Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11
Temp_Vars: A_P, B_P, D_P, F_P, G_P, H_P, I_P, J_P, K_P, L_P
Locations: n_f0, n_f3___14, n_f3___15, n_f3___16, n_f3___17, n_f3___18, n_f3___4, n_f3___5, n_f3___7, n_f4___10, n_f4___13, n_f4___2, n_f4___3, n_f4___6, n_f4___9, n_f8___1, n_f8___11, n_f8___12, n_f8___8
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___14(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11)
1:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___15(Arg_5,Arg_3,Arg_3,Arg_3,Arg_5,Arg_5,G_P,H_P,I_P,J_P,Arg_10,Arg_11):|:G_P<=I_P && I_P<=G_P && H_P<=J_P && J_P<=H_P
2:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___16(Arg_5,Arg_3,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11)
3:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___17(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11)
4:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
5:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
6:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___11(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_1,I_P,J_P,K_P,L_P):|:B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P
7:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
8:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_1<=Arg_0
9:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
10:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
11:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___2(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1+Arg_0<=Arg_1
12:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___3(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1+Arg_1<=Arg_0
13:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___1(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
14:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___2(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1+Arg_0<=Arg_1
15:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___3(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_0
16:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___1(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
17:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_0
18:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
19:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
20:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_1<=Arg_0
21:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_0<=Arg_1
22:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
23:n_f3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
24:n_f3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
25:n_f3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
26:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && 1+Arg_1<=Arg_0
27:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f4___6(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && 1+Arg_0<=Arg_1
28:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P,K_P,L_P):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
29:n_f4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_1<=Arg_0 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_0
30:n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_0<=Arg_1
31:n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1<=Arg_0
32:n_f4___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_0<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
33:n_f4___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_1<=Arg_0 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_1<=Arg_0
34:n_f4___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___5(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0+1<=Arg_1 && Arg_1<=1+Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_0<=Arg_1
35:n_f4___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_0<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_0<=Arg_1

Preprocessing

Eliminate variables {Arg_10,Arg_11} that do not contribute to the problem

Found invariant Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_f3___16

Found invariant 1+Arg_7<=Arg_6 && 1+Arg_7<=Arg_5 && 1+Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_3<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=Arg_0 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && 1+Arg_3<=Arg_6 && 1+Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_2<=Arg_5 && 1+Arg_1<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && 1+Arg_3<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f4___3

Found invariant Arg_9<=Arg_5 && Arg_5<=Arg_9 && Arg_8<=Arg_3 && Arg_3<=Arg_8 for location n_f8___11

Found invariant Arg_9<=Arg_5 && Arg_5<=Arg_9 && Arg_8<=Arg_3 && Arg_3<=Arg_8 && Arg_7<=Arg_6 && Arg_6<=Arg_7 for location n_f8___8

Found invariant Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 for location n_f3___14

Found invariant Arg_7<=Arg_6 && 1+Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 for location n_f3___7

Found invariant Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_0<=Arg_1 for location n_f3___4

Found invariant 1+Arg_7<=Arg_6 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_1<=Arg_7 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_0 for location n_f4___10

Found invariant Arg_9<=Arg_5 && Arg_5<=Arg_9 && Arg_8<=Arg_3 && Arg_3<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_4 && Arg_7<=Arg_2 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_6<=Arg_4 && Arg_6<=Arg_2 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_4<=Arg_2 && Arg_2<=Arg_4 for location n_f8___1

Found invariant Arg_9<=Arg_7 && Arg_7<=Arg_9 && Arg_8<=Arg_6 && Arg_6<=Arg_8 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_f3___15

Found invariant Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && 1+Arg_5<=Arg_7 && 1+Arg_4<=Arg_7 && Arg_3<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_1 for location n_f4___2

Found invariant Arg_7<=1+Arg_6 && Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 for location n_f4___6

Found invariant 1+Arg_7<=Arg_1 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 for location n_f3___17

Found invariant Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 for location n_f4___9

Found invariant Arg_7<=1+Arg_6 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f3___5

