Initial Problem
Start: n_f3
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31
Temp_Vars: A_P, B1_P, B_P, C_P, E_P, L_P, N_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet13, NoDet14, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9, O_P, P_P, Q_P, T_P, W_P, Z_P
Locations: n_f10___4, n_f10___5, n_f10___6, n_f10___7, n_f10___8, n_f1___11, n_f1___9, n_f3, n_f4___1, n_f4___10, n_f4___2, n_f4___3
Transitions:
0:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
1:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
2:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
3:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
4:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f4___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
5:n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
6:n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
7:n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
8:n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
9:n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f4___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
10:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
11:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
12:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
13:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
14:n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f4___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
15:n_f10___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
16:n_f10___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
17:n_f10___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
18:n_f10___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
19:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
20:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
21:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
22:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,Arg_24,T_P,NoDet0,Arg_14,W_P,Arg_29,Arg_30,Arg_31):|:Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
23:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___7(NoDet0,NoDet6,B_P,NoDet7,NoDet1,Arg_5,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_10,NoDet8,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet5):|:0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 2<=O_P && 2<=B_P && 1+Arg_4<=Arg_19 && 0<=Arg_2
24:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___8(NoDet0,NoDet6,B_P,NoDet7,NoDet1,Arg_5,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_10,NoDet8,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet5):|:0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_19<=Arg_4 && 2<=O_P && 2<=B_P && 0<=Arg_2
25:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f1___9(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_6,Arg_5,NoDet0,Arg_7,Arg_6,Arg_9,NoDet1,Arg_11,Arg_2,Arg_14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
26:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___7(NoDet0,NoDet6,B_P,NoDet7,NoDet1,Arg_5,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_10,NoDet8,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet5):|:0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 2<=O_P && 2<=B_P && 1+Arg_4<=Arg_19 && 0<=Arg_2
27:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f10___8(NoDet0,NoDet6,B_P,NoDet7,NoDet1,Arg_5,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_10,NoDet8,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,NoDet4,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,NoDet5):|:0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_19<=Arg_4 && 2<=O_P && 2<=B_P && 0<=Arg_2
28:n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f1___9(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_6,Arg_5,NoDet0,Arg_7,Arg_6,Arg_9,NoDet1,Arg_11,Arg_2,Arg_14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
