Initial Problem
Start: n_f9
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24
Temp_Vars: A_P, B_P, C_P, E_P, H_P, K_P, L_P, M_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet13, NoDet14, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9, O_P, P_P, R_P, T_P, W_P
Locations: n_f10___1, n_f10___10, n_f10___2, n_f10___3, n_f1___11, n_f1___9, n_f8___4, n_f8___5, n_f8___6, n_f8___7, n_f8___8, n_f9
Transitions:
0:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f1___9(Arg_0,Arg_1+1,Arg_3,NoDet0,Arg_3,NoDet1,Arg_1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_1
1:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___7(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_5,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,NoDet4,Arg_17,Arg_18,Arg_19,Arg_20,NoDet5,NoDet6,Arg_23,Arg_17+1):|:0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && Arg_0<=Arg_1 && 1+O_P<=0 && 2<=K_P && 2<=B_P && 0<=Arg_1 && H_P<=O_P && O_P<=H_P && L_P<=O_P && O_P<=L_P && Arg_2<=O_P && O_P<=Arg_2 && O_P<=P_P && P_P<=O_P && M_P<=O_P && O_P<=M_P
2:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___8(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_5,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,NoDet4,Arg_17,Arg_18,Arg_19,Arg_20,NoDet5,NoDet6,Arg_23,Arg_17+1):|:0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=K_P && 2<=B_P && 1<=M_P && 0<=Arg_1 && H_P<=M_P && M_P<=H_P && L_P<=M_P && M_P<=L_P && Arg_2<=M_P && M_P<=Arg_2 && M_P<=P_P && P_P<=M_P && M_P<=O_P && O_P<=M_P
3:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f1___9(Arg_0,Arg_1+1,Arg_3,NoDet0,Arg_3,NoDet1,Arg_1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_1
4:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___7(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_5,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,NoDet4,Arg_17,Arg_18,Arg_19,Arg_20,NoDet5,NoDet6,Arg_23,Arg_17+1):|:0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && 1+O_P<=0 && 2<=K_P && 2<=B_P && 0<=Arg_1 && H_P<=O_P && O_P<=H_P && L_P<=O_P && O_P<=L_P && Arg_2<=O_P && O_P<=Arg_2 && O_P<=P_P && P_P<=O_P && M_P<=O_P && O_P<=M_P
5:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___8(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_5,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,NoDet4,Arg_17,Arg_18,Arg_19,Arg_20,NoDet5,NoDet6,Arg_23,Arg_17+1):|:0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && 2<=K_P && 2<=B_P && 1<=M_P && 0<=Arg_1 && H_P<=M_P && M_P<=H_P && L_P<=M_P && M_P<=L_P && Arg_2<=M_P && M_P<=Arg_2 && M_P<=P_P && P_P<=M_P && M_P<=O_P && O_P<=M_P
6:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,R_P,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
7:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
8:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
9:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
10:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
11:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,R_P,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
12:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
13:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
14:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
15:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
16:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f10___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,R_P,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
17:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
18:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
19:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
20:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
21:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
22:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
23:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
24:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
25:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
26:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
27:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
28:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,Arg_16,R_P,NoDet0,T_P,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
29:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f10___10(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_5,Arg_6,NoDet5,Arg_8,NoDet6,K_P,0,NoDet7,NoDet8,NoDet9,NoDet10,NoDet11,Arg_17,Arg_18,Arg_19,NoDet12,NoDet13,NoDet14,Arg_23,Arg_24):|:K_P<=0
30:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> n_f1___11(A_P,2,C_P,NoDet0,E_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,NoDet1,Arg_21,W_P,NoDet2,Arg_24):|:2<=A_P && A_P<=K_P && K_P<=A_P && C_P<=E_P && E_P<=C_P && C_P<=W_P && W_P<=C_P
Preprocessing
Eliminate variables {NoDet11,NoDet12,NoDet13,Arg_5,Arg_16,Arg_18,Arg_20,Arg_21,Arg_23} that do not contribute to the problem