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9
Temp_Vars: A_P, B_P, D_P, F_P, G_P, H_P, I_P, J_P, K_P, L_P
Locations: n_f0, n_f3___14, n_f3___15, n_f3___16, n_f3___17, n_f3___18, n_f3___4, n_f3___5, n_f3___7, n_f4___10, n_f4___13, n_f4___2, n_f4___3, n_f4___6, n_f4___9, n_f8___1, n_f8___11, n_f8___12, n_f8___8
Transitions:
66:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___14(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9)
67:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___15(Arg_5,Arg_3,Arg_3,Arg_3,Arg_5,Arg_5,G_P,H_P,I_P,J_P):|:G_P<=I_P && I_P<=G_P && H_P<=J_P && J_P<=H_P
68:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___16(Arg_5,Arg_3,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9)
69:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___17(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9)
70:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9)
71:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9)
72:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___11(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_1,I_P,J_P):|:B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P
73:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9)
74:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_1<=Arg_0
75:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
76:n_f3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
77:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___2(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_7<=Arg_9 && Arg_8<=Arg_6 && Arg_6<=Arg_8 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1+Arg_0<=Arg_1
78:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___3(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_7<=Arg_9 && Arg_8<=Arg_6 && Arg_6<=Arg_8 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1+Arg_1<=Arg_0
79:n_f3___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___1(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_9<=Arg_7 && Arg_7<=Arg_9 && Arg_8<=Arg_6 && Arg_6<=Arg_8 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_8 && Arg_8<=Arg_6 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
80:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___2(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1+Arg_0<=Arg_1
81:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___3(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1+Arg_1<=Arg_0
82:n_f3___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___1(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
83:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_7<=Arg_1 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_0
84:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_7<=Arg_1 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
85:n_f3___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:1+Arg_7<=Arg_1 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
86:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_1<=Arg_0
87:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_0<=Arg_1
88:n_f3___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
89:n_f3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
90:n_f3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
91:n_f3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_7<=1+Arg_6 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
92:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_6 && 1+Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && 1+Arg_1<=Arg_0
93:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___6(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_6 && 1+Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && 1+Arg_0<=Arg_1
94:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f8___8(A_P,B_P,Arg_3,D_P,Arg_5,F_P,Arg_0,Arg_0,I_P,J_P):|:Arg_7<=Arg_6 && 1+Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && B_P<=L_P && L_P<=B_P && A_P<=K_P && K_P<=A_P && F_P<=J_P && J_P<=F_P && D_P<=I_P && I_P<=D_P && Arg_0<=Arg_1 && Arg_1<=Arg_0
95:n_f4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_7<=Arg_6 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_1<=Arg_7 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_0
96:n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_0<=Arg_1
97:n_f4___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_1<=Arg_0
98:n_f4___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && 1+Arg_5<=Arg_7 && 1+Arg_4<=Arg_7 && Arg_3<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_0<=Arg_1
99:n_f4___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_7<=Arg_6 && 1+Arg_7<=Arg_5 && 1+Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_3<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=Arg_0 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && 1+Arg_3<=Arg_6 && 1+Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_0 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_2<=Arg_5 && 1+Arg_1<=Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_0 && 1+Arg_3<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_1<=Arg_0
100:n_f4___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___5(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=1+Arg_6 && Arg_7<=Arg_1 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && 1+Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_0+1<=Arg_7 && Arg_7<=1+Arg_0 && Arg_0+1<=Arg_1 && Arg_1<=1+Arg_0 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_0<=Arg_1
101:n_f4___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_0<=Arg_1

MPRF for transition 89:n_f3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___9(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=1+Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+2 {O(n)}

MPRF:

n_f4___9 [Arg_1-Arg_6 ]
n_f3___4 [Arg_1-Arg_6 ]

MPRF for transition 101:n_f4___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___4(Arg_0+1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_1 && 1+Arg_6<=Arg_7 && Arg_1<=Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_6<=Arg_1 && Arg_6<=Arg_0 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 of depth 1:

new bound:

2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+4 {O(n)}

MPRF:

n_f4___9 [Arg_1-Arg_6 ]
n_f3___4 [Arg_1-Arg_6-1 ]

MPRF for transition 92:n_f3___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f4___10(Arg_0,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:Arg_7<=Arg_6 && 1+Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_1<=1+Arg_7 && Arg_6<=Arg_0 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_1<=1+Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=1+Arg_7 && 1+Arg_7<=Arg_1 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_7<=Arg_0 && 1+Arg_1<=Arg_0 of depth 1:

new bound:

2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+12 {O(n)}

MPRF:

n_f4___10 [Arg_0+1-Arg_1 ]
n_f3___7 [Arg_0+2-Arg_1 ]

MPRF for transition 95:n_f4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> n_f3___7(Arg_0,Arg_1+1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0,Arg_1,Arg_8,Arg_9):|:1+Arg_7<=Arg_6 && Arg_7<=Arg_1 && 1+Arg_7<=Arg_0 && Arg_1<=Arg_7 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_1<=Arg_0 of depth 1:

new bound:

2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+5 {O(n)}

MPRF:

n_f4___10 [Arg_0+1-Arg_1 ]
n_f3___7 [Arg_6-Arg_7 ]

