Initial Problem
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: C_P, D_P, NoDet0
Locations: n_f0, n_f10___1, n_f10___14, n_f10___17, n_f10___2, n_f10___6, n_f10___8, n_f14___10, n_f14___11, n_f14___12, n_f14___13, n_f14___15, n_f14___4, n_f14___5, n_f25___16, n_f25___7, n_f6___18, n_f6___3, n_f6___9
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___18(NoDet0,0,Arg_2,Arg_3)
1:n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_0<=1 && 0<=Arg_0 && Arg_2<=0 && 1<=Arg_1
2:n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1 && 0<=Arg_0 && Arg_2<=0 && Arg_1<=0
3:n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_0<=1 && Arg_2<=0 && 1<=Arg_1
4:n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1 && Arg_2<=0 && Arg_1<=0
5:n_f10___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:1<=Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1
6:n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:0<=Arg_0 && 1<=Arg_1
7:n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_0 && Arg_1<=0
8:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && 1<=Arg_1
9:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_1<=0
10:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_0<=1 && 0<=Arg_0 && 1<=Arg_1
11:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1 && 0<=Arg_0 && Arg_1<=0
12:n_f14___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && Arg_2<=0 && Arg_2<=0
13:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=0
14:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
15:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
16:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1<=Arg_2
17:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && Arg_2<=0
18:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
19:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
20:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=Arg_2
21:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && Arg_2<=0
22:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1<=Arg_2
23:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
24:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
25:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && Arg_2<=0
26:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
27:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
28:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1<=Arg_2
29:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && 1<=Arg_3 && Arg_2<=0
30:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:0<=Arg_2 && 1<=Arg_3 && 1<=Arg_2
31:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:0<=Arg_2 && 1<=Arg_3 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
32:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:0<=Arg_2 && 1<=Arg_3 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
33:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && 1+Arg_3<=0 && Arg_2<=0
34:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:0<=Arg_2 && 1+Arg_3<=0 && 1<=Arg_2
35:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:0<=Arg_2 && 1+Arg_3<=0 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
36:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:0<=Arg_2 && 1+Arg_3<=0 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
37:n_f6___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___17(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 1<=Arg_0
38:n_f6___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___16(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && Arg_0<=0
39:n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___2(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_1<=0 && 1<=Arg_0
40:n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_0<=0
41:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___8(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_0<=2 && Arg_1<=0 && 1<=Arg_0
42:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=2 && Arg_1<=0 && Arg_0<=0
Preprocessing
Found invariant Arg_2<=0 && Arg_1+Arg_2<=0 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && 0<=Arg_0 for location n_f6___3
Found invariant Arg_1<=0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_f25___16
Found invariant Arg_1<=0 && 0<=Arg_1 for location n_f6___18
Found invariant Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 for location n_f14___10
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f14___11