29:n_f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f1___11(A_P,Arg_1,2,B1_P,C_P,NoDet3,NoDet0,Arg_7,E_P,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,L_P,Arg_18,N_P,O_P,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,NoDet1,NoDet2,Z_P):|:2<=A_P && A_P<=O_P && O_P<=A_P && L_P<=N_P && N_P<=L_P && C_P<=E_P && E_P<=C_P && C_P<=B1_P && B1_P<=C_P && L_P<=Z_P && Z_P<=L_P
30:n_f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> n_f4___10(NoDet0,NoDet13,NoDet1,NoDet14,NoDet2,Arg_5,NoDet3,Arg_7,NoDet4,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,NoDet5,Arg_16,Arg_29,NoDet6,Arg_29,O_P,Arg_29,NoDet7,NoDet8,NoDet9,Arg_25,Arg_26,Arg_27,Arg_28,NoDet10,NoDet11,NoDet12):|:O_P<=0
Preprocessing
Eliminate variables {NoDet11,NoDet13,NoDet9,Arg_1,Arg_5,Arg_10,Arg_11,Arg_24,Arg_26,Arg_30} that do not contribute to the problem
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 2<=Arg_7 && 2<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 2<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 4<=Arg_20+Arg_7 && 4<=Arg_2+Arg_7 && 3<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=Arg_28 && 0<=Arg_25+Arg_28 && Arg_25<=Arg_28 && 2<=Arg_20+Arg_28 && 2<=Arg_2+Arg_28 && 1<=Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=Arg_25 && 2<=Arg_20+Arg_25 && 2<=Arg_2+Arg_25 && 1<=Arg_16+Arg_25 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 3<=Arg_16+Arg_20 && 2<=Arg_2 && 3<=Arg_16+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 1<=Arg_16 for location n_f4___1
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 2<=Arg_7 && 2<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 2<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 4<=Arg_20+Arg_7 && 4<=Arg_2+Arg_7 && 3<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=Arg_28 && 0<=Arg_25+Arg_28 && Arg_25<=Arg_28 && 2<=Arg_20+Arg_28 && 2<=Arg_2+Arg_28 && 1<=Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=Arg_25 && 2<=Arg_20+Arg_25 && 2<=Arg_2+Arg_25 && 1<=Arg_16+Arg_25 && 2+Arg_21<=Arg_19 && 2+Arg_21<=Arg_17 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 3<=Arg_16+Arg_20 && 2<=Arg_2 && 3<=Arg_16+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 1<=Arg_16 for location n_f4___3
Found invariant Arg_8<=Arg_4 && Arg_8<=Arg_3 && Arg_4<=Arg_8 && Arg_3<=Arg_8 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 4<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=2 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 2<=Arg_0 for location n_f1___11
Found invariant Arg_21<=Arg_19 && Arg_21<=Arg_17 && Arg_19<=Arg_21 && Arg_17<=Arg_21 && Arg_20<=0 && Arg_19<=Arg_17 && Arg_17<=Arg_19 for location n_f4___10
Found invariant Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 3<=Arg_20 && 6<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 5<=Arg_12+Arg_20 && 1+Arg_12<=Arg_20 && 6<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 for location n_f1___9
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 2<=Arg_7 && 2<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 2<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 4<=Arg_20+Arg_7 && 4<=Arg_2+Arg_7 && 3<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=Arg_28 && 0<=Arg_25+Arg_28 && Arg_25<=Arg_28 && 2<=Arg_20+Arg_28 && 2<=Arg_2+Arg_28 && 1<=Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=Arg_25 && 2<=Arg_20+Arg_25 && 2<=Arg_2+Arg_25 && 1<=Arg_16+Arg_25 && 2+Arg_19<=Arg_21 && 2+Arg_17<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 3<=Arg_16+Arg_20 && 2<=Arg_2 && 3<=Arg_16+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 1<=Arg_16 for location n_f4___2
