Initial Problem
Start: n_eval_realheapsort_step1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: v_j_0_P
Locations: n_eval_realheapsort_step1_0___31, n_eval_realheapsort_step1_1___30, n_eval_realheapsort_step1_28___14, n_eval_realheapsort_step1_28___22, n_eval_realheapsort_step1_28___3, n_eval_realheapsort_step1_28___8, n_eval_realheapsort_step1_29___13, n_eval_realheapsort_step1_29___2, n_eval_realheapsort_step1_29___21, n_eval_realheapsort_step1_29___7, n_eval_realheapsort_step1_2___29, n_eval_realheapsort_step1__critedge_in___16, n_eval_realheapsort_step1__critedge_in___24, n_eval_realheapsort_step1__critedge_in___5, n_eval_realheapsort_step1__critedge_in___9, n_eval_realheapsort_step1_bb0_in___32, n_eval_realheapsort_step1_bb1_in___12, n_eval_realheapsort_step1_bb1_in___20, n_eval_realheapsort_step1_bb1_in___28, n_eval_realheapsort_step1_bb2_in___11, n_eval_realheapsort_step1_bb2_in___17, n_eval_realheapsort_step1_bb2_in___26, n_eval_realheapsort_step1_bb3_in___15, n_eval_realheapsort_step1_bb3_in___25, n_eval_realheapsort_step1_bb4_in___23, n_eval_realheapsort_step1_bb4_in___4, n_eval_realheapsort_step1_bb5_in___10, n_eval_realheapsort_step1_bb5_in___19, n_eval_realheapsort_step1_bb5_in___27, n_eval_realheapsort_step1_start, n_eval_realheapsort_step1_stop___1, n_eval_realheapsort_step1_stop___18, n_eval_realheapsort_step1_stop___6
Transitions:
0:n_eval_realheapsort_step1_0___31(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_1___30(Arg_0,Arg_1,Arg_2,Arg_3)
1:n_eval_realheapsort_step1_1___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3)
2:n_eval_realheapsort_step1_28___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
3:n_eval_realheapsort_step1_28___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
4:n_eval_realheapsort_step1_28___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
5:n_eval_realheapsort_step1_28___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0
6:n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
7:n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
8:n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
9:n_eval_realheapsort_step1_29___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:Arg_0<=1 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0
10:n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___28(Arg_0,Arg_1,Arg_2,1):|:2<Arg_1
11:n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___27(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2
12:n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___14(Arg_3+1,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 0<=1+Arg_2
13:n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___22(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
14:n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___3(Arg_3+1,Arg_1,Arg_2,Arg_3):|:0<Arg_2
15:n_eval_realheapsort_step1__critedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___8(Arg_3+1,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2
16:n_eval_realheapsort_step1_bb0_in___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_0___31(Arg_0,Arg_1,Arg_2,Arg_3)
17:n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
18:n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
19:n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_3,Arg_3):|:0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
20:n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___19(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
21:n_eval_realheapsort_step1_bb1_in___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_3,Arg_3):|:1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
22:n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && Arg_2<=0
23:n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
24:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=1+Arg_2 && Arg_2<=0
25:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=1+Arg_2 && 0<Arg_2
26:n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
27:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,v_j_0_P,Arg_3):|:0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
28:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,v_j_0_P,Arg_3):|:0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
29:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
30:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
31:n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
32:n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
33:n_eval_realheapsort_step1_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
34:n_eval_realheapsort_step1_bb5_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
35:n_eval_realheapsort_step1_bb5_in___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2
36:n_eval_realheapsort_step1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb0_in___32(Arg_0,Arg_1,Arg_2,Arg_3)
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___8
n_eval_realheapsort_step1_28___8
n_eval_realheapsort_step1_29___7
n_eval_realheapsort_step1_29___7
n_eval_realheapsort_step1_28___8->n_eval_realheapsort_step1_29___7
t₅
τ = Arg_0<=1 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_29___7->n_eval_realheapsort_step1_bb1_in___12
t₉
η (Arg_3) = Arg_0
τ = Arg_0<=1 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 0<Arg_2
n_eval_realheapsort_step1__critedge_in___9
n_eval_realheapsort_step1__critedge_in___9
n_eval_realheapsort_step1__critedge_in___9->n_eval_realheapsort_step1_28___8
t₁₅
η (Arg_0) = Arg_3+1
τ = Arg_3<=0 && 1+Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1__critedge_in___9
t₂₂
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
Preprocessing