Found invariant Arg_2<=0 && Arg_1+Arg_2<=0 && Arg_2<=Arg_0 && Arg_0+Arg_2<=0 && 0<=1+Arg_2 && Arg_1<=1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && Arg_0<=0 && 0<=Arg_0 for location n_f25___7
Found invariant 1+Arg_2<=Arg_0 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_f14___15
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f14___4
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f14___13
Found invariant Arg_1<=1 && Arg_1<=1+Arg_0 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 for location n_f10___17
Found invariant Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 for location n_f6___9
Found invariant Arg_2<=0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_f10___1
Found invariant Arg_2<=0 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && 0<=Arg_0 for location n_f10___2
Found invariant Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 for location n_f10___14
Found invariant Arg_2<=0 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=1 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f10___8
Found invariant 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f14___12
Found invariant Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_0 for location n_f10___6
Found invariant 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 3+Arg_3<=Arg_0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f14___5
Cut unsatisfiable transition 2: n_f10___1->n_f6___9
Cut unsatisfiable transition 11: n_f10___8->n_f6___9
Problem after Preprocessing
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: C_P, D_P, NoDet0
Locations: n_f0, n_f10___1, n_f10___14, n_f10___17, n_f10___2, n_f10___6, n_f10___8, n_f14___10, n_f14___11, n_f14___12, n_f14___13, n_f14___15, n_f14___4, n_f14___5, n_f25___16, n_f25___7, n_f6___18, n_f6___3, n_f6___9
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___18(NoDet0,0,Arg_2,Arg_3)
1:n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_0<=1 && 0<=Arg_0 && Arg_2<=0 && 1<=Arg_1
3:n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=1 && Arg_2<=0 && 1<=Arg_1
4:n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=1 && Arg_2<=0 && Arg_1<=0
5:n_f10___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_1<=1 && Arg_1<=1+Arg_0 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1
6:n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1<=Arg_1
7:n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && 0<=Arg_0 && 0<=Arg_0 && Arg_1<=0
8:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___15(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2<=0 && 1<=Arg_1
9:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2<=0 && Arg_1<=0
10:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=1 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_1
12:n_f14___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_2<=0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && Arg_2<=0 && Arg_2<=0
13:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=0
14:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
15:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
16:n_f14___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && 1<=Arg_2
17:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && Arg_2<=0
18:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
19:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
20:n_f14___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=Arg_2
21:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && Arg_2<=0
22:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1<=Arg_2
23:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
24:n_f14___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
25:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=Arg_0 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && Arg_2<=0
26:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___11(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_2<=Arg_0 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
27:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___12(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_2<=Arg_0 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
28:n_f14___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:1+Arg_2<=Arg_0 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_0<=1+Arg_2 && 1+Arg_2<=Arg_0 && 0<=Arg_1 && 1<=Arg_2
29:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=0
30:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1<=Arg_3 && 1<=Arg_2
31:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1<=Arg_3 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
