Initial Problem

Start: n_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: D_P, E_P, F_P, G_P, NoDet0
Locations: n_f19___18, n_f19___2, n_f1___22, n_f1___28, n_f1___8, n_f27___15, n_f2___23, n_f2___29, n_f2___3, n_f2___9, n_f34___1, n_f34___14, n_f34___17, n_f34___19, n_f34___20, n_f34___26, n_f36___11, n_f36___12, n_f36___13, n_f36___4, n_f36___5, n_f36___6, n_f43___10, n_f49___7, n_f8___16, n_f8___21, n_f8___24, n_f8___25, n_f8___27, n_start
Transitions:
0:n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
1:n_f19___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
2:n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
3:n_f2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1
4:n_f2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0
5:n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<=Arg_1
6:n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___27(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0
7:n_f2___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1 && Arg_0<=Arg_1
8:n_f2___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
9:n_f2___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
10:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
11:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
12:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
13:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
14:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
15:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
16:n_f34___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___3(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
17:n_f34___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
18:n_f34___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
19:n_f34___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
20:n_f34___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
21:n_f34___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
22:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
23:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0
24:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
25:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
26:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
27:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
28:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
29:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
30:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
31:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
32:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && 1+Arg_0<=Arg_3
33:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0
34:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
35:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
36:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
37:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
38:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
39:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
40:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
41:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
42:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
43:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
44:n_f43___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f49___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4
45:n_f49___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4
46:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
47:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4
48:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___1(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
49:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
50:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
51:n_f8___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___20(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
52:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
53:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___17(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
54:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
55:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
56:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___19(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
57:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
58:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
59:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___26(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
60:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
61:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
62:n_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

Preprocessing

Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f34___20

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f49___7

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f27___15

Found invariant Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f36___4

Found invariant Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 for location n_f36___6

Found invariant Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f8___27

Found invariant 1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f8___24

Found invariant Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 for location n_f2___9

Found invariant Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 for location n_f36___11

Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f8___16

Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 for location n_f34___1

Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f34___19

Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f8___25

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f43___10

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 for location n_f19___18

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f34___14

Found invariant 1<=0 for location n_f34___17

Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 3+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f19___2

Found invariant 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f1___22

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f36___12

Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f8___21

Found invariant Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 for location n_f36___5

Found invariant Arg_0<=Arg_1 for location n_f1___28

Found invariant Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f1___8

Found invariant 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f2___23

Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f34___26

Found invariant 1<=0 for location n_f2___3

Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 for location n_f36___13

Cut unsatisfiable transition 7: n_f2___3->n_f1___22

Cut unsatisfiable transition 16: n_f34___17->n_f2___3

Cut unsatisfiable transition 17: n_f34___17->n_f36___12

Cut unsatisfiable transition 18: n_f34___17->n_f36___13

Cut unsatisfiable transition 53: n_f8___24->n_f34___17

Cut unreachable locations [n_f2___3; n_f34___17] from the program graph

Problem after Preprocessing

Start: n_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: D_P, E_P, F_P, G_P, NoDet0
Locations: n_f19___18, n_f19___2, n_f1___22, n_f1___28, n_f1___8, n_f27___15, n_f2___23, n_f2___29, n_f2___9, n_f34___1, n_f34___14, n_f34___19, n_f34___20, n_f34___26, n_f36___11, n_f36___12, n_f36___13, n_f36___4, n_f36___5, n_f36___6, n_f43___10, n_f49___7, n_f8___16, n_f8___21, n_f8___24, n_f8___25, n_f8___27, n_start
Transitions:
0:n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
1:n_f19___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 3+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
2:n_f27___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
3:n_f2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1
4:n_f2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0
5:n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<=Arg_1
6:n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___27(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0
8:n_f2___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
9:n_f2___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
10:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
11:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
12:n_f34___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
13:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
14:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
15:n_f34___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
19:n_f34___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
20:n_f34___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
21:n_f34___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
22:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
23:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0
24:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
25:n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
26:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
27:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
28:n_f36___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
29:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___11(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
30:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
31:n_f36___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
32:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && 1+Arg_0<=Arg_3
33:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0
34:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
35:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
36:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
37:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
38:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
39:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
40:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___9(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
41:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
42:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
43:n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___10(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
44:n_f43___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f49___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4
45:n_f49___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f36___6(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4
46:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
47:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4
48:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___1(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
49:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
50:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
51:n_f8___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___20(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
52:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f19___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
54:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
55:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
56:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___19(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
57:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
58:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
59:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___26(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
60:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
61:n_f8___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
62:n_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

MPRF for transition 58:n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___25(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:

new bound:

Arg_0+Arg_4+3 {O(n)}

MPRF:

n_f8___25 [Arg_0+2-Arg_4 ]

MPRF for transition 49:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:

new bound:

4*Arg_0+4*Arg_4+10 {O(n)}

MPRF:

n_f8___16 [Arg_0+2-Arg_4 ]
n_f8___24 [Arg_0+1-Arg_4 ]

MPRF for transition 50:n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P of depth 1:

new bound:

4*Arg_0+4*Arg_4+12 {O(n)}

MPRF:

n_f8___16 [Arg_0+1-Arg_3 ]
n_f8___24 [Arg_0+2-Arg_4 ]

MPRF for transition 54:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___16(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:

new bound:

4*Arg_0+4*Arg_4+12 {O(n)}

MPRF:

n_f8___16 [Arg_0+1-Arg_4 ]
n_f8___24 [Arg_0+2-Arg_4 ]

MPRF for transition 55:n_f8___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___24(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P of depth 1:

new bound:

4*Arg_0+4*Arg_4+10 {O(n)}

MPRF:

n_f8___16 [Arg_0-Arg_3 ]
n_f8___24 [Arg_0+1-Arg_4 ]

MPRF for transition 4:n_f2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f8___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 of depth 1:

new bound:

1848*Arg_0+1848*Arg_1+15 {O(n)}

MPRF:

n_f2___23 [Arg_0+1-Arg_1 ]
n_f8___21 [Arg_0-Arg_1 ]
n_f34___20 [Arg_0-Arg_3 ]

MPRF for transition 20:n_f34___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f2___23(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

1848*Arg_0+1848*Arg_1+11 {O(n)}

MPRF:

n_f2___23 [Arg_0-Arg_1 ]
n_f8___21 [Arg_0-Arg_3 ]
n_f34___20 [Arg_0-Arg_3 ]

MPRF for transition 51:n_f8___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___20(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

1848*Arg_1+5208*Arg_0+7056*Arg_4+17564 {O(n)}

MPRF:

n_f2___23 [Arg_4-Arg_1 ]
n_f8___21 [Arg_4-Arg_3 ]
n_f34___20 [Arg_4-Arg_3-1 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
0: n_f19___18->n_f27___15: 1 {O(1)}
1: n_f19___2->n_f27___15: 1 {O(1)}
2: n_f27___15->n_f34___14: 1 {O(1)}
3: n_f2___23->n_f1___22: 1 {O(1)}
4: n_f2___23->n_f8___21: 1848*Arg_0+1848*Arg_1+15 {O(n)}
5: n_f2___29->n_f1___28: 1 {O(1)}
6: n_f2___29->n_f8___27: 1 {O(1)}
8: n_f2___9->n_f1___8: 1 {O(1)}
9: n_f2___9->n_f8___21: 1 {O(1)}
10: n_f34___1->n_f2___23: 1 {O(1)}
11: n_f34___1->n_f36___12: 1 {O(1)}
12: n_f34___1->n_f36___13: 1 {O(1)}
13: n_f34___14->n_f2___23: 1 {O(1)}
14: n_f34___14->n_f36___12: 1 {O(1)}
15: n_f34___14->n_f36___13: 1 {O(1)}
19: n_f34___19->n_f2___23: 1 {O(1)}
20: n_f34___20->n_f2___23: 1848*Arg_0+1848*Arg_1+11 {O(n)}
21: n_f34___26->n_f2___23: 1 {O(1)}
22: n_f36___11->n_f2___9: 1 {O(1)}
23: n_f36___11->n_f36___11: inf {Infinity}
24: n_f36___11->n_f43___10: 1 {O(1)}
25: n_f36___11->n_f43___10: 1 {O(1)}
26: n_f36___12->n_f36___4: 1 {O(1)}
27: n_f36___12->n_f43___10: 1 {O(1)}
28: n_f36___12->n_f43___10: 1 {O(1)}
29: n_f36___13->n_f36___11: 1 {O(1)}
30: n_f36___13->n_f43___10: 1 {O(1)}
31: n_f36___13->n_f43___10: 1 {O(1)}
32: n_f36___4->n_f2___9: 1 {O(1)}
33: n_f36___4->n_f36___4: inf {Infinity}
34: n_f36___4->n_f43___10: 1 {O(1)}
35: n_f36___4->n_f43___10: 1 {O(1)}
36: n_f36___5->n_f2___9: 1 {O(1)}
37: n_f36___5->n_f36___5: inf {Infinity}
38: n_f36___5->n_f43___10: inf {Infinity}
39: n_f36___5->n_f43___10: inf {Infinity}
40: n_f36___6->n_f2___9: 1 {O(1)}
41: n_f36___6->n_f36___5: inf {Infinity}
42: n_f36___6->n_f43___10: inf {Infinity}
43: n_f36___6->n_f43___10: inf {Infinity}
44: n_f43___10->n_f49___7: inf {Infinity}
45: n_f49___7->n_f36___6: inf {Infinity}
46: n_f8___16->n_f19___18: 1 {O(1)}
47: n_f8___16->n_f19___2: 1 {O(1)}
48: n_f8___16->n_f34___1: 1 {O(1)}
49: n_f8___16->n_f8___16: 4*Arg_0+4*Arg_4+10 {O(n)}
50: n_f8___16->n_f8___24: 4*Arg_0+4*Arg_4+12 {O(n)}
51: n_f8___21->n_f34___20: 1848*Arg_1+5208*Arg_0+7056*Arg_4+17564 {O(n)}
52: n_f8___24->n_f19___18: 1 {O(1)}
54: n_f8___24->n_f8___16: 4*Arg_0+4*Arg_4+12 {O(n)}
55: n_f8___24->n_f8___24: 4*Arg_0+4*Arg_4+10 {O(n)}
56: n_f8___25->n_f34___19: 1 {O(1)}
57: n_f8___25->n_f8___24: 1 {O(1)}
58: n_f8___25->n_f8___25: Arg_0+Arg_4+3 {O(n)}
59: n_f8___27->n_f34___26: 1 {O(1)}
60: n_f8___27->n_f8___24: 1 {O(1)}
61: n_f8___27->n_f8___25: 1 {O(1)}
62: n_start->n_f2___29: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
0: n_f19___18->n_f27___15: 1 {O(1)}
1: n_f19___2->n_f27___15: 1 {O(1)}
2: n_f27___15->n_f34___14: 1 {O(1)}
3: n_f2___23->n_f1___22: 1 {O(1)}
4: n_f2___23->n_f8___21: 1848*Arg_0+1848*Arg_1+15 {O(n)}
5: n_f2___29->n_f1___28: 1 {O(1)}
6: n_f2___29->n_f8___27: 1 {O(1)}
8: n_f2___9->n_f1___8: 1 {O(1)}
9: n_f2___9->n_f8___21: 1 {O(1)}
10: n_f34___1->n_f2___23: 1 {O(1)}
11: n_f34___1->n_f36___12: 1 {O(1)}
12: n_f34___1->n_f36___13: 1 {O(1)}
13: n_f34___14->n_f2___23: 1 {O(1)}
14: n_f34___14->n_f36___12: 1 {O(1)}
15: n_f34___14->n_f36___13: 1 {O(1)}
19: n_f34___19->n_f2___23: 1 {O(1)}
20: n_f34___20->n_f2___23: 1848*Arg_0+1848*Arg_1+11 {O(n)}
21: n_f34___26->n_f2___23: 1 {O(1)}
22: n_f36___11->n_f2___9: 1 {O(1)}
23: n_f36___11->n_f36___11: inf {Infinity}
24: n_f36___11->n_f43___10: 1 {O(1)}
25: n_f36___11->n_f43___10: 1 {O(1)}
26: n_f36___12->n_f36___4: 1 {O(1)}
27: n_f36___12->n_f43___10: 1 {O(1)}
28: n_f36___12->n_f43___10: 1 {O(1)}
29: n_f36___13->n_f36___11: 1 {O(1)}
30: n_f36___13->n_f43___10: 1 {O(1)}
31: n_f36___13->n_f43___10: 1 {O(1)}
32: n_f36___4->n_f2___9: 1 {O(1)}
33: n_f36___4->n_f36___4: inf {Infinity}
34: n_f36___4->n_f43___10: 1 {O(1)}
35: n_f36___4->n_f43___10: 1 {O(1)}
36: n_f36___5->n_f2___9: 1 {O(1)}
37: n_f36___5->n_f36___5: inf {Infinity}
38: n_f36___5->n_f43___10: inf {Infinity}
39: n_f36___5->n_f43___10: inf {Infinity}
40: n_f36___6->n_f2___9: 1 {O(1)}
41: n_f36___6->n_f36___5: inf {Infinity}
42: n_f36___6->n_f43___10: inf {Infinity}
43: n_f36___6->n_f43___10: inf {Infinity}
44: n_f43___10->n_f49___7: inf {Infinity}
45: n_f49___7->n_f36___6: inf {Infinity}
46: n_f8___16->n_f19___18: 1 {O(1)}
47: n_f8___16->n_f19___2: 1 {O(1)}
48: n_f8___16->n_f34___1: 1 {O(1)}
49: n_f8___16->n_f8___16: 4*Arg_0+4*Arg_4+10 {O(n)}
50: n_f8___16->n_f8___24: 4*Arg_0+4*Arg_4+12 {O(n)}
51: n_f8___21->n_f34___20: 1848*Arg_1+5208*Arg_0+7056*Arg_4+17564 {O(n)}
52: n_f8___24->n_f19___18: 1 {O(1)}
54: n_f8___24->n_f8___16: 4*Arg_0+4*Arg_4+12 {O(n)}
55: n_f8___24->n_f8___24: 4*Arg_0+4*Arg_4+10 {O(n)}
56: n_f8___25->n_f34___19: 1 {O(1)}
57: n_f8___25->n_f8___24: 1 {O(1)}
58: n_f8___25->n_f8___25: Arg_0+Arg_4+3 {O(n)}
59: n_f8___27->n_f34___26: 1 {O(1)}
60: n_f8___27->n_f8___24: 1 {O(1)}
61: n_f8___27->n_f8___25: 1 {O(1)}
62: n_start->n_f2___29: 1 {O(1)}