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___14
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___16
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb2_in___17
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___21
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb3_in___15
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___13
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___5
Found invariant Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_bb1_in___20
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___2
Found invariant Arg_1<=2 for location n_eval_realheapsort_step1_bb5_in___27
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___3
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb2_in___26
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___24
Found invariant Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 for location n_eval_realheapsort_step1_bb5_in___19
Found invariant Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_bb1_in___12
Found invariant Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 for location n_eval_realheapsort_step1_stop___6
Found invariant 1<=0 for location n_eval_realheapsort_step1__critedge_in___9
Found invariant Arg_1<=2 for location n_eval_realheapsort_step1_stop___1
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb3_in___25
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb4_in___23
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb4_in___4
Found invariant 1<=0 for location n_eval_realheapsort_step1_28___8
Found invariant Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 for location n_eval_realheapsort_step1_bb5_in___10
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___22
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_bb2_in___11
Found invariant 1<=0 for location n_eval_realheapsort_step1_29___7
Found invariant Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb1_in___28
Found invariant Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 for location n_eval_realheapsort_step1_stop___18
Cut unsatisfiable transition 5: n_eval_realheapsort_step1_28___8->n_eval_realheapsort_step1_29___7
Cut unsatisfiable transition 9: n_eval_realheapsort_step1_29___7->n_eval_realheapsort_step1_bb1_in___12
Cut unsatisfiable transition 15: n_eval_realheapsort_step1__critedge_in___9->n_eval_realheapsort_step1_28___8
Cut unsatisfiable transition 22: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1__critedge_in___9
Cut unreachable locations [n_eval_realheapsort_step1_28___8; n_eval_realheapsort_step1_29___7; n_eval_realheapsort_step1__critedge_in___9] from the program graph
Problem after Preprocessing
Start: n_eval_realheapsort_step1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: v_j_0_P
Locations: n_eval_realheapsort_step1_0___31, n_eval_realheapsort_step1_1___30, n_eval_realheapsort_step1_28___14, n_eval_realheapsort_step1_28___22, n_eval_realheapsort_step1_28___3, n_eval_realheapsort_step1_29___13, n_eval_realheapsort_step1_29___2, n_eval_realheapsort_step1_29___21, n_eval_realheapsort_step1_2___29, n_eval_realheapsort_step1__critedge_in___16, n_eval_realheapsort_step1__critedge_in___24, n_eval_realheapsort_step1__critedge_in___5, n_eval_realheapsort_step1_bb0_in___32, n_eval_realheapsort_step1_bb1_in___12, n_eval_realheapsort_step1_bb1_in___20, n_eval_realheapsort_step1_bb1_in___28, n_eval_realheapsort_step1_bb2_in___11, n_eval_realheapsort_step1_bb2_in___17, n_eval_realheapsort_step1_bb2_in___26, n_eval_realheapsort_step1_bb3_in___15, n_eval_realheapsort_step1_bb3_in___25, n_eval_realheapsort_step1_bb4_in___23, n_eval_realheapsort_step1_bb4_in___4, n_eval_realheapsort_step1_bb5_in___10, n_eval_realheapsort_step1_bb5_in___19, n_eval_realheapsort_step1_bb5_in___27, n_eval_realheapsort_step1_start, n_eval_realheapsort_step1_stop___1, n_eval_realheapsort_step1_stop___18, n_eval_realheapsort_step1_stop___6
Transitions:
0:n_eval_realheapsort_step1_0___31(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_1___30(Arg_0,Arg_1,Arg_2,Arg_3)
1:n_eval_realheapsort_step1_1___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3)
2:n_eval_realheapsort_step1_28___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
3:n_eval_realheapsort_step1_28___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
4:n_eval_realheapsort_step1_28___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
6:n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
7:n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
8:n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_0):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
10:n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___28(Arg_0,Arg_1,Arg_2,1):|:2<Arg_1
11:n_eval_realheapsort_step1_2___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___27(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2
12:n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___14(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
13:n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___22(Arg_3+1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
14:n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___3(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
16:n_eval_realheapsort_step1_bb0_in___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_0___31(Arg_0,Arg_1,Arg_2,Arg_3)
17:n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
18:n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
19:n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
20:n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb5_in___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