All Bounds

Timebounds

Overall timebound:16*Arg_0+16*Arg_1+8*Arg_3+8*Arg_5+55 {O(n)}
66: n_f0->n_f3___14: 1 {O(1)}
67: n_f0->n_f3___15: 1 {O(1)}
68: n_f0->n_f3___16: 1 {O(1)}
69: n_f0->n_f3___17: 1 {O(1)}
70: n_f0->n_f3___18: 1 {O(1)}
71: n_f0->n_f4___13: 1 {O(1)}
72: n_f0->n_f8___11: 1 {O(1)}
73: n_f0->n_f8___12: 1 {O(1)}
74: n_f3___14->n_f4___10: 1 {O(1)}
75: n_f3___14->n_f4___9: 1 {O(1)}
76: n_f3___14->n_f8___8: 1 {O(1)}
77: n_f3___15->n_f4___2: 1 {O(1)}
78: n_f3___15->n_f4___3: 1 {O(1)}
79: n_f3___15->n_f8___1: 1 {O(1)}
80: n_f3___16->n_f4___2: 1 {O(1)}
81: n_f3___16->n_f4___3: 1 {O(1)}
82: n_f3___16->n_f8___1: 1 {O(1)}
83: n_f3___17->n_f4___10: 1 {O(1)}
84: n_f3___17->n_f4___9: 1 {O(1)}
85: n_f3___17->n_f8___8: 1 {O(1)}
86: n_f3___18->n_f4___10: 1 {O(1)}
87: n_f3___18->n_f4___9: 1 {O(1)}
88: n_f3___18->n_f8___8: 1 {O(1)}
89: n_f3___4->n_f4___9: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+2 {O(n)}
90: n_f3___4->n_f8___8: 1 {O(1)}
91: n_f3___5->n_f8___8: 1 {O(1)}
92: n_f3___7->n_f4___10: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+12 {O(n)}
93: n_f3___7->n_f4___6: 1 {O(1)}
94: n_f3___7->n_f8___8: 1 {O(1)}
95: n_f4___10->n_f3___7: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+5 {O(n)}
96: n_f4___13->n_f3___4: 1 {O(1)}
97: n_f4___13->n_f3___7: 1 {O(1)}
98: n_f4___2->n_f3___4: 1 {O(1)}
99: n_f4___3->n_f3___7: 1 {O(1)}
100: n_f4___6->n_f3___5: 1 {O(1)}
101: n_f4___9->n_f3___4: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+4 {O(n)}

Costbounds

Overall costbound: 16*Arg_0+16*Arg_1+8*Arg_3+8*Arg_5+55 {O(n)}
66: n_f0->n_f3___14: 1 {O(1)}
67: n_f0->n_f3___15: 1 {O(1)}
68: n_f0->n_f3___16: 1 {O(1)}
69: n_f0->n_f3___17: 1 {O(1)}
70: n_f0->n_f3___18: 1 {O(1)}
71: n_f0->n_f4___13: 1 {O(1)}
72: n_f0->n_f8___11: 1 {O(1)}
73: n_f0->n_f8___12: 1 {O(1)}
74: n_f3___14->n_f4___10: 1 {O(1)}
75: n_f3___14->n_f4___9: 1 {O(1)}
76: n_f3___14->n_f8___8: 1 {O(1)}
77: n_f3___15->n_f4___2: 1 {O(1)}
78: n_f3___15->n_f4___3: 1 {O(1)}
79: n_f3___15->n_f8___1: 1 {O(1)}
80: n_f3___16->n_f4___2: 1 {O(1)}
81: n_f3___16->n_f4___3: 1 {O(1)}
82: n_f3___16->n_f8___1: 1 {O(1)}
83: n_f3___17->n_f4___10: 1 {O(1)}
84: n_f3___17->n_f4___9: 1 {O(1)}
85: n_f3___17->n_f8___8: 1 {O(1)}
86: n_f3___18->n_f4___10: 1 {O(1)}
87: n_f3___18->n_f4___9: 1 {O(1)}
88: n_f3___18->n_f8___8: 1 {O(1)}
89: n_f3___4->n_f4___9: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+2 {O(n)}
90: n_f3___4->n_f8___8: 1 {O(1)}
91: n_f3___5->n_f8___8: 1 {O(1)}
92: n_f3___7->n_f4___10: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+12 {O(n)}
93: n_f3___7->n_f4___6: 1 {O(1)}
94: n_f3___7->n_f8___8: 1 {O(1)}
95: n_f4___10->n_f3___7: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+5 {O(n)}
96: n_f4___13->n_f3___4: 1 {O(1)}
97: n_f4___13->n_f3___7: 1 {O(1)}
98: n_f4___2->n_f3___4: 1 {O(1)}
99: n_f4___3->n_f3___7: 1 {O(1)}
100: n_f4___6->n_f3___5: 1 {O(1)}
101: n_f4___9->n_f3___4: 2*Arg_3+2*Arg_5+4*Arg_0+4*Arg_1+4 {O(n)}