Sizebounds

0: n_f19___18->n_f27___15, Arg_0: 27*Arg_0 {O(n)}
0: n_f19___18->n_f27___15, Arg_1: 27*Arg_1 {O(n)}
0: n_f19___18->n_f27___15, Arg_4: 100*Arg_4+73*Arg_0+248 {O(n)}
0: n_f19___18->n_f27___15, Arg_7: 27*Arg_7 {O(n)}
1: n_f19___2->n_f27___15, Arg_0: 6*Arg_0 {O(n)}
1: n_f19___2->n_f27___15, Arg_1: 6*Arg_1 {O(n)}
1: n_f19___2->n_f27___15, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
1: n_f19___2->n_f27___15, Arg_7: 6*Arg_7 {O(n)}
2: n_f27___15->n_f34___14, Arg_0: 33*Arg_0 {O(n)}
2: n_f27___15->n_f34___14, Arg_1: 33*Arg_1 {O(n)}
2: n_f27___15->n_f34___14, Arg_4: 124*Arg_4+91*Arg_0+308 {O(n)}
2: n_f27___15->n_f34___14, Arg_7: 33*Arg_7 {O(n)}
3: n_f2___23->n_f1___22, Arg_0: 1896*Arg_0 {O(n)}
3: n_f2___23->n_f1___22, Arg_1: 1848*Arg_0+3744*Arg_1+26 {O(n)}
3: n_f2___23->n_f1___22, Arg_2: 0 {O(1)}
3: n_f2___23->n_f1___22, Arg_4: 5336*Arg_0+7232*Arg_4+17986 {O(n)}
4: n_f2___23->n_f8___21, Arg_0: 1848*Arg_0 {O(n)}
4: n_f2___23->n_f8___21, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
4: n_f2___23->n_f8___21, Arg_2: 0 {O(1)}
4: n_f2___23->n_f8___21, Arg_3: 1848*Arg_0+3744*Arg_1+26 {O(n)}
4: n_f2___23->n_f8___21, Arg_4: 5208*Arg_0+7056*Arg_4+17553 {O(n)}
5: n_f2___29->n_f1___28, Arg_0: Arg_0 {O(n)}
5: n_f2___29->n_f1___28, Arg_1: Arg_1 {O(n)}
5: n_f2___29->n_f1___28, Arg_2: Arg_2 {O(n)}
5: n_f2___29->n_f1___28, Arg_3: Arg_3 {O(n)}
5: n_f2___29->n_f1___28, Arg_4: Arg_4 {O(n)}
5: n_f2___29->n_f1___28, Arg_5: Arg_5 {O(n)}
5: n_f2___29->n_f1___28, Arg_6: Arg_6 {O(n)}
5: n_f2___29->n_f1___28, Arg_7: Arg_7 {O(n)}
6: n_f2___29->n_f8___27, Arg_0: Arg_0 {O(n)}
6: n_f2___29->n_f8___27, Arg_1: Arg_1 {O(n)}
6: n_f2___29->n_f8___27, Arg_2: 0 {O(1)}
6: n_f2___29->n_f8___27, Arg_3: Arg_1 {O(n)}
6: n_f2___29->n_f8___27, Arg_4: Arg_4 {O(n)}
6: n_f2___29->n_f8___27, Arg_5: Arg_5 {O(n)}
6: n_f2___29->n_f8___27, Arg_6: Arg_6 {O(n)}
6: n_f2___29->n_f8___27, Arg_7: Arg_7 {O(n)}
8: n_f2___9->n_f1___8, Arg_0: 1800*Arg_0 {O(n)}
8: n_f2___9->n_f1___8, Arg_1: 1800*Arg_1+7 {O(n)}
8: n_f2___9->n_f1___8, Arg_4: 5080*Arg_0+6880*Arg_4+17120 {O(n)}
9: n_f2___9->n_f8___21, Arg_0: 1800*Arg_0 {O(n)}
9: n_f2___9->n_f8___21, Arg_1: 1800*Arg_1+7 {O(n)}
9: n_f2___9->n_f8___21, Arg_2: 0 {O(1)}
9: n_f2___9->n_f8___21, Arg_3: 1800*Arg_1+7 {O(n)}
9: n_f2___9->n_f8___21, Arg_4: 5080*Arg_0+6880*Arg_4+17120 {O(n)}
10: n_f34___1->n_f2___23, Arg_0: 12*Arg_0 {O(n)}
10: n_f34___1->n_f2___23, Arg_1: 12*Arg_1+1 {O(n)}
10: n_f34___1->n_f2___23, Arg_2: 0 {O(1)}
10: n_f34___1->n_f2___23, Arg_3: 12*Arg_1 {O(n)}
10: n_f34___1->n_f2___23, Arg_4: 36*Arg_0+48*Arg_4+120 {O(n)}
10: n_f34___1->n_f2___23, Arg_7: 12*Arg_7 {O(n)}
11: n_f34___1->n_f36___12, Arg_0: 12*Arg_0 {O(n)}
11: n_f34___1->n_f36___12, Arg_1: 12*Arg_1 {O(n)}
