Initial Problem
Start: n_f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: C_P, D_P, F_P, G_P, N_P, NoDet0, O_P, Q_P
Locations: n_f1___16, n_f1___21, n_f1___3, n_f1___6, n_f2, n_f26___13, n_f26___14, n_f32___11, n_f52___1, n_f52___10, n_f52___9, n_f55___7, n_f5___19, n_f5___22, n_f5___4, n_f5___8, n_f62___2, n_f9___12, n_f9___15, n_f9___17, n_f9___18, n_f9___20, n_f9___5
Transitions:
0:n_f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0
1:n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
2:n_f26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
3:n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,NoDet0,N_P,O_P,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && N_P<=O_P && O_P<=N_P
4:n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,O_P,NoDet0,Q_P,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && O_P+Q_P<=0 && 0<=O_P+Q_P
5:n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
6:n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
7:n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
8:n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
9:n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
10:n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
11:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f62___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,NoDet0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
12:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
13:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
14:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
15:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___15(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
16:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && Arg_0<=Arg_1
17:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && Arg_0<=Arg_1
18:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && Arg_0<=Arg_1
19:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___20(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && 1+Arg_1<=Arg_0
20:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
21:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
22:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
23:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___5(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
24:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
25:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
26:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
27:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___5(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0
28:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3
29:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
30:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
31:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
32:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
33:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
34:n_f9___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
35:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
36:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
37:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
38:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
39:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
40:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
41:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
42:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
43:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
44:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
45:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f9___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
46:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f5___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
Preprocessing
Eliminate variables {NoDet0,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12,Arg_15} that do not contribute to the problem
Found invariant Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___20
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f32___11
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f52___1
Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f5___19
Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___15
Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_1 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 5<=Arg_1+Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f1___3
Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_1 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f1___16
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f62___2
Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___5
Found invariant 1<=0 for location n_f26___14
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f52___10
Found invariant 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f1___21
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f26___13
Found invariant Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___12
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f55___7
Found invariant 2<=Arg_0 for location n_f5___22
Found invariant 1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___18
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f52___9
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 5<=Arg_1+Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f1___6
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f5___8
Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f5___4
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f9___17
Cut unsatisfiable transition 98: n_f26___14->n_f32___11
Cut unsatisfiable transition 126: n_f9___12->n_f26___14
Cut unsatisfiable transition 132: n_f9___17->n_f26___14
Cut unreachable locations [n_f26___14] from the program graph
Problem after Preprocessing
Start: n_f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_10, Arg_13, Arg_14, Arg_16, Arg_17
Temp_Vars: C_P, D_P, F_P, G_P, N_P, O_P, Q_P
Locations: n_f1___16, n_f1___21, n_f1___3, n_f1___6, n_f2, n_f26___13, n_f32___11, n_f52___1, n_f52___10, n_f52___9, n_f55___7, n_f5___19, n_f5___22, n_f5___4, n_f5___8, n_f62___2, n_f9___12, n_f9___15, n_f9___17, n_f9___18, n_f9___20, n_f9___5
Transitions:
96:n_f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0
97:n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
99:n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,N_P,O_P,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && N_P<=O_P && O_P<=N_P
100:n_f32___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,O_P,Q_P,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && O_P+Q_P<=0 && 0<=O_P+Q_P
101:n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
102:n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
103:n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
104:n_f52___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
105:n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
106:n_f52___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
107:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f62___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
108:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
109:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
110:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
111:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___15(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
112:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1
113:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1
114:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1
115:n_f5___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___20(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && 1+Arg_1<=Arg_0
116:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
117:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
118:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
119:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___5(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
120:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
121:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
122:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
123:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___5(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0
124:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10+1,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3
125:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
127:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
128:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
129:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
