Initial Problem
Start: n_f15
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12
Temp_Vars: B_P, E_P, M_P, NoDet0, NoDet1, NoDet2
Locations: n_f15, n_f1___10, n_f1___5, n_f1___7, n_f300___6, n_f32___1, n_f32___2, n_f32___9, n_f8___11, n_f8___3, n_f8___4, n_f8___8
Transitions:
0:n_f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___11(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
1:n_f1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f1___7(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,NoDet1,NoDet2,0,Arg_8,0,0,Arg_11,M_P):|:1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && M_P<=4 && 1+Arg_1<=Arg_4 && Arg_12<=M_P && M_P<=Arg_12
2:n_f1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f300___6(Arg_0,Arg_1+1,NoDet0,Arg_3,E_P,NoDet1,Arg_6,1,Arg_8,1,1,Arg_11,M_P):|:1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && 5<=M_P && 1+Arg_1<=E_P && Arg_12<=M_P && M_P<=Arg_12 && Arg_4<=E_P && E_P<=Arg_4
3:n_f1___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f300___6(Arg_0,Arg_1+1,NoDet0,Arg_3,E_P,NoDet1,Arg_6,1,Arg_8,1,1,Arg_11,M_P):|:1+Arg_1<=Arg_4 && 5<=Arg_12 && 1+Arg_1<=Arg_4 && 5<=Arg_12 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && 5<=M_P && 1+Arg_1<=E_P && Arg_12<=M_P && M_P<=Arg_12 && Arg_4<=E_P && E_P<=Arg_4
4:n_f1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f1___7(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,NoDet1,NoDet2,0,Arg_8,0,0,Arg_11,M_P):|:Arg_12<=4 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_12<=4 && Arg_7<=0 && 0<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && Arg_12<=4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && M_P<=4 && 1+Arg_1<=Arg_4 && Arg_12<=M_P && M_P<=Arg_12
5:n_f300___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f1___5(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,NoDet1,NoDet2,0,Arg_8,0,0,Arg_11,Arg_12):|:5<=Arg_12 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_1 && Arg_10<=1 && 1<=Arg_10 && Arg_7<=1 && 1<=Arg_7 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_1<=Arg_4
6:n_f300___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___4(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:5<=Arg_12 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_1 && Arg_10<=1 && 1<=Arg_10 && Arg_7<=1 && 1<=Arg_7 && Arg_9<=1 && 1<=Arg_9 && Arg_4<=Arg_1
7:n_f8___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f1___10(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,NoDet1,NoDet2,0,Arg_8,0,0,Arg_11,Arg_12):|:1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_1
8:n_f8___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f32___9(Arg_0,B_P,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
9:n_f8___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
10:n_f8___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f32___2(Arg_0,B_P,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
11:n_f8___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___3(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
12:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___3(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_0<=Arg_1 && 5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
13:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f32___1(Arg_0,B_P,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
14:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_f8___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
Preprocessing
Eliminate variables {NoDet0,NoDet1,NoDet2,Arg_2,Arg_3,Arg_5,Arg_6,Arg_8,Arg_11} that do not contribute to the problem
Found invariant Arg_1<=Arg_0 for location n_f32___9
Found invariant Arg_4<=Arg_1 && Arg_0<=Arg_1 for location n_f8___8
Found invariant Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_1<=Arg_4 && Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f32___2
Found invariant Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f32___1
Found invariant Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f1___10
Found invariant Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && 5+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 5<=Arg_12+Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && 5+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 5<=Arg_12+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 3+Arg_0<=Arg_4 && 5<=Arg_12 && 5<=Arg_10+Arg_12 && 5+Arg_10<=Arg_12 && Arg_10<=0 && 0<=Arg_10 && 2+Arg_0<=Arg_1 for location n_f1___5
Found invariant Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && Arg_12+Arg_9<=4 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && Arg_12<=4+Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && Arg_12+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && Arg_12<=4+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_12<=4 && Arg_12<=4+Arg_10 && Arg_10+Arg_12<=4 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f1___7
Found invariant Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 2+Arg_0<=Arg_1 for location n_f300___6
Found invariant Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 1+Arg_0<=Arg_1 for location n_f8___4
Found invariant Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && Arg_0<=Arg_1 for location n_f8___3
Problem after Preprocessing
Start: n_f15
Program_Vars: Arg_0, Arg_1, Arg_4, Arg_7, Arg_9, Arg_10, Arg_12
Temp_Vars: B_P, E_P, M_P
Locations: n_f15, n_f1___10, n_f1___5, n_f1___7, n_f300___6, n_f32___1, n_f32___2, n_f32___9, n_f8___11, n_f8___3, n_f8___4, n_f8___8
Transitions:
32:n_f15(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___11(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12)
33:n_f1___10(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f1___7(Arg_0,Arg_1,Arg_4,0,0,0,M_P):|:Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && M_P<=4 && 1+Arg_1<=Arg_4 && Arg_12<=M_P && M_P<=Arg_12
34:n_f1___10(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f300___6(Arg_0,Arg_1+1,E_P,1,1,1,M_P):|:Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && 5<=M_P && 1+Arg_1<=E_P && Arg_12<=M_P && M_P<=Arg_12 && Arg_4<=E_P && E_P<=Arg_4