Found invariant Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && 1+Arg_23<=Arg_19 && 1+Arg_23<=Arg_18 && 1+Arg_23<=Arg_17 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 1+Arg_22<=Arg_19 && 1+Arg_22<=Arg_18 && 1+Arg_22<=Arg_17 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && Arg_15<=Arg_22 && 1+Arg_21<=Arg_19 && 1+Arg_21<=Arg_18 && 1+Arg_21<=Arg_17 && Arg_21<=Arg_15 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && 1+Arg_15<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 1+Arg_15<=Arg_18 && 1+Arg_15<=Arg_17 for location n_f10___7
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 for location n_f10___5
Found invariant Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && 1+Arg_19<=Arg_23 && 1+Arg_18<=Arg_23 && 1+Arg_17<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && 1+Arg_19<=Arg_22 && 1+Arg_18<=Arg_22 && 1+Arg_17<=Arg_22 && Arg_15<=Arg_22 && Arg_21<=Arg_15 && 1+Arg_19<=Arg_21 && 1+Arg_18<=Arg_21 && 1+Arg_17<=Arg_21 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && 1+Arg_19<=Arg_15 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && 1+Arg_18<=Arg_15 && Arg_17<=Arg_18 && 1+Arg_17<=Arg_15 for location n_f10___8
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 for location n_f10___4
Found invariant Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 for location n_f10___6
Problem after Preprocessing
Start: n_f3
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_4, Arg_6, Arg_7, Arg_8, Arg_9, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_25, Arg_27, Arg_28, Arg_29, Arg_31
Temp_Vars: A_P, B1_P, B_P, C_P, E_P, L_P, N_P, NoDet0, NoDet1, NoDet10, NoDet12, NoDet14, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, O_P, P_P, Q_P, T_P, W_P, Z_P
Locations: n_f10___4, n_f10___5, n_f10___6, n_f10___7, n_f10___8, n_f1___11, n_f1___9, n_f3, n_f4___1, n_f4___10, n_f4___2, n_f4___3
Transitions:
70:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
71:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
72:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
73:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
74:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f4___1(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
75:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
76:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
77:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
78:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
79:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f4___2(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
80:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
81:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
82:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
83:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
84:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f4___3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,NoDet0,Arg_16,Arg_17,NoDet1,Arg_19,O_P,Arg_21,NoDet2,NoDet3,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=Arg_25 && Arg_15<=Arg_18 && Arg_18<=Arg_15
85:n_f10___7(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && 1+Arg_23<=Arg_19 && 1+Arg_23<=Arg_18 && 1+Arg_23<=Arg_17 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 1+Arg_22<=Arg_19 && 1+Arg_22<=Arg_18 && 1+Arg_22<=Arg_17 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && Arg_15<=Arg_22 && 1+Arg_21<=Arg_19 && 1+Arg_21<=Arg_18 && 1+Arg_21<=Arg_17 && Arg_21<=Arg_15 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && 1+Arg_15<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 1+Arg_15<=Arg_18 && 1+Arg_15<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