130:n_f9___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
131:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f26___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
133:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
134:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
135:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
136:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
137:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
138:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
139:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
140:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
141:n_f9___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
142:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
MPRF for transition 138:n_f9___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
Arg_0+Arg_3+3 {O(n)}
MPRF:
n_f9___18 [Arg_0+2-Arg_3 ]
MPRF for transition 128:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
4*Arg_0+4*Arg_3+10 {O(n)}
MPRF:
n_f9___12 [Arg_0+2-Arg_3 ]
n_f9___17 [Arg_0+1-Arg_3 ]
MPRF for transition 129:n_f9___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
4*Arg_0+4*Arg_3+10 {O(n)}
MPRF:
n_f9___12 [Arg_0+2-Arg_3 ]
n_f9___17 [Arg_0+1-Arg_3 ]
MPRF for transition 134:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___12(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
4*Arg_0+4*Arg_3+12 {O(n)}
MPRF:
n_f9___12 [Arg_0+1-Arg_3 ]
n_f9___17 [Arg_0+2-Arg_3 ]
MPRF for transition 135:n_f9___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
4*Arg_0+4*Arg_3+12 {O(n)}
MPRF:
n_f9___12 [Arg_0+1-Arg_3 ]
n_f9___17 [Arg_0+2-Arg_3 ]
MPRF for transition 101:n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 of depth 1:
new bound:
54*Arg_0+54*Arg_10+2 {O(n)}
MPRF:
n_f55___7 [Arg_0+1-Arg_10 ]
n_f62___2 [Arg_0+1-Arg_10 ]
n_f52___1 [Arg_0+2-Arg_10 ]
MPRF for transition 107:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f62___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3 of depth 1:
new bound:
54*Arg_0+54*Arg_10+2 {O(n)}
MPRF:
n_f55___7 [Arg_0+1-Arg_10 ]
n_f62___2 [Arg_0-Arg_10 ]
n_f52___1 [Arg_0+1-Arg_10 ]
MPRF for transition 124:n_f62___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f52___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10+1,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}
MPRF:
n_f55___7 [Arg_3-Arg_10 ]
n_f62___2 [Arg_3-Arg_10 ]
n_f52___1 [Arg_3-Arg_10 ]
MPRF for transition 119:n_f5___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___5(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
108*Arg_0+108*Arg_1+4 {O(n)}
MPRF:
n_f9___5 [Arg_0-Arg_1-1 ]
n_f5___4 [Arg_0-Arg_1 ]
MPRF for transition 142:n_f9___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
108*Arg_0+108*Arg_1+3 {O(n)}
MPRF:
n_f9___5 [Arg_0-Arg_1 ]
n_f5___4 [Arg_0-Arg_1 ]
MPRF for transition 111:n_f5___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f9___15(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
30*Arg_0+30*Arg_1+13 {O(n)}
MPRF:
n_f9___15 [Arg_0-Arg_1 ]
n_f5___19 [Arg_0+1-Arg_1 ]
MPRF for transition 130:n_f9___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f5___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}
MPRF:
n_f9___15 [Arg_3-Arg_1-1 ]
n_f5___19 [Arg_3-Arg_1-1 ]
All Bounds
Timebounds
Overall timebound:162*Arg_10+276*Arg_1+321*Arg_3+591*Arg_0+865 {O(n)}
96: n_f2->n_f5___22: 1 {O(1)}
97: n_f26___13->n_f32___11: 1 {O(1)}
99: n_f32___11->n_f52___10: 1 {O(1)}
100: n_f32___11->n_f52___9: 1 {O(1)}
101: n_f52___1->n_f55___7: 54*Arg_0+54*Arg_10+2 {O(n)}
102: n_f52___1->n_f5___8: 1 {O(1)}
103: n_f52___10->n_f55___7: 1 {O(1)}
104: n_f52___10->n_f5___8: 1 {O(1)}
105: n_f52___9->n_f55___7: 1 {O(1)}
106: n_f52___9->n_f5___8: 1 {O(1)}
107: n_f55___7->n_f62___2: 54*Arg_0+54*Arg_10+2 {O(n)}
108: n_f5___19->n_f1___16: 1 {O(1)}
109: n_f5___19->n_f1___16: 1 {O(1)}
110: n_f5___19->n_f1___16: 1 {O(1)}
111: n_f5___19->n_f9___15: 30*Arg_0+30*Arg_1+13 {O(n)}
112: n_f5___22->n_f1___21: 1 {O(1)}
113: n_f5___22->n_f1___21: 1 {O(1)}
114: n_f5___22->n_f1___21: 1 {O(1)}
115: n_f5___22->n_f9___20: 1 {O(1)}
116: n_f5___4->n_f1___3: 1 {O(1)}
117: n_f5___4->n_f1___3: 1 {O(1)}
118: n_f5___4->n_f1___3: 1 {O(1)}
119: n_f5___4->n_f9___5: 108*Arg_0+108*Arg_1+4 {O(n)}
120: n_f5___8->n_f1___6: 1 {O(1)}
121: n_f5___8->n_f1___6: 1 {O(1)}
122: n_f5___8->n_f1___6: 1 {O(1)}