Found invariant Arg_9<=0 && 1+Arg_7+Arg_9<=0 && 1+Arg_15+Arg_9<=0 && 1+Arg_14+Arg_9<=0 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_12+Arg_9<=0 && 1+Arg_11+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1+Arg_7<=Arg_9 && 1+Arg_15<=Arg_9 && 1+Arg_14<=Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1+Arg_12<=Arg_9 && 1+Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_15 && 2+Arg_15+Arg_7<=0 && Arg_7<=Arg_14 && 2+Arg_14+Arg_7<=0 && 1+Arg_7<=Arg_13 && 1+Arg_13+Arg_7<=0 && Arg_7<=Arg_12 && 2+Arg_12+Arg_7<=0 && Arg_7<=Arg_11 && 2+Arg_11+Arg_7<=0 && 3+Arg_7<=Arg_10 && 3+Arg_7<=Arg_1 && Arg_15<=Arg_7 && Arg_14<=Arg_7 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && 1+Arg_15<=0 && Arg_15<=Arg_14 && 2+Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && 1+Arg_13+Arg_15<=0 && Arg_15<=Arg_12 && 2+Arg_12+Arg_15<=0 && Arg_15<=Arg_11 && 2+Arg_11+Arg_15<=0 && 3+Arg_15<=Arg_10 && 3+Arg_15<=Arg_1 && Arg_14<=Arg_15 && Arg_12<=Arg_15 && Arg_11<=Arg_15 && 1+Arg_14<=0 && 1+Arg_14<=Arg_13 && 1+Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && 2+Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && 2+Arg_11+Arg_14<=0 && 3+Arg_14<=Arg_10 && 3+Arg_14<=Arg_1 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 1+Arg_12+Arg_13<=0 && 1+Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && 1+Arg_12<=0 && Arg_12<=Arg_11 && 2+Arg_11+Arg_12<=0 && 3+Arg_12<=Arg_10 && 3+Arg_12<=Arg_1 && Arg_11<=Arg_12 && 1+Arg_11<=0 && 3+Arg_11<=Arg_10 && 3+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f8___7
Found invariant Arg_9<=0 && 1+Arg_9<=Arg_7 && 1+Arg_9<=Arg_15 && 1+Arg_9<=Arg_14 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && Arg_7<=Arg_15 && Arg_7<=Arg_14 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && 1<=Arg_7 && 2<=Arg_15+Arg_7 && Arg_15<=Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 1<=Arg_13+Arg_7 && 1+Arg_13<=Arg_7 && 2<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 2<=Arg_11+Arg_7 && Arg_11<=Arg_7 && 3<=Arg_10+Arg_7 && 3<=Arg_1+Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && Arg_15<=Arg_14 && Arg_15<=Arg_12 && Arg_15<=Arg_11 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 2<=Arg_12+Arg_15 && Arg_12<=Arg_15 && 2<=Arg_11+Arg_15 && Arg_11<=Arg_15 && 3<=Arg_10+Arg_15 && 3<=Arg_1+Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 1<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 3<=Arg_10+Arg_14 && 3<=Arg_1+Arg_14 && Arg_13<=0 && 1+Arg_13<=Arg_12 && 1+Arg_13<=Arg_11 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1<=Arg_12+Arg_13 && 1<=Arg_11+Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 3<=Arg_10+Arg_12 && 3<=Arg_1+Arg_12 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 3<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f8___8
Found invariant Arg_4<=Arg_22 && Arg_4<=Arg_2 && Arg_22<=Arg_4 && Arg_2<=Arg_4 && Arg_22<=Arg_2 && Arg_2<=Arg_22 && Arg_10<=Arg_0 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 4<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=2 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f1___11
Found invariant 1+Arg_6<=Arg_10 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && 2<=Arg_6 && 5<=Arg_10+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 5<=Arg_0+Arg_6 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_10<=Arg_0 && 3<=Arg_10 && 6<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 6<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && 3<=Arg_0 for location n_f1___9
Found invariant Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f8___5
Found invariant Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f8___6
Found invariant 1+Arg_8<=Arg_24 && 1<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 1<=Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 1<=Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 3<=Arg_10+Arg_8 && 3<=Arg_1+Arg_8 && 2<=Arg_24 && 2<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 2<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 4<=Arg_10+Arg_24 && 4<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=Arg_19 && 0<=Arg_17+Arg_19 && Arg_17<=Arg_19 && 2<=Arg_10+Arg_19 && 2<=Arg_1+Arg_19 && 0<=Arg_17 && 2<=Arg_10+Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f10___1
Found invariant 1+Arg_8<=Arg_24 && 1<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 1<=Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 1<=Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 3<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 3<=Arg_1+Arg_8 && 2<=Arg_24 && 2<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 2<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 4<=Arg_11+Arg_24 && 4<=Arg_10+Arg_24 && 4<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=Arg_19 && 0<=Arg_17+Arg_19 && Arg_17<=Arg_19 && 2<=Arg_11+Arg_19 && 2<=Arg_10+Arg_19 && 2<=Arg_1+Arg_19 && 0<=Arg_17 && 2<=Arg_11+Arg_17 && 2<=Arg_10+Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_11 && 4<=Arg_10+Arg_11 && 4<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f10___2
Found invariant 1+Arg_8<=Arg_24 && 1<=Arg_8 && 3<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 1<=Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 1<=Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 3+Arg_11<=Arg_8 && 3<=Arg_10+Arg_8 && 3<=Arg_1+Arg_8 && 2<=Arg_24 && 2<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 2<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 4+Arg_11<=Arg_24 && 4<=Arg_10+Arg_24 && 4<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=Arg_19 && 0<=Arg_17+Arg_19 && Arg_17<=Arg_19 && 2+Arg_11<=Arg_19 && 2<=Arg_10+Arg_19 && 2<=Arg_1+Arg_19 && 0<=Arg_17 && 2+Arg_11<=Arg_17 && 2<=Arg_10+Arg_17 && 2<=Arg_1+Arg_17 && 2+Arg_11<=0 && 4+Arg_11<=Arg_10 && 4+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f10___3
Found invariant Arg_11<=0 && Arg_10+Arg_11<=0 && 0<=Arg_11 && Arg_10<=Arg_11 && Arg_10<=0 for location n_f10___10
Found invariant Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 for location n_f8___4
Problem after Preprocessing
Start: n_f9
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_17, Arg_19, Arg_22, Arg_24
Temp_Vars: A_P, B_P, C_P, E_P, H_P, K_P, L_P, M_P, NoDet0, NoDet1, NoDet10, NoDet14, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9, O_P, P_P, R_P, T_P, W_P
