Initial Problem

Start: n_f33
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31
Temp_Vars: A1_P, A_P, F_P, G_P, H_P, I_P, K_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9
Locations: n_f16___13, n_f16___14, n_f18___9, n_f22___12, n_f22___3, n_f22___6, n_f25___1, n_f25___10, n_f25___11, n_f25___2, n_f25___4, n_f25___5, n_f33, n_f3___15, n_f3___7, n_f3___8
Transitions:
0:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___13(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,F_P,Arg_11,G_P,H_P,I_P,NoDet0,K_P,Arg_17,Arg_18,Arg_19,Arg_20,NoDet1,NoDet2,Arg_23,Arg_24,Arg_25,NoDet3,NoDet4,NoDet5,NoDet6,NoDet7,Arg_31):|:0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1+Arg_15<=Arg_22 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
1:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f18___9(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,0,Arg_19,0,NoDet1,NoDet2,0,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet3):|:0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 0<=A_P && Arg_22<=Arg_15 && 0<=Arg_0
2:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f3___7(NoDet0,A1_P,NoDet1,NoDet10,Arg_4,NoDet11,Arg_6,NoDet12,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,Arg_19,NoDet5,NoDet6,NoDet7,NoDet8,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet9):|:0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1+A1_P<=0 && Arg_22<=Arg_15 && 0<=Arg_0
3:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f3___8(NoDet0,A1_P,NoDet1,NoDet10,Arg_4,NoDet11,Arg_6,NoDet12,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,Arg_19,NoDet5,NoDet6,NoDet7,NoDet8,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet9):|:0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1<=A1_P && Arg_22<=Arg_15 && 0<=Arg_0
4:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___13(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,F_P,Arg_11,G_P,H_P,I_P,NoDet0,K_P,Arg_17,Arg_18,Arg_19,Arg_20,NoDet1,NoDet2,Arg_23,Arg_24,Arg_25,NoDet3,NoDet4,NoDet5,NoDet6,NoDet7,Arg_31):|:1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_15<=Arg_22 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
5:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f18___9(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,0,Arg_19,0,NoDet1,NoDet2,0,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet3):|:1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 0<=A_P && Arg_22<=Arg_15 && 0<=Arg_0
6:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f3___7(NoDet0,A1_P,NoDet1,NoDet10,Arg_4,NoDet11,Arg_6,NoDet12,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,Arg_19,NoDet5,NoDet6,NoDet7,NoDet8,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet9):|:1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+A1_P<=0 && Arg_22<=Arg_15 && 0<=Arg_0
7:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f3___8(NoDet0,A1_P,NoDet1,NoDet10,Arg_4,NoDet11,Arg_6,NoDet12,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,Arg_19,NoDet5,NoDet6,NoDet7,NoDet8,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet9):|:1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1<=A1_P && Arg_22<=Arg_15 && 0<=Arg_0
8:n_f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31)
9:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___13(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
10:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___14(Arg_15,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
11:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f22___12(NoDet0,Arg_1,Arg_17,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_17,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
12:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___10(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
13:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___11(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:1<=A_P && 1<=Arg_2 && 1<=Arg_0
14:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___13(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
15:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___14(Arg_15,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
16:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f22___3(NoDet0,Arg_1,Arg_17,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_17,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
17:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___1(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
18:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___2(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=A_P && 1<=Arg_2 && 1<=Arg_0
19:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___13(A_P,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
20:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f16___14(Arg_15,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,NoDet0,Arg_9,F_P,Arg_11,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
21:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f22___6(NoDet0,Arg_1,Arg_17,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_17,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
22:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___4(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
23:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f25___5(A_P,Arg_1,Arg_2,Arg_3,Arg_2,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=A_P && 1<=Arg_2 && 1<=Arg_0

Preprocessing

Eliminate variables {NoDet10,NoDet11,NoDet12,NoDet5,NoDet6,NoDet8,NoDet9,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_19,Arg_20,Arg_21,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31} that do not contribute to the problem

Found invariant Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=1+Arg_0 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 for location n_f16___14

Found invariant 1<=Arg_2 && 1<=Arg_18+Arg_2 && 1+Arg_18<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_18<=0 && 1+Arg_18<=Arg_1 && 1+Arg_18<=Arg_0 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && 1<=Arg_0+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f25___5