123: n_f5___8->n_f9___5: 1 {O(1)}
124: n_f62___2->n_f52___1: 146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}
125: n_f9___12->n_f26___13: 1 {O(1)}
127: n_f9___12->n_f5___19: 1 {O(1)}
128: n_f9___12->n_f9___12: 4*Arg_0+4*Arg_3+10 {O(n)}
129: n_f9___12->n_f9___17: 4*Arg_0+4*Arg_3+10 {O(n)}
130: n_f9___15->n_f5___19: 104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}
131: n_f9___17->n_f26___13: 1 {O(1)}
133: n_f9___17->n_f5___19: 1 {O(1)}
134: n_f9___17->n_f9___12: 4*Arg_0+4*Arg_3+12 {O(n)}
135: n_f9___17->n_f9___17: 4*Arg_0+4*Arg_3+12 {O(n)}
136: n_f9___18->n_f5___19: 1 {O(1)}
137: n_f9___18->n_f9___17: 1 {O(1)}
138: n_f9___18->n_f9___18: Arg_0+Arg_3+3 {O(n)}
139: n_f9___20->n_f5___19: 1 {O(1)}
140: n_f9___20->n_f9___17: 1 {O(1)}
141: n_f9___20->n_f9___18: 1 {O(1)}
142: n_f9___5->n_f5___4: 108*Arg_0+108*Arg_1+3 {O(n)}
Costbounds
Overall costbound: 162*Arg_10+276*Arg_1+321*Arg_3+591*Arg_0+865 {O(n)}
96: n_f2->n_f5___22: 1 {O(1)}
97: n_f26___13->n_f32___11: 1 {O(1)}
99: n_f32___11->n_f52___10: 1 {O(1)}
100: n_f32___11->n_f52___9: 1 {O(1)}
101: n_f52___1->n_f55___7: 54*Arg_0+54*Arg_10+2 {O(n)}
102: n_f52___1->n_f5___8: 1 {O(1)}
103: n_f52___10->n_f55___7: 1 {O(1)}
104: n_f52___10->n_f5___8: 1 {O(1)}
105: n_f52___9->n_f55___7: 1 {O(1)}
106: n_f52___9->n_f5___8: 1 {O(1)}
107: n_f55___7->n_f62___2: 54*Arg_0+54*Arg_10+2 {O(n)}
108: n_f5___19->n_f1___16: 1 {O(1)}
109: n_f5___19->n_f1___16: 1 {O(1)}
110: n_f5___19->n_f1___16: 1 {O(1)}
111: n_f5___19->n_f9___15: 30*Arg_0+30*Arg_1+13 {O(n)}
112: n_f5___22->n_f1___21: 1 {O(1)}
113: n_f5___22->n_f1___21: 1 {O(1)}
114: n_f5___22->n_f1___21: 1 {O(1)}
115: n_f5___22->n_f9___20: 1 {O(1)}
116: n_f5___4->n_f1___3: 1 {O(1)}
117: n_f5___4->n_f1___3: 1 {O(1)}
118: n_f5___4->n_f1___3: 1 {O(1)}
119: n_f5___4->n_f9___5: 108*Arg_0+108*Arg_1+4 {O(n)}
120: n_f5___8->n_f1___6: 1 {O(1)}
121: n_f5___8->n_f1___6: 1 {O(1)}
122: n_f5___8->n_f1___6: 1 {O(1)}
123: n_f5___8->n_f9___5: 1 {O(1)}
124: n_f62___2->n_f52___1: 146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}
125: n_f9___12->n_f26___13: 1 {O(1)}
127: n_f9___12->n_f5___19: 1 {O(1)}
128: n_f9___12->n_f9___12: 4*Arg_0+4*Arg_3+10 {O(n)}
129: n_f9___12->n_f9___17: 4*Arg_0+4*Arg_3+10 {O(n)}
130: n_f9___15->n_f5___19: 104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}
131: n_f9___17->n_f26___13: 1 {O(1)}
133: n_f9___17->n_f5___19: 1 {O(1)}
134: n_f9___17->n_f9___12: 4*Arg_0+4*Arg_3+12 {O(n)}
135: n_f9___17->n_f9___17: 4*Arg_0+4*Arg_3+12 {O(n)}
136: n_f9___18->n_f5___19: 1 {O(1)}
137: n_f9___18->n_f9___17: 1 {O(1)}
138: n_f9___18->n_f9___18: Arg_0+Arg_3+3 {O(n)}
139: n_f9___20->n_f5___19: 1 {O(1)}
140: n_f9___20->n_f9___17: 1 {O(1)}
141: n_f9___20->n_f9___18: 1 {O(1)}
142: n_f9___5->n_f5___4: 108*Arg_0+108*Arg_1+3 {O(n)}
Sizebounds
96: n_f2->n_f5___22, Arg_0: Arg_0 {O(n)}
96: n_f2->n_f5___22, Arg_1: Arg_1 {O(n)}
96: n_f2->n_f5___22, Arg_2: Arg_2 {O(n)}
96: n_f2->n_f5___22, Arg_3: Arg_3 {O(n)}
96: n_f2->n_f5___22, Arg_4: Arg_4 {O(n)}
96: n_f2->n_f5___22, Arg_5: Arg_5 {O(n)}
96: n_f2->n_f5___22, Arg_6: Arg_6 {O(n)}
96: n_f2->n_f5___22, Arg_10: Arg_10 {O(n)}
96: n_f2->n_f5___22, Arg_13: Arg_13 {O(n)}
96: n_f2->n_f5___22, Arg_14: Arg_14 {O(n)}
96: n_f2->n_f5___22, Arg_16: Arg_16 {O(n)}
96: n_f2->n_f5___22, Arg_17: Arg_17 {O(n)}
97: n_f26___13->n_f32___11, Arg_0: 27*Arg_0 {O(n)}
97: n_f26___13->n_f32___11, Arg_1: 27*Arg_1 {O(n)}
97: n_f26___13->n_f32___11, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
97: n_f26___13->n_f32___11, Arg_10: 27*Arg_10 {O(n)}
97: n_f26___13->n_f32___11, Arg_13: 27*Arg_13 {O(n)}
97: n_f26___13->n_f32___11, Arg_14: 27*Arg_14 {O(n)}
97: n_f26___13->n_f32___11, Arg_16: 27*Arg_16 {O(n)}
97: n_f26___13->n_f32___11, Arg_17: 27*Arg_17 {O(n)}
99: n_f32___11->n_f52___10, Arg_0: 27*Arg_0 {O(n)}
99: n_f32___11->n_f52___10, Arg_1: 27*Arg_1 {O(n)}
99: n_f32___11->n_f52___10, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
99: n_f32___11->n_f52___10, Arg_10: 27*Arg_10 {O(n)}
99: n_f32___11->n_f52___10, Arg_16: 27*Arg_16 {O(n)}
99: n_f32___11->n_f52___10, Arg_17: 27*Arg_17 {O(n)}
100: n_f32___11->n_f52___9, Arg_0: 27*Arg_0 {O(n)}
100: n_f32___11->n_f52___9, Arg_1: 27*Arg_1 {O(n)}
100: n_f32___11->n_f52___9, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
100: n_f32___11->n_f52___9, Arg_10: 27*Arg_10 {O(n)}