Locations: n_f10___1, n_f10___10, n_f10___2, n_f10___3, n_f1___11, n_f1___9, n_f8___4, n_f8___5, n_f8___6, n_f8___7, n_f8___8, n_f9
Transitions:
70:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f1___9(Arg_0,Arg_1+1,Arg_3,NoDet0,Arg_3,Arg_1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24):|:Arg_4<=Arg_22 && Arg_4<=Arg_2 && Arg_22<=Arg_4 && Arg_2<=Arg_4 && Arg_22<=Arg_2 && Arg_2<=Arg_22 && Arg_10<=Arg_0 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 4<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=2 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_1
71:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___7(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,Arg_17,Arg_19,NoDet6,Arg_17+1):|:Arg_4<=Arg_22 && Arg_4<=Arg_2 && Arg_22<=Arg_4 && Arg_2<=Arg_4 && Arg_22<=Arg_2 && Arg_2<=Arg_22 && Arg_10<=Arg_0 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 4<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=2 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && Arg_0<=Arg_1 && 1+O_P<=0 && 2<=K_P && 2<=B_P && 0<=Arg_1 && H_P<=O_P && O_P<=H_P && L_P<=O_P && O_P<=L_P && Arg_2<=O_P && O_P<=Arg_2 && O_P<=P_P && P_P<=O_P && M_P<=O_P && O_P<=M_P
72:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___8(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,Arg_17,Arg_19,NoDet6,Arg_17+1):|:Arg_4<=Arg_22 && Arg_4<=Arg_2 && Arg_22<=Arg_4 && Arg_2<=Arg_4 && Arg_22<=Arg_2 && Arg_2<=Arg_22 && Arg_10<=Arg_0 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 4<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=2 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 && 0<=Arg_1 && Arg_0<=Arg_10 && Arg_10<=Arg_0 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_2<=Arg_22 && Arg_22<=Arg_2 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=K_P && 2<=B_P && 1<=M_P && 0<=Arg_1 && H_P<=M_P && M_P<=H_P && L_P<=M_P && M_P<=L_P && Arg_2<=M_P && M_P<=Arg_2 && M_P<=P_P && P_P<=M_P && M_P<=O_P && O_P<=M_P
73:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f1___9(Arg_0,Arg_1+1,Arg_3,NoDet0,Arg_3,Arg_1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24):|:1+Arg_6<=Arg_10 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && 2<=Arg_6 && 5<=Arg_10+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 5<=Arg_0+Arg_6 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_10<=Arg_0 && 3<=Arg_10 && 6<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 6<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && 3<=Arg_0 && 0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_1
74:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___7(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,Arg_17,Arg_19,NoDet6,Arg_17+1):|:1+Arg_6<=Arg_10 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && 2<=Arg_6 && 5<=Arg_10+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 5<=Arg_0+Arg_6 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_10<=Arg_0 && 3<=Arg_10 && 6<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 6<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && 3<=Arg_0 && 0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && 1+O_P<=0 && 2<=K_P && 2<=B_P && 0<=Arg_1 && H_P<=O_P && O_P<=H_P && L_P<=O_P && O_P<=L_P && Arg_2<=O_P && O_P<=Arg_2 && O_P<=P_P && P_P<=O_P && M_P<=O_P && O_P<=M_P
75:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___8(NoDet0,B_P,NoDet1,NoDet2,NoDet3,Arg_6,H_P,Arg_17,0,K_P,L_P,M_P,0,O_P,P_P,Arg_17,Arg_19,NoDet6,Arg_17+1):|:1+Arg_6<=Arg_10 && 1+Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && 2<=Arg_6 && 5<=Arg_10+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 5<=Arg_0+Arg_6 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && Arg_10<=Arg_0 && 3<=Arg_10 && 6<=Arg_1+Arg_10 && Arg_1<=Arg_10 && 6<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_1<=Arg_0 && 3<=Arg_1 && 6<=Arg_0+Arg_1 && 3<=Arg_0 && 0<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_1<=1+Arg_6 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_6<=Arg_0 && Arg_0<=Arg_1 && 2<=K_P && 2<=B_P && 1<=M_P && 0<=Arg_1 && H_P<=M_P && M_P<=H_P && L_P<=M_P && M_P<=L_P && Arg_2<=M_P && M_P<=Arg_2 && M_P<=P_P && P_P<=M_P && M_P<=O_P && O_P<=M_P
76:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f10___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,R_P,Arg_19,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
77:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
78:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
79:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
80:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
81:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,R_P,Arg_19,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
82:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
83:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
84:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
85:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
86:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f10___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,NoDet0,Arg_8,NoDet1,K_P,Arg_11,NoDet2,NoDet3,NoDet4,NoDet5,R_P,Arg_19,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=R_P && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_17<=R_P && R_P<=Arg_17
87:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
88:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
89:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
90:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
91:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_7+Arg_9<=0 && 1+Arg_15+Arg_9<=0 && 1+Arg_14+Arg_9<=0 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_12+Arg_9<=0 && 1+Arg_11+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1+Arg_7<=Arg_9 && 1+Arg_15<=Arg_9 && 1+Arg_14<=Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1+Arg_12<=Arg_9 && 1+Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_15 && 2+Arg_15+Arg_7<=0 && Arg_7<=Arg_14 && 2+Arg_14+Arg_7<=0 && 1+Arg_7<=Arg_13 && 1+Arg_13+Arg_7<=0 && Arg_7<=Arg_12 && 2+Arg_12+Arg_7<=0 && Arg_7<=Arg_11 && 2+Arg_11+Arg_7<=0 && 3+Arg_7<=Arg_10 && 3+Arg_7<=Arg_1 && Arg_15<=Arg_7 && Arg_14<=Arg_7 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && 1+Arg_15<=0 && Arg_15<=Arg_14 && 2+Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && 1+Arg_13+Arg_15<=0 && Arg_15<=Arg_12 && 2+Arg_12+Arg_15<=0 && Arg_15<=Arg_11 && 2+Arg_11+Arg_15<=0 && 3+Arg_15<=Arg_10 && 3+Arg_15<=Arg_1 && Arg_14<=Arg_15 && Arg_12<=Arg_15 && Arg_11<=Arg_15 && 1+Arg_14<=0 && 1+Arg_14<=Arg_13 && 1+Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && 2+Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && 2+Arg_11+Arg_14<=0 && 3+Arg_14<=Arg_10 && 3+Arg_14<=Arg_1 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 1+Arg_12+Arg_13<=0 && 1+Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && 1+Arg_12<=0 && Arg_12<=Arg_11 && 2+Arg_11+Arg_12<=0 && 3+Arg_12<=Arg_10 && 3+Arg_12<=Arg_1 && Arg_11<=Arg_12 && 1+Arg_11<=0 && 3+Arg_11<=Arg_10 && 3+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
92:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_7+Arg_9<=0 && 1+Arg_15+Arg_9<=0 && 1+Arg_14+Arg_9<=0 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_12+Arg_9<=0 && 1+Arg_11+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1+Arg_7<=Arg_9 && 1+Arg_15<=Arg_9 && 1+Arg_14<=Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1+Arg_12<=Arg_9 && 1+Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_15 && 2+Arg_15+Arg_7<=0 && Arg_7<=Arg_14 && 2+Arg_14+Arg_7<=0 && 1+Arg_7<=Arg_13 && 1+Arg_13+Arg_7<=0 && Arg_7<=Arg_12 && 2+Arg_12+Arg_7<=0 && Arg_7<=Arg_11 && 2+Arg_11+Arg_7<=0 && 3+Arg_7<=Arg_10 && 3+Arg_7<=Arg_1 && Arg_15<=Arg_7 && Arg_14<=Arg_7 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && 1+Arg_15<=0 && Arg_15<=Arg_14 && 2+Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && 1+Arg_13+Arg_15<=0 && Arg_15<=Arg_12 && 2+Arg_12+Arg_15<=0 && Arg_15<=Arg_11 && 2+Arg_11+Arg_15<=0 && 3+Arg_15<=Arg_10 && 3+Arg_15<=Arg_1 && Arg_14<=Arg_15 && Arg_12<=Arg_15 && Arg_11<=Arg_15 && 1+Arg_14<=0 && 1+Arg_14<=Arg_13 && 1+Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && 2+Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && 2+Arg_11+Arg_14<=0 && 3+Arg_14<=Arg_10 && 3+Arg_14<=Arg_1 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 1+Arg_12+Arg_13<=0 && 1+Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && 1+Arg_12<=0 && Arg_12<=Arg_11 && 2+Arg_11+Arg_12<=0 && 3+Arg_12<=Arg_10 && 3+Arg_12<=Arg_1 && Arg_11<=Arg_12 && 1+Arg_11<=0 && 3+Arg_11<=Arg_10 && 3+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
93:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_7+Arg_9<=0 && 1+Arg_15+Arg_9<=0 && 1+Arg_14+Arg_9<=0 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_12+Arg_9<=0 && 1+Arg_11+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1+Arg_7<=Arg_9 && 1+Arg_15<=Arg_9 && 1+Arg_14<=Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1+Arg_12<=Arg_9 && 1+Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_15 && 2+Arg_15+Arg_7<=0 && Arg_7<=Arg_14 && 2+Arg_14+Arg_7<=0 && 1+Arg_7<=Arg_13 && 1+Arg_13+Arg_7<=0 && Arg_7<=Arg_12 && 2+Arg_12+Arg_7<=0 && Arg_7<=Arg_11 && 2+Arg_11+Arg_7<=0 && 3+Arg_7<=Arg_10 && 3+Arg_7<=Arg_1 && Arg_15<=Arg_7 && Arg_14<=Arg_7 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && 1+Arg_15<=0 && Arg_15<=Arg_14 && 2+Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && 1+Arg_13+Arg_15<=0 && Arg_15<=Arg_12 && 2+Arg_12+Arg_15<=0 && Arg_15<=Arg_11 && 2+Arg_11+Arg_15<=0 && 3+Arg_15<=Arg_10 && 3+Arg_15<=Arg_1 && Arg_14<=Arg_15 && Arg_12<=Arg_15 && Arg_11<=Arg_15 && 1+Arg_14<=0 && 1+Arg_14<=Arg_13 && 1+Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && 2+Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && 2+Arg_11+Arg_14<=0 && 3+Arg_14<=Arg_10 && 3+Arg_14<=Arg_1 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 1+Arg_12+Arg_13<=0 && 1+Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && 1+Arg_12<=0 && Arg_12<=Arg_11 && 2+Arg_11+Arg_12<=0 && 3+Arg_12<=Arg_10 && 3+Arg_12<=Arg_1 && Arg_11<=Arg_12 && 1+Arg_11<=0 && 3+Arg_11<=Arg_10 && 3+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
94:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_7+Arg_9<=0 && 1+Arg_15+Arg_9<=0 && 1+Arg_14+Arg_9<=0 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_12+Arg_9<=0 && 1+Arg_11+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1+Arg_7<=Arg_9 && 1+Arg_15<=Arg_9 && 1+Arg_14<=Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1+Arg_12<=Arg_9 && 1+Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_15 && 2+Arg_15+Arg_7<=0 && Arg_7<=Arg_14 && 2+Arg_14+Arg_7<=0 && 1+Arg_7<=Arg_13 && 1+Arg_13+Arg_7<=0 && Arg_7<=Arg_12 && 2+Arg_12+Arg_7<=0 && Arg_7<=Arg_11 && 2+Arg_11+Arg_7<=0 && 3+Arg_7<=Arg_10 && 3+Arg_7<=Arg_1 && Arg_15<=Arg_7 && Arg_14<=Arg_7 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && 1+Arg_15<=0 && Arg_15<=Arg_14 && 2+Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && 1+Arg_13+Arg_15<=0 && Arg_15<=Arg_12 && 2+Arg_12+Arg_15<=0 && Arg_15<=Arg_11 && 2+Arg_11+Arg_15<=0 && 3+Arg_15<=Arg_10 && 3+Arg_15<=Arg_1 && Arg_14<=Arg_15 && Arg_12<=Arg_15 && Arg_11<=Arg_15 && 1+Arg_14<=0 && 1+Arg_14<=Arg_13 && 1+Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && 2+Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && 2+Arg_11+Arg_14<=0 && 3+Arg_14<=Arg_10 && 3+Arg_14<=Arg_1 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 1+Arg_12+Arg_13<=0 && 1+Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && 1+Arg_12<=0 && Arg_12<=Arg_11 && 2+Arg_11+Arg_12<=0 && 3+Arg_12<=Arg_10 && 3+Arg_12<=Arg_1 && Arg_11<=Arg_12 && 1+Arg_11<=0 && 3+Arg_11<=Arg_10 && 3+Arg_11<=Arg_1 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 2<=Arg_10 && 1+Arg_11<=0 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
95:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_9<=Arg_7 && 1+Arg_9<=Arg_15 && 1+Arg_9<=Arg_14 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && Arg_7<=Arg_15 && Arg_7<=Arg_14 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && 1<=Arg_7 && 2<=Arg_15+Arg_7 && Arg_15<=Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 1<=Arg_13+Arg_7 && 1+Arg_13<=Arg_7 && 2<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 2<=Arg_11+Arg_7 && Arg_11<=Arg_7 && 3<=Arg_10+Arg_7 && 3<=Arg_1+Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && Arg_15<=Arg_14 && Arg_15<=Arg_12 && Arg_15<=Arg_11 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 2<=Arg_12+Arg_15 && Arg_12<=Arg_15 && 2<=Arg_11+Arg_15 && Arg_11<=Arg_15 && 3<=Arg_10+Arg_15 && 3<=Arg_1+Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 1<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 3<=Arg_10+Arg_14 && 3<=Arg_1+Arg_14 && Arg_13<=0 && 1+Arg_13<=Arg_12 && 1+Arg_13<=Arg_11 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1<=Arg_12+Arg_13 && 1<=Arg_11+Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 3<=Arg_10+Arg_12 && 3<=Arg_1+Arg_12 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 3<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
96:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_9<=Arg_7 && 1+Arg_9<=Arg_15 && 1+Arg_9<=Arg_14 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && Arg_7<=Arg_15 && Arg_7<=Arg_14 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && 1<=Arg_7 && 2<=Arg_15+Arg_7 && Arg_15<=Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 1<=Arg_13+Arg_7 && 1+Arg_13<=Arg_7 && 2<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 2<=Arg_11+Arg_7 && Arg_11<=Arg_7 && 3<=Arg_10+Arg_7 && 3<=Arg_1+Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && Arg_15<=Arg_14 && Arg_15<=Arg_12 && Arg_15<=Arg_11 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 2<=Arg_12+Arg_15 && Arg_12<=Arg_15 && 2<=Arg_11+Arg_15 && Arg_11<=Arg_15 && 3<=Arg_10+Arg_15 && 3<=Arg_1+Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 1<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 3<=Arg_10+Arg_14 && 3<=Arg_1+Arg_14 && Arg_13<=0 && 1+Arg_13<=Arg_12 && 1+Arg_13<=Arg_11 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1<=Arg_12+Arg_13 && 1<=Arg_11+Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 3<=Arg_10+Arg_12 && 3<=Arg_1+Arg_12 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 3<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
97:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_9<=Arg_7 && 1+Arg_9<=Arg_15 && 1+Arg_9<=Arg_14 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && Arg_7<=Arg_15 && Arg_7<=Arg_14 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && 1<=Arg_7 && 2<=Arg_15+Arg_7 && Arg_15<=Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 1<=Arg_13+Arg_7 && 1+Arg_13<=Arg_7 && 2<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 2<=Arg_11+Arg_7 && Arg_11<=Arg_7 && 3<=Arg_10+Arg_7 && 3<=Arg_1+Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && Arg_15<=Arg_14 && Arg_15<=Arg_12 && Arg_15<=Arg_11 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 2<=Arg_12+Arg_15 && Arg_12<=Arg_15 && 2<=Arg_11+Arg_15 && Arg_11<=Arg_15 && 3<=Arg_10+Arg_15 && 3<=Arg_1+Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 1<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 3<=Arg_10+Arg_14 && 3<=Arg_1+Arg_14 && Arg_13<=0 && 1+Arg_13<=Arg_12 && 1+Arg_13<=Arg_11 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1<=Arg_12+Arg_13 && 1<=Arg_11+Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 3<=Arg_10+Arg_12 && 3<=Arg_1+Arg_12 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 3<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
98:n_f8___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && 1+Arg_9<=Arg_7 && 1+Arg_9<=Arg_15 && 1+Arg_9<=Arg_14 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && Arg_8<=Arg_17 && Arg_24<=1+Arg_8 && Arg_17<=Arg_8 && Arg_7<=Arg_15 && Arg_7<=Arg_14 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && 1<=Arg_7 && 2<=Arg_15+Arg_7 && Arg_15<=Arg_7 && 2<=Arg_14+Arg_7 && Arg_14<=Arg_7 && 1<=Arg_13+Arg_7 && 1+Arg_13<=Arg_7 && 2<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 2<=Arg_11+Arg_7 && Arg_11<=Arg_7 && 3<=Arg_10+Arg_7 && 3<=Arg_1+Arg_7 && Arg_24<=1+Arg_17 && 1+Arg_17<=Arg_24 && Arg_15<=Arg_14 && Arg_15<=Arg_12 && Arg_15<=Arg_11 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 1<=Arg_13+Arg_15 && 1+Arg_13<=Arg_15 && 2<=Arg_12+Arg_15 && Arg_12<=Arg_15 && 2<=Arg_11+Arg_15 && Arg_11<=Arg_15 && 3<=Arg_10+Arg_15 && 3<=Arg_1+Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 1<=Arg_13+Arg_14 && 1+Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 3<=Arg_10+Arg_14 && 3<=Arg_1+Arg_14 && Arg_13<=0 && 1+Arg_13<=Arg_12 && 1+Arg_13<=Arg_11 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 1<=Arg_12+Arg_13 && 1<=Arg_11+Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 3<=Arg_10+Arg_12 && 3<=Arg_1+Arg_12 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 3<=Arg_1+Arg_11 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_11 && Arg_11<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_8<=Arg_17 && Arg_17<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_11<=Arg_15 && Arg_15<=Arg_11 && 1+Arg_8<=Arg_24 && Arg_24<=1+Arg_8 && 2<=Arg_1 && 1<=Arg_11 && 2<=Arg_10 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9
99:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f10___10(NoDet0,NoDet1,NoDet2,NoDet3,NoDet4,Arg_6,NoDet5,Arg_8,NoDet6,K_P,0,NoDet7,NoDet8,NoDet9,NoDet10,Arg_17,Arg_19,NoDet14,Arg_24):|:K_P<=0
100:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f1___11(A_P,2,C_P,NoDet0,E_P,Arg_6,Arg_7,Arg_8,Arg_9,K_P,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,W_P,Arg_24):|:2<=A_P && A_P<=K_P && K_P<=A_P && C_P<=E_P && E_P<=C_P && C_P<=W_P && W_P<=C_P
MPRF for transition 77:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+36 {O(n)}
MPRF:
n_f8___4 [Arg_17+Arg_24+1 ]
n_f8___5 [Arg_8+Arg_17+1 ]
n_f8___6 [Arg_8+Arg_17+1 ]
MPRF for transition 78:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+36 {O(n)}
MPRF:
n_f8___4 [Arg_17+Arg_24+1 ]
n_f8___5 [Arg_8+Arg_17+1 ]
n_f8___6 [Arg_8+Arg_17+1 ]
MPRF for transition 79:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
24*Arg_17+28 {O(n)}
MPRF:
n_f8___4 [Arg_17+2 ]
n_f8___5 [Arg_17+1 ]
n_f8___6 [Arg_17+1 ]
MPRF for transition 80:n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
24*Arg_17+28 {O(n)}
MPRF:
n_f8___4 [Arg_17+2 ]
n_f8___5 [Arg_17+1 ]
n_f8___6 [Arg_17+1 ]
MPRF for transition 82:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+26 {O(n)}
MPRF:
n_f8___4 [Arg_8+Arg_17+1 ]
n_f8___5 [Arg_8+Arg_17+2 ]
n_f8___6 [Arg_8+Arg_17+1 ]
MPRF for transition 83:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+42 {O(n)}
MPRF:
n_f8___4 [Arg_17+Arg_24 ]
n_f8___5 [Arg_17+Arg_24+1 ]
n_f8___6 [Arg_17+Arg_24 ]
MPRF for transition 84:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+44 {O(n)}
MPRF:
n_f8___4 [Arg_17+Arg_24 ]
n_f8___5 [Arg_17+Arg_24+1 ]
n_f8___6 [Arg_17+Arg_24+1 ]
MPRF for transition 85:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && 2+Arg_7<=Arg_14 && 2+Arg_7<=Arg_12 && 2+Arg_7<=Arg_11 && Arg_15<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_15<=Arg_14 && 2+Arg_15<=Arg_12 && 2+Arg_15<=Arg_11 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 0<=Arg_8 && 2<=Arg_10 && 2+Arg_7<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=Arg_11 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+44 {O(n)}
MPRF:
n_f8___4 [2*Arg_17+1 ]
n_f8___5 [2*Arg_17+3 ]
n_f8___6 [2*Arg_17+1 ]
MPRF for transition 87:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
24*Arg_17+26 {O(n)}
MPRF:
n_f8___4 [Arg_17+1 ]
n_f8___5 [Arg_17+1 ]
n_f8___6 [Arg_17+2 ]
MPRF for transition 88:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
24*Arg_17+26 {O(n)}
MPRF:
n_f8___4 [Arg_17+1 ]
n_f8___5 [Arg_17+1 ]
n_f8___6 [Arg_17+2 ]
MPRF for transition 89:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2+Arg_7<=L_P && 2<=K_P && 0<=1+R_P && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
48*Arg_17+34 {O(n)}
MPRF:
n_f8___4 [Arg_17+Arg_24-Arg_8 ]
n_f8___5 [Arg_17+1 ]
n_f8___6 [Arg_17+2 ]
MPRF for transition 90:n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_17,Arg_19,Arg_22,Arg_24) -> n_f8___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,0,K_P,L_P,M_P,0,O_P,Arg_7,R_P,T_P,Arg_22,Arg_24):|:Arg_9<=0 && Arg_9<=Arg_8 && 1+Arg_9<=Arg_24 && Arg_9<=1+Arg_19 && Arg_9<=1+Arg_17 && Arg_9<=Arg_13 && Arg_13+Arg_9<=0 && 2+Arg_9<=Arg_10 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_24+Arg_9 && 0<=1+Arg_19+Arg_9 && 0<=1+Arg_17+Arg_9 && 0<=Arg_13+Arg_9 && Arg_13<=Arg_9 && 2<=Arg_10+Arg_9 && 2<=Arg_1+Arg_9 && 1+Arg_8<=Arg_24 && 0<=Arg_8 && 1<=Arg_24+Arg_8 && Arg_24<=1+Arg_8 && 0<=1+Arg_19+Arg_8 && 1+Arg_19<=Arg_8 && 0<=1+Arg_17+Arg_8 && 1+Arg_17<=Arg_8 && 0<=Arg_13+Arg_8 && Arg_13<=Arg_8 && 2<=Arg_10+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 2+Arg_14<=Arg_7 && 2+Arg_12<=Arg_7 && 2+Arg_11<=Arg_7 && 1<=Arg_24 && 0<=Arg_19+Arg_24 && 2+Arg_19<=Arg_24 && 0<=Arg_17+Arg_24 && 2+Arg_17<=Arg_24 && 1<=Arg_13+Arg_24 && 1+Arg_13<=Arg_24 && 3<=Arg_10+Arg_24 && 3<=Arg_1+Arg_24 && Arg_19<=Arg_17 && 0<=1+Arg_19 && 0<=2+Arg_17+Arg_19 && Arg_17<=Arg_19 && 0<=1+Arg_13+Arg_19 && Arg_13<=1+Arg_19 && 1<=Arg_10+Arg_19 && 1<=Arg_1+Arg_19 && 0<=1+Arg_17 && 0<=1+Arg_13+Arg_17 && Arg_13<=1+Arg_17 && 1<=Arg_10+Arg_17 && 1<=Arg_1+Arg_17 && 2+Arg_14<=Arg_15 && 2+Arg_12<=Arg_15 && 2+Arg_11<=Arg_15 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && 2+Arg_13<=Arg_10 && 2+Arg_13<=Arg_1 && 0<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_1+Arg_13 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 2<=Arg_10 && 4<=Arg_1+Arg_10 && 2<=Arg_1 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2+Arg_11<=Arg_7 && 2<=Arg_10 && 0<=1+Arg_19 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_13<=0 && 0<=Arg_13 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_13<=0 && 0<=Arg_13 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 2+Arg_14<=Arg_7 && 0<=Arg_8 && 2<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_7<=Arg_15 && Arg_15<=Arg_7 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_13<=0 && 0<=Arg_13 && 2<=Arg_10 && 0<=1+Arg_17 && 2<=K_P && 0<=1+R_P && 2+L_P<=Arg_7 && R_P<=T_P && T_P<=R_P && Arg_17<=R_P+1 && 1+R_P<=Arg_17 && L_P<=O_P && O_P<=L_P && L_P<=M_P && M_P<=L_P && Arg_9<=0 && 0<=Arg_9 of depth 1:
new bound:
72*Arg_17+54 {O(n)}
MPRF:
n_f8___4 [Arg_17+2*Arg_24-Arg_8 ]
n_f8___5 [Arg_17+Arg_24 ]
n_f8___6 [Arg_17+Arg_24+1 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
70: n_f1___11->n_f1___9: 1 {O(1)}
71: n_f1___11->n_f8___7: 1 {O(1)}
72: n_f1___11->n_f8___8: 1 {O(1)}
73: n_f1___9->n_f1___9: inf {Infinity}
74: n_f1___9->n_f8___7: 1 {O(1)}
75: n_f1___9->n_f8___8: 1 {O(1)}
76: n_f8___4->n_f10___1: 1 {O(1)}
77: n_f8___4->n_f8___4: 48*Arg_17+36 {O(n)}
78: n_f8___4->n_f8___4: 48*Arg_17+36 {O(n)}
79: n_f8___4->n_f8___5: 24*Arg_17+28 {O(n)}
80: n_f8___4->n_f8___6: 24*Arg_17+28 {O(n)}
81: n_f8___5->n_f10___2: 1 {O(1)}
82: n_f8___5->n_f8___4: 48*Arg_17+26 {O(n)}
83: n_f8___5->n_f8___4: 48*Arg_17+42 {O(n)}
84: n_f8___5->n_f8___5: 48*Arg_17+44 {O(n)}
85: n_f8___5->n_f8___6: 48*Arg_17+44 {O(n)}
86: n_f8___6->n_f10___3: 1 {O(1)}
87: n_f8___6->n_f8___4: 24*Arg_17+26 {O(n)}
88: n_f8___6->n_f8___4: 24*Arg_17+26 {O(n)}
89: n_f8___6->n_f8___5: 48*Arg_17+34 {O(n)}
90: n_f8___6->n_f8___6: 72*Arg_17+54 {O(n)}
91: n_f8___7->n_f8___4: 1 {O(1)}
92: n_f8___7->n_f8___4: 1 {O(1)}
93: n_f8___7->n_f8___5: 1 {O(1)}
94: n_f8___7->n_f8___6: 1 {O(1)}
95: n_f8___8->n_f8___4: 1 {O(1)}
96: n_f8___8->n_f8___4: 1 {O(1)}
97: n_f8___8->n_f8___5: 1 {O(1)}
98: n_f8___8->n_f8___6: 1 {O(1)}
99: n_f9->n_f10___10: 1 {O(1)}
100: n_f9->n_f1___11: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
70: n_f1___11->n_f1___9: 1 {O(1)}
71: n_f1___11->n_f8___7: 1 {O(1)}
72: n_f1___11->n_f8___8: 1 {O(1)}
73: n_f1___9->n_f1___9: inf {Infinity}
74: n_f1___9->n_f8___7: 1 {O(1)}
75: n_f1___9->n_f8___8: 1 {O(1)}
76: n_f8___4->n_f10___1: 1 {O(1)}
77: n_f8___4->n_f8___4: 48*Arg_17+36 {O(n)}
78: n_f8___4->n_f8___4: 48*Arg_17+36 {O(n)}
79: n_f8___4->n_f8___5: 24*Arg_17+28 {O(n)}
80: n_f8___4->n_f8___6: 24*Arg_17+28 {O(n)}
81: n_f8___5->n_f10___2: 1 {O(1)}
82: n_f8___5->n_f8___4: 48*Arg_17+26 {O(n)}
83: n_f8___5->n_f8___4: 48*Arg_17+42 {O(n)}
84: n_f8___5->n_f8___5: 48*Arg_17+44 {O(n)}
85: n_f8___5->n_f8___6: 48*Arg_17+44 {O(n)}
86: n_f8___6->n_f10___3: 1 {O(1)}
87: n_f8___6->n_f8___4: 24*Arg_17+26 {O(n)}
88: n_f8___6->n_f8___4: 24*Arg_17+26 {O(n)}
89: n_f8___6->n_f8___5: 48*Arg_17+34 {O(n)}
90: n_f8___6->n_f8___6: 72*Arg_17+54 {O(n)}
91: n_f8___7->n_f8___4: 1 {O(1)}
92: n_f8___7->n_f8___4: 1 {O(1)}
93: n_f8___7->n_f8___5: 1 {O(1)}
94: n_f8___7->n_f8___6: 1 {O(1)}
95: n_f8___8->n_f8___4: 1 {O(1)}
96: n_f8___8->n_f8___4: 1 {O(1)}
97: n_f8___8->n_f8___5: 1 {O(1)}
98: n_f8___8->n_f8___6: 1 {O(1)}
99: n_f9->n_f10___10: 1 {O(1)}
100: n_f9->n_f1___11: 1 {O(1)}
Sizebounds
70: n_f1___11->n_f1___9, Arg_1: 3 {O(1)}
70: n_f1___11->n_f1___9, Arg_6: 2 {O(1)}
70: n_f1___11->n_f1___9, Arg_7: Arg_7 {O(n)}
70: n_f1___11->n_f1___9, Arg_8: Arg_8 {O(n)}
70: n_f1___11->n_f1___9, Arg_9: Arg_9 {O(n)}
70: n_f1___11->n_f1___9, Arg_11: Arg_11 {O(n)}
70: n_f1___11->n_f1___9, Arg_12: Arg_12 {O(n)}
70: n_f1___11->n_f1___9, Arg_13: Arg_13 {O(n)}
70: n_f1___11->n_f1___9, Arg_14: Arg_14 {O(n)}
70: n_f1___11->n_f1___9, Arg_15: Arg_15 {O(n)}
70: n_f1___11->n_f1___9, Arg_17: Arg_17 {O(n)}
70: n_f1___11->n_f1___9, Arg_19: Arg_19 {O(n)}
70: n_f1___11->n_f1___9, Arg_24: Arg_24 {O(n)}
71: n_f1___11->n_f8___7, Arg_6: Arg_6 {O(n)}
71: n_f1___11->n_f8___7, Arg_8: Arg_17 {O(n)}
71: n_f1___11->n_f8___7, Arg_9: 0 {O(1)}
71: n_f1___11->n_f8___7, Arg_13: 0 {O(1)}
71: n_f1___11->n_f8___7, Arg_17: Arg_17 {O(n)}
71: n_f1___11->n_f8___7, Arg_19: Arg_19 {O(n)}
71: n_f1___11->n_f8___7, Arg_24: Arg_17+1 {O(n)}
72: n_f1___11->n_f8___8, Arg_6: Arg_6 {O(n)}
72: n_f1___11->n_f8___8, Arg_8: Arg_17 {O(n)}
72: n_f1___11->n_f8___8, Arg_9: 0 {O(1)}
72: n_f1___11->n_f8___8, Arg_13: 0 {O(1)}
72: n_f1___11->n_f8___8, Arg_17: Arg_17 {O(n)}
72: n_f1___11->n_f8___8, Arg_19: Arg_19 {O(n)}
72: n_f1___11->n_f8___8, Arg_24: Arg_17+1 {O(n)}
73: n_f1___9->n_f1___9, Arg_7: Arg_7 {O(n)}
73: n_f1___9->n_f1___9, Arg_8: Arg_8 {O(n)}
73: n_f1___9->n_f1___9, Arg_9: Arg_9 {O(n)}
73: n_f1___9->n_f1___9, Arg_11: Arg_11 {O(n)}
73: n_f1___9->n_f1___9, Arg_12: Arg_12 {O(n)}
73: n_f1___9->n_f1___9, Arg_13: Arg_13 {O(n)}
73: n_f1___9->n_f1___9, Arg_14: Arg_14 {O(n)}
73: n_f1___9->n_f1___9, Arg_15: Arg_15 {O(n)}
73: n_f1___9->n_f1___9, Arg_17: Arg_17 {O(n)}
73: n_f1___9->n_f1___9, Arg_19: Arg_19 {O(n)}
73: n_f1___9->n_f1___9, Arg_24: Arg_24 {O(n)}
74: n_f1___9->n_f8___7, Arg_8: 2*Arg_17 {O(n)}
74: n_f1___9->n_f8___7, Arg_9: 0 {O(1)}
74: n_f1___9->n_f8___7, Arg_13: 0 {O(1)}
74: n_f1___9->n_f8___7, Arg_17: 2*Arg_17 {O(n)}
74: n_f1___9->n_f8___7, Arg_19: 2*Arg_19 {O(n)}
74: n_f1___9->n_f8___7, Arg_24: 2*Arg_17+2 {O(n)}
75: n_f1___9->n_f8___8, Arg_8: 2*Arg_17 {O(n)}
75: n_f1___9->n_f8___8, Arg_9: 0 {O(1)}
75: n_f1___9->n_f8___8, Arg_13: 0 {O(1)}
75: n_f1___9->n_f8___8, Arg_17: 2*Arg_17 {O(n)}
75: n_f1___9->n_f8___8, Arg_19: 2*Arg_19 {O(n)}
75: n_f1___9->n_f8___8, Arg_24: 2*Arg_17+2 {O(n)}
76: n_f8___4->n_f10___1, Arg_8: 576*Arg_17 {O(n)}
76: n_f8___4->n_f10___1, Arg_17: 576*Arg_17+390 {O(n)}
76: n_f8___4->n_f10___1, Arg_24: 576*Arg_17+576 {O(n)}
77: n_f8___4->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
77: n_f8___4->n_f8___4, Arg_9: 0 {O(1)}
77: n_f8___4->n_f8___4, Arg_13: 0 {O(1)}
77: n_f8___4->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
77: n_f8___4->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
78: n_f8___4->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
78: n_f8___4->n_f8___4, Arg_9: 0 {O(1)}
78: n_f8___4->n_f8___4, Arg_13: 0 {O(1)}