35:n_f1___5(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f300___6(Arg_0,Arg_1+1,E_P,1,1,1,M_P):|:Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && 5+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 5<=Arg_12+Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && 5+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 5<=Arg_12+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 3+Arg_0<=Arg_4 && 5<=Arg_12 && 5<=Arg_10+Arg_12 && 5+Arg_10<=Arg_12 && Arg_10<=0 && 0<=Arg_10 && 2+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && 5<=Arg_12 && 1+Arg_1<=Arg_4 && 5<=Arg_12 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && 5<=M_P && 1+Arg_1<=E_P && Arg_12<=M_P && M_P<=Arg_12 && Arg_4<=E_P && E_P<=Arg_4
36:n_f1___7(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f1___7(Arg_0,Arg_1,Arg_4,0,0,0,M_P):|:Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && Arg_12+Arg_9<=4 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && Arg_12<=4+Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && Arg_12+Arg_7<=4 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && Arg_12<=4+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_12<=4 && Arg_12<=4+Arg_10 && Arg_10+Arg_12<=4 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_0<=Arg_1 && Arg_12<=4 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_12<=4 && Arg_7<=0 && 0<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && Arg_12<=4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && M_P<=4 && 1+Arg_1<=Arg_4 && Arg_12<=M_P && M_P<=Arg_12
37:n_f300___6(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f1___5(Arg_0,Arg_1,Arg_4,0,0,0,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 2+Arg_0<=Arg_1 && 5<=Arg_12 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_1 && Arg_10<=1 && 1<=Arg_10 && Arg_7<=1 && 1<=Arg_7 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_1<=Arg_4
38:n_f300___6(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___4(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 2+Arg_0<=Arg_1 && 5<=Arg_12 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_1 && Arg_10<=1 && 1<=Arg_10 && Arg_7<=1 && 1<=Arg_7 && Arg_9<=1 && 1<=Arg_9 && Arg_4<=Arg_1
39:n_f8___11(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f1___10(Arg_0,Arg_1,Arg_4,0,0,0,Arg_12):|:1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_1
40:n_f8___11(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f32___9(Arg_0,B_P,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
41:n_f8___11(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___8(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
42:n_f8___3(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f32___2(Arg_0,B_P,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && Arg_0<=Arg_1 && 5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
43:n_f8___3(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___3(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && Arg_0<=Arg_1 && 5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