100: n_f32___11->n_f52___9, Arg_13: 27*Arg_13 {O(n)}
100: n_f32___11->n_f52___9, Arg_17: 27*Arg_17 {O(n)}
101: n_f52___1->n_f55___7, Arg_0: 54*Arg_0 {O(n)}
101: n_f52___1->n_f55___7, Arg_1: 54*Arg_1 {O(n)}
101: n_f52___1->n_f55___7, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
101: n_f52___1->n_f55___7, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
101: n_f52___1->n_f55___7, Arg_17: 54*Arg_17 {O(n)}
102: n_f52___1->n_f5___8, Arg_0: 54*Arg_0 {O(n)}
102: n_f52___1->n_f5___8, Arg_1: 54*Arg_1+1 {O(n)}
102: n_f52___1->n_f5___8, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
102: n_f52___1->n_f5___8, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
102: n_f52___1->n_f5___8, Arg_17: 54*Arg_17 {O(n)}
103: n_f52___10->n_f55___7, Arg_0: 27*Arg_0 {O(n)}
103: n_f52___10->n_f55___7, Arg_1: 27*Arg_1 {O(n)}
103: n_f52___10->n_f55___7, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
103: n_f52___10->n_f55___7, Arg_10: 27*Arg_10 {O(n)}
103: n_f52___10->n_f55___7, Arg_16: 27*Arg_16 {O(n)}
103: n_f52___10->n_f55___7, Arg_17: 27*Arg_17 {O(n)}
104: n_f52___10->n_f5___8, Arg_0: 27*Arg_0 {O(n)}
104: n_f52___10->n_f5___8, Arg_1: 27*Arg_1+1 {O(n)}
104: n_f52___10->n_f5___8, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
104: n_f52___10->n_f5___8, Arg_10: 27*Arg_10 {O(n)}
104: n_f52___10->n_f5___8, Arg_16: 27*Arg_16 {O(n)}
104: n_f52___10->n_f5___8, Arg_17: 27*Arg_17 {O(n)}
105: n_f52___9->n_f55___7, Arg_0: 27*Arg_0 {O(n)}
105: n_f52___9->n_f55___7, Arg_1: 27*Arg_1 {O(n)}
105: n_f52___9->n_f55___7, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
105: n_f52___9->n_f55___7, Arg_10: 27*Arg_10 {O(n)}
105: n_f52___9->n_f55___7, Arg_13: 27*Arg_13 {O(n)}
105: n_f52___9->n_f55___7, Arg_17: 27*Arg_17 {O(n)}
106: n_f52___9->n_f5___8, Arg_0: 27*Arg_0 {O(n)}
106: n_f52___9->n_f5___8, Arg_1: 27*Arg_1+1 {O(n)}
106: n_f52___9->n_f5___8, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
106: n_f52___9->n_f5___8, Arg_10: 27*Arg_10 {O(n)}
106: n_f52___9->n_f5___8, Arg_13: 27*Arg_13 {O(n)}
106: n_f52___9->n_f5___8, Arg_17: 27*Arg_17 {O(n)}
107: n_f55___7->n_f62___2, Arg_0: 54*Arg_0 {O(n)}
107: n_f55___7->n_f62___2, Arg_1: 54*Arg_1 {O(n)}
107: n_f55___7->n_f62___2, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
107: n_f55___7->n_f62___2, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
107: n_f55___7->n_f62___2, Arg_17: 54*Arg_17 {O(n)}
108: n_f5___19->n_f1___16, Arg_0: 60*Arg_0 {O(n)}
108: n_f5___19->n_f1___16, Arg_1: 104*Arg_3+74*Arg_0+90*Arg_1+284 {O(n)}
108: n_f5___19->n_f1___16, Arg_2: 0 {O(1)}
108: n_f5___19->n_f1___16, Arg_3: 148*Arg_0+208*Arg_3+506 {O(n)}
108: n_f5___19->n_f1___16, Arg_4: 2*Arg_4 {O(n)}
108: n_f5___19->n_f1___16, Arg_10: 60*Arg_10 {O(n)}
108: n_f5___19->n_f1___16, Arg_13: 60*Arg_13 {O(n)}
108: n_f5___19->n_f1___16, Arg_14: 60*Arg_14 {O(n)}
108: n_f5___19->n_f1___16, Arg_16: 60*Arg_16 {O(n)}
108: n_f5___19->n_f1___16, Arg_17: 0 {O(1)}
109: n_f5___19->n_f1___16, Arg_0: 60*Arg_0 {O(n)}
109: n_f5___19->n_f1___16, Arg_1: 104*Arg_3+74*Arg_0+90*Arg_1+284 {O(n)}
109: n_f5___19->n_f1___16, Arg_2: 0 {O(1)}
109: n_f5___19->n_f1___16, Arg_3: 148*Arg_0+208*Arg_3+506 {O(n)}
109: n_f5___19->n_f1___16, Arg_4: 2*Arg_4 {O(n)}
109: n_f5___19->n_f1___16, Arg_10: 60*Arg_10 {O(n)}
109: n_f5___19->n_f1___16, Arg_13: 60*Arg_13 {O(n)}
109: n_f5___19->n_f1___16, Arg_14: 60*Arg_14 {O(n)}
109: n_f5___19->n_f1___16, Arg_16: 60*Arg_16 {O(n)}
109: n_f5___19->n_f1___16, Arg_17: 0 {O(1)}
110: n_f5___19->n_f1___16, Arg_0: 60*Arg_0 {O(n)}
110: n_f5___19->n_f1___16, Arg_1: 104*Arg_3+74*Arg_0+90*Arg_1+284 {O(n)}
110: n_f5___19->n_f1___16, Arg_2: 0 {O(1)}
110: n_f5___19->n_f1___16, Arg_3: 148*Arg_0+208*Arg_3+506 {O(n)}
110: n_f5___19->n_f1___16, Arg_4: 2*Arg_4 {O(n)}
110: n_f5___19->n_f1___16, Arg_10: 60*Arg_10 {O(n)}
110: n_f5___19->n_f1___16, Arg_13: 60*Arg_13 {O(n)}
110: n_f5___19->n_f1___16, Arg_14: 60*Arg_14 {O(n)}
110: n_f5___19->n_f1___16, Arg_16: 60*Arg_16 {O(n)}
110: n_f5___19->n_f1___16, Arg_17: 0 {O(1)}
111: n_f5___19->n_f9___15, Arg_0: 30*Arg_0 {O(n)}
111: n_f5___19->n_f9___15, Arg_1: 104*Arg_3+60*Arg_1+74*Arg_0+275 {O(n)}
111: n_f5___19->n_f9___15, Arg_2: 0 {O(1)}
111: n_f5___19->n_f9___15, Arg_3: 104*Arg_3+74*Arg_0+253 {O(n)}
111: n_f5___19->n_f9___15, Arg_4: Arg_4 {O(n)}
111: n_f5___19->n_f9___15, Arg_10: 30*Arg_10 {O(n)}
111: n_f5___19->n_f9___15, Arg_13: 30*Arg_13 {O(n)}