Sizebounds

66: n_f0->n_f3___14, Arg_0: Arg_0+1 {O(n)}
66: n_f0->n_f3___14, Arg_1: Arg_1 {O(n)}
66: n_f0->n_f3___14, Arg_2: Arg_3 {O(n)}
66: n_f0->n_f3___14, Arg_3: Arg_3 {O(n)}
66: n_f0->n_f3___14, Arg_4: Arg_5 {O(n)}
66: n_f0->n_f3___14, Arg_5: Arg_5 {O(n)}
66: n_f0->n_f3___14, Arg_6: Arg_0 {O(n)}
66: n_f0->n_f3___14, Arg_7: Arg_1 {O(n)}
66: n_f0->n_f3___14, Arg_8: Arg_8 {O(n)}
66: n_f0->n_f3___14, Arg_9: Arg_9 {O(n)}
67: n_f0->n_f3___15, Arg_0: Arg_5 {O(n)}
67: n_f0->n_f3___15, Arg_1: Arg_3 {O(n)}
67: n_f0->n_f3___15, Arg_2: Arg_3 {O(n)}
67: n_f0->n_f3___15, Arg_3: Arg_3 {O(n)}
67: n_f0->n_f3___15, Arg_4: Arg_5 {O(n)}
67: n_f0->n_f3___15, Arg_5: Arg_5 {O(n)}
68: n_f0->n_f3___16, Arg_0: Arg_5 {O(n)}
68: n_f0->n_f3___16, Arg_1: Arg_3 {O(n)}
68: n_f0->n_f3___16, Arg_2: Arg_3 {O(n)}
68: n_f0->n_f3___16, Arg_3: Arg_3 {O(n)}
68: n_f0->n_f3___16, Arg_4: Arg_5 {O(n)}
68: n_f0->n_f3___16, Arg_5: Arg_5 {O(n)}
68: n_f0->n_f3___16, Arg_6: Arg_0 {O(n)}
68: n_f0->n_f3___16, Arg_7: Arg_1 {O(n)}
68: n_f0->n_f3___16, Arg_8: Arg_8 {O(n)}
68: n_f0->n_f3___16, Arg_9: Arg_9 {O(n)}
69: n_f0->n_f3___17, Arg_0: Arg_0 {O(n)}
69: n_f0->n_f3___17, Arg_1: Arg_1+1 {O(n)}
69: n_f0->n_f3___17, Arg_2: Arg_3 {O(n)}
69: n_f0->n_f3___17, Arg_3: Arg_3 {O(n)}
69: n_f0->n_f3___17, Arg_4: Arg_5 {O(n)}
69: n_f0->n_f3___17, Arg_5: Arg_5 {O(n)}
69: n_f0->n_f3___17, Arg_6: Arg_0 {O(n)}
69: n_f0->n_f3___17, Arg_7: Arg_1 {O(n)}
69: n_f0->n_f3___17, Arg_8: Arg_8 {O(n)}
69: n_f0->n_f3___17, Arg_9: Arg_9 {O(n)}
70: n_f0->n_f3___18, Arg_0: Arg_0 {O(n)}
70: n_f0->n_f3___18, Arg_1: Arg_1 {O(n)}
70: n_f0->n_f3___18, Arg_2: Arg_2 {O(n)}
70: n_f0->n_f3___18, Arg_3: Arg_3 {O(n)}
70: n_f0->n_f3___18, Arg_4: Arg_4 {O(n)}
70: n_f0->n_f3___18, Arg_5: Arg_5 {O(n)}
70: n_f0->n_f3___18, Arg_6: Arg_6 {O(n)}
70: n_f0->n_f3___18, Arg_7: Arg_7 {O(n)}
70: n_f0->n_f3___18, Arg_8: Arg_8 {O(n)}
70: n_f0->n_f3___18, Arg_9: Arg_9 {O(n)}
71: n_f0->n_f4___13, Arg_0: Arg_0 {O(n)}
71: n_f0->n_f4___13, Arg_1: Arg_1 {O(n)}
71: n_f0->n_f4___13, Arg_2: Arg_2 {O(n)}
71: n_f0->n_f4___13, Arg_3: Arg_3 {O(n)}
71: n_f0->n_f4___13, Arg_4: Arg_4 {O(n)}
71: n_f0->n_f4___13, Arg_5: Arg_5 {O(n)}
71: n_f0->n_f4___13, Arg_6: Arg_6 {O(n)}
71: n_f0->n_f4___13, Arg_7: Arg_7 {O(n)}
71: n_f0->n_f4___13, Arg_8: Arg_8 {O(n)}
71: n_f0->n_f4___13, Arg_9: Arg_9 {O(n)}
72: n_f0->n_f8___11, Arg_2: Arg_3 {O(n)}
72: n_f0->n_f8___11, Arg_4: Arg_5 {O(n)}
72: n_f0->n_f8___11, Arg_6: Arg_0 {O(n)}
72: n_f0->n_f8___11, Arg_7: Arg_1 {O(n)}
73: n_f0->n_f8___12, Arg_0: Arg_0 {O(n)}
73: n_f0->n_f8___12, Arg_1: Arg_1 {O(n)}
73: n_f0->n_f8___12, Arg_2: Arg_2 {O(n)}
73: n_f0->n_f8___12, Arg_3: Arg_3 {O(n)}