11: n_f34___1->n_f36___12, Arg_3: 12*Arg_1 {O(n)}
11: n_f34___1->n_f36___12, Arg_4: 36*Arg_0+48*Arg_4+120 {O(n)}
11: n_f34___1->n_f36___12, Arg_7: 12*Arg_7 {O(n)}
12: n_f34___1->n_f36___13, Arg_0: 12*Arg_0 {O(n)}
12: n_f34___1->n_f36___13, Arg_1: 12*Arg_1 {O(n)}
12: n_f34___1->n_f36___13, Arg_3: 12*Arg_1 {O(n)}
12: n_f34___1->n_f36___13, Arg_4: 36*Arg_0+48*Arg_4+120 {O(n)}
12: n_f34___1->n_f36___13, Arg_7: 12*Arg_7 {O(n)}
13: n_f34___14->n_f2___23, Arg_0: 33*Arg_0 {O(n)}
13: n_f34___14->n_f2___23, Arg_1: 33*Arg_1+1 {O(n)}
13: n_f34___14->n_f2___23, Arg_2: 0 {O(1)}
13: n_f34___14->n_f2___23, Arg_4: 124*Arg_4+91*Arg_0+308 {O(n)}
13: n_f34___14->n_f2___23, Arg_7: 33*Arg_7 {O(n)}
14: n_f34___14->n_f36___12, Arg_0: 33*Arg_0 {O(n)}
14: n_f34___14->n_f36___12, Arg_1: 33*Arg_1 {O(n)}
14: n_f34___14->n_f36___12, Arg_4: 124*Arg_4+91*Arg_0+308 {O(n)}
14: n_f34___14->n_f36___12, Arg_7: 33*Arg_7 {O(n)}
15: n_f34___14->n_f36___13, Arg_0: 33*Arg_0 {O(n)}
15: n_f34___14->n_f36___13, Arg_1: 33*Arg_1 {O(n)}
15: n_f34___14->n_f36___13, Arg_4: 124*Arg_4+91*Arg_0+308 {O(n)}
15: n_f34___14->n_f36___13, Arg_7: 33*Arg_7 {O(n)}
19: n_f34___19->n_f2___23, Arg_0: 2*Arg_0 {O(n)}
19: n_f34___19->n_f2___23, Arg_1: 2*Arg_1+1 {O(n)}
19: n_f34___19->n_f2___23, Arg_2: 0 {O(1)}
19: n_f34___19->n_f2___23, Arg_3: 2*Arg_1 {O(n)}
19: n_f34___19->n_f2___23, Arg_4: 3*Arg_4+Arg_0+5 {O(n)}
19: n_f34___19->n_f2___23, Arg_7: 2*Arg_7 {O(n)}
20: n_f34___20->n_f2___23, Arg_0: 1848*Arg_0 {O(n)}
20: n_f34___20->n_f2___23, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
20: n_f34___20->n_f2___23, Arg_2: 0 {O(1)}
20: n_f34___20->n_f2___23, Arg_3: 1848*Arg_0+5496*Arg_1+29 {O(n)}
20: n_f34___20->n_f2___23, Arg_4: 5208*Arg_0+7056*Arg_4+17553 {O(n)}
21: n_f34___26->n_f2___23, Arg_0: Arg_0 {O(n)}
21: n_f34___26->n_f2___23, Arg_1: Arg_1+1 {O(n)}
21: n_f34___26->n_f2___23, Arg_2: 0 {O(1)}
21: n_f34___26->n_f2___23, Arg_3: Arg_1 {O(n)}
21: n_f34___26->n_f2___23, Arg_4: Arg_4 {O(n)}
21: n_f34___26->n_f2___23, Arg_5: Arg_5 {O(n)}
21: n_f34___26->n_f2___23, Arg_6: Arg_6 {O(n)}
21: n_f34___26->n_f2___23, Arg_7: Arg_7 {O(n)}
22: n_f36___11->n_f2___9, Arg_0: 90*Arg_0 {O(n)}
22: n_f36___11->n_f2___9, Arg_1: 90*Arg_1+2 {O(n)}
22: n_f36___11->n_f2___9, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
22: n_f36___11->n_f2___9, Arg_7: 0 {O(1)}
23: n_f36___11->n_f36___11, Arg_0: 45*Arg_0 {O(n)}
23: n_f36___11->n_f36___11, Arg_1: 45*Arg_1 {O(n)}
23: n_f36___11->n_f36___11, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
23: n_f36___11->n_f36___11, Arg_7: 0 {O(1)}
24: n_f36___11->n_f43___10, Arg_0: 90*Arg_0 {O(n)}
24: n_f36___11->n_f43___10, Arg_1: 90*Arg_1 {O(n)}
24: n_f36___11->n_f43___10, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