21:n_eval_realheapsort_step1_bb1_in___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
23:n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
24:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
25:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
26:n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
27:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
28:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
29:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
30:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
31:n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
32:n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
33:n_eval_realheapsort_step1_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
34:n_eval_realheapsort_step1_bb5_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
35:n_eval_realheapsort_step1_bb5_in___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2 && Arg_1<=2
36:n_eval_realheapsort_step1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb0_in___32(Arg_0,Arg_1,Arg_2,Arg_3)
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 2:n_eval_realheapsort_step1_28___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___14 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_0+Arg_1-Arg_2-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 3:n_eval_realheapsort_step1_28___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 4:n_eval_realheapsort_step1_28___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_0+Arg_1-Arg_2-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 6:n_eval_realheapsort_step1_29___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1+Arg_3-Arg_0-Arg_2 ]
n_eval_realheapsort_step1_28___14 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 7:n_eval_realheapsort_step1_29___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___3 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 8:n_eval_realheapsort_step1_29___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_0):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 12:n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___14(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 13:n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___22(Arg_3+1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1+Arg_2-Arg_0-Arg_3 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 14:n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___3(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 17:n_eval_realheapsort_step1_bb1_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3-1 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 19:n_eval_realheapsort_step1_bb1_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 23:n_eval_realheapsort_step1_bb2_in___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2 of depth 1:
new bound:
Arg_1+2 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 24:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___16(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 26:n_eval_realheapsort_step1_bb2_in___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3-1 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 27:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___5(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 29:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___24(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1+Arg_2-2*Arg_3 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 30:n_eval_realheapsort_step1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2 of depth 1:
new bound:
Arg_1+3 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_0+Arg_1-2*Arg_3 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1+Arg_3-2*Arg_0 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1+Arg_3-2*Arg_2 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3-1 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 31:n_eval_realheapsort_step1_bb4_in___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2 of depth 1:
new bound:
Arg_1+2 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_29___21 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___14 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___22 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___12 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___20 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb2_in___11 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___26 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___24 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___25 [Arg_1+1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___23 [Arg_1+1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1-Arg_3 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 25:n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2 of depth 1:
new bound:
26*Arg_1*Arg_1+89*Arg_1+74 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___13 [0 ]
n_eval_realheapsort_step1_29___2 [0 ]
n_eval_realheapsort_step1_29___21 [0 ]
n_eval_realheapsort_step1_28___14 [0 ]
n_eval_realheapsort_step1_28___22 [0 ]
n_eval_realheapsort_step1_28___3 [0 ]
n_eval_realheapsort_step1_bb1_in___12 [0 ]
n_eval_realheapsort_step1_bb1_in___20 [0 ]
n_eval_realheapsort_step1_bb2_in___11 [0 ]
n_eval_realheapsort_step1__critedge_in___16 [0 ]
n_eval_realheapsort_step1_bb2_in___26 [0 ]
n_eval_realheapsort_step1__critedge_in___5 [0 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_2 ]
n_eval_realheapsort_step1__critedge_in___24 [0 ]
n_eval_realheapsort_step1_bb3_in___25 [0 ]
n_eval_realheapsort_step1_bb4_in___23 [0 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_2 ]