73: n_f0->n_f8___12, Arg_4: Arg_4 {O(n)}
73: n_f0->n_f8___12, Arg_5: Arg_5 {O(n)}
73: n_f0->n_f8___12, Arg_6: Arg_6 {O(n)}
73: n_f0->n_f8___12, Arg_7: Arg_7 {O(n)}
73: n_f0->n_f8___12, Arg_8: Arg_8 {O(n)}
73: n_f0->n_f8___12, Arg_9: Arg_9 {O(n)}
74: n_f3___14->n_f4___10, Arg_0: Arg_0+1 {O(n)}
74: n_f3___14->n_f4___10, Arg_1: Arg_1 {O(n)}
74: n_f3___14->n_f4___10, Arg_2: Arg_3 {O(n)}
74: n_f3___14->n_f4___10, Arg_3: Arg_3 {O(n)}
74: n_f3___14->n_f4___10, Arg_4: Arg_5 {O(n)}
74: n_f3___14->n_f4___10, Arg_5: Arg_5 {O(n)}
74: n_f3___14->n_f4___10, Arg_6: Arg_0+1 {O(n)}
74: n_f3___14->n_f4___10, Arg_7: Arg_1 {O(n)}
74: n_f3___14->n_f4___10, Arg_8: Arg_8 {O(n)}
74: n_f3___14->n_f4___10, Arg_9: Arg_9 {O(n)}
75: n_f3___14->n_f4___9, Arg_0: Arg_0+1 {O(n)}
75: n_f3___14->n_f4___9, Arg_1: Arg_1 {O(n)}
75: n_f3___14->n_f4___9, Arg_2: Arg_3 {O(n)}
75: n_f3___14->n_f4___9, Arg_3: Arg_3 {O(n)}
75: n_f3___14->n_f4___9, Arg_4: Arg_5 {O(n)}
75: n_f3___14->n_f4___9, Arg_5: Arg_5 {O(n)}
75: n_f3___14->n_f4___9, Arg_6: Arg_0+1 {O(n)}
75: n_f3___14->n_f4___9, Arg_7: Arg_1 {O(n)}
75: n_f3___14->n_f4___9, Arg_8: Arg_8 {O(n)}
75: n_f3___14->n_f4___9, Arg_9: Arg_9 {O(n)}
76: n_f3___14->n_f8___8, Arg_2: Arg_3 {O(n)}
76: n_f3___14->n_f8___8, Arg_4: Arg_5 {O(n)}
76: n_f3___14->n_f8___8, Arg_6: Arg_0+1 {O(n)}
76: n_f3___14->n_f8___8, Arg_7: Arg_0+1 {O(n)}
77: n_f3___15->n_f4___2, Arg_0: Arg_5 {O(n)}
77: n_f3___15->n_f4___2, Arg_1: Arg_3 {O(n)}
77: n_f3___15->n_f4___2, Arg_2: Arg_3 {O(n)}
77: n_f3___15->n_f4___2, Arg_3: Arg_3 {O(n)}
77: n_f3___15->n_f4___2, Arg_4: Arg_5 {O(n)}
77: n_f3___15->n_f4___2, Arg_5: Arg_5 {O(n)}
77: n_f3___15->n_f4___2, Arg_6: Arg_5 {O(n)}
77: n_f3___15->n_f4___2, Arg_7: Arg_3 {O(n)}
78: n_f3___15->n_f4___3, Arg_0: Arg_5 {O(n)}
78: n_f3___15->n_f4___3, Arg_1: Arg_3 {O(n)}
78: n_f3___15->n_f4___3, Arg_2: Arg_3 {O(n)}
78: n_f3___15->n_f4___3, Arg_3: Arg_3 {O(n)}
78: n_f3___15->n_f4___3, Arg_4: Arg_5 {O(n)}
78: n_f3___15->n_f4___3, Arg_5: Arg_5 {O(n)}
78: n_f3___15->n_f4___3, Arg_6: Arg_5 {O(n)}
78: n_f3___15->n_f4___3, Arg_7: Arg_3 {O(n)}
79: n_f3___15->n_f8___1, Arg_2: Arg_3 {O(n)}
79: n_f3___15->n_f8___1, Arg_4: Arg_5 {O(n)}
79: n_f3___15->n_f8___1, Arg_6: Arg_5 {O(n)}
79: n_f3___15->n_f8___1, Arg_7: Arg_5 {O(n)}
80: n_f3___16->n_f4___2, Arg_0: Arg_5 {O(n)}
80: n_f3___16->n_f4___2, Arg_1: Arg_3 {O(n)}
80: n_f3___16->n_f4___2, Arg_2: Arg_3 {O(n)}
80: n_f3___16->n_f4___2, Arg_3: Arg_3 {O(n)}
80: n_f3___16->n_f4___2, Arg_4: Arg_5 {O(n)}
80: n_f3___16->n_f4___2, Arg_5: Arg_5 {O(n)}
80: n_f3___16->n_f4___2, Arg_6: Arg_5 {O(n)}
80: n_f3___16->n_f4___2, Arg_7: Arg_3 {O(n)}