25: n_f36___11->n_f43___10, Arg_0: 90*Arg_0 {O(n)}
25: n_f36___11->n_f43___10, Arg_1: 90*Arg_1 {O(n)}
25: n_f36___11->n_f43___10, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
26: n_f36___12->n_f36___4, Arg_0: 45*Arg_0 {O(n)}
26: n_f36___12->n_f36___4, Arg_1: 45*Arg_1 {O(n)}
26: n_f36___12->n_f36___4, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
26: n_f36___12->n_f36___4, Arg_7: 0 {O(1)}
27: n_f36___12->n_f43___10, Arg_0: 45*Arg_0 {O(n)}
27: n_f36___12->n_f43___10, Arg_1: 45*Arg_1 {O(n)}
27: n_f36___12->n_f43___10, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
28: n_f36___12->n_f43___10, Arg_0: 45*Arg_0 {O(n)}
28: n_f36___12->n_f43___10, Arg_1: 45*Arg_1 {O(n)}
28: n_f36___12->n_f43___10, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
29: n_f36___13->n_f36___11, Arg_0: 45*Arg_0 {O(n)}
29: n_f36___13->n_f36___11, Arg_1: 45*Arg_1 {O(n)}
29: n_f36___13->n_f36___11, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
29: n_f36___13->n_f36___11, Arg_7: 0 {O(1)}
30: n_f36___13->n_f43___10, Arg_0: 45*Arg_0 {O(n)}
30: n_f36___13->n_f43___10, Arg_1: 45*Arg_1 {O(n)}
30: n_f36___13->n_f43___10, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
31: n_f36___13->n_f43___10, Arg_0: 45*Arg_0 {O(n)}
31: n_f36___13->n_f43___10, Arg_1: 45*Arg_1 {O(n)}
31: n_f36___13->n_f43___10, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
32: n_f36___4->n_f2___9, Arg_0: 90*Arg_0 {O(n)}
32: n_f36___4->n_f2___9, Arg_1: 90*Arg_1+2 {O(n)}
32: n_f36___4->n_f2___9, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
32: n_f36___4->n_f2___9, Arg_7: 0 {O(1)}
33: n_f36___4->n_f36___4, Arg_0: 45*Arg_0 {O(n)}
33: n_f36___4->n_f36___4, Arg_1: 45*Arg_1 {O(n)}
33: n_f36___4->n_f36___4, Arg_4: 127*Arg_0+172*Arg_4+428 {O(n)}
33: n_f36___4->n_f36___4, Arg_7: 0 {O(1)}
34: n_f36___4->n_f43___10, Arg_0: 90*Arg_0 {O(n)}
34: n_f36___4->n_f43___10, Arg_1: 90*Arg_1 {O(n)}
34: n_f36___4->n_f43___10, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
35: n_f36___4->n_f43___10, Arg_0: 90*Arg_0 {O(n)}
35: n_f36___4->n_f43___10, Arg_1: 90*Arg_1 {O(n)}
35: n_f36___4->n_f43___10, Arg_4: 254*Arg_0+344*Arg_4+856 {O(n)}
36: n_f36___5->n_f2___9, Arg_0: 1080*Arg_0 {O(n)}
36: n_f36___5->n_f2___9, Arg_1: 1080*Arg_1+2 {O(n)}
36: n_f36___5->n_f2___9, Arg_4: 3048*Arg_0+4128*Arg_4+10272 {O(n)}
36: n_f36___5->n_f2___9, Arg_7: 0 {O(1)}
37: n_f36___5->n_f36___5, Arg_0: 540*Arg_0 {O(n)}
37: n_f36___5->n_f36___5, Arg_1: 540*Arg_1 {O(n)}
37: n_f36___5->n_f36___5, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
37: n_f36___5->n_f36___5, Arg_7: 0 {O(1)}
38: n_f36___5->n_f43___10, Arg_0: 540*Arg_0 {O(n)}
38: n_f36___5->n_f43___10, Arg_1: 540*Arg_1 {O(n)}
