb3_in___37->n_eval_realheapsort_step2_bb4_in___60, Arg_3: 59*Arg_1+32 {O(n)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60, Arg_0: Arg_0 {O(n)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60, Arg_1: Arg_1 {O(n)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60, Arg_2: 0 {O(1)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60, Arg_3: 0 {O(1)}
46: n_eval_realheapsort_step2_bb3_in___61->n_eval_realheapsort_step2_bb4_in___60, Arg_4: Arg_4 {O(n)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9, Arg_1: Arg_1 {O(n)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9, Arg_2: Arg_1 {O(n)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9, Arg_3: 2*Arg_1+6 {O(n)}
47: n_eval_realheapsort_step2_bb4_in___10->n_eval_realheapsort_step2_bb5_in___9, Arg_4: 14*Arg_1+4 {O(n)}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15, Arg_1: Arg_1 {O(n)}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15, Arg_2: 2*Arg_1 {O(n)}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15, Arg_3: 59*Arg_1+32 {O(n)}
48: n_eval_realheapsort_step2_bb4_in___16->n_eval_realheapsort_step2_bb5_in___15, Arg_4: 32*Arg_1+4 {O(n)}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3, Arg_1: Arg_1 {O(n)}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3, Arg_2: 1 {O(1)}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3, Arg_3: Arg_1+3 {O(n)}
49: n_eval_realheapsort_step2_bb4_in___4->n_eval_realheapsort_step2_bb11_in___3, Arg_4: 1 {O(1)}
50: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb11_in___42, Arg_0: 32*Arg_0+3808*Arg_1+2176 {O(n)}
50: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb11_in___42, Arg_1: Arg_1 {O(n)}
50: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb11_in___42, Arg_3: 59*Arg_1+32 {O(n)}
51: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb5_in___41, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
51: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb5_in___41, Arg_1: Arg_1 {O(n)}
51: n_eval_realheapsort_step2_bb4_in___43->n_eval_realheapsort_step2_bb5_in___41, Arg_3: 59*Arg_1+32 {O(n)}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26, Arg_0: 18*Arg_0+2142*Arg_1+1224 {O(n)}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26, Arg_1: Arg_1 {O(n)}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26, Arg_2: 6*Arg_1 {O(n)}
52: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb11_in___26, Arg_3: 59*Arg_1+32 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25, Arg_1: Arg_1 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25, Arg_2: 6*Arg_1 {O(n)}
53: n_eval_realheapsort_step2_bb4_in___44->n_eval_realheapsort_step2_bb5_in___25, Arg_3: 59*Arg_1+32 {O(n)}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59, Arg_0: 119*Arg_1+68 {O(n)}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59, Arg_1: Arg_1 {O(n)}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59, Arg_2: 0 {O(1)}
55: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb11_in___59, Arg_3: 59*Arg_1+32 {O(n)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58, Arg_1: Arg_1 {O(n)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58, Arg_2: 0 {O(1)}
56: n_eval_realheapsort_step2_bb4_in___60->n_eval_realheapsort_step2_bb5_in___58, Arg_3: 59*Arg_1+32 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22, Arg_1: Arg_1 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22, Arg_2: 2*Arg_1 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22, Arg_3: 59*Arg_1+32 {O(n)}
57: n_eval_realheapsort_step2_bb5_in___15->n_eval_realheapsort_step2_bb6_in___22, Arg_4: 32*Arg_1+4 {O(n)}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22, Arg_1: Arg_1 {O(n)}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22, Arg_2: 6*Arg_1 {O(n)}
58: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb6_in___22, Arg_3: 59*Arg_1+32 {O(n)}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21, Arg_1: Arg_1 {O(n)}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21, Arg_2: 6*Arg_1 {O(n)}
59: n_eval_realheapsort_step2_bb5_in___25->n_eval_realheapsort_step2_bb7_in___21, Arg_3: Arg_1+3 {O(n)}
60: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___36, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
60: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___36, Arg_1: Arg_1 {O(n)}
60: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___36, Arg_3: 59*Arg_1+32 {O(n)}
61: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___35, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
61: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___35, Arg_1: Arg_1 {O(n)}
61: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___35, Arg_3: 59*Arg_1+32 {O(n)}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50, Arg_1: Arg_1 {O(n)}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50, Arg_2: 0 {O(1)}
62: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb6_in___50, Arg_3: 59*Arg_1+32 {O(n)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49, Arg_1: Arg_1 {O(n)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49, Arg_2: 0 {O(1)}