Found invariant 1<=Arg_2 && 1<=Arg_18+Arg_2 && 1+Arg_18<=Arg_2 && 2+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 1+Arg_18<=Arg_0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && 1<=Arg_0+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && 2+Arg_1<=Arg_0 && 1<=Arg_0 for location n_f25___2

Found invariant 1+Arg_2<=0 && 1+Arg_2<=Arg_18 && 1+Arg_18+Arg_2<=0 && 2+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && Arg_18<=0 && 1+Arg_18<=Arg_1 && 1+Arg_18<=Arg_0 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && 1<=Arg_0+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f25___4

Found invariant Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 for location n_f3___7

Found invariant 1+Arg_2<=0 && 1+Arg_2<=Arg_18 && 1+Arg_18+Arg_2<=0 && 2+Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 1+Arg_18<=Arg_0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && 1<=Arg_0+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && 2+Arg_1<=Arg_0 && 1<=Arg_0 for location n_f25___1

Found invariant 1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_0 for location n_f25___10

Found invariant Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 for location n_f3___8

Found invariant Arg_18<=0 && Arg_18<=Arg_0 && 0<=Arg_18 && 0<=Arg_0+Arg_18 && Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 0<=Arg_0 for location n_f18___9

Found invariant Arg_2<=Arg_18 && Arg_2<=Arg_17 && Arg_2<=Arg_14 && Arg_18<=Arg_2 && Arg_17<=Arg_2 && Arg_14<=Arg_2 && Arg_18<=Arg_17 && Arg_18<=Arg_14 && Arg_17<=Arg_18 && Arg_14<=Arg_18 && Arg_17<=Arg_14 && Arg_14<=Arg_17 for location n_f22___12

Found invariant 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 for location n_f25___11

Found invariant Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_0 for location n_f16___13

Found invariant Arg_2<=Arg_18 && Arg_2<=Arg_17 && Arg_2<=Arg_14 && Arg_18<=Arg_2 && Arg_17<=Arg_2 && Arg_14<=Arg_2 && Arg_18<=Arg_17 && Arg_18<=Arg_14 && Arg_17<=Arg_18 && Arg_14<=Arg_18 && Arg_17<=Arg_14 && Arg_14<=Arg_17 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 for location n_f22___6

Found invariant Arg_2<=Arg_18 && Arg_2<=Arg_17 && Arg_2<=Arg_14 && Arg_18<=Arg_2 && Arg_17<=Arg_2 && Arg_14<=Arg_2 && Arg_18<=Arg_17 && Arg_18<=Arg_14 && Arg_17<=Arg_18 && Arg_14<=Arg_18 && Arg_17<=Arg_14 && Arg_14<=Arg_17 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 for location n_f22___3