86:n_f10___7(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && 1+Arg_23<=Arg_19 && 1+Arg_23<=Arg_18 && 1+Arg_23<=Arg_17 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 1+Arg_22<=Arg_19 && 1+Arg_22<=Arg_18 && 1+Arg_22<=Arg_17 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && Arg_15<=Arg_22 && 1+Arg_21<=Arg_19 && 1+Arg_21<=Arg_18 && 1+Arg_21<=Arg_17 && Arg_21<=Arg_15 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && 1+Arg_15<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 1+Arg_15<=Arg_18 && 1+Arg_15<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
87:n_f10___7(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && 1+Arg_23<=Arg_19 && 1+Arg_23<=Arg_18 && 1+Arg_23<=Arg_17 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 1+Arg_22<=Arg_19 && 1+Arg_22<=Arg_18 && 1+Arg_22<=Arg_17 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && Arg_15<=Arg_22 && 1+Arg_21<=Arg_19 && 1+Arg_21<=Arg_18 && 1+Arg_21<=Arg_17 && Arg_21<=Arg_15 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && 1+Arg_15<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 1+Arg_15<=Arg_18 && 1+Arg_15<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
88:n_f10___7(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && 1+Arg_23<=Arg_19 && 1+Arg_23<=Arg_18 && 1+Arg_23<=Arg_17 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 1+Arg_22<=Arg_19 && 1+Arg_22<=Arg_18 && 1+Arg_22<=Arg_17 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && Arg_15<=Arg_22 && 1+Arg_21<=Arg_19 && 1+Arg_21<=Arg_18 && 1+Arg_21<=Arg_17 && Arg_21<=Arg_15 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && 1+Arg_15<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 1+Arg_15<=Arg_18 && 1+Arg_15<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 1+Arg_15<=Arg_17 && 2<=Arg_20 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
89:n_f10___8(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && 1+Arg_19<=Arg_23 && 1+Arg_18<=Arg_23 && 1+Arg_17<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && 1+Arg_19<=Arg_22 && 1+Arg_18<=Arg_22 && 1+Arg_17<=Arg_22 && Arg_15<=Arg_22 && Arg_21<=Arg_15 && 1+Arg_19<=Arg_21 && 1+Arg_18<=Arg_21 && 1+Arg_17<=Arg_21 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && 1+Arg_19<=Arg_15 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && 1+Arg_18<=Arg_15 && Arg_17<=Arg_18 && 1+Arg_17<=Arg_15 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
90:n_f10___8(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && 1+Arg_19<=Arg_23 && 1+Arg_18<=Arg_23 && 1+Arg_17<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && 1+Arg_19<=Arg_22 && 1+Arg_18<=Arg_22 && 1+Arg_17<=Arg_22 && Arg_15<=Arg_22 && Arg_21<=Arg_15 && 1+Arg_19<=Arg_21 && 1+Arg_18<=Arg_21 && 1+Arg_17<=Arg_21 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && 1+Arg_19<=Arg_15 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && 1+Arg_18<=Arg_15 && Arg_17<=Arg_18 && 1+Arg_17<=Arg_15 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
91:n_f10___8(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && 1+Arg_19<=Arg_23 && 1+Arg_18<=Arg_23 && 1+Arg_17<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && 1+Arg_19<=Arg_22 && 1+Arg_18<=Arg_22 && 1+Arg_17<=Arg_22 && Arg_15<=Arg_22 && Arg_21<=Arg_15 && 1+Arg_19<=Arg_21 && 1+Arg_18<=Arg_21 && 1+Arg_17<=Arg_21 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && 1+Arg_19<=Arg_15 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && 1+Arg_18<=Arg_15 && Arg_17<=Arg_18 && 1+Arg_17<=Arg_15 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