44:n_f8___4(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___3(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && 5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
45:n_f8___8(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f32___1(Arg_0,B_P,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && B_P<=Arg_0 && Arg_1<=B_P && B_P<=Arg_1
46:n_f8___8(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___8(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1
MPRF for transition 35:n_f1___5(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f300___6(Arg_0,Arg_1+1,E_P,1,1,1,M_P):|:Arg_9<=0 && Arg_9<=Arg_7 && Arg_7+Arg_9<=0 && 5+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 5<=Arg_12+Arg_9 && 0<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=0 && 5+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=0 && 0<=Arg_7 && 5<=Arg_12+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1+Arg_1<=Arg_4 && 3+Arg_0<=Arg_4 && 5<=Arg_12 && 5<=Arg_10+Arg_12 && 5+Arg_10<=Arg_12 && Arg_10<=0 && 0<=Arg_10 && 2+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && 5<=Arg_12 && 1+Arg_1<=Arg_4 && 5<=Arg_12 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=0 && 0<=Arg_10 && Arg_7<=0 && 0<=Arg_7 && 1+Arg_0<=Arg_1 && 1+Arg_1<=Arg_4 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=0 && 0<=Arg_7 && Arg_10<=0 && 0<=Arg_10 && 1+Arg_1<=Arg_4 && 5<=M_P && 1+Arg_1<=E_P && Arg_12<=M_P && M_P<=Arg_12 && Arg_4<=E_P && E_P<=Arg_4 of depth 1:
new bound:
Arg_1+Arg_4+1 {O(n)}
MPRF:
n_f300___6 [Arg_4-Arg_1 ]
n_f1___5 [Arg_4-Arg_1 ]
MPRF for transition 37:n_f300___6(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f1___5(Arg_0,Arg_1,Arg_4,0,0,0,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && 2+Arg_0<=Arg_1 && 5<=Arg_12 && Arg_1<=Arg_4 && 2+Arg_0<=Arg_1 && Arg_10<=1 && 1<=Arg_10 && Arg_7<=1 && 1<=Arg_7 && Arg_9<=1 && 1<=Arg_9 && 1+Arg_1<=Arg_4 of depth 1:
new bound:
Arg_1+Arg_4+1 {O(n)}
MPRF:
n_f300___6 [Arg_4-Arg_1 ]
n_f1___5 [Arg_4-Arg_1-1 ]
MPRF for transition 43:n_f8___3(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___3(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_9<=1 && Arg_9<=Arg_7 && Arg_7+Arg_9<=2 && 4+Arg_9<=Arg_12 && Arg_9<=Arg_10 && Arg_10+Arg_9<=2 && 1<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 6<=Arg_12+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_7<=1 && 4+Arg_7<=Arg_12 && Arg_7<=Arg_10 && Arg_10+Arg_7<=2 && 1<=Arg_7 && 6<=Arg_12+Arg_7 && 2<=Arg_10+Arg_7 && Arg_10<=Arg_7 && Arg_4<=Arg_1 && Arg_1<=Arg_4 && Arg_0<=Arg_4 && 5<=Arg_12 && 6<=Arg_10+Arg_12 && 4+Arg_10<=Arg_12 && Arg_10<=1 && 1<=Arg_10 && Arg_0<=Arg_1 && 5<=Arg_12 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1 of depth 1:
new bound:
2*Arg_0+3*Arg_1+Arg_4+7 {O(n)}
MPRF:
n_f8___3 [Arg_1+1-Arg_0 ]
MPRF for transition 46:n_f8___8(Arg_0,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12) -> n_f8___8(Arg_0+1,Arg_1,Arg_4,Arg_7,Arg_9,Arg_10,Arg_12):|:Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_4<=Arg_1 && Arg_0<=Arg_1 && Arg_4<=Arg_1 && 1+Arg_0<=Arg_1 of depth 1:
new bound:
Arg_0+Arg_1+2 {O(n)}
MPRF:
n_f8___8 [Arg_1+1-Arg_0 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
32: n_f15->n_f8___11: 1 {O(1)}
33: n_f1___10->n_f1___7: 1 {O(1)}
34: n_f1___10->n_f300___6: 1 {O(1)}
35: n_f1___5->n_f300___6: Arg_1+Arg_4+1 {O(n)}
36: n_f1___7->n_f1___7: inf {Infinity}
37: n_f300___6->n_f1___5: Arg_1+Arg_4+1 {O(n)}
38: n_f300___6->n_f8___4: 1 {O(1)}
39: n_f8___11->n_f1___10: 1 {O(1)}
40: n_f8___11->n_f32___9: 1 {O(1)}
41: n_f8___11->n_f8___8: 1 {O(1)}
42: n_f8___3->n_f32___2: 1 {O(1)}
43: n_f8___3->n_f8___3: 2*Arg_0+3*Arg_1+Arg_4+7 {O(n)}
44: n_f8___4->n_f8___3: 1 {O(1)}
45: n_f8___8->n_f32___1: 1 {O(1)}
46: n_f8___8->n_f8___8: Arg_0+Arg_1+2 {O(n)}
Costbounds
Overall costbound: inf {Infinity}
32: n_f15->n_f8___11: 1 {O(1)}
33: n_f1___10->n_f1___7: 1 {O(1)}
34: n_f1___10->n_f300___6: 1 {O(1)}
35: n_f1___5->n_f300___6: Arg_1+Arg_4+1 {O(n)}
36: n_f1___7->n_f1___7: inf {Infinity}
37: n_f300___6->n_f1___5: Arg_1+Arg_4+1 {O(n)}
38: n_f300___6->n_f8___4: 1 {O(1)}
39: n_f8___11->n_f1___10: 1 {O(1)}
40: n_f8___11->n_f32___9: 1 {O(1)}
41: n_f8___11->n_f8___8: 1 {O(1)}
42: n_f8___3->n_f32___2: 1 {O(1)}
43: n_f8___3->n_f8___3: 2*Arg_0+3*Arg_1+Arg_4+7 {O(n)}
44: n_f8___4->n_f8___3: 1 {O(1)}
45: n_f8___8->n_f32___1: 1 {O(1)}
46: n_f8___8->n_f8___8: Arg_0+Arg_1+2 {O(n)}
Sizebounds
32: n_f15->n_f8___11, Arg_0: Arg_0 {O(n)}
32: n_f15->n_f8___11, Arg_1: Arg_1 {O(n)}
32: n_f15->n_f8___11, Arg_4: Arg_4 {O(n)}
32: n_f15->n_f8___11, Arg_7: Arg_7 {O(n)}
32: n_f15->n_f8___11, Arg_9: Arg_9 {O(n)}
32: n_f15->n_f8___11, Arg_10: Arg_10 {O(n)}
32: n_f15->n_f8___11, Arg_12: Arg_12 {O(n)}
33: n_f1___10->n_f1___7, Arg_0: Arg_0 {O(n)}
33: n_f1___10->n_f1___7, Arg_1: Arg_1 {O(n)}
33: n_f1___10->n_f1___7, Arg_4: Arg_4 {O(n)}
33: n_f1___10->n_f1___7, Arg_7: 0 {O(1)}
33: n_f1___10->n_f1___7, Arg_9: 0 {O(1)}
33: n_f1___10->n_f1___7, Arg_10: 0 {O(1)}
33: n_f1___10->n_f1___7, Arg_12: Arg_12 {O(n)}
34: n_f1___10->n_f300___6, Arg_0: Arg_0 {O(n)}
34: n_f1___10->n_f300___6, Arg_1: Arg_1+1 {O(n)}
34: n_f1___10->n_f300___6, Arg_4: Arg_4 {O(n)}
34: n_f1___10->n_f300___6, Arg_7: 1 {O(1)}
34: n_f1___10->n_f300___6, Arg_9: 1 {O(1)}
34: n_f1___10->n_f300___6, Arg_10: 1 {O(1)}
34: n_f1___10->n_f300___6, Arg_12: Arg_12 {O(n)}
35: n_f1___5->n_f300___6, Arg_0: Arg_0 {O(n)}
35: n_f1___5->n_f300___6, Arg_1: 2*Arg_1+Arg_4+2 {O(n)}
35: n_f1___5->n_f300___6, Arg_4: Arg_4 {O(n)}
35: n_f1___5->n_f300___6, Arg_7: 1 {O(1)}
35: n_f1___5->n_f300___6, Arg_9: 1 {O(1)}
35: n_f1___5->n_f300___6, Arg_10: 1 {O(1)}
35: n_f1___5->n_f300___6, Arg_12: Arg_12 {O(n)}
36: n_f1___7->n_f1___7, Arg_0: Arg_0 {O(n)}
36: n_f1___7->n_f1___7, Arg_1: Arg_1 {O(n)}
36: n_f1___7->n_f1___7, Arg_4: Arg_4 {O(n)}
36: n_f1___7->n_f1___7, Arg_7: 0 {O(1)}
36: n_f1___7->n_f1___7, Arg_9: 0 {O(1)}
36: n_f1___7->n_f1___7, Arg_10: 0 {O(1)}
36: n_f1___7->n_f1___7, Arg_12: Arg_12 {O(n)}
37: n_f300___6->n_f1___5, Arg_0: Arg_0 {O(n)}
37: n_f300___6->n_f1___5, Arg_1: 2*Arg_1+Arg_4+2 {O(n)}
37: n_f300___6->n_f1___5, Arg_4: Arg_4 {O(n)}
37: n_f300___6->n_f1___5, Arg_7: 0 {O(1)}
37: n_f300___6->n_f1___5, Arg_9: 0 {O(1)}