Problem after Preprocessing

Start: n_f33
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_10, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_22
Temp_Vars: A1_P, A_P, F_P, G_P, H_P, I_P, K_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, NoDet7
Locations: n_f16___13, n_f16___14, n_f18___9, n_f22___12, n_f22___3, n_f22___6, n_f25___1, n_f25___10, n_f25___11, n_f25___2, n_f25___4, n_f25___5, n_f33, n_f3___15, n_f3___7, n_f3___8
Transitions:
48:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___13(A_P,Arg_1,Arg_2,F_P,G_P,H_P,I_P,NoDet0,K_P,Arg_17,Arg_18,NoDet2):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_0 && 0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1+Arg_15<=Arg_22 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
49:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f18___9(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,0,NoDet2):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_0 && 0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 0<=A_P && Arg_22<=Arg_15 && 0<=Arg_0
50:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f3___7(NoDet0,A1_P,NoDet1,Arg_10,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,NoDet7):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_0 && 0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1+A1_P<=0 && Arg_22<=Arg_15 && 0<=Arg_0
51:n_f16___13(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f3___8(NoDet0,A1_P,NoDet1,Arg_10,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,NoDet7):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_0 && 0<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && 1<=A1_P && Arg_22<=Arg_15 && 0<=Arg_0
52:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___13(A_P,Arg_1,Arg_2,F_P,G_P,H_P,I_P,NoDet0,K_P,Arg_17,Arg_18,NoDet2):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=1+Arg_0 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_15<=Arg_22 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
53:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f18___9(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,0,NoDet2):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=1+Arg_0 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 0<=A_P && Arg_22<=Arg_15 && 0<=Arg_0
54:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f3___7(NoDet0,A1_P,NoDet1,Arg_10,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,NoDet7):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=1+Arg_0 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+A1_P<=0 && Arg_22<=Arg_15 && 0<=Arg_0
55:n_f16___14(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f3___8(NoDet0,A1_P,NoDet1,Arg_10,Arg_12,Arg_13,Arg_14,NoDet2,NoDet3,NoDet4,0,NoDet7):|:Arg_16<=Arg_14 && Arg_16<=Arg_13 && Arg_16<=Arg_12 && Arg_16<=Arg_10 && Arg_14<=Arg_16 && Arg_13<=Arg_16 && Arg_12<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=1+Arg_0 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1+Arg_0<=Arg_15 && Arg_15<=1+Arg_0 && Arg_10<=Arg_16 && Arg_16<=Arg_10 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_10<=Arg_13 && Arg_13<=Arg_10 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && 1<=A1_P && Arg_22<=Arg_15 && 0<=Arg_0
56:n_f33(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22)
57:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___13(A_P,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
58:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___14(Arg_15,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
59:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f22___12(NoDet0,Arg_1,Arg_17,Arg_10,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_22):|:1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
60:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___10(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
61:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___11(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:1<=A_P && 1<=Arg_2 && 1<=Arg_0
62:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___13(A_P,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
63:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___14(Arg_15,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
64:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f22___3(NoDet0,Arg_1,Arg_17,Arg_10,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_22):|:Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
65:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___1(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
66:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___2(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_1+Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1+Arg_1<=0 && Arg_18<=0 && 0<=Arg_18 && 1+Arg_1<=0 && 1<=A_P && 1<=Arg_2 && 1<=Arg_0
67:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___13(A_P,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=A_P && 0<=Arg_0 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
68:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f16___14(Arg_15,Arg_1,Arg_2,F_P,G_P,H_P,I_P,Arg_15+1,K_P,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && F_P<=K_P && K_P<=F_P && F_P<=I_P && I_P<=F_P && F_P<=H_P && H_P<=F_P && F_P<=G_P && G_P<=F_P
69:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f22___6(NoDet0,Arg_1,Arg_17,Arg_10,Arg_12,Arg_13,Arg_17,Arg_15,Arg_16,Arg_17,Arg_17,Arg_22):|:Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<=0 && 0<=Arg_2
70:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___4(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1+Arg_2<=0 && 1<=A_P && 1<=Arg_0
71:n_f3___8(Arg_0,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22) -> n_f25___5(A_P,Arg_1,Arg_2,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_22):|:Arg_18<=0 && 1+Arg_18<=Arg_1 && 0<=Arg_18 && 1<=Arg_1+Arg_18 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_10 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_10<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_10 && Arg_12<=Arg_13 && Arg_10<=Arg_13 && Arg_12<=Arg_10 && Arg_10<=Arg_12 && 1<=Arg_1 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_1 && 1<=A_P && 1<=Arg_2 && 1<=Arg_0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
48: n_f16___13->n_f16___13: inf {Infinity}
49: n_f16___13->n_f18___9: 1 {O(1)}
50: n_f16___13->n_f3___7: inf {Infinity}
51: n_f16___13->n_f3___8: inf {Infinity}
52: n_f16___14->n_f16___13: inf {Infinity}
53: n_f16___14->n_f18___9: 1 {O(1)}
54: n_f16___14->n_f3___7: inf {Infinity}
55: n_f16___14->n_f3___8: inf {Infinity}
56: n_f33->n_f3___15: 1 {O(1)}
57: n_f3___15->n_f16___13: 1 {O(1)}
58: n_f3___15->n_f16___14: 1 {O(1)}
59: n_f3___15->n_f22___12: 1 {O(1)}
60: n_f3___15->n_f25___10: 1 {O(1)}
61: n_f3___15->n_f25___11: 1 {O(1)}
62: n_f3___7->n_f16___13: inf {Infinity}
63: n_f3___7->n_f16___14: inf {Infinity}
64: n_f3___7->n_f22___3: 1 {O(1)}
65: n_f3___7->n_f25___1: 1 {O(1)}
66: n_f3___7->n_f25___2: 1 {O(1)}
67: n_f3___8->n_f16___13: inf {Infinity}
68: n_f3___8->n_f16___14: inf {Infinity}
69: n_f3___8->n_f22___6: 1 {O(1)}
70: n_f3___8->n_f25___4: 1 {O(1)}
71: n_f3___8->n_f25___5: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
48: n_f16___13->n_f16___13: inf {Infinity}
49: n_f16___13->n_f18___9: 1 {O(1)}
50: n_f16___13->n_f3___7: inf {Infinity}
51: n_f16___13->n_f3___8: inf {Infinity}
52: n_f16___14->n_f16___13: inf {Infinity}
53: n_f16___14->n_f18___9: 1 {O(1)}
54: n_f16___14->n_f3___7: inf {Infinity}
55: n_f16___14->n_f3___8: inf {Infinity}
56: n_f33->n_f3___15: 1 {O(1)}
57: n_f3___15->n_f16___13: 1 {O(1)}
58: n_f3___15->n_f16___14: 1 {O(1)}
59: n_f3___15->n_f22___12: 1 {O(1)}
60: n_f3___15->n_f25___10: 1 {O(1)}
61: n_f3___15->n_f25___11: 1 {O(1)}
62: n_f3___7->n_f16___13: inf {Infinity}
63: n_f3___7->n_f16___14: inf {Infinity}
64: n_f3___7->n_f22___3: 1 {O(1)}
65: n_f3___7->n_f25___1: 1 {O(1)}
66: n_f3___7->n_f25___2: 1 {O(1)}
67: n_f3___8->n_f16___13: inf {Infinity}
68: n_f3___8->n_f16___14: inf {Infinity}
69: n_f3___8->n_f22___6: 1 {O(1)}
70: n_f3___8->n_f25___4: 1 {O(1)}
71: n_f3___8->n_f25___5: 1 {O(1)}