38: n_f36___5->n_f43___10, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
39: n_f36___5->n_f43___10, Arg_0: 540*Arg_0 {O(n)}
39: n_f36___5->n_f43___10, Arg_1: 540*Arg_1 {O(n)}
39: n_f36___5->n_f43___10, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
40: n_f36___6->n_f2___9, Arg_0: 540*Arg_0 {O(n)}
40: n_f36___6->n_f2___9, Arg_1: 540*Arg_1+1 {O(n)}
40: n_f36___6->n_f2___9, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
41: n_f36___6->n_f36___5, Arg_0: 540*Arg_0 {O(n)}
41: n_f36___6->n_f36___5, Arg_1: 540*Arg_1 {O(n)}
41: n_f36___6->n_f36___5, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
41: n_f36___6->n_f36___5, Arg_7: 0 {O(1)}
42: n_f36___6->n_f43___10, Arg_0: 540*Arg_0 {O(n)}
42: n_f36___6->n_f43___10, Arg_1: 540*Arg_1 {O(n)}
42: n_f36___6->n_f43___10, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
43: n_f36___6->n_f43___10, Arg_0: 540*Arg_0 {O(n)}
43: n_f36___6->n_f43___10, Arg_1: 540*Arg_1 {O(n)}
43: n_f36___6->n_f43___10, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
44: n_f43___10->n_f49___7, Arg_0: 540*Arg_0 {O(n)}
44: n_f43___10->n_f49___7, Arg_1: 540*Arg_1 {O(n)}
44: n_f43___10->n_f49___7, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
45: n_f49___7->n_f36___6, Arg_0: 540*Arg_0 {O(n)}
45: n_f49___7->n_f36___6, Arg_1: 540*Arg_1 {O(n)}
45: n_f49___7->n_f36___6, Arg_4: 1524*Arg_0+2064*Arg_4+5136 {O(n)}
46: n_f8___16->n_f19___18, Arg_0: 12*Arg_0 {O(n)}
46: n_f8___16->n_f19___18, Arg_1: 12*Arg_1 {O(n)}
46: n_f8___16->n_f19___18, Arg_4: 36*Arg_0+48*Arg_4+120 {O(n)}
46: n_f8___16->n_f19___18, Arg_7: 12*Arg_7 {O(n)}
47: n_f8___16->n_f19___2, Arg_0: 6*Arg_0 {O(n)}
47: n_f8___16->n_f19___2, Arg_1: 6*Arg_1 {O(n)}
47: n_f8___16->n_f19___2, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
47: n_f8___16->n_f19___2, Arg_7: 6*Arg_7 {O(n)}
48: n_f8___16->n_f34___1, Arg_0: 12*Arg_0 {O(n)}
48: n_f8___16->n_f34___1, Arg_1: 12*Arg_1 {O(n)}
48: n_f8___16->n_f34___1, Arg_3: 12*Arg_1 {O(n)}
48: n_f8___16->n_f34___1, Arg_4: 36*Arg_0+48*Arg_4+120 {O(n)}
48: n_f8___16->n_f34___1, Arg_7: 12*Arg_7 {O(n)}
49: n_f8___16->n_f8___16, Arg_0: 6*Arg_0 {O(n)}
49: n_f8___16->n_f8___16, Arg_1: 6*Arg_1 {O(n)}
49: n_f8___16->n_f8___16, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
49: n_f8___16->n_f8___16, Arg_7: 6*Arg_7 {O(n)}
50: n_f8___16->n_f8___24, Arg_0: 6*Arg_0 {O(n)}
50: n_f8___16->n_f8___24, Arg_1: 6*Arg_1 {O(n)}
50: n_f8___16->n_f8___24, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
50: n_f8___16->n_f8___24, Arg_7: 6*Arg_7 {O(n)}
51: n_f8___21->n_f34___20, Arg_0: 1848*Arg_0 {O(n)}
51: n_f8___21->n_f34___20, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
51: n_f8___21->n_f34___20, Arg_2: 0 {O(1)}