80: n_f3___16->n_f4___2, Arg_8: Arg_8 {O(n)}
80: n_f3___16->n_f4___2, Arg_9: Arg_9 {O(n)}
81: n_f3___16->n_f4___3, Arg_0: Arg_5 {O(n)}
81: n_f3___16->n_f4___3, Arg_1: Arg_3 {O(n)}
81: n_f3___16->n_f4___3, Arg_2: Arg_3 {O(n)}
81: n_f3___16->n_f4___3, Arg_3: Arg_3 {O(n)}
81: n_f3___16->n_f4___3, Arg_4: Arg_5 {O(n)}
81: n_f3___16->n_f4___3, Arg_5: Arg_5 {O(n)}
81: n_f3___16->n_f4___3, Arg_6: Arg_5 {O(n)}
81: n_f3___16->n_f4___3, Arg_7: Arg_3 {O(n)}
81: n_f3___16->n_f4___3, Arg_8: Arg_8 {O(n)}
81: n_f3___16->n_f4___3, Arg_9: Arg_9 {O(n)}
82: n_f3___16->n_f8___1, Arg_2: Arg_3 {O(n)}
82: n_f3___16->n_f8___1, Arg_4: Arg_5 {O(n)}
82: n_f3___16->n_f8___1, Arg_6: Arg_5 {O(n)}
82: n_f3___16->n_f8___1, Arg_7: Arg_5 {O(n)}
83: n_f3___17->n_f4___10, Arg_0: Arg_0 {O(n)}
83: n_f3___17->n_f4___10, Arg_1: Arg_1+1 {O(n)}
83: n_f3___17->n_f4___10, Arg_2: Arg_3 {O(n)}
83: n_f3___17->n_f4___10, Arg_3: Arg_3 {O(n)}
83: n_f3___17->n_f4___10, Arg_4: Arg_5 {O(n)}
83: n_f3___17->n_f4___10, Arg_5: Arg_5 {O(n)}
83: n_f3___17->n_f4___10, Arg_6: Arg_0 {O(n)}
83: n_f3___17->n_f4___10, Arg_7: Arg_1+1 {O(n)}
83: n_f3___17->n_f4___10, Arg_8: Arg_8 {O(n)}
83: n_f3___17->n_f4___10, Arg_9: Arg_9 {O(n)}
84: n_f3___17->n_f4___9, Arg_0: Arg_0 {O(n)}
84: n_f3___17->n_f4___9, Arg_1: Arg_1+1 {O(n)}
84: n_f3___17->n_f4___9, Arg_2: Arg_3 {O(n)}
84: n_f3___17->n_f4___9, Arg_3: Arg_3 {O(n)}
84: n_f3___17->n_f4___9, Arg_4: Arg_5 {O(n)}
84: n_f3___17->n_f4___9, Arg_5: Arg_5 {O(n)}
84: n_f3___17->n_f4___9, Arg_6: Arg_0 {O(n)}
84: n_f3___17->n_f4___9, Arg_7: Arg_1+1 {O(n)}
84: n_f3___17->n_f4___9, Arg_8: Arg_8 {O(n)}
84: n_f3___17->n_f4___9, Arg_9: Arg_9 {O(n)}
85: n_f3___17->n_f8___8, Arg_2: Arg_3 {O(n)}
85: n_f3___17->n_f8___8, Arg_4: Arg_5 {O(n)}
85: n_f3___17->n_f8___8, Arg_6: Arg_0 {O(n)}
85: n_f3___17->n_f8___8, Arg_7: Arg_0 {O(n)}
86: n_f3___18->n_f4___10, Arg_0: Arg_0 {O(n)}
86: n_f3___18->n_f4___10, Arg_1: Arg_1 {O(n)}
86: n_f3___18->n_f4___10, Arg_2: Arg_3 {O(n)}
86: n_f3___18->n_f4___10, Arg_3: Arg_3 {O(n)}
86: n_f3___18->n_f4___10, Arg_4: Arg_5 {O(n)}
86: n_f3___18->n_f4___10, Arg_5: Arg_5 {O(n)}
86: n_f3___18->n_f4___10, Arg_6: Arg_0 {O(n)}
86: n_f3___18->n_f4___10, Arg_7: Arg_1 {O(n)}
86: n_f3___18->n_f4___10, Arg_8: Arg_8 {O(n)}
86: n_f3___18->n_f4___10, Arg_9: Arg_9 {O(n)}
87: n_f3___18->n_f4___9, Arg_0: Arg_0 {O(n)}
87: n_f3___18->n_f4___9, Arg_1: Arg_1 {O(n)}
87: n_f3___18->n_f4___9, Arg_2: Arg_3 {O(n)}
87: n_f3___18->n_f4___9, Arg_3: Arg_3 {O(n)}
87: n_f3___18->n_f4___9, Arg_4: Arg_5 {O(n)}
87: n_f3___18->n_f4___9, Arg_5: Arg_5 {O(n)}
87: n_f3___18->n_f4___9, Arg_6: Arg_0 {O(n)}
87: n_f3___18->n_f4___9, Arg_7: Arg_1 {O(n)}