111: n_f5___19->n_f9___15, Arg_14: 30*Arg_14 {O(n)}
111: n_f5___19->n_f9___15, Arg_16: 30*Arg_16 {O(n)}
111: n_f5___19->n_f9___15, Arg_17: 0 {O(1)}
112: n_f5___22->n_f1___21, Arg_0: Arg_0 {O(n)}
112: n_f5___22->n_f1___21, Arg_1: Arg_1 {O(n)}
112: n_f5___22->n_f1___21, Arg_2: Arg_2 {O(n)}
112: n_f5___22->n_f1___21, Arg_3: Arg_3 {O(n)}
112: n_f5___22->n_f1___21, Arg_4: Arg_4 {O(n)}
112: n_f5___22->n_f1___21, Arg_5: Arg_5 {O(n)}
112: n_f5___22->n_f1___21, Arg_6: Arg_6 {O(n)}
112: n_f5___22->n_f1___21, Arg_10: Arg_10 {O(n)}
112: n_f5___22->n_f1___21, Arg_13: Arg_13 {O(n)}
112: n_f5___22->n_f1___21, Arg_14: Arg_14 {O(n)}
112: n_f5___22->n_f1___21, Arg_16: Arg_16 {O(n)}
112: n_f5___22->n_f1___21, Arg_17: Arg_17 {O(n)}
113: n_f5___22->n_f1___21, Arg_0: Arg_0 {O(n)}
113: n_f5___22->n_f1___21, Arg_1: Arg_1 {O(n)}
113: n_f5___22->n_f1___21, Arg_2: Arg_2 {O(n)}
113: n_f5___22->n_f1___21, Arg_3: Arg_3 {O(n)}
113: n_f5___22->n_f1___21, Arg_4: Arg_4 {O(n)}
113: n_f5___22->n_f1___21, Arg_5: Arg_5 {O(n)}
113: n_f5___22->n_f1___21, Arg_6: Arg_6 {O(n)}
113: n_f5___22->n_f1___21, Arg_10: Arg_10 {O(n)}
113: n_f5___22->n_f1___21, Arg_13: Arg_13 {O(n)}
113: n_f5___22->n_f1___21, Arg_14: Arg_14 {O(n)}
113: n_f5___22->n_f1___21, Arg_16: Arg_16 {O(n)}
113: n_f5___22->n_f1___21, Arg_17: Arg_17 {O(n)}
114: n_f5___22->n_f1___21, Arg_0: Arg_0 {O(n)}
114: n_f5___22->n_f1___21, Arg_1: Arg_1 {O(n)}
114: n_f5___22->n_f1___21, Arg_2: Arg_2 {O(n)}
114: n_f5___22->n_f1___21, Arg_3: Arg_3 {O(n)}
114: n_f5___22->n_f1___21, Arg_4: Arg_4 {O(n)}
114: n_f5___22->n_f1___21, Arg_5: Arg_5 {O(n)}
114: n_f5___22->n_f1___21, Arg_6: Arg_6 {O(n)}
114: n_f5___22->n_f1___21, Arg_10: Arg_10 {O(n)}
114: n_f5___22->n_f1___21, Arg_13: Arg_13 {O(n)}
114: n_f5___22->n_f1___21, Arg_14: Arg_14 {O(n)}
114: n_f5___22->n_f1___21, Arg_16: Arg_16 {O(n)}
114: n_f5___22->n_f1___21, Arg_17: Arg_17 {O(n)}
115: n_f5___22->n_f9___20, Arg_0: Arg_0 {O(n)}
115: n_f5___22->n_f9___20, Arg_1: Arg_1 {O(n)}
115: n_f5___22->n_f9___20, Arg_2: 0 {O(1)}
115: n_f5___22->n_f9___20, Arg_3: Arg_3 {O(n)}
115: n_f5___22->n_f9___20, Arg_4: Arg_4 {O(n)}
115: n_f5___22->n_f9___20, Arg_5: Arg_5 {O(n)}
115: n_f5___22->n_f9___20, Arg_6: Arg_6 {O(n)}
115: n_f5___22->n_f9___20, Arg_10: Arg_10 {O(n)}
115: n_f5___22->n_f9___20, Arg_13: Arg_13 {O(n)}
115: n_f5___22->n_f9___20, Arg_14: Arg_14 {O(n)}
115: n_f5___22->n_f9___20, Arg_16: Arg_16 {O(n)}
115: n_f5___22->n_f9___20, Arg_17: Arg_17 {O(n)}
116: n_f5___4->n_f1___3, Arg_0: 108*Arg_0 {O(n)}
116: n_f5___4->n_f1___3, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
116: n_f5___4->n_f1___3, Arg_2: 0 {O(1)}
116: n_f5___4->n_f1___3, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
116: n_f5___4->n_f1___3, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
116: n_f5___4->n_f1___3, Arg_17: 0 {O(1)}
117: n_f5___4->n_f1___3, Arg_0: 108*Arg_0 {O(n)}
117: n_f5___4->n_f1___3, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
117: n_f5___4->n_f1___3, Arg_2: 0 {O(1)}
117: n_f5___4->n_f1___3, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
117: n_f5___4->n_f1___3, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
117: n_f5___4->n_f1___3, Arg_17: 0 {O(1)}
118: n_f5___4->n_f1___3, Arg_0: 108*Arg_0 {O(n)}
118: n_f5___4->n_f1___3, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
118: n_f5___4->n_f1___3, Arg_2: 0 {O(1)}
118: n_f5___4->n_f1___3, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
118: n_f5___4->n_f1___3, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
118: n_f5___4->n_f1___3, Arg_17: 0 {O(1)}
119: n_f5___4->n_f9___5, Arg_0: 108*Arg_0 {O(n)}
119: n_f5___4->n_f9___5, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
119: n_f5___4->n_f9___5, Arg_2: 0 {O(1)}
119: n_f5___4->n_f9___5, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
119: n_f5___4->n_f9___5, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
119: n_f5___4->n_f9___5, Arg_17: 0 {O(1)}
120: n_f5___8->n_f1___6, Arg_0: 108*Arg_0 {O(n)}
120: n_f5___8->n_f1___6, Arg_1: 108*Arg_1+3 {O(n)}
120: n_f5___8->n_f1___6, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
120: n_f5___8->n_f1___6, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
120: n_f5___8->n_f1___6, Arg_17: 108*Arg_17 {O(n)}
121: n_f5___8->n_f1___6, Arg_0: 108*Arg_0 {O(n)}
121: n_f5___8->n_f1___6, Arg_1: 108*Arg_1+3 {O(n)}