n_eval_realheapsort_step1_bb2_in___17 [2*Arg_2+1 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 28:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2 of depth 1:
new bound:
28*Arg_1*Arg_1+95*Arg_1+76 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___13 [2*Arg_1-1 ]
n_eval_realheapsort_step1_29___2 [2*Arg_1 ]
n_eval_realheapsort_step1_29___21 [2*Arg_1-2 ]
n_eval_realheapsort_step1_28___14 [2*Arg_1-1 ]
n_eval_realheapsort_step1_28___22 [2*Arg_1-2 ]
n_eval_realheapsort_step1_28___3 [2*Arg_1 ]
n_eval_realheapsort_step1_bb1_in___12 [2*Arg_1-1 ]
n_eval_realheapsort_step1_bb1_in___20 [2*Arg_1-2 ]
n_eval_realheapsort_step1_bb2_in___11 [2*Arg_1-1 ]
n_eval_realheapsort_step1__critedge_in___16 [2*Arg_1-1 ]
n_eval_realheapsort_step1_bb2_in___26 [2*Arg_1-2 ]
n_eval_realheapsort_step1__critedge_in___5 [2*Arg_1 ]
n_eval_realheapsort_step1_bb3_in___15 [2*Arg_1+Arg_2 ]
n_eval_realheapsort_step1__critedge_in___24 [2*Arg_1-2 ]
n_eval_realheapsort_step1_bb3_in___25 [2*Arg_1-2 ]
n_eval_realheapsort_step1_bb4_in___23 [2*Arg_1-2 ]
n_eval_realheapsort_step1_bb4_in___4 [2*Arg_1+Arg_2-2 ]
n_eval_realheapsort_step1_bb2_in___17 [2*Arg_1+2*Arg_2-1 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
MPRF for transition 32:n_eval_realheapsort_step1_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___17(Arg_0,Arg_1,v_j_0_P,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2 of depth 1:
new bound:
79*Arg_1*Arg_1+273*Arg_1+228 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___13 [Arg_1-6 ]
n_eval_realheapsort_step1_29___2 [-Arg_1 ]
n_eval_realheapsort_step1_29___21 [-Arg_1 ]
n_eval_realheapsort_step1_28___14 [Arg_1-6 ]
n_eval_realheapsort_step1_28___22 [-Arg_1 ]
n_eval_realheapsort_step1_28___3 [-Arg_1 ]
n_eval_realheapsort_step1_bb1_in___12 [-Arg_1 ]
n_eval_realheapsort_step1_bb1_in___20 [-Arg_1 ]
n_eval_realheapsort_step1_bb2_in___11 [-Arg_1 ]
n_eval_realheapsort_step1__critedge_in___16 [Arg_1-6 ]
n_eval_realheapsort_step1_bb2_in___26 [-Arg_1 ]
n_eval_realheapsort_step1__critedge_in___5 [-Arg_1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1+3*Arg_2-3 ]
n_eval_realheapsort_step1__critedge_in___24 [-Arg_1 ]
n_eval_realheapsort_step1_bb3_in___25 [-Arg_1 ]
n_eval_realheapsort_step1_bb4_in___23 [-Arg_1 ]
n_eval_realheapsort_step1_bb4_in___4 [Arg_1+3*Arg_2-3 ]
n_eval_realheapsort_step1_bb2_in___17 [Arg_1+6*Arg_2-6 ]
Show Graph
G
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_0___31
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_1___30
n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30
t₀
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_2___29
n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29
t₁
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_28___14
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_29___13
n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13
t₂
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_28___22
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_29___21
n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21
t₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_28___3
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_29___2
n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2
t₄
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_bb1_in___12
n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12
t₆
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=1+Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12
t₇
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_2 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_bb1_in___20
n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20
t₈
η (Arg_3) = Arg_0
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1+Arg_3<=Arg_1 && 0<Arg_3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_bb1_in___28
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28
t₁₀
η (Arg_3) = 1
τ = 2<Arg_1
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_bb5_in___27
n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27
t₁₁
τ = Arg_1<=2
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16
n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14
t₁₂
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 && 0<=1+Arg_2
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24
n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22
t₁₃
η (Arg_0) = Arg_3+1
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5
n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3
t₁₄
η (Arg_0) = Arg_3+1
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32
n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31
t₁₆
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb2_in___11
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11
t₁₇
η (Arg_2) = Arg_3
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb5_in___10
n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10
t₁₈
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb2_in___26
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26
t₁₉
η (Arg_2) = Arg_3
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb5_in___19
n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19
t₂₀
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 0<Arg_3 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_1<1+Arg_3
n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26
t₂₁
η (Arg_2) = Arg_3
τ = Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 0<Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb3_in___25
n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25
t₂₃
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16
t₂₄