51: n_f8___21->n_f34___20, Arg_3: 1848*Arg_0+5496*Arg_1+29 {O(n)}
51: n_f8___21->n_f34___20, Arg_4: 5208*Arg_0+7056*Arg_4+17553 {O(n)}
52: n_f8___24->n_f19___18, Arg_0: 15*Arg_0 {O(n)}
52: n_f8___24->n_f19___18, Arg_1: 15*Arg_1 {O(n)}
52: n_f8___24->n_f19___18, Arg_4: 37*Arg_0+52*Arg_4+128 {O(n)}
52: n_f8___24->n_f19___18, Arg_7: 15*Arg_7 {O(n)}
54: n_f8___24->n_f8___16, Arg_0: 6*Arg_0 {O(n)}
54: n_f8___24->n_f8___16, Arg_1: 6*Arg_1 {O(n)}
54: n_f8___24->n_f8___16, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
54: n_f8___24->n_f8___16, Arg_7: 6*Arg_7 {O(n)}
55: n_f8___24->n_f8___24, Arg_0: 6*Arg_0 {O(n)}
55: n_f8___24->n_f8___24, Arg_1: 6*Arg_1 {O(n)}
55: n_f8___24->n_f8___24, Arg_4: 18*Arg_0+24*Arg_4+60 {O(n)}
55: n_f8___24->n_f8___24, Arg_7: 6*Arg_7 {O(n)}
56: n_f8___25->n_f34___19, Arg_0: 2*Arg_0 {O(n)}
56: n_f8___25->n_f34___19, Arg_1: 2*Arg_1 {O(n)}
56: n_f8___25->n_f34___19, Arg_2: 0 {O(1)}
56: n_f8___25->n_f34___19, Arg_3: 2*Arg_1 {O(n)}
56: n_f8___25->n_f34___19, Arg_4: 3*Arg_4+Arg_0+5 {O(n)}
56: n_f8___25->n_f34___19, Arg_7: 2*Arg_7 {O(n)}
57: n_f8___25->n_f8___24, Arg_0: 2*Arg_0 {O(n)}
57: n_f8___25->n_f8___24, Arg_1: 2*Arg_1 {O(n)}
57: n_f8___25->n_f8___24, Arg_4: 3*Arg_4+Arg_0+7 {O(n)}
57: n_f8___25->n_f8___24, Arg_7: 2*Arg_7 {O(n)}
58: n_f8___25->n_f8___25, Arg_0: Arg_0 {O(n)}
58: n_f8___25->n_f8___25, Arg_1: Arg_1 {O(n)}
58: n_f8___25->n_f8___25, Arg_2: 0 {O(1)}
58: n_f8___25->n_f8___25, Arg_3: Arg_1 {O(n)}
58: n_f8___25->n_f8___25, Arg_4: 2*Arg_4+Arg_0+4 {O(n)}
58: n_f8___25->n_f8___25, Arg_7: Arg_7 {O(n)}
59: n_f8___27->n_f34___26, Arg_0: Arg_0 {O(n)}
59: n_f8___27->n_f34___26, Arg_1: Arg_1 {O(n)}
59: n_f8___27->n_f34___26, Arg_2: 0 {O(1)}
59: n_f8___27->n_f34___26, Arg_3: Arg_1 {O(n)}
59: n_f8___27->n_f34___26, Arg_4: Arg_4 {O(n)}
59: n_f8___27->n_f34___26, Arg_5: Arg_5 {O(n)}
59: n_f8___27->n_f34___26, Arg_6: Arg_6 {O(n)}
59: n_f8___27->n_f34___26, Arg_7: Arg_7 {O(n)}
60: n_f8___27->n_f8___24, Arg_0: Arg_0 {O(n)}
60: n_f8___27->n_f8___24, Arg_1: Arg_1 {O(n)}
60: n_f8___27->n_f8___24, Arg_4: Arg_4+1 {O(n)}
60: n_f8___27->n_f8___24, Arg_7: Arg_7 {O(n)}
61: n_f8___27->n_f8___25, Arg_0: Arg_0 {O(n)}
61: n_f8___27->n_f8___25, Arg_1: Arg_1 {O(n)}
61: n_f8___27->n_f8___25, Arg_2: 0 {O(1)}
61: n_f8___27->n_f8___25, Arg_3: Arg_1 {O(n)}
61: n_f8___27->n_f8___25, Arg_4: Arg_4+1 {O(n)}
61: n_f8___27->n_f8___25, Arg_7: Arg_7 {O(n)}
62: n_start->n_f2___29, Arg_0: Arg_0 {O(n)}
62: n_start->n_f2___29, Arg_1: Arg_1 {O(n)}
62: n_start->n_f2___29, Arg_2: Arg_2 {O(n)}
62: n_start->n_f2___29, Arg_3: Arg_3 {O(n)}
62: n_start->n_f2___29, Arg_4: Arg_4 {O(n)}
62: n_start->n_f2___29, Arg_5: Arg_5 {O(n)}
62: n_start->n_f2___29, Arg_6: Arg_6 {O(n)}
62: n_start->n_f2___29, Arg_7: Arg_7 {O(n)}