32:n_f14___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 2<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1<=Arg_3 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
33:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 3+Arg_3<=Arg_0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1+Arg_3<=0 && Arg_2<=0
34:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___13(Arg_0,Arg_1,Arg_2-1,0):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 3+Arg_3<=Arg_0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=Arg_2
35:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___4(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 3+Arg_3<=Arg_0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1+Arg_3<=0 && 1<=D_P && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
36:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___5(Arg_0-1,Arg_1+1,C_P,D_P):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 3+Arg_3<=Arg_0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_2 && 1+Arg_3<=0 && 1+D_P<=0 && 0<=C_P && Arg_2<=C_P+1 && 1+C_P<=Arg_2
37:n_f6___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___17(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_1<=0 && 0<=Arg_1 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 1<=Arg_0
38:n_f6___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___16(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && 0<=Arg_1 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && Arg_0<=0
39:n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___2(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_1+Arg_2<=0 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && 0<=Arg_0 && Arg_1<=0 && 1<=Arg_0
40:n_f6___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_1+Arg_2<=0 && Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && 0<=Arg_0 && Arg_1<=0 && Arg_0<=0
41:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___8(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=2 && Arg_1<=0 && 1<=Arg_0
42:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f25___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=2 && Arg_1<=0 && Arg_0<=0
MPRF for transition 4:n_f10___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=1 && Arg_2<=0 && Arg_1<=0 of depth 1:
new bound:
5 {O(1)}
MPRF:
n_f14___10 [Arg_2+2 ]
n_f10___14 [Arg_2+2 ]
n_f6___9 [Arg_2+1 ]
n_f10___8 [Arg_2+1 ]
MPRF for transition 10:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f14___10(Arg_0,Arg_1-1,Arg_0-1,Arg_3):|:Arg_2<=0 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=0 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=1 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_1 of depth 1:
new bound:
3 {O(1)}
MPRF:
n_f14___10 [Arg_0 ]
n_f10___14 [Arg_2+1 ]
n_f6___9 [Arg_0 ]
n_f10___8 [1 ]
MPRF for transition 41:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_f10___8(Arg_0-1,Arg_1+1,Arg_2,Arg_3):|:Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=1 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=2 && Arg_1<=0 && 1<=Arg_0 of depth 1:
new bound:
4 {O(1)}
MPRF:
n_f14___10 [Arg_0+1 ]
n_f10___14 [Arg_0+1 ]
n_f6___9 [Arg_0+1 ]
n_f10___8 [1 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
0: n_f0->n_f6___18: 1 {O(1)}
1: n_f10___1->n_f14___10: 1 {O(1)}
3: n_f10___14->n_f14___10: inf {Infinity}
4: n_f10___14->n_f6___9: 5 {O(1)}
5: n_f10___17->n_f14___15: 1 {O(1)}
6: n_f10___2->n_f14___15: inf {Infinity}
7: n_f10___2->n_f6___3: inf {Infinity}
8: n_f10___6->n_f14___15: inf {Infinity}
9: n_f10___6->n_f6___3: inf {Infinity}
10: n_f10___8->n_f14___10: 3 {O(1)}
12: n_f14___10->n_f10___14: inf {Infinity}
13: n_f14___11->n_f10___1: 1 {O(1)}
14: n_f14___11->n_f14___11: inf {Infinity}
15: n_f14___11->n_f14___12: inf {Infinity}
16: n_f14___11->n_f14___13: inf {Infinity}
17: n_f14___12->n_f10___1: 1 {O(1)}
18: n_f14___12->n_f14___11: inf {Infinity}
19: n_f14___12->n_f14___12: inf {Infinity}
20: n_f14___12->n_f14___13: inf {Infinity}
21: n_f14___13->n_f10___6: inf {Infinity}
22: n_f14___13->n_f14___13: inf {Infinity}
23: n_f14___13->n_f14___4: inf {Infinity}
24: n_f14___13->n_f14___5: inf {Infinity}
25: n_f14___15->n_f10___14: 1 {O(1)}
26: n_f14___15->n_f14___11: inf {Infinity}
27: n_f14___15->n_f14___12: inf {Infinity}
28: n_f14___15->n_f14___13: inf {Infinity}
29: n_f14___4->n_f10___6: inf {Infinity}
30: n_f14___4->n_f14___13: inf {Infinity}
31: n_f14___4->n_f14___4: inf {Infinity}
32: n_f14___4->n_f14___5: inf {Infinity}
33: n_f14___5->n_f10___6: inf {Infinity}