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && Arg_2<=0
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb3_in___15
n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15
t₂₅
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=1+Arg_2 && 0<Arg_2
n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25
t₂₆
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<=1+Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_2<=Arg_1 && 0<Arg_2
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5
t₂₇
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb4_in___4
n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4
t₂₈
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24
t₂₉
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb4_in___23
n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23
t₃₀
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<1+v_j_0_P && Arg_2<=v_j_0_P && v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17
t₃₁
η (Arg_2) = v_j_0_P
τ = Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_1 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17
t₃₂
η (Arg_2) = v_j_0_P
τ = 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 && Arg_2<3+2*v_j_0_P && 0<=1+v_j_0_P && 0<1+Arg_2 && 1+2*v_j_0_P<=Arg_2
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_stop___6
n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6
t₃₃
τ = Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_stop___18
n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18
t₃₄
τ = Arg_3<=1+Arg_2 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 6<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 5<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 3<=Arg_0 && Arg_1<1+Arg_0 && 0<Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_stop___1
n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1
t₃₅
τ = Arg_1<=2 && Arg_1<=2
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start
n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32
t₃₆
All Bounds
Timebounds
Overall timebound:133*Arg_1*Arg_1+475*Arg_1+412 {O(n^2)}
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30: 1 {O(1)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29: 1 {O(1)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13: Arg_1+1 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21: Arg_1+1 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2: Arg_1+1 {O(n)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12: Arg_1+1 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12: Arg_1+1 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20: Arg_1+1 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28: 1 {O(1)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27: 1 {O(1)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14: Arg_1+1 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22: Arg_1+1 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3: Arg_1+1 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31: 1 {O(1)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11: Arg_1+1 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10: 1 {O(1)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26: Arg_1+1 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19: 1 {O(1)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26: 1 {O(1)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25: Arg_1+2 {O(n)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16: Arg_1+1 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15: 26*Arg_1*Arg_1+89*Arg_1+74 {O(n^2)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25: Arg_1+1 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5: Arg_1+1 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4: 28*Arg_1*Arg_1+95*Arg_1+76 {O(n^2)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24: Arg_1+1 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23: Arg_1+3 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17: Arg_1+2 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17: 79*Arg_1*Arg_1+273*Arg_1+228 {O(n^2)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6: 1 {O(1)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18: 1 {O(1)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1: 1 {O(1)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32: 1 {O(1)}
Costbounds
Overall costbound: 133*Arg_1*Arg_1+475*Arg_1+412 {O(n^2)}
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30: 1 {O(1)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29: 1 {O(1)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13: Arg_1+1 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21: Arg_1+1 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2: Arg_1+1 {O(n)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12: Arg_1+1 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12: Arg_1+1 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20: Arg_1+1 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28: 1 {O(1)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27: 1 {O(1)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14: Arg_1+1 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22: Arg_1+1 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3: Arg_1+1 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31: 1 {O(1)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11: Arg_1+1 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10: 1 {O(1)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26: Arg_1+1 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19: 1 {O(1)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26: 1 {O(1)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25: Arg_1+2 {O(n)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16: Arg_1+1 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15: 26*Arg_1*Arg_1+89*Arg_1+74 {O(n^2)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25: Arg_1+1 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5: Arg_1+1 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4: 28*Arg_1*Arg_1+95*Arg_1+76 {O(n^2)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24: Arg_1+1 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23: Arg_1+3 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17: Arg_1+2 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17: 79*Arg_1*Arg_1+273*Arg_1+228 {O(n^2)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6: 1 {O(1)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18: 1 {O(1)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1: 1 {O(1)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32: 1 {O(1)}
Sizebounds
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30, Arg_0: Arg_0 {O(n)}
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30, Arg_1: Arg_1 {O(n)}
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30, Arg_2: Arg_2 {O(n)}
0: n_eval_realheapsort_step1_0___31->n_eval_realheapsort_step1_1___30, Arg_3: Arg_3 {O(n)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29, Arg_0: Arg_0 {O(n)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29, Arg_1: Arg_1 {O(n)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29, Arg_2: Arg_2 {O(n)}
1: n_eval_realheapsort_step1_1___30->n_eval_realheapsort_step1_2___29, Arg_3: Arg_3 {O(n)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13, Arg_0: 3*Arg_1+4 {O(n)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13, Arg_1: Arg_1 {O(n)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13, Arg_2: 0 {O(1)}
2: n_eval_realheapsort_step1_28___14->n_eval_realheapsort_step1_29___13, Arg_3: 3*Arg_1+4 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21, Arg_0: 3*Arg_1+4 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21, Arg_1: Arg_1 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21, Arg_2: 7*Arg_1+10 {O(n)}
3: n_eval_realheapsort_step1_28___22->n_eval_realheapsort_step1_29___21, Arg_3: 3*Arg_1+4 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2, Arg_0: 3*Arg_1+4 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2, Arg_1: Arg_1 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2, Arg_2: 13*Arg_1+18 {O(n)}
4: n_eval_realheapsort_step1_28___3->n_eval_realheapsort_step1_29___2, Arg_3: 3*Arg_1+4 {O(n)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12, Arg_0: 3*Arg_1+4 {O(n)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12, Arg_1: Arg_1 {O(n)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12, Arg_2: 0 {O(1)}
6: n_eval_realheapsort_step1_29___13->n_eval_realheapsort_step1_bb1_in___12, Arg_3: 3*Arg_1+4 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12, Arg_0: 3*Arg_1+4 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12, Arg_1: Arg_1 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12, Arg_2: 13*Arg_1+18 {O(n)}
7: n_eval_realheapsort_step1_29___2->n_eval_realheapsort_step1_bb1_in___12, Arg_3: 3*Arg_1+4 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20, Arg_0: 3*Arg_1+4 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20, Arg_1: Arg_1 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20, Arg_2: 7*Arg_1+10 {O(n)}
8: n_eval_realheapsort_step1_29___21->n_eval_realheapsort_step1_bb1_in___20, Arg_3: 3*Arg_1+4 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28, Arg_0: Arg_0 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28, Arg_1: Arg_1 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28, Arg_2: Arg_2 {O(n)}
10: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb1_in___28, Arg_3: 1 {O(1)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27, Arg_0: Arg_0 {O(n)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27, Arg_1: Arg_1 {O(n)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27, Arg_2: Arg_2 {O(n)}
11: n_eval_realheapsort_step1_2___29->n_eval_realheapsort_step1_bb5_in___27, Arg_3: Arg_3 {O(n)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14, Arg_0: 3*Arg_1+4 {O(n)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14, Arg_1: Arg_1 {O(n)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14, Arg_2: 0 {O(1)}
12: n_eval_realheapsort_step1__critedge_in___16->n_eval_realheapsort_step1_28___14, Arg_3: 3*Arg_1+4 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22, Arg_0: 3*Arg_1+4 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22, Arg_1: Arg_1 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22, Arg_2: 7*Arg_1+10 {O(n)}
13: n_eval_realheapsort_step1__critedge_in___24->n_eval_realheapsort_step1_28___22, Arg_3: 3*Arg_1+4 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3, Arg_0: 3*Arg_1+4 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3, Arg_1: Arg_1 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3, Arg_2: 13*Arg_1+18 {O(n)}
14: n_eval_realheapsort_step1__critedge_in___5->n_eval_realheapsort_step1_28___3, Arg_3: 3*Arg_1+4 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31, Arg_0: Arg_0 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31, Arg_1: Arg_1 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31, Arg_2: Arg_2 {O(n)}
16: n_eval_realheapsort_step1_bb0_in___32->n_eval_realheapsort_step1_0___31, Arg_3: Arg_3 {O(n)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11, Arg_0: 6*Arg_1+8 {O(n)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11, Arg_1: Arg_1 {O(n)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11, Arg_2: 6*Arg_1+8 {O(n)}