63: n_eval_realheapsort_step2_bb5_in___58->n_eval_realheapsort_step2_bb7_in___49, Arg_3: Arg_1+3 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21, Arg_1: Arg_1 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21, Arg_2: Arg_1 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21, Arg_3: Arg_1+3 {O(n)}
64: n_eval_realheapsort_step2_bb5_in___9->n_eval_realheapsort_step2_bb7_in___21, Arg_4: 14*Arg_1+4 {O(n)}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20, Arg_1: Arg_1 {O(n)}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20, Arg_2: 8*Arg_1 {O(n)}
65: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb7_in___20, Arg_3: 59*Arg_1+32 {O(n)}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19, Arg_1: Arg_1 {O(n)}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19, Arg_2: 8*Arg_1 {O(n)}
66: n_eval_realheapsort_step2_bb6_in___22->n_eval_realheapsort_step2_bb8_in___19, Arg_3: 59*Arg_1+32 {O(n)}
67: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb7_in___34, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
67: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb7_in___34, Arg_1: Arg_1 {O(n)}
67: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb7_in___34, Arg_3: 59*Arg_1+32 {O(n)}
68: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb8_in___33, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
68: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb8_in___33, Arg_1: Arg_1 {O(n)}
68: n_eval_realheapsort_step2_bb6_in___36->n_eval_realheapsort_step2_bb8_in___33, Arg_3: 59*Arg_1+32 {O(n)}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48, Arg_1: Arg_1 {O(n)}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48, Arg_2: 0 {O(1)}
69: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb7_in___48, Arg_3: 59*Arg_1+32 {O(n)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47, Arg_1: Arg_1 {O(n)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47, Arg_2: 0 {O(1)}
70: n_eval_realheapsort_step2_bb6_in___50->n_eval_realheapsort_step2_bb8_in___47, Arg_3: 59*Arg_1+32 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18, Arg_1: Arg_1 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18, Arg_2: 8*Arg_1 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18, Arg_3: 59*Arg_1+32 {O(n)}
71: n_eval_realheapsort_step2_bb7_in___20->n_eval_realheapsort_step2_bb9_in___18, Arg_4: 16*Arg_1+2 {O(n)}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12, Arg_1: Arg_1 {O(n)}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12, Arg_2: 7*Arg_1 {O(n)}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12, Arg_3: 2*Arg_1+6 {O(n)}
72: n_eval_realheapsort_step2_bb7_in___21->n_eval_realheapsort_step2_bb9_in___12, Arg_4: 14*Arg_1+4 {O(n)}
73: n_eval_realheapsort_step2_bb7_in___34->n_eval_realheapsort_step2_bb9_in___32, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
73: n_eval_realheapsort_step2_bb7_in___34->n_eval_realheapsort_step2_bb9_in___32, Arg_1: Arg_1 {O(n)}
73: n_eval_realheapsort_step2_bb7_in___34->n_eval_realheapsort_step2_bb9_in___32, Arg_3: 59*Arg_1+32 {O(n)}
74: n_eval_realheapsort_step2_bb7_in___35->n_eval_realheapsort_step2_bb9_in___28, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
74: n_eval_realheapsort_step2_bb7_in___35->n_eval_realheapsort_step2_bb9_in___28, Arg_1: Arg_1 {O(n)}
74: n_eval_realheapsort_step2_bb7_in___35->n_eval_realheapsort_step2_bb9_in___28, Arg_3: 59*Arg_1+32 {O(n)}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46, Arg_1: Arg_1 {O(n)}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46, Arg_2: 0 {O(1)}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46, Arg_3: 59*Arg_1+32 {O(n)}
75: n_eval_realheapsort_step2_bb7_in___48->n_eval_realheapsort_step2_bb9_in___46, Arg_4: 1 {O(1)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6, Arg_1: Arg_1 {O(n)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6, Arg_2: 0 {O(1)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6, Arg_3: Arg_1+3 {O(n)}
76: n_eval_realheapsort_step2_bb7_in___49->n_eval_realheapsort_step2_bb9_in___6, Arg_4: 1 {O(1)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14, Arg_1: Arg_1 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14, Arg_2: 8*Arg_1 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14, Arg_3: 59*Arg_1+32 {O(n)}
77: n_eval_realheapsort_step2_bb8_in___19->n_eval_realheapsort_step2_bb9_in___14, Arg_4: 16*Arg_1+2 {O(n)}
78: n_eval_realheapsort_step2_bb8_in___33->n_eval_realheapsort_step2_bb9_in___30, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
78: n_eval_realheapsort_step2_bb8_in___33->n_eval_realheapsort_step2_bb9_in___30, Arg_1: Arg_1 {O(n)}
78: n_eval_realheapsort_step2_bb8_in___33->n_eval_realheapsort_step2_bb9_in___30, Arg_3: 59*Arg_1+32 {O(n)}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8, Arg_1: Arg_1 {O(n)}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8, Arg_2: 0 {O(1)}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8, Arg_3: 59*Arg_1+32 {O(n)}
79: n_eval_realheapsort_step2_bb8_in___47->n_eval_realheapsort_step2_bb9_in___8, Arg_4: 2 {O(1)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11, Arg_1: Arg_1 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11, Arg_2: 7*Arg_1 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11, Arg_3: 2*Arg_1+6 {O(n)}
