Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars: C_P, NoDet0, NoDet1
Locations: n_f0, n_f12___4, n_f12___8, n_f20___1, n_f20___2, n_f20___3, n_f6___5, n_f6___6, n_f6___7, n_f6___9
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___9(8,0,14,-1,Arg_4,Arg_5,Arg_6)
1:n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___5(Arg_0,Arg_4+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_2
2:n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___6(Arg_0,Arg_1,Arg_4-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_2
3:n_f12___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___5(Arg_0,Arg_4+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=14 && 14<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3
4:n_f12___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___6(Arg_0,Arg_1,Arg_4-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=14 && 14<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3
5:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
6:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
7:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f20___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_3):|:Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_1
8:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1,Arg_5,Arg_6):|:Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_2
9:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
10:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
11:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f20___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_3):|:1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_1
12:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1,Arg_5,Arg_6):|:1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=Arg_2
13:n_f6___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f20___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_3):|:Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1
14:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___8(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
15:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f12___8(Arg_0,Arg_1,C_P,Arg_3,NoDet0,Arg_5,Arg_6):|:Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
16:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1,Arg_5,Arg_6):|:Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2
Eliminate variables {Arg_5,Arg_6} that do not contribute to the problem
Found invariant Arg_4<=1+Arg_2 && Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f20___3
Found invariant 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 for location n_f6___5
Found invariant Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 for location n_f6___6
Found invariant 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && Arg_0<=8 && 8<=Arg_0 for location n_f20___1
Found invariant 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_1<=Arg_2 && Arg_0<=8 && 8<=Arg_0 for location n_f12___4
Found invariant 1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f12___8
Found invariant 1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f6___9
Found invariant 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=8 && 8<=Arg_0 for location n_f20___2
Found invariant 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && Arg_0<=8 && 8<=Arg_0 for location n_f6___7
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: C_P, NoDet0, NoDet1
Locations: n_f0, n_f12___4, n_f12___8, n_f20___1, n_f20___2, n_f20___3, n_f6___5, n_f6___6, n_f6___7, n_f6___9
Transitions:
34:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___9(8,0,14,-1,Arg_4)
35:n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___5(Arg_0,Arg_4+1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_1<=Arg_2 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=Arg_2
36:n_f12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___6(Arg_0,Arg_1,Arg_4-1,Arg_3,Arg_4):|:1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_1<=Arg_2 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=Arg_2
37:n_f12___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___5(Arg_0,Arg_4+1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3
38:n_f12___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___6(Arg_0,Arg_1,Arg_4-1,Arg_3,Arg_4):|:1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3
39:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
40:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
41:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f20___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_1
42:n_f6___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1):|:1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_1<=Arg_2
43:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
44:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___4(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
45:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f20___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_1
46:n_f6___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1):|:Arg_4<=1+Arg_2 && 1+Arg_2<=Arg_4 && 1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_0<=8 && 8<=Arg_0 && 1+Arg_2<=Arg_4 && Arg_4<=1+Arg_2 && Arg_1<=Arg_2
47:n_f6___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f20___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1
48:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___8(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
49:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f12___8(Arg_0,Arg_1,C_P,Arg_3,NoDet0):|:1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=C_P && Arg_2<=C_P && C_P<=Arg_2
50:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_f6___7(Arg_0,Arg_1,Arg_1-1,NoDet0,NoDet1):|:1+Arg_3<=0 && 15+Arg_3<=Arg_2 && Arg_2+Arg_3<=13 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=7 && 0<=1+Arg_3 && 13<=Arg_2+Arg_3 && Arg_2<=15+Arg_3 && 0<=1+Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 7<=Arg_0+Arg_3 && Arg_0<=9+Arg_3 && Arg_2<=14 && Arg_2<=14+Arg_1 && Arg_1+Arg_2<=14 && Arg_2<=6+Arg_0 && Arg_0+Arg_2<=22 && 14<=Arg_2 && 14<=Arg_1+Arg_2 && 14+Arg_1<=Arg_2 && 22<=Arg_0+Arg_2 && 6+Arg_0<=Arg_2 && Arg_1<=0 && 8+Arg_1<=Arg_0 && Arg_0+Arg_1<=8 && 0<=Arg_1 && 8<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=Arg_2 && 1+Arg_3<=0 && 0<=1+Arg_3 && Arg_0<=8 && 8<=Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=14 && 14<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_2
Overall timebound:inf {Infinity}
34: n_f0->n_f6___9: 1 {O(1)}
35: n_f12___4->n_f6___5: inf {Infinity}
36: n_f12___4->n_f6___6: inf {Infinity}
37: n_f12___8->n_f6___5: 1 {O(1)}
38: n_f12___8->n_f6___6: 1 {O(1)}
39: n_f6___5->n_f12___4: inf {Infinity}
40: n_f6___5->n_f12___4: inf {Infinity}
41: n_f6___5->n_f20___2: 1 {O(1)}
42: n_f6___5->n_f6___7: 1 {O(1)}
43: n_f6___6->n_f12___4: inf {Infinity}
44: n_f6___6->n_f12___4: inf {Infinity}
45: n_f6___6->n_f20___3: 1 {O(1)}
46: n_f6___6->n_f6___7: 1 {O(1)}
47: n_f6___7->n_f20___1: 1 {O(1)}
48: n_f6___9->n_f12___8: 1 {O(1)}
49: n_f6___9->n_f12___8: 1 {O(1)}
50: n_f6___9->n_f6___7: 1 {O(1)}
Overall costbound: inf {Infinity}
34: n_f0->n_f6___9: 1 {O(1)}
35: n_f12___4->n_f6___5: inf {Infinity}
36: n_f12___4->n_f6___6: inf {Infinity}
37: n_f12___8->n_f6___5: 1 {O(1)}
38: n_f12___8->n_f6___6: 1 {O(1)}
39: n_f6___5->n_f12___4: inf {Infinity}
40: n_f6___5->n_f12___4: inf {Infinity}
41: n_f6___5->n_f20___2: 1 {O(1)}
42: n_f6___5->n_f6___7: 1 {O(1)}
43: n_f6___6->n_f12___4: inf {Infinity}
44: n_f6___6->n_f12___4: inf {Infinity}
45: n_f6___6->n_f20___3: 1 {O(1)}
46: n_f6___6->n_f6___7: 1 {O(1)}
47: n_f6___7->n_f20___1: 1 {O(1)}
48: n_f6___9->n_f12___8: 1 {O(1)}
49: n_f6___9->n_f12___8: 1 {O(1)}
50: n_f6___9->n_f6___7: 1 {O(1)}
34: n_f0->n_f6___9, Arg_0: 8 {O(1)}
34: n_f0->n_f6___9, Arg_1: 0 {O(1)}
34: n_f0->n_f6___9, Arg_2: 14 {O(1)}
34: n_f0->n_f6___9, Arg_3: 1 {O(1)}
34: n_f0->n_f6___9, Arg_4: Arg_4 {O(n)}
35: n_f12___4->n_f6___5, Arg_0: 8 {O(1)}
35: n_f12___4->n_f6___5, Arg_3: 1 {O(1)}
36: n_f12___4->n_f6___6, Arg_0: 8 {O(1)}
36: n_f12___4->n_f6___6, Arg_3: 1 {O(1)}
37: n_f12___8->n_f6___5, Arg_0: 8 {O(1)}
37: n_f12___8->n_f6___5, Arg_2: 14 {O(1)}
37: n_f12___8->n_f6___5, Arg_3: 1 {O(1)}
38: n_f12___8->n_f6___6, Arg_0: 8 {O(1)}
38: n_f12___8->n_f6___6, Arg_1: 0 {O(1)}
38: n_f12___8->n_f6___6, Arg_3: 1 {O(1)}
39: n_f6___5->n_f12___4, Arg_0: 8 {O(1)}
39: n_f6___5->n_f12___4, Arg_3: 1 {O(1)}
40: n_f6___5->n_f12___4, Arg_0: 8 {O(1)}
40: n_f6___5->n_f12___4, Arg_3: 1 {O(1)}
41: n_f6___5->n_f20___2, Arg_0: 8 {O(1)}
41: n_f6___5->n_f20___2, Arg_3: 1 {O(1)}
42: n_f6___5->n_f6___7, Arg_0: 8 {O(1)}
43: n_f6___6->n_f12___4, Arg_0: 8 {O(1)}
43: n_f6___6->n_f12___4, Arg_3: 1 {O(1)}
44: n_f6___6->n_f12___4, Arg_0: 8 {O(1)}
44: n_f6___6->n_f12___4, Arg_3: 1 {O(1)}
45: n_f6___6->n_f20___3, Arg_0: 8 {O(1)}
45: n_f6___6->n_f20___3, Arg_3: 1 {O(1)}
46: n_f6___6->n_f6___7, Arg_0: 8 {O(1)}
47: n_f6___7->n_f20___1, Arg_0: 8 {O(1)}
48: n_f6___9->n_f12___8, Arg_0: 8 {O(1)}
48: n_f6___9->n_f12___8, Arg_1: 0 {O(1)}
48: n_f6___9->n_f12___8, Arg_2: 14 {O(1)}
48: n_f6___9->n_f12___8, Arg_3: 1 {O(1)}
49: n_f6___9->n_f12___8, Arg_0: 8 {O(1)}
49: n_f6___9->n_f12___8, Arg_1: 0 {O(1)}
49: n_f6___9->n_f12___8, Arg_2: 14 {O(1)}
49: n_f6___9->n_f12___8, Arg_3: 1 {O(1)}
50: n_f6___9->n_f6___7, Arg_0: 8 {O(1)}
50: n_f6___9->n_f6___7, Arg_1: 0 {O(1)}
50: n_f6___9->n_f6___7, Arg_2: 1 {O(1)}