17: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb2_in___11, Arg_3: 3*Arg_1+4 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10, Arg_0: 6*Arg_1+8 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10, Arg_1: 2*Arg_1 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10, Arg_2: 13*Arg_1+18 {O(n)}
18: n_eval_realheapsort_step1_bb1_in___12->n_eval_realheapsort_step1_bb5_in___10, Arg_3: 6*Arg_1+8 {O(n)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26, Arg_0: 3*Arg_1+4 {O(n)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26, Arg_1: Arg_1 {O(n)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26, Arg_2: 7*Arg_1+10 {O(n)}
19: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb2_in___26, Arg_3: 3*Arg_1+4 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19, Arg_0: 3*Arg_1+4 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19, Arg_1: Arg_1 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19, Arg_2: 7*Arg_1+10 {O(n)}
20: n_eval_realheapsort_step1_bb1_in___20->n_eval_realheapsort_step1_bb5_in___19, Arg_3: 3*Arg_1+4 {O(n)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26, Arg_0: Arg_0 {O(n)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26, Arg_1: Arg_1 {O(n)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26, Arg_2: 1 {O(1)}
21: n_eval_realheapsort_step1_bb1_in___28->n_eval_realheapsort_step1_bb2_in___26, Arg_3: 1 {O(1)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25, Arg_0: 6*Arg_1+8 {O(n)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25, Arg_1: Arg_1 {O(n)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25, Arg_2: 6*Arg_1+8 {O(n)}
23: n_eval_realheapsort_step1_bb2_in___11->n_eval_realheapsort_step1_bb3_in___25, Arg_3: 3*Arg_1+4 {O(n)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16, Arg_0: 18*Arg_1+2*Arg_0+24 {O(n)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16, Arg_1: Arg_1 {O(n)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16, Arg_2: 0 {O(1)}
24: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1__critedge_in___16, Arg_3: 3*Arg_1+4 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15, Arg_1: Arg_1 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15, Arg_2: 13*Arg_1+18 {O(n)}
25: n_eval_realheapsort_step1_bb2_in___17->n_eval_realheapsort_step1_bb3_in___15, Arg_3: 3*Arg_1+4 {O(n)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25, Arg_0: 3*Arg_1+Arg_0+4 {O(n)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25, Arg_1: Arg_1 {O(n)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25, Arg_2: 7*Arg_1+10 {O(n)}
26: n_eval_realheapsort_step1_bb2_in___26->n_eval_realheapsort_step1_bb3_in___25, Arg_3: 3*Arg_1+4 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5, Arg_1: Arg_1 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5, Arg_2: 13*Arg_1+18 {O(n)}
27: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1__critedge_in___5, Arg_3: 3*Arg_1+4 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4, Arg_1: Arg_1 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4, Arg_2: 13*Arg_1+18 {O(n)}
28: n_eval_realheapsort_step1_bb3_in___15->n_eval_realheapsort_step1_bb4_in___4, Arg_3: 3*Arg_1+4 {O(n)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24, Arg_1: Arg_1 {O(n)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24, Arg_2: 7*Arg_1+10 {O(n)}
29: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1__critedge_in___24, Arg_3: 3*Arg_1+4 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23, Arg_1: Arg_1 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23, Arg_2: 13*Arg_1+18 {O(n)}
30: n_eval_realheapsort_step1_bb3_in___25->n_eval_realheapsort_step1_bb4_in___23, Arg_3: 3*Arg_1+4 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17, Arg_1: Arg_1 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17, Arg_2: 13*Arg_1+18 {O(n)}
31: n_eval_realheapsort_step1_bb4_in___23->n_eval_realheapsort_step1_bb2_in___17, Arg_3: 3*Arg_1+4 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17, Arg_0: 9*Arg_1+Arg_0+12 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17, Arg_1: Arg_1 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17, Arg_2: 13*Arg_1+18 {O(n)}
32: n_eval_realheapsort_step1_bb4_in___4->n_eval_realheapsort_step1_bb2_in___17, Arg_3: 3*Arg_1+4 {O(n)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6, Arg_0: 6*Arg_1+8 {O(n)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6, Arg_1: 2*Arg_1 {O(n)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6, Arg_2: 13*Arg_1+18 {O(n)}
33: n_eval_realheapsort_step1_bb5_in___10->n_eval_realheapsort_step1_stop___6, Arg_3: 6*Arg_1+8 {O(n)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18, Arg_0: 3*Arg_1+4 {O(n)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18, Arg_1: Arg_1 {O(n)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18, Arg_2: 7*Arg_1+10 {O(n)}
34: n_eval_realheapsort_step1_bb5_in___19->n_eval_realheapsort_step1_stop___18, Arg_3: 3*Arg_1+4 {O(n)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1, Arg_0: Arg_0 {O(n)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1, Arg_1: Arg_1 {O(n)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1, Arg_2: Arg_2 {O(n)}
35: n_eval_realheapsort_step1_bb5_in___27->n_eval_realheapsort_step1_stop___1, Arg_3: Arg_3 {O(n)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32, Arg_0: Arg_0 {O(n)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32, Arg_1: Arg_1 {O(n)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32, Arg_2: Arg_2 {O(n)}
36: n_eval_realheapsort_step1_start->n_eval_realheapsort_step1_bb0_in___32, Arg_3: Arg_3 {O(n)}