80: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb10_in___11, Arg_4: 14*Arg_1+4 {O(n)}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10, Arg_1: Arg_1 {O(n)}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10, Arg_2: Arg_1 {O(n)}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10, Arg_3: 2*Arg_1+6 {O(n)}
81: n_eval_realheapsort_step2_bb9_in___12->n_eval_realheapsort_step2_bb4_in___10, Arg_4: 14*Arg_1+4 {O(n)}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13, Arg_1: Arg_1 {O(n)}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13, Arg_2: 8*Arg_1 {O(n)}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13, Arg_3: 59*Arg_1+32 {O(n)}
82: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb10_in___13, Arg_4: 16*Arg_1+2 {O(n)}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16, Arg_1: Arg_1 {O(n)}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16, Arg_2: Arg_1 {O(n)}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16, Arg_3: 59*Arg_1+32 {O(n)}
83: n_eval_realheapsort_step2_bb9_in___14->n_eval_realheapsort_step2_bb4_in___16, Arg_4: 16*Arg_1+2 {O(n)}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17, Arg_1: Arg_1 {O(n)}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17, Arg_2: 8*Arg_1 {O(n)}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17, Arg_3: 59*Arg_1+32 {O(n)}
84: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb10_in___17, Arg_4: 16*Arg_1+2 {O(n)}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16, Arg_1: Arg_1 {O(n)}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16, Arg_2: Arg_1 {O(n)}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16, Arg_3: 59*Arg_1+32 {O(n)}
85: n_eval_realheapsort_step2_bb9_in___18->n_eval_realheapsort_step2_bb4_in___16, Arg_4: 16*Arg_1+2 {O(n)}
86: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb10_in___27, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
86: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb10_in___27, Arg_1: Arg_1 {O(n)}
86: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb10_in___27, Arg_3: 59*Arg_1+32 {O(n)}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
87: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_bb4_in___44, Arg_3: 59*Arg_1+32 {O(n)}
88: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb10_in___29, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
88: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb10_in___29, Arg_1: Arg_1 {O(n)}
88: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb10_in___29, Arg_3: 59*Arg_1+32 {O(n)}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
89: n_eval_realheapsort_step2_bb9_in___30->n_eval_realheapsort_step2_bb4_in___44, Arg_3: 59*Arg_1+32 {O(n)}
90: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb10_in___31, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
90: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb10_in___31, Arg_1: Arg_1 {O(n)}
90: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb10_in___31, Arg_3: 59*Arg_1+32 {O(n)}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 5*Arg_0+595*Arg_1+340 {O(n)}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
91: n_eval_realheapsort_step2_bb9_in___32->n_eval_realheapsort_step2_bb4_in___44, Arg_3: 59*Arg_1+32 {O(n)}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45, Arg_1: Arg_1 {O(n)}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45, Arg_2: 0 {O(1)}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45, Arg_3: 59*Arg_1+32 {O(n)}
92: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb10_in___45, Arg_4: 1 {O(1)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44, Arg_3: 59*Arg_1+32 {O(n)}
93: n_eval_realheapsort_step2_bb9_in___46->n_eval_realheapsort_step2_bb4_in___44, Arg_4: 1 {O(1)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5, Arg_1: Arg_1 {O(n)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5, Arg_2: 0 {O(1)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5, Arg_3: Arg_1+3 {O(n)}
94: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb10_in___5, Arg_4: 1 {O(1)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44, Arg_3: Arg_1+3 {O(n)}
95: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_bb4_in___44, Arg_4: 1 {O(1)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7, Arg_1: Arg_1 {O(n)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7, Arg_2: 0 {O(1)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7, Arg_3: 59*Arg_1+32 {O(n)}
96: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7, Arg_4: 2 {O(1)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44, Arg_0: 119*Arg_1+Arg_0+68 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44, Arg_1: Arg_1 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44, Arg_2: Arg_1 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44, Arg_3: 59*Arg_1+32 {O(n)}
97: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___44, Arg_4: 2 {O(1)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79, Arg_0: Arg_0 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79, Arg_1: Arg_1 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79, Arg_2: Arg_2 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79, Arg_3: Arg_3 {O(n)}
98: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___79, Arg_4: Arg_4 {O(n)}