87: n_f3___18->n_f4___9, Arg_8: Arg_8 {O(n)}
87: n_f3___18->n_f4___9, Arg_9: Arg_9 {O(n)}
88: n_f3___18->n_f8___8, Arg_2: Arg_3 {O(n)}
88: n_f3___18->n_f8___8, Arg_4: Arg_5 {O(n)}
88: n_f3___18->n_f8___8, Arg_6: Arg_0 {O(n)}
88: n_f3___18->n_f8___8, Arg_7: Arg_0 {O(n)}
89: n_f3___4->n_f4___9, Arg_0: 2*Arg_3+4*Arg_1+4*Arg_5+8*Arg_0+8 {O(n)}
89: n_f3___4->n_f4___9, Arg_1: 2*Arg_3+4*Arg_1+1 {O(n)}
89: n_f3___4->n_f4___9, Arg_2: 6*Arg_3 {O(n)}
89: n_f3___4->n_f4___9, Arg_3: 6*Arg_3 {O(n)}
89: n_f3___4->n_f4___9, Arg_4: 6*Arg_5 {O(n)}
89: n_f3___4->n_f4___9, Arg_5: 6*Arg_5 {O(n)}
89: n_f3___4->n_f4___9, Arg_6: 2*Arg_3+4*Arg_1+6*Arg_5+9*Arg_0+11 {O(n)}
89: n_f3___4->n_f4___9, Arg_7: 4*Arg_3+5*Arg_1+1 {O(n)}
90: n_f3___4->n_f8___8, Arg_2: 9*Arg_3 {O(n)}
90: n_f3___4->n_f8___8, Arg_4: 9*Arg_5 {O(n)}
90: n_f3___4->n_f8___8, Arg_6: 2*Arg_3+4*Arg_1+6*Arg_5+9*Arg_0+11 {O(n)}
90: n_f3___4->n_f8___8, Arg_7: 2*Arg_3+4*Arg_1+6*Arg_5+9*Arg_0+11 {O(n)}
91: n_f3___5->n_f8___8, Arg_2: Arg_3 {O(n)}
91: n_f3___5->n_f8___8, Arg_4: Arg_5 {O(n)}
91: n_f3___5->n_f8___8, Arg_6: Arg_0+1 {O(n)}
91: n_f3___5->n_f8___8, Arg_7: Arg_0+1 {O(n)}
92: n_f3___7->n_f4___10, Arg_0: 2*Arg_5+4*Arg_0+1 {O(n)}
92: n_f3___7->n_f4___10, Arg_1: 2*Arg_5+4*Arg_0+4*Arg_3+8*Arg_1+9 {O(n)}
92: n_f3___7->n_f4___10, Arg_2: 6*Arg_3 {O(n)}
92: n_f3___7->n_f4___10, Arg_3: 6*Arg_3 {O(n)}
92: n_f3___7->n_f4___10, Arg_4: 6*Arg_5 {O(n)}
92: n_f3___7->n_f4___10, Arg_5: 6*Arg_5 {O(n)}
92: n_f3___7->n_f4___10, Arg_6: 4*Arg_5+5*Arg_0+1 {O(n)}
92: n_f3___7->n_f4___10, Arg_7: 2*Arg_5+4*Arg_0+6*Arg_3+9*Arg_1+12 {O(n)}
93: n_f3___7->n_f4___6, Arg_0: Arg_0 {O(n)}
93: n_f3___7->n_f4___6, Arg_1: Arg_1+1 {O(n)}
93: n_f3___7->n_f4___6, Arg_2: Arg_3 {O(n)}
93: n_f3___7->n_f4___6, Arg_3: Arg_3 {O(n)}
93: n_f3___7->n_f4___6, Arg_4: Arg_5 {O(n)}
93: n_f3___7->n_f4___6, Arg_5: Arg_5 {O(n)}
93: n_f3___7->n_f4___6, Arg_6: Arg_0 {O(n)}
93: n_f3___7->n_f4___6, Arg_7: Arg_1+1 {O(n)}
93: n_f3___7->n_f4___6, Arg_8: Arg_8 {O(n)}
93: n_f3___7->n_f4___6, Arg_9: Arg_9 {O(n)}
94: n_f3___7->n_f8___8, Arg_2: 9*Arg_3 {O(n)}
94: n_f3___7->n_f8___8, Arg_4: 9*Arg_5 {O(n)}
94: n_f3___7->n_f8___8, Arg_6: 4*Arg_5+5*Arg_0+1 {O(n)}
94: n_f3___7->n_f8___8, Arg_7: 4*Arg_5+5*Arg_0+1 {O(n)}
95: n_f4___10->n_f3___7, Arg_0: 2*Arg_5+4*Arg_0+1 {O(n)}
95: n_f4___10->n_f3___7, Arg_1: 2*Arg_5+4*Arg_0+4*Arg_3+8*Arg_1+9 {O(n)}
95: n_f4___10->n_f3___7, Arg_2: 6*Arg_3 {O(n)}
95: n_f4___10->n_f3___7, Arg_3: 6*Arg_3 {O(n)}
95: n_f4___10->n_f3___7, Arg_4: 6*Arg_5 {O(n)}
95: n_f4___10->n_f3___7, Arg_5: 6*Arg_5 {O(n)}
95: n_f4___10->n_f3___7, Arg_6: 2*Arg_5+7*Arg_0+2 {O(n)}