92:n_f10___8(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_14 && Arg_14<=Arg_9 && Arg_7<=1+Arg_25 && Arg_7<=1+Arg_16 && 1+Arg_25<=Arg_7 && 1+Arg_16<=Arg_7 && Arg_25<=Arg_16 && Arg_16<=Arg_25 && Arg_23<=Arg_22 && Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_22<=Arg_23 && Arg_21<=Arg_23 && 1+Arg_19<=Arg_23 && 1+Arg_18<=Arg_23 && 1+Arg_17<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_22<=Arg_15 && Arg_21<=Arg_22 && 1+Arg_19<=Arg_22 && 1+Arg_18<=Arg_22 && 1+Arg_17<=Arg_22 && Arg_15<=Arg_22 && Arg_21<=Arg_15 && 1+Arg_19<=Arg_21 && 1+Arg_18<=Arg_21 && 1+Arg_17<=Arg_21 && Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && 1+Arg_19<=Arg_15 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && 1+Arg_18<=Arg_15 && Arg_17<=Arg_18 && 1+Arg_17<=Arg_15 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_9 && Arg_9<=Arg_14 && 1+Arg_16<=Arg_7 && Arg_7<=1+Arg_16 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_16<=Arg_25 && Arg_25<=Arg_16 && Arg_15<=Arg_21 && Arg_21<=Arg_15 && Arg_15<=Arg_22 && Arg_22<=Arg_15 && 2<=Arg_2 && 2<=Arg_20 && 1+Arg_17<=Arg_15 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P
93:n_f1___11(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___7(NoDet0,B_P,NoDet7,NoDet1,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,Arg_25,Arg_27,Arg_28,Arg_29,NoDet5):|:Arg_8<=Arg_4 && Arg_8<=Arg_3 && Arg_4<=Arg_8 && Arg_3<=Arg_8 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 4<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=2 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 2<=Arg_0 && 0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 2<=O_P && 2<=B_P && 1+Arg_4<=Arg_19 && 0<=Arg_2
94:n_f1___11(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___8(NoDet0,B_P,NoDet7,NoDet1,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,Arg_25,Arg_27,Arg_28,Arg_29,NoDet5):|:Arg_8<=Arg_4 && Arg_8<=Arg_3 && Arg_4<=Arg_8 && Arg_3<=Arg_8 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 4<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=2 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 2<=Arg_0 && 0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_19<=Arg_4 && 2<=O_P && 2<=B_P && 0<=Arg_2
95:n_f1___11(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f1___9(Arg_0,Arg_2+1,Arg_3,Arg_6,NoDet0,Arg_7,Arg_6,Arg_9,Arg_2,Arg_14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31):|:Arg_8<=Arg_4 && Arg_8<=Arg_3 && Arg_4<=Arg_8 && Arg_3<=Arg_8 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 4<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=2 && Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && 2<=Arg_0 && 0<=Arg_2 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_0<=Arg_20 && Arg_20<=Arg_0 && Arg_2<=2 && 2<=Arg_2 && Arg_17<=Arg_31 && Arg_31<=Arg_17 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
96:n_f1___9(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___7(NoDet0,B_P,NoDet7,NoDet1,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,Arg_25,Arg_27,Arg_28,Arg_29,NoDet5):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 3<=Arg_20 && 6<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 5<=Arg_12+Arg_20 && 1+Arg_12<=Arg_20 && 6<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 2<=O_P && 2<=B_P && 1+Arg_4<=Arg_19 && 0<=Arg_2
97:n_f1___9(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___8(NoDet0,B_P,NoDet7,NoDet1,NoDet2,Arg_25+1,NoDet3,Arg_14,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,O_P,Arg_4,Arg_4,Arg_4,Arg_25,Arg_27,Arg_28,Arg_29,NoDet5):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 3<=Arg_20 && 6<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 5<=Arg_12+Arg_20 && 1+Arg_12<=Arg_20 && 6<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && Arg_0<=Arg_2 && 1+Arg_19<=Arg_4 && 2<=O_P && 2<=B_P && 0<=Arg_2