121: n_f5___8->n_f1___6, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
121: n_f5___8->n_f1___6, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
121: n_f5___8->n_f1___6, Arg_17: 108*Arg_17 {O(n)}
122: n_f5___8->n_f1___6, Arg_0: 108*Arg_0 {O(n)}
122: n_f5___8->n_f1___6, Arg_1: 108*Arg_1+3 {O(n)}
122: n_f5___8->n_f1___6, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
122: n_f5___8->n_f1___6, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
122: n_f5___8->n_f1___6, Arg_17: 108*Arg_17 {O(n)}
123: n_f5___8->n_f9___5, Arg_0: 108*Arg_0 {O(n)}
123: n_f5___8->n_f9___5, Arg_1: 108*Arg_1+3 {O(n)}
123: n_f5___8->n_f9___5, Arg_2: 0 {O(1)}
123: n_f5___8->n_f9___5, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
123: n_f5___8->n_f9___5, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
123: n_f5___8->n_f9___5, Arg_17: 108*Arg_17 {O(n)}
124: n_f62___2->n_f52___1, Arg_0: 54*Arg_0 {O(n)}
124: n_f62___2->n_f52___1, Arg_1: 54*Arg_1 {O(n)}
124: n_f62___2->n_f52___1, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
124: n_f62___2->n_f52___1, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
124: n_f62___2->n_f52___1, Arg_17: 54*Arg_17 {O(n)}
125: n_f9___12->n_f26___13, Arg_0: 12*Arg_0 {O(n)}
125: n_f9___12->n_f26___13, Arg_1: 12*Arg_1 {O(n)}
125: n_f9___12->n_f26___13, Arg_3: 36*Arg_0+48*Arg_3+120 {O(n)}
125: n_f9___12->n_f26___13, Arg_10: 12*Arg_10 {O(n)}
125: n_f9___12->n_f26___13, Arg_13: 12*Arg_13 {O(n)}
125: n_f9___12->n_f26___13, Arg_14: 12*Arg_14 {O(n)}
125: n_f9___12->n_f26___13, Arg_16: 12*Arg_16 {O(n)}
125: n_f9___12->n_f26___13, Arg_17: 12*Arg_17 {O(n)}
127: n_f9___12->n_f5___19, Arg_0: 12*Arg_0 {O(n)}
127: n_f9___12->n_f5___19, Arg_1: 12*Arg_1+2 {O(n)}
127: n_f9___12->n_f5___19, Arg_2: 0 {O(1)}
127: n_f9___12->n_f5___19, Arg_3: 36*Arg_0+48*Arg_3+120 {O(n)}
127: n_f9___12->n_f5___19, Arg_4: 0 {O(1)}
127: n_f9___12->n_f5___19, Arg_10: 12*Arg_10 {O(n)}
127: n_f9___12->n_f5___19, Arg_13: 12*Arg_13 {O(n)}
127: n_f9___12->n_f5___19, Arg_14: 12*Arg_14 {O(n)}
127: n_f9___12->n_f5___19, Arg_16: 12*Arg_16 {O(n)}
127: n_f9___12->n_f5___19, Arg_17: 0 {O(1)}
128: n_f9___12->n_f9___12, Arg_0: 6*Arg_0 {O(n)}
128: n_f9___12->n_f9___12, Arg_1: 6*Arg_1 {O(n)}
128: n_f9___12->n_f9___12, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
128: n_f9___12->n_f9___12, Arg_10: 6*Arg_10 {O(n)}
128: n_f9___12->n_f9___12, Arg_13: 6*Arg_13 {O(n)}
128: n_f9___12->n_f9___12, Arg_14: 6*Arg_14 {O(n)}
128: n_f9___12->n_f9___12, Arg_16: 6*Arg_16 {O(n)}
128: n_f9___12->n_f9___12, Arg_17: 6*Arg_17 {O(n)}
129: n_f9___12->n_f9___17, Arg_0: 6*Arg_0 {O(n)}
129: n_f9___12->n_f9___17, Arg_1: 6*Arg_1 {O(n)}
129: n_f9___12->n_f9___17, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
129: n_f9___12->n_f9___17, Arg_10: 6*Arg_10 {O(n)}
129: n_f9___12->n_f9___17, Arg_13: 6*Arg_13 {O(n)}
129: n_f9___12->n_f9___17, Arg_14: 6*Arg_14 {O(n)}
129: n_f9___12->n_f9___17, Arg_16: 6*Arg_16 {O(n)}
129: n_f9___12->n_f9___17, Arg_17: 6*Arg_17 {O(n)}
130: n_f9___15->n_f5___19, Arg_0: 30*Arg_0 {O(n)}
130: n_f9___15->n_f5___19, Arg_1: 104*Arg_3+60*Arg_1+74*Arg_0+275 {O(n)}
130: n_f9___15->n_f5___19, Arg_2: 0 {O(1)}
130: n_f9___15->n_f5___19, Arg_3: 104*Arg_3+74*Arg_0+253 {O(n)}
130: n_f9___15->n_f5___19, Arg_4: Arg_4 {O(n)}
130: n_f9___15->n_f5___19, Arg_10: 30*Arg_10 {O(n)}
130: n_f9___15->n_f5___19, Arg_13: 30*Arg_13 {O(n)}
130: n_f9___15->n_f5___19, Arg_14: 30*Arg_14 {O(n)}
130: n_f9___15->n_f5___19, Arg_16: 30*Arg_16 {O(n)}
130: n_f9___15->n_f5___19, Arg_17: 0 {O(1)}
131: n_f9___17->n_f26___13, Arg_0: 15*Arg_0 {O(n)}
131: n_f9___17->n_f26___13, Arg_1: 15*Arg_1 {O(n)}
131: n_f9___17->n_f26___13, Arg_3: 37*Arg_0+52*Arg_3+128 {O(n)}
131: n_f9___17->n_f26___13, Arg_10: 15*Arg_10 {O(n)}
131: n_f9___17->n_f26___13, Arg_13: 15*Arg_13 {O(n)}
131: n_f9___17->n_f26___13, Arg_14: 15*Arg_14 {O(n)}
131: n_f9___17->n_f26___13, Arg_16: 15*Arg_16 {O(n)}
131: n_f9___17->n_f26___13, Arg_17: 15*Arg_17 {O(n)}
133: n_f9___17->n_f5___19, Arg_0: 15*Arg_0 {O(n)}
133: n_f9___17->n_f5___19, Arg_1: 15*Arg_1+4 {O(n)}
133: n_f9___17->n_f5___19, Arg_2: 0 {O(1)}
133: n_f9___17->n_f5___19, Arg_3: 37*Arg_0+52*Arg_3+128 {O(n)}
133: n_f9___17->n_f5___19, Arg_4: 0 {O(1)}
133: n_f9___17->n_f5___19, Arg_5: 0 {O(1)}
133: n_f9___17->n_f5___19, Arg_6: 0 {O(1)}
133: n_f9___17->n_f5___19, Arg_10: 15*Arg_10 {O(n)}