34: n_f14___5->n_f14___13: inf {Infinity}
35: n_f14___5->n_f14___4: inf {Infinity}
36: n_f14___5->n_f14___5: inf {Infinity}
37: n_f6___18->n_f10___17: 1 {O(1)}
38: n_f6___18->n_f25___16: 1 {O(1)}
39: n_f6___3->n_f10___2: inf {Infinity}
40: n_f6___3->n_f25___7: 1 {O(1)}
41: n_f6___9->n_f10___8: 4 {O(1)}
42: n_f6___9->n_f25___7: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
0: n_f0->n_f6___18: 1 {O(1)}
1: n_f10___1->n_f14___10: 1 {O(1)}
3: n_f10___14->n_f14___10: inf {Infinity}
4: n_f10___14->n_f6___9: 5 {O(1)}
5: n_f10___17->n_f14___15: 1 {O(1)}
6: n_f10___2->n_f14___15: inf {Infinity}
7: n_f10___2->n_f6___3: inf {Infinity}
8: n_f10___6->n_f14___15: inf {Infinity}
9: n_f10___6->n_f6___3: inf {Infinity}
10: n_f10___8->n_f14___10: 3 {O(1)}
12: n_f14___10->n_f10___14: inf {Infinity}
13: n_f14___11->n_f10___1: 1 {O(1)}
14: n_f14___11->n_f14___11: inf {Infinity}
15: n_f14___11->n_f14___12: inf {Infinity}
16: n_f14___11->n_f14___13: inf {Infinity}
17: n_f14___12->n_f10___1: 1 {O(1)}
18: n_f14___12->n_f14___11: inf {Infinity}
19: n_f14___12->n_f14___12: inf {Infinity}
20: n_f14___12->n_f14___13: inf {Infinity}
21: n_f14___13->n_f10___6: inf {Infinity}
22: n_f14___13->n_f14___13: inf {Infinity}
23: n_f14___13->n_f14___4: inf {Infinity}
24: n_f14___13->n_f14___5: inf {Infinity}
25: n_f14___15->n_f10___14: 1 {O(1)}
26: n_f14___15->n_f14___11: inf {Infinity}
27: n_f14___15->n_f14___12: inf {Infinity}
28: n_f14___15->n_f14___13: inf {Infinity}
29: n_f14___4->n_f10___6: inf {Infinity}
30: n_f14___4->n_f14___13: inf {Infinity}
31: n_f14___4->n_f14___4: inf {Infinity}
32: n_f14___4->n_f14___5: inf {Infinity}
33: n_f14___5->n_f10___6: inf {Infinity}
34: n_f14___5->n_f14___13: inf {Infinity}
35: n_f14___5->n_f14___4: inf {Infinity}
36: n_f14___5->n_f14___5: inf {Infinity}
37: n_f6___18->n_f10___17: 1 {O(1)}
38: n_f6___18->n_f25___16: 1 {O(1)}
39: n_f6___3->n_f10___2: inf {Infinity}
40: n_f6___3->n_f25___7: 1 {O(1)}
41: n_f6___9->n_f10___8: 4 {O(1)}
42: n_f6___9->n_f25___7: 1 {O(1)}
Sizebounds
0: n_f0->n_f6___18, Arg_1: 0 {O(1)}
0: n_f0->n_f6___18, Arg_2: Arg_2 {O(n)}
0: n_f0->n_f6___18, Arg_3: Arg_3 {O(n)}
1: n_f10___1->n_f14___10, Arg_0: 1 {O(1)}
1: n_f10___1->n_f14___10, Arg_2: 0 {O(1)}
3: n_f10___14->n_f14___10, Arg_0: 1 {O(1)}
3: n_f10___14->n_f14___10, Arg_2: 1 {O(1)}
4: n_f10___14->n_f6___9, Arg_0: 1 {O(1)}
4: n_f10___14->n_f6___9, Arg_1: 0 {O(1)}
4: n_f10___14->n_f6___9, Arg_2: 1 {O(1)}
5: n_f10___17->n_f14___15, Arg_1: 0 {O(1)}
5: n_f10___17->n_f14___15, Arg_3: Arg_3 {O(n)}
6: n_f10___2->n_f14___15, Arg_1: 0 {O(1)}
6: n_f10___2->n_f14___15, Arg_3: 0 {O(1)}
7: n_f10___2->n_f6___3, Arg_2: 0 {O(1)}
7: n_f10___2->n_f6___3, Arg_3: 0 {O(1)}
9: n_f10___6->n_f6___3, Arg_2: 0 {O(1)}
9: n_f10___6->n_f6___3, Arg_3: 0 {O(1)}
10: n_f10___8->n_f14___10, Arg_0: 0 {O(1)}
10: n_f10___8->n_f14___10, Arg_1: 0 {O(1)}
10: n_f10___8->n_f14___10, Arg_2: 1 {O(1)}
12: n_f14___10->n_f10___14, Arg_0: 1 {O(1)}
12: n_f14___10->n_f10___14, Arg_2: 1 {O(1)}
13: n_f14___11->n_f10___1, Arg_0: 1 {O(1)}
13: n_f14___11->n_f10___1, Arg_2: 0 {O(1)}
16: n_f14___11->n_f14___13, Arg_3: 0 {O(1)}
17: n_f14___12->n_f10___1, Arg_0: 1 {O(1)}
17: n_f14___12->n_f10___1, Arg_2: 0 {O(1)}
20: n_f14___12->n_f14___13, Arg_3: 0 {O(1)}
21: n_f14___13->n_f10___6, Arg_2: 0 {O(1)}
21: n_f14___13->n_f10___6, Arg_3: 0 {O(1)}
22: n_f14___13->n_f14___13, Arg_3: 0 {O(1)}
25: n_f14___15->n_f10___14, Arg_0: 1 {O(1)}
25: n_f14___15->n_f10___14, Arg_1: 0 {O(1)}
25: n_f14___15->n_f10___14, Arg_2: 1 {O(1)}
25: n_f14___15->n_f10___14, Arg_3: Arg_3 {O(n)}
28: n_f14___15->n_f14___13, Arg_3: 0 {O(1)}
29: n_f14___4->n_f10___6, Arg_2: 0 {O(1)}
30: n_f14___4->n_f14___13, Arg_3: 0 {O(1)}
33: n_f14___5->n_f10___6, Arg_2: 0 {O(1)}
34: n_f14___5->n_f14___13, Arg_3: 0 {O(1)}
37: n_f6___18->n_f10___17, Arg_1: 1 {O(1)}
37: n_f6___18->n_f10___17, Arg_2: Arg_2 {O(n)}
37: n_f6___18->n_f10___17, Arg_3: Arg_3 {O(n)}
38: n_f6___18->n_f25___16, Arg_1: 0 {O(1)}
38: n_f6___18->n_f25___16, Arg_2: Arg_2 {O(n)}
38: n_f6___18->n_f25___16, Arg_3: Arg_3 {O(n)}
39: n_f6___3->n_f10___2, Arg_2: 0 {O(1)}
39: n_f6___3->n_f10___2, Arg_3: 0 {O(1)}
40: n_f6___3->n_f25___7, Arg_0: 0 {O(1)}
40: n_f6___3->n_f25___7, Arg_2: 0 {O(1)}
40: n_f6___3->n_f25___7, Arg_3: 0 {O(1)}
41: n_f6___9->n_f10___8, Arg_0: 0 {O(1)}
41: n_f6___9->n_f10___8, Arg_1: 1 {O(1)}
41: n_f6___9->n_f10___8, Arg_2: 0 {O(1)}
42: n_f6___9->n_f25___7, Arg_0: 0 {O(1)}
42: n_f6___9->n_f25___7, Arg_1: 0 {O(1)}
42: n_f6___9->n_f25___7, Arg_2: 1 {O(1)}