98:n_f1___9(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f1___9(Arg_0,Arg_2+1,Arg_3,Arg_6,NoDet0,Arg_7,Arg_6,Arg_9,Arg_2,Arg_14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31):|:Arg_8<=Arg_4 && Arg_4<=Arg_8 && Arg_31<=Arg_19 && Arg_31<=Arg_17 && Arg_19<=Arg_31 && Arg_17<=Arg_31 && Arg_20<=Arg_0 && 3<=Arg_20 && 6<=Arg_2+Arg_20 && Arg_2<=Arg_20 && 5<=Arg_12+Arg_20 && 1+Arg_12<=Arg_20 && 6<=Arg_0+Arg_20 && Arg_0<=Arg_20 && Arg_2<=1+Arg_12 && Arg_2<=Arg_0 && 3<=Arg_2 && 5<=Arg_12+Arg_2 && 1+Arg_12<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_19<=Arg_17 && Arg_17<=Arg_19 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_12<=Arg_0 && 2<=Arg_12 && 5<=Arg_0+Arg_12 && 3<=Arg_0 && 0<=Arg_2 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && Arg_4<=Arg_8 && Arg_8<=Arg_4 && Arg_2<=1+Arg_12 && 1+Arg_12<=Arg_2 && 0<=Arg_12 && 1+Arg_12<=Arg_0 && 1+Arg_2<=Arg_0 && 0<=Arg_2
99:n_f3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f1___11(A_P,2,B1_P,C_P,NoDet0,Arg_7,E_P,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,L_P,Arg_18,N_P,O_P,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,NoDet1,Z_P):|:2<=A_P && A_P<=O_P && O_P<=A_P && L_P<=N_P && N_P<=L_P && C_P<=E_P && E_P<=C_P && C_P<=B1_P && B1_P<=C_P && L_P<=Z_P && Z_P<=L_P
100:n_f3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f4___10(NoDet0,NoDet1,NoDet14,NoDet2,NoDet3,Arg_7,NoDet4,Arg_9,Arg_12,Arg_13,Arg_14,NoDet5,Arg_16,Arg_29,NoDet6,Arg_29,O_P,Arg_29,NoDet7,NoDet8,Arg_25,Arg_27,Arg_28,NoDet10,NoDet12):|:O_P<=0
MPRF for transition 70:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
36*Arg_25+36 {O(n)}
MPRF:
n_f10___4 [Arg_25+2 ]
n_f10___5 [Arg_25+1 ]
n_f10___6 [Arg_16+Arg_25+2-Arg_7 ]
MPRF for transition 71:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
36*Arg_25+36 {O(n)}
MPRF:
n_f10___4 [Arg_25+2 ]
n_f10___5 [Arg_25+1 ]
n_f10___6 [Arg_16+Arg_25+2-Arg_7 ]
MPRF for transition 72:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
48*Arg_25+44 {O(n)}
MPRF:
n_f10___4 [Arg_7+Arg_25+1 ]
n_f10___5 [Arg_7+Arg_25 ]
n_f10___6 [Arg_7+Arg_25 ]
MPRF for transition 73:n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
60*Arg_25+44 {O(n)}
MPRF:
n_f10___4 [Arg_25+2 ]
n_f10___5 [Arg_7+Arg_25-Arg_16 ]
n_f10___6 [2*Arg_7+Arg_25-2*Arg_16-1 ]
MPRF for transition 75:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
48*Arg_25+42 {O(n)}
MPRF:
n_f10___4 [Arg_7+Arg_25 ]
n_f10___5 [Arg_7+Arg_25+1 ]
n_f10___6 [Arg_7+Arg_25 ]
MPRF for transition 76:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
60*Arg_25+48 {O(n)}
MPRF:
n_f10___4 [Arg_7+Arg_25 ]
n_f10___5 [Arg_7+Arg_25+1 ]
n_f10___6 [2*Arg_7+Arg_25-Arg_16 ]
MPRF for transition 77:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
24*Arg_25+28 {O(n)}
MPRF:
n_f10___4 [Arg_25+1 ]
n_f10___5 [Arg_25+2 ]
n_f10___6 [Arg_25+2 ]
MPRF for transition 78:n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && 2+Arg_23<=Arg_22 && 2+Arg_23<=Arg_21 && Arg_23<=Arg_15 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && Arg_21<=Arg_22 && 2+Arg_15<=Arg_22 && 2+Arg_15<=Arg_21 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=Arg_21 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
24*Arg_25+26 {O(n)}
MPRF:
n_f10___4 [Arg_25+1 ]
n_f10___5 [Arg_25+2 ]
n_f10___6 [Arg_25+1 ]
MPRF for transition 80:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
24*Arg_25+26 {O(n)}
MPRF:
n_f10___4 [Arg_25+1 ]
n_f10___5 [Arg_25+1 ]
n_f10___6 [Arg_25+2 ]
MPRF for transition 81:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
24*Arg_25+26 {O(n)}
MPRF:
n_f10___4 [Arg_25+1 ]
n_f10___5 [Arg_25+1 ]
n_f10___6 [Arg_25+2 ]
MPRF for transition 82:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+Arg_15<=P_P && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
72*Arg_25+52 {O(n)}
MPRF:
n_f10___4 [Arg_7+2*Arg_25-Arg_16 ]
n_f10___5 [2*Arg_25+1 ]
n_f10___6 [2*Arg_25+3 ]