Sizebounds

48: n_f16___13->n_f16___13, Arg_18: 2*Arg_18 {O(n)}
49: n_f16___13->n_f18___9, Arg_18: 0 {O(1)}
50: n_f16___13->n_f3___7, Arg_18: 0 {O(1)}
51: n_f16___13->n_f3___8, Arg_18: 0 {O(1)}
52: n_f16___14->n_f16___13, Arg_18: Arg_18 {O(n)}
53: n_f16___14->n_f18___9, Arg_18: 0 {O(1)}
54: n_f16___14->n_f3___7, Arg_18: 0 {O(1)}
55: n_f16___14->n_f3___8, Arg_18: 0 {O(1)}
56: n_f33->n_f3___15, Arg_0: Arg_0 {O(n)}
56: n_f33->n_f3___15, Arg_1: Arg_1 {O(n)}
56: n_f33->n_f3___15, Arg_2: Arg_2 {O(n)}
56: n_f33->n_f3___15, Arg_10: Arg_10 {O(n)}
56: n_f33->n_f3___15, Arg_12: Arg_12 {O(n)}
56: n_f33->n_f3___15, Arg_13: Arg_13 {O(n)}
56: n_f33->n_f3___15, Arg_14: Arg_14 {O(n)}
56: n_f33->n_f3___15, Arg_15: Arg_15 {O(n)}
56: n_f33->n_f3___15, Arg_16: Arg_16 {O(n)}
56: n_f33->n_f3___15, Arg_17: Arg_17 {O(n)}
56: n_f33->n_f3___15, Arg_18: Arg_18 {O(n)}
56: n_f33->n_f3___15, Arg_22: Arg_22 {O(n)}
57: n_f3___15->n_f16___13, Arg_1: Arg_1 {O(n)}
57: n_f3___15->n_f16___13, Arg_2: Arg_2 {O(n)}
57: n_f3___15->n_f16___13, Arg_15: Arg_15+1 {O(n)}
57: n_f3___15->n_f16___13, Arg_17: Arg_17 {O(n)}
57: n_f3___15->n_f16___13, Arg_18: Arg_18 {O(n)}
57: n_f3___15->n_f16___13, Arg_22: Arg_22 {O(n)}
58: n_f3___15->n_f16___14, Arg_0: Arg_15 {O(n)}
58: n_f3___15->n_f16___14, Arg_1: Arg_1 {O(n)}
58: n_f3___15->n_f16___14, Arg_2: Arg_2 {O(n)}
58: n_f3___15->n_f16___14, Arg_15: Arg_15+1 {O(n)}
58: n_f3___15->n_f16___14, Arg_17: Arg_17 {O(n)}
58: n_f3___15->n_f16___14, Arg_18: Arg_18 {O(n)}
58: n_f3___15->n_f16___14, Arg_22: Arg_22 {O(n)}
59: n_f3___15->n_f22___12, Arg_1: Arg_1 {O(n)}
59: n_f3___15->n_f22___12, Arg_2: Arg_17 {O(n)}
59: n_f3___15->n_f22___12, Arg_10: Arg_10 {O(n)}
59: n_f3___15->n_f22___12, Arg_12: Arg_12 {O(n)}
59: n_f3___15->n_f22___12, Arg_13: Arg_13 {O(n)}
59: n_f3___15->n_f22___12, Arg_14: Arg_17 {O(n)}
59: n_f3___15->n_f22___12, Arg_15: Arg_15 {O(n)}
59: n_f3___15->n_f22___12, Arg_16: Arg_16 {O(n)}
59: n_f3___15->n_f22___12, Arg_17: Arg_17 {O(n)}
59: n_f3___15->n_f22___12, Arg_18: Arg_17 {O(n)}
59: n_f3___15->n_f22___12, Arg_22: Arg_22 {O(n)}
60: n_f3___15->n_f25___10, Arg_1: Arg_1 {O(n)}
60: n_f3___15->n_f25___10, Arg_2: Arg_2 {O(n)}
60: n_f3___15->n_f25___10, Arg_10: Arg_10 {O(n)}
60: n_f3___15->n_f25___10, Arg_12: Arg_12 {O(n)}
60: n_f3___15->n_f25___10, Arg_13: Arg_13 {O(n)}
60: n_f3___15->n_f25___10, Arg_14: Arg_14 {O(n)}
60: n_f3___15->n_f25___10, Arg_15: Arg_15 {O(n)}
60: n_f3___15->n_f25___10, Arg_16: Arg_16 {O(n)}
60: n_f3___15->n_f25___10, Arg_17: Arg_17 {O(n)}
60: n_f3___15->n_f25___10, Arg_18: Arg_18 {O(n)}
60: n_f3___15->n_f25___10, Arg_22: Arg_22 {O(n)}
61: n_f3___15->n_f25___11, Arg_1: Arg_1 {O(n)}
61: n_f3___15->n_f25___11, Arg_2: Arg_2 {O(n)}
61: n_f3___15->n_f25___11, Arg_10: Arg_10 {O(n)}
61: n_f3___15->n_f25___11, Arg_12: Arg_12 {O(n)}
61: n_f3___15->n_f25___11, Arg_13: Arg_13 {O(n)}
61: n_f3___15->n_f25___11, Arg_14: Arg_14 {O(n)}
61: n_f3___15->n_f25___11, Arg_15: Arg_15 {O(n)}
61: n_f3___15->n_f25___11, Arg_16: Arg_16 {O(n)}
61: n_f3___15->n_f25___11, Arg_17: Arg_17 {O(n)}
61: n_f3___15->n_f25___11, Arg_18: Arg_18 {O(n)}
61: n_f3___15->n_f25___11, Arg_22: Arg_22 {O(n)}
62: n_f3___7->n_f16___13, Arg_18: 0 {O(1)}
63: n_f3___7->n_f16___14, Arg_18: 0 {O(1)}
65: n_f3___7->n_f25___1, Arg_18: 0 {O(1)}
66: n_f3___7->n_f25___2, Arg_18: 0 {O(1)}
67: n_f3___8->n_f16___13, Arg_18: 0 {O(1)}
68: n_f3___8->n_f16___14, Arg_18: 0 {O(1)}
70: n_f3___8->n_f25___4, Arg_18: 0 {O(1)}
71: n_f3___8->n_f25___5, Arg_18: 0 {O(1)}