78: n_f8___4->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
78: n_f8___4->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
79: n_f8___4->n_f8___5, Arg_8: 96*Arg_17 {O(n)}
79: n_f8___4->n_f8___5, Arg_9: 0 {O(1)}
79: n_f8___4->n_f8___5, Arg_13: 0 {O(1)}
79: n_f8___4->n_f8___5, Arg_17: 96*Arg_17+65 {O(n)}
79: n_f8___4->n_f8___5, Arg_24: 96*Arg_17+96 {O(n)}
80: n_f8___4->n_f8___6, Arg_8: 96*Arg_17 {O(n)}
80: n_f8___4->n_f8___6, Arg_9: 0 {O(1)}
80: n_f8___4->n_f8___6, Arg_13: 0 {O(1)}
80: n_f8___4->n_f8___6, Arg_17: 96*Arg_17+65 {O(n)}
80: n_f8___4->n_f8___6, Arg_24: 96*Arg_17+96 {O(n)}
81: n_f8___5->n_f10___2, Arg_8: 288*Arg_17 {O(n)}
81: n_f8___5->n_f10___2, Arg_17: 288*Arg_17+195 {O(n)}
81: n_f8___5->n_f10___2, Arg_24: 288*Arg_17+288 {O(n)}
82: n_f8___5->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
82: n_f8___5->n_f8___4, Arg_9: 0 {O(1)}
82: n_f8___5->n_f8___4, Arg_13: 0 {O(1)}
82: n_f8___5->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
82: n_f8___5->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
83: n_f8___5->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
83: n_f8___5->n_f8___4, Arg_9: 0 {O(1)}
83: n_f8___5->n_f8___4, Arg_13: 0 {O(1)}
83: n_f8___5->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
83: n_f8___5->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
84: n_f8___5->n_f8___5, Arg_8: 96*Arg_17 {O(n)}
84: n_f8___5->n_f8___5, Arg_9: 0 {O(1)}
84: n_f8___5->n_f8___5, Arg_13: 0 {O(1)}
84: n_f8___5->n_f8___5, Arg_17: 96*Arg_17+65 {O(n)}
84: n_f8___5->n_f8___5, Arg_24: 96*Arg_17+96 {O(n)}
85: n_f8___5->n_f8___6, Arg_8: 96*Arg_17 {O(n)}
85: n_f8___5->n_f8___6, Arg_9: 0 {O(1)}
85: n_f8___5->n_f8___6, Arg_13: 0 {O(1)}
85: n_f8___5->n_f8___6, Arg_17: 96*Arg_17+65 {O(n)}
85: n_f8___5->n_f8___6, Arg_24: 96*Arg_17+96 {O(n)}
86: n_f8___6->n_f10___3, Arg_8: 288*Arg_17 {O(n)}
86: n_f8___6->n_f10___3, Arg_17: 288*Arg_17+195 {O(n)}
86: n_f8___6->n_f10___3, Arg_24: 288*Arg_17+288 {O(n)}
87: n_f8___6->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
87: n_f8___6->n_f8___4, Arg_9: 0 {O(1)}
87: n_f8___6->n_f8___4, Arg_13: 0 {O(1)}
87: n_f8___6->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
87: n_f8___6->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
88: n_f8___6->n_f8___4, Arg_8: 96*Arg_17 {O(n)}
88: n_f8___6->n_f8___4, Arg_9: 0 {O(1)}
88: n_f8___6->n_f8___4, Arg_13: 0 {O(1)}
88: n_f8___6->n_f8___4, Arg_17: 96*Arg_17+65 {O(n)}
88: n_f8___6->n_f8___4, Arg_24: 96*Arg_17+96 {O(n)}
89: n_f8___6->n_f8___5, Arg_8: 96*Arg_17 {O(n)}
89: n_f8___6->n_f8___5, Arg_9: 0 {O(1)}
89: n_f8___6->n_f8___5, Arg_13: 0 {O(1)}
89: n_f8___6->n_f8___5, Arg_17: 96*Arg_17+65 {O(n)}
89: n_f8___6->n_f8___5, Arg_24: 96*Arg_17+96 {O(n)}
90: n_f8___6->n_f8___6, Arg_8: 96*Arg_17 {O(n)}
90: n_f8___6->n_f8___6, Arg_9: 0 {O(1)}
90: n_f8___6->n_f8___6, Arg_13: 0 {O(1)}
90: n_f8___6->n_f8___6, Arg_17: 96*Arg_17+65 {O(n)}
90: n_f8___6->n_f8___6, Arg_24: 96*Arg_17+96 {O(n)}
91: n_f8___7->n_f8___4, Arg_8: 3*Arg_17 {O(n)}
91: n_f8___7->n_f8___4, Arg_9: 0 {O(1)}
91: n_f8___7->n_f8___4, Arg_13: 0 {O(1)}
91: n_f8___7->n_f8___4, Arg_17: 3*Arg_17+2 {O(n)}
91: n_f8___7->n_f8___4, Arg_24: 3*Arg_17+3 {O(n)}
92: n_f8___7->n_f8___4, Arg_8: 3*Arg_17 {O(n)}
92: n_f8___7->n_f8___4, Arg_9: 0 {O(1)}
92: n_f8___7->n_f8___4, Arg_13: 0 {O(1)}
92: n_f8___7->n_f8___4, Arg_17: 3*Arg_17+2 {O(n)}
92: n_f8___7->n_f8___4, Arg_24: 3*Arg_17+3 {O(n)}
93: n_f8___7->n_f8___5, Arg_8: 3*Arg_17 {O(n)}
93: n_f8___7->n_f8___5, Arg_9: 0 {O(1)}
93: n_f8___7->n_f8___5, Arg_13: 0 {O(1)}
93: n_f8___7->n_f8___5, Arg_17: 3*Arg_17+2 {O(n)}
93: n_f8___7->n_f8___5, Arg_24: 3*Arg_17+3 {O(n)}
94: n_f8___7->n_f8___6, Arg_8: 3*Arg_17 {O(n)}
94: n_f8___7->n_f8___6, Arg_9: 0 {O(1)}
94: n_f8___7->n_f8___6, Arg_13: 0 {O(1)}
94: n_f8___7->n_f8___6, Arg_17: 3*Arg_17+2 {O(n)}
94: n_f8___7->n_f8___6, Arg_24: 3*Arg_17+3 {O(n)}
95: n_f8___8->n_f8___4, Arg_8: 3*Arg_17 {O(n)}
95: n_f8___8->n_f8___4, Arg_9: 0 {O(1)}
95: n_f8___8->n_f8___4, Arg_13: 0 {O(1)}
95: n_f8___8->n_f8___4, Arg_17: 3*Arg_17+2 {O(n)}
95: n_f8___8->n_f8___4, Arg_24: 3*Arg_17+3 {O(n)}
96: n_f8___8->n_f8___4, Arg_8: 3*Arg_17 {O(n)}
96: n_f8___8->n_f8___4, Arg_9: 0 {O(1)}
96: n_f8___8->n_f8___4, Arg_13: 0 {O(1)}
96: n_f8___8->n_f8___4, Arg_17: 3*Arg_17+2 {O(n)}
96: n_f8___8->n_f8___4, Arg_24: 3*Arg_17+3 {O(n)}
97: n_f8___8->n_f8___5, Arg_8: 3*Arg_17 {O(n)}
97: n_f8___8->n_f8___5, Arg_9: 0 {O(1)}
97: n_f8___8->n_f8___5, Arg_13: 0 {O(1)}
97: n_f8___8->n_f8___5, Arg_17: 3*Arg_17+2 {O(n)}
97: n_f8___8->n_f8___5, Arg_24: 3*Arg_17+3 {O(n)}
98: n_f8___8->n_f8___6, Arg_8: 3*Arg_17 {O(n)}
98: n_f8___8->n_f8___6, Arg_9: 0 {O(1)}
98: n_f8___8->n_f8___6, Arg_13: 0 {O(1)}
98: n_f8___8->n_f8___6, Arg_17: 3*Arg_17+2 {O(n)}
98: n_f8___8->n_f8___6, Arg_24: 3*Arg_17+3 {O(n)}
99: n_f9->n_f10___10, Arg_6: Arg_6 {O(n)}
99: n_f9->n_f10___10, Arg_8: Arg_8 {O(n)}
99: n_f9->n_f10___10, Arg_11: 0 {O(1)}
99: n_f9->n_f10___10, Arg_17: Arg_17 {O(n)}
99: n_f9->n_f10___10, Arg_19: Arg_19 {O(n)}
99: n_f9->n_f10___10, Arg_24: Arg_24 {O(n)}
100: n_f9->n_f1___11, Arg_1: 2 {O(1)}
100: n_f9->n_f1___11, Arg_6: Arg_6 {O(n)}
100: n_f9->n_f1___11, Arg_7: Arg_7 {O(n)}
100: n_f9->n_f1___11, Arg_8: Arg_8 {O(n)}
100: n_f9->n_f1___11, Arg_9: Arg_9 {O(n)}
100: n_f9->n_f1___11, Arg_11: Arg_11 {O(n)}
100: n_f9->n_f1___11, Arg_12: Arg_12 {O(n)}
100: n_f9->n_f1___11, Arg_13: Arg_13 {O(n)}
100: n_f9->n_f1___11, Arg_14: Arg_14 {O(n)}
100: n_f9->n_f1___11, Arg_15: Arg_15 {O(n)}
100: n_f9->n_f1___11, Arg_17: Arg_17 {O(n)}
100: n_f9->n_f1___11, Arg_19: Arg_19 {O(n)}
100: n_f9->n_f1___11, Arg_24: Arg_24 {O(n)}