MPRF for transition 83:n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_25,Arg_27,Arg_28,Arg_29,Arg_31) -> n_f10___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_6,Arg_7,Arg_8,Arg_9,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,O_P,P_P,Q_P,Arg_15,T_P,Arg_14,W_P,Arg_29,Arg_31):|:Arg_9<=Arg_27 && Arg_9<=Arg_14 && Arg_27<=Arg_9 && Arg_14<=Arg_9 && Arg_7<=1+Arg_16 && 1<=Arg_7 && 0<=Arg_28+Arg_7 && 2+Arg_28<=Arg_7 && 0<=Arg_25+Arg_7 && 2+Arg_25<=Arg_7 && 3<=Arg_20+Arg_7 && 3<=Arg_2+Arg_7 && 1<=Arg_16+Arg_7 && 1+Arg_16<=Arg_7 && Arg_28<=Arg_25 && 1+Arg_28<=Arg_16 && 0<=1+Arg_28 && 0<=2+Arg_25+Arg_28 && Arg_25<=Arg_28 && 1<=Arg_20+Arg_28 && 1<=Arg_2+Arg_28 && 0<=1+Arg_16+Arg_28 && Arg_27<=Arg_14 && Arg_14<=Arg_27 && 1+Arg_25<=Arg_16 && 0<=1+Arg_25 && 1<=Arg_20+Arg_25 && 1<=Arg_2+Arg_25 && 0<=1+Arg_16+Arg_25 && Arg_23<=Arg_15 && 2+Arg_22<=Arg_23 && 2+Arg_21<=Arg_23 && Arg_15<=Arg_23 && Arg_22<=Arg_21 && 2+Arg_22<=Arg_15 && Arg_21<=Arg_22 && 2+Arg_21<=Arg_15 && 2<=Arg_20 && 4<=Arg_2+Arg_20 && 2<=Arg_16+Arg_20 && 2<=Arg_2 && 2<=Arg_16+Arg_2 && Arg_19<=Arg_18 && Arg_19<=Arg_17 && Arg_18<=Arg_19 && Arg_17<=Arg_19 && Arg_18<=Arg_17 && Arg_17<=Arg_18 && 0<=Arg_16 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2+Arg_22<=Arg_15 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 0<=Arg_16 && 2<=Arg_20 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && 2+Arg_21<=Arg_15 && 0<=Arg_16 && 2<=Arg_20 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && Arg_15<=Arg_23 && Arg_23<=Arg_15 && Arg_14<=Arg_27 && Arg_27<=Arg_14 && Arg_21<=Arg_22 && Arg_22<=Arg_21 && Arg_25<=Arg_28 && Arg_28<=Arg_25 && Arg_17<=Arg_18 && Arg_18<=Arg_17 && Arg_17<=Arg_19 && Arg_19<=Arg_17 && 2<=Arg_20 && 0<=1+Arg_25 && 2+P_P<=Arg_15 && 2<=O_P && 0<=1+T_P && T_P<=W_P && W_P<=T_P && Arg_25<=T_P+1 && 1+T_P<=Arg_25 && P_P<=Q_P && Q_P<=P_P of depth 1:
new bound:
120*Arg_25+64 {O(n)}
MPRF:
n_f10___4 [2*Arg_7+Arg_25-2*Arg_16 ]
n_f10___5 [2*Arg_7+Arg_25-2*Arg_16 ]
n_f10___6 [2*Arg_7+Arg_25-2*Arg_16 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
70: n_f10___4->n_f10___4: 36*Arg_25+36 {O(n)}
71: n_f10___4->n_f10___4: 36*Arg_25+36 {O(n)}
72: n_f10___4->n_f10___5: 48*Arg_25+44 {O(n)}
73: n_f10___4->n_f10___6: 60*Arg_25+44 {O(n)}
74: n_f10___4->n_f4___1: 1 {O(1)}
75: n_f10___5->n_f10___4: 48*Arg_25+42 {O(n)}
76: n_f10___5->n_f10___4: 60*Arg_25+48 {O(n)}
77: n_f10___5->n_f10___5: 24*Arg_25+28 {O(n)}
78: n_f10___5->n_f10___6: 24*Arg_25+26 {O(n)}
79: n_f10___5->n_f4___2: 1 {O(1)}
80: n_f10___6->n_f10___4: 24*Arg_25+26 {O(n)}
81: n_f10___6->n_f10___4: 24*Arg_25+26 {O(n)}
82: n_f10___6->n_f10___5: 72*Arg_25+52 {O(n)}
83: n_f10___6->n_f10___6: 120*Arg_25+64 {O(n)}
84: n_f10___6->n_f4___3: 1 {O(1)}
85: n_f10___7->n_f10___4: 1 {O(1)}
86: n_f10___7->n_f10___4: 1 {O(1)}
87: n_f10___7->n_f10___5: 1 {O(1)}
88: n_f10___7->n_f10___6: 1 {O(1)}
89: n_f10___8->n_f10___4: 1 {O(1)}
90: n_f10___8->n_f10___4: 1 {O(1)}
91: n_f10___8->n_f10___5: 1 {O(1)}
92: n_f10___8->n_f10___6: 1 {O(1)}
93: n_f1___11->n_f10___7: 1 {O(1)}
94: n_f1___11->n_f10___8: 1 {O(1)}
95: n_f1___11->n_f1___9: 1 {O(1)}
96: n_f1___9->n_f10___7: 1 {O(1)}
97: n_f1___9->n_f10___8: 1 {O(1)}
98: n_f1___9->n_f1___9: inf {Infinity}
99: n_f3->n_f1___11: 1 {O(1)}
100: n_f3->n_f4___10: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
70: n_f10___4->n_f10___4: 36*Arg_25+36 {O(n)}
71: n_f10___4->n_f10___4: 36*Arg_25+36 {O(n)}
72: n_f10___4->n_f10___5: 48*Arg_25+44 {O(n)}
73: n_f10___4->n_f10___6: 60*Arg_25+44 {O(n)}
74: n_f10___4->n_f4___1: 1 {O(1)}
75: n_f10___5->n_f10___4: 48*Arg_25+42 {O(n)}
76: n_f10___5->n_f10___4: 60*Arg_25+48 {O(n)}
77: n_f10___5->n_f10___5: 24*Arg_25+28 {O(n)}
78: n_f10___5->n_f10___6: 24*Arg_25+26 {O(n)}
79: n_f10___5->n_f4___2: 1 {O(1)}
80: n_f10___6->n_f10___4: 24*Arg_25+26 {O(n)}
81: n_f10___6->n_f10___4: 24*Arg_25+26 {O(n)}
82: n_f10___6->n_f10___5: 72*Arg_25+52 {O(n)}
83: n_f10___6->n_f10___6: 120*Arg_25+64 {O(n)}
84: n_f10___6->n_f4___3: 1 {O(1)}