37: n_f300___6->n_f1___5, Arg_10: 0 {O(1)}
37: n_f300___6->n_f1___5, Arg_12: Arg_12 {O(n)}
38: n_f300___6->n_f8___4, Arg_0: 2*Arg_0+2 {O(n)}
38: n_f300___6->n_f8___4, Arg_1: 3*Arg_1+Arg_4+3 {O(n)}
38: n_f300___6->n_f8___4, Arg_4: 2*Arg_4 {O(n)}
38: n_f300___6->n_f8___4, Arg_7: 1 {O(1)}
38: n_f300___6->n_f8___4, Arg_9: 1 {O(1)}
38: n_f300___6->n_f8___4, Arg_10: 1 {O(1)}
38: n_f300___6->n_f8___4, Arg_12: 2*Arg_12 {O(n)}
39: n_f8___11->n_f1___10, Arg_0: Arg_0 {O(n)}
39: n_f8___11->n_f1___10, Arg_1: Arg_1 {O(n)}
39: n_f8___11->n_f1___10, Arg_4: Arg_4 {O(n)}
39: n_f8___11->n_f1___10, Arg_7: 0 {O(1)}
39: n_f8___11->n_f1___10, Arg_9: 0 {O(1)}
39: n_f8___11->n_f1___10, Arg_10: 0 {O(1)}
39: n_f8___11->n_f1___10, Arg_12: Arg_12 {O(n)}
40: n_f8___11->n_f32___9, Arg_0: Arg_0 {O(n)}
40: n_f8___11->n_f32___9, Arg_1: Arg_1 {O(n)}
40: n_f8___11->n_f32___9, Arg_4: Arg_4 {O(n)}
40: n_f8___11->n_f32___9, Arg_7: Arg_7 {O(n)}
40: n_f8___11->n_f32___9, Arg_9: Arg_9 {O(n)}
40: n_f8___11->n_f32___9, Arg_10: Arg_10 {O(n)}
40: n_f8___11->n_f32___9, Arg_12: Arg_12 {O(n)}
41: n_f8___11->n_f8___8, Arg_0: Arg_0+1 {O(n)}
41: n_f8___11->n_f8___8, Arg_1: Arg_1 {O(n)}
41: n_f8___11->n_f8___8, Arg_4: Arg_4 {O(n)}
41: n_f8___11->n_f8___8, Arg_7: Arg_7 {O(n)}
41: n_f8___11->n_f8___8, Arg_9: Arg_9 {O(n)}
41: n_f8___11->n_f8___8, Arg_10: Arg_10 {O(n)}
41: n_f8___11->n_f8___8, Arg_12: Arg_12 {O(n)}
42: n_f8___3->n_f32___2, Arg_0: 3*Arg_1+6*Arg_0+Arg_4+13 {O(n)}
42: n_f8___3->n_f32___2, Arg_1: 2*Arg_4+6*Arg_1+6 {O(n)}
42: n_f8___3->n_f32___2, Arg_4: 4*Arg_4 {O(n)}
42: n_f8___3->n_f32___2, Arg_7: 1 {O(1)}
42: n_f8___3->n_f32___2, Arg_9: 1 {O(1)}
42: n_f8___3->n_f32___2, Arg_10: 1 {O(1)}
42: n_f8___3->n_f32___2, Arg_12: 4*Arg_12 {O(n)}
43: n_f8___3->n_f8___3, Arg_0: 3*Arg_1+4*Arg_0+Arg_4+10 {O(n)}
43: n_f8___3->n_f8___3, Arg_1: 3*Arg_1+Arg_4+3 {O(n)}
43: n_f8___3->n_f8___3, Arg_4: 2*Arg_4 {O(n)}
43: n_f8___3->n_f8___3, Arg_7: 1 {O(1)}
43: n_f8___3->n_f8___3, Arg_9: 1 {O(1)}
43: n_f8___3->n_f8___3, Arg_10: 1 {O(1)}
43: n_f8___3->n_f8___3, Arg_12: 2*Arg_12 {O(n)}
44: n_f8___4->n_f8___3, Arg_0: 2*Arg_0+3 {O(n)}
44: n_f8___4->n_f8___3, Arg_1: 3*Arg_1+Arg_4+3 {O(n)}
44: n_f8___4->n_f8___3, Arg_4: 2*Arg_4 {O(n)}
44: n_f8___4->n_f8___3, Arg_7: 1 {O(1)}
44: n_f8___4->n_f8___3, Arg_9: 1 {O(1)}
44: n_f8___4->n_f8___3, Arg_10: 1 {O(1)}
44: n_f8___4->n_f8___3, Arg_12: 2*Arg_12 {O(n)}
45: n_f8___8->n_f32___1, Arg_0: 3*Arg_0+Arg_1+4 {O(n)}
45: n_f8___8->n_f32___1, Arg_1: 2*Arg_1 {O(n)}
45: n_f8___8->n_f32___1, Arg_4: 2*Arg_4 {O(n)}
45: n_f8___8->n_f32___1, Arg_7: 2*Arg_7 {O(n)}
45: n_f8___8->n_f32___1, Arg_9: 2*Arg_9 {O(n)}
45: n_f8___8->n_f32___1, Arg_10: 2*Arg_10 {O(n)}
45: n_f8___8->n_f32___1, Arg_12: 2*Arg_12 {O(n)}
46: n_f8___8->n_f8___8, Arg_0: 2*Arg_0+Arg_1+3 {O(n)}
46: n_f8___8->n_f8___8, Arg_1: Arg_1 {O(n)}
46: n_f8___8->n_f8___8, Arg_4: Arg_4 {O(n)}
46: n_f8___8->n_f8___8, Arg_7: Arg_7 {O(n)}
46: n_f8___8->n_f8___8, Arg_9: Arg_9 {O(n)}
46: n_f8___8->n_f8___8, Arg_10: Arg_10 {O(n)}
46: n_f8___8->n_f8___8, Arg_12: Arg_12 {O(n)}