133: n_f9___17->n_f5___19, Arg_13: 15*Arg_13 {O(n)}
133: n_f9___17->n_f5___19, Arg_14: 15*Arg_14 {O(n)}
133: n_f9___17->n_f5___19, Arg_16: 15*Arg_16 {O(n)}
133: n_f9___17->n_f5___19, Arg_17: 0 {O(1)}
134: n_f9___17->n_f9___12, Arg_0: 6*Arg_0 {O(n)}
134: n_f9___17->n_f9___12, Arg_1: 6*Arg_1 {O(n)}
134: n_f9___17->n_f9___12, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
134: n_f9___17->n_f9___12, Arg_10: 6*Arg_10 {O(n)}
134: n_f9___17->n_f9___12, Arg_13: 6*Arg_13 {O(n)}
134: n_f9___17->n_f9___12, Arg_14: 6*Arg_14 {O(n)}
134: n_f9___17->n_f9___12, Arg_16: 6*Arg_16 {O(n)}
134: n_f9___17->n_f9___12, Arg_17: 6*Arg_17 {O(n)}
135: n_f9___17->n_f9___17, Arg_0: 6*Arg_0 {O(n)}
135: n_f9___17->n_f9___17, Arg_1: 6*Arg_1 {O(n)}
135: n_f9___17->n_f9___17, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
135: n_f9___17->n_f9___17, Arg_10: 6*Arg_10 {O(n)}
135: n_f9___17->n_f9___17, Arg_13: 6*Arg_13 {O(n)}
135: n_f9___17->n_f9___17, Arg_14: 6*Arg_14 {O(n)}
135: n_f9___17->n_f9___17, Arg_16: 6*Arg_16 {O(n)}
135: n_f9___17->n_f9___17, Arg_17: 6*Arg_17 {O(n)}
136: n_f9___18->n_f5___19, Arg_0: 2*Arg_0 {O(n)}
136: n_f9___18->n_f5___19, Arg_1: 2*Arg_1+2 {O(n)}
136: n_f9___18->n_f5___19, Arg_2: 0 {O(1)}
136: n_f9___18->n_f5___19, Arg_3: 3*Arg_3+Arg_0+5 {O(n)}
136: n_f9___18->n_f5___19, Arg_4: 0 {O(1)}
136: n_f9___18->n_f5___19, Arg_10: 2*Arg_10 {O(n)}
136: n_f9___18->n_f5___19, Arg_13: 2*Arg_13 {O(n)}
136: n_f9___18->n_f5___19, Arg_14: 2*Arg_14 {O(n)}
136: n_f9___18->n_f5___19, Arg_16: 2*Arg_16 {O(n)}
136: n_f9___18->n_f5___19, Arg_17: 0 {O(1)}
137: n_f9___18->n_f9___17, Arg_0: 2*Arg_0 {O(n)}
137: n_f9___18->n_f9___17, Arg_1: 2*Arg_1 {O(n)}
137: n_f9___18->n_f9___17, Arg_3: 3*Arg_3+Arg_0+7 {O(n)}
137: n_f9___18->n_f9___17, Arg_4: 0 {O(1)}
137: n_f9___18->n_f9___17, Arg_10: 2*Arg_10 {O(n)}
137: n_f9___18->n_f9___17, Arg_13: 2*Arg_13 {O(n)}
137: n_f9___18->n_f9___17, Arg_14: 2*Arg_14 {O(n)}
137: n_f9___18->n_f9___17, Arg_16: 2*Arg_16 {O(n)}
137: n_f9___18->n_f9___17, Arg_17: 2*Arg_17 {O(n)}
138: n_f9___18->n_f9___18, Arg_0: Arg_0 {O(n)}
138: n_f9___18->n_f9___18, Arg_1: Arg_1 {O(n)}
138: n_f9___18->n_f9___18, Arg_2: 0 {O(1)}
138: n_f9___18->n_f9___18, Arg_3: 2*Arg_3+Arg_0+4 {O(n)}
138: n_f9___18->n_f9___18, Arg_4: 0 {O(1)}
138: n_f9___18->n_f9___18, Arg_10: Arg_10 {O(n)}
138: n_f9___18->n_f9___18, Arg_13: Arg_13 {O(n)}
138: n_f9___18->n_f9___18, Arg_14: Arg_14 {O(n)}
138: n_f9___18->n_f9___18, Arg_16: Arg_16 {O(n)}
138: n_f9___18->n_f9___18, Arg_17: Arg_17 {O(n)}
139: n_f9___20->n_f5___19, Arg_0: Arg_0 {O(n)}
139: n_f9___20->n_f5___19, Arg_1: Arg_1+1 {O(n)}
139: n_f9___20->n_f5___19, Arg_2: 0 {O(1)}
139: n_f9___20->n_f5___19, Arg_3: Arg_3 {O(n)}
139: n_f9___20->n_f5___19, Arg_4: Arg_4 {O(n)}
139: n_f9___20->n_f5___19, Arg_5: Arg_5 {O(n)}
139: n_f9___20->n_f5___19, Arg_6: Arg_6 {O(n)}
139: n_f9___20->n_f5___19, Arg_10: Arg_10 {O(n)}
139: n_f9___20->n_f5___19, Arg_13: Arg_13 {O(n)}
139: n_f9___20->n_f5___19, Arg_14: Arg_14 {O(n)}
139: n_f9___20->n_f5___19, Arg_16: Arg_16 {O(n)}
139: n_f9___20->n_f5___19, Arg_17: 0 {O(1)}
140: n_f9___20->n_f9___17, Arg_0: Arg_0 {O(n)}
140: n_f9___20->n_f9___17, Arg_1: Arg_1 {O(n)}
140: n_f9___20->n_f9___17, Arg_3: Arg_3+1 {O(n)}
140: n_f9___20->n_f9___17, Arg_4: 0 {O(1)}
140: n_f9___20->n_f9___17, Arg_10: Arg_10 {O(n)}
140: n_f9___20->n_f9___17, Arg_13: Arg_13 {O(n)}
140: n_f9___20->n_f9___17, Arg_14: Arg_14 {O(n)}
140: n_f9___20->n_f9___17, Arg_16: Arg_16 {O(n)}
140: n_f9___20->n_f9___17, Arg_17: Arg_17 {O(n)}
141: n_f9___20->n_f9___18, Arg_0: Arg_0 {O(n)}
141: n_f9___20->n_f9___18, Arg_1: Arg_1 {O(n)}
141: n_f9___20->n_f9___18, Arg_2: 0 {O(1)}
141: n_f9___20->n_f9___18, Arg_3: Arg_3+1 {O(n)}
141: n_f9___20->n_f9___18, Arg_4: 0 {O(1)}
141: n_f9___20->n_f9___18, Arg_10: Arg_10 {O(n)}
141: n_f9___20->n_f9___18, Arg_13: Arg_13 {O(n)}
141: n_f9___20->n_f9___18, Arg_14: Arg_14 {O(n)}
141: n_f9___20->n_f9___18, Arg_16: Arg_16 {O(n)}
141: n_f9___20->n_f9___18, Arg_17: Arg_17 {O(n)}
142: n_f9___5->n_f5___4, Arg_0: 108*Arg_0 {O(n)}
142: n_f9___5->n_f5___4, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
142: n_f9___5->n_f5___4, Arg_2: 0 {O(1)}
142: n_f9___5->n_f5___4, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
142: n_f9___5->n_f5___4, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
142: n_f9___5->n_f5___4, Arg_17: 0 {O(1)}