95: n_f4___10->n_f3___7, Arg_7: 11*Arg_1+2*Arg_5+4*Arg_0+4*Arg_3+10 {O(n)}
96: n_f4___13->n_f3___4, Arg_0: Arg_0+1 {O(n)}
96: n_f4___13->n_f3___4, Arg_1: Arg_1 {O(n)}
96: n_f4___13->n_f3___4, Arg_2: Arg_3 {O(n)}
96: n_f4___13->n_f3___4, Arg_3: Arg_3 {O(n)}
96: n_f4___13->n_f3___4, Arg_4: Arg_5 {O(n)}
96: n_f4___13->n_f3___4, Arg_5: Arg_5 {O(n)}
96: n_f4___13->n_f3___4, Arg_6: Arg_0 {O(n)}
96: n_f4___13->n_f3___4, Arg_7: Arg_1 {O(n)}
96: n_f4___13->n_f3___4, Arg_8: Arg_8 {O(n)}
96: n_f4___13->n_f3___4, Arg_9: Arg_9 {O(n)}
97: n_f4___13->n_f3___7, Arg_0: Arg_0 {O(n)}
97: n_f4___13->n_f3___7, Arg_1: Arg_1+1 {O(n)}
97: n_f4___13->n_f3___7, Arg_2: Arg_3 {O(n)}
97: n_f4___13->n_f3___7, Arg_3: Arg_3 {O(n)}
97: n_f4___13->n_f3___7, Arg_4: Arg_5 {O(n)}
97: n_f4___13->n_f3___7, Arg_5: Arg_5 {O(n)}
97: n_f4___13->n_f3___7, Arg_6: Arg_0 {O(n)}
97: n_f4___13->n_f3___7, Arg_7: Arg_1 {O(n)}
97: n_f4___13->n_f3___7, Arg_8: Arg_8 {O(n)}
97: n_f4___13->n_f3___7, Arg_9: Arg_9 {O(n)}
98: n_f4___2->n_f3___4, Arg_0: 2*Arg_5+2 {O(n)}
98: n_f4___2->n_f3___4, Arg_1: 2*Arg_3 {O(n)}
98: n_f4___2->n_f3___4, Arg_2: 2*Arg_3 {O(n)}
98: n_f4___2->n_f3___4, Arg_3: 2*Arg_3 {O(n)}
98: n_f4___2->n_f3___4, Arg_4: 2*Arg_5 {O(n)}
98: n_f4___2->n_f3___4, Arg_5: 2*Arg_5 {O(n)}
98: n_f4___2->n_f3___4, Arg_6: 2*Arg_5 {O(n)}
98: n_f4___2->n_f3___4, Arg_7: 2*Arg_3 {O(n)}
99: n_f4___3->n_f3___7, Arg_0: 2*Arg_5 {O(n)}
99: n_f4___3->n_f3___7, Arg_1: 2*Arg_3+2 {O(n)}
99: n_f4___3->n_f3___7, Arg_2: 2*Arg_3 {O(n)}
99: n_f4___3->n_f3___7, Arg_3: 2*Arg_3 {O(n)}
99: n_f4___3->n_f3___7, Arg_4: 2*Arg_5 {O(n)}
99: n_f4___3->n_f3___7, Arg_5: 2*Arg_5 {O(n)}
99: n_f4___3->n_f3___7, Arg_6: 2*Arg_5 {O(n)}
99: n_f4___3->n_f3___7, Arg_7: 2*Arg_3 {O(n)}
100: n_f4___6->n_f3___5, Arg_0: Arg_0+1 {O(n)}
100: n_f4___6->n_f3___5, Arg_1: Arg_1+1 {O(n)}
100: n_f4___6->n_f3___5, Arg_2: Arg_3 {O(n)}
100: n_f4___6->n_f3___5, Arg_3: Arg_3 {O(n)}
100: n_f4___6->n_f3___5, Arg_4: Arg_5 {O(n)}
100: n_f4___6->n_f3___5, Arg_5: Arg_5 {O(n)}
100: n_f4___6->n_f3___5, Arg_6: Arg_0 {O(n)}
100: n_f4___6->n_f3___5, Arg_7: Arg_1+1 {O(n)}
100: n_f4___6->n_f3___5, Arg_8: Arg_8 {O(n)}
100: n_f4___6->n_f3___5, Arg_9: Arg_9 {O(n)}
101: n_f4___9->n_f3___4, Arg_0: 2*Arg_3+4*Arg_1+4*Arg_5+8*Arg_0+8 {O(n)}
101: n_f4___9->n_f3___4, Arg_1: 2*Arg_3+4*Arg_1+1 {O(n)}
101: n_f4___9->n_f3___4, Arg_2: 6*Arg_3 {O(n)}
101: n_f4___9->n_f3___4, Arg_3: 6*Arg_3 {O(n)}
101: n_f4___9->n_f3___4, Arg_4: 6*Arg_5 {O(n)}
101: n_f4___9->n_f3___4, Arg_5: 6*Arg_5 {O(n)}
101: n_f4___9->n_f3___4, Arg_6: 11*Arg_0+2*Arg_3+4*Arg_1+4*Arg_5+9 {O(n)}
101: n_f4___9->n_f3___4, Arg_7: 2*Arg_3+7*Arg_1+2 {O(n)}