85: n_f10___7->n_f10___4: 1 {O(1)}
86: n_f10___7->n_f10___4: 1 {O(1)}
87: n_f10___7->n_f10___5: 1 {O(1)}
88: n_f10___7->n_f10___6: 1 {O(1)}
89: n_f10___8->n_f10___4: 1 {O(1)}
90: n_f10___8->n_f10___4: 1 {O(1)}
91: n_f10___8->n_f10___5: 1 {O(1)}
92: n_f10___8->n_f10___6: 1 {O(1)}
93: n_f1___11->n_f10___7: 1 {O(1)}
94: n_f1___11->n_f10___8: 1 {O(1)}
95: n_f1___11->n_f1___9: 1 {O(1)}
96: n_f1___9->n_f10___7: 1 {O(1)}
97: n_f1___9->n_f10___8: 1 {O(1)}
98: n_f1___9->n_f1___9: inf {Infinity}
99: n_f3->n_f1___11: 1 {O(1)}
100: n_f3->n_f4___10: 1 {O(1)}
Sizebounds
70: n_f10___4->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
70: n_f10___4->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
70: n_f10___4->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
70: n_f10___4->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
70: n_f10___4->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
70: n_f10___4->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
70: n_f10___4->n_f10___4, Arg_27: 588*Arg_14 {O(n)}
71: n_f10___4->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
71: n_f10___4->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
71: n_f10___4->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
71: n_f10___4->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
71: n_f10___4->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
71: n_f10___4->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
71: n_f10___4->n_f10___4, Arg_27: 588*Arg_14 {O(n)}
72: n_f10___4->n_f10___5, Arg_7: 96*Arg_25+96 {O(n)}
72: n_f10___4->n_f10___5, Arg_9: 96*Arg_14 {O(n)}
72: n_f10___4->n_f10___5, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
72: n_f10___4->n_f10___5, Arg_14: 96*Arg_14 {O(n)}
72: n_f10___4->n_f10___5, Arg_16: 96*Arg_25 {O(n)}
72: n_f10___4->n_f10___5, Arg_25: 96*Arg_25+65 {O(n)}
72: n_f10___4->n_f10___5, Arg_27: 588*Arg_14 {O(n)}
73: n_f10___4->n_f10___6, Arg_7: 96*Arg_25+96 {O(n)}
73: n_f10___4->n_f10___6, Arg_9: 96*Arg_14 {O(n)}
73: n_f10___4->n_f10___6, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
73: n_f10___4->n_f10___6, Arg_14: 96*Arg_14 {O(n)}
73: n_f10___4->n_f10___6, Arg_16: 96*Arg_25 {O(n)}
73: n_f10___4->n_f10___6, Arg_25: 96*Arg_25+65 {O(n)}
73: n_f10___4->n_f10___6, Arg_27: 588*Arg_14 {O(n)}
74: n_f10___4->n_f4___1, Arg_7: 576*Arg_25+576 {O(n)}
74: n_f10___4->n_f4___1, Arg_9: 576*Arg_14 {O(n)}
74: n_f10___4->n_f4___1, Arg_13: 192*Arg_13+384*Arg_14 {O(n)}
74: n_f10___4->n_f4___1, Arg_14: 576*Arg_14 {O(n)}
74: n_f10___4->n_f4___1, Arg_16: 576*Arg_25 {O(n)}
74: n_f10___4->n_f4___1, Arg_25: 576*Arg_25+390 {O(n)}
74: n_f10___4->n_f4___1, Arg_27: 2352*Arg_14 {O(n)}
75: n_f10___5->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
75: n_f10___5->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
75: n_f10___5->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
75: n_f10___5->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
75: n_f10___5->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
75: n_f10___5->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
75: n_f10___5->n_f10___4, Arg_27: 294*Arg_14 {O(n)}
76: n_f10___5->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
76: n_f10___5->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
76: n_f10___5->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
76: n_f10___5->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
76: n_f10___5->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
76: n_f10___5->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
76: n_f10___5->n_f10___4, Arg_27: 294*Arg_14 {O(n)}
77: n_f10___5->n_f10___5, Arg_7: 96*Arg_25+96 {O(n)}
77: n_f10___5->n_f10___5, Arg_9: 96*Arg_14 {O(n)}
77: n_f10___5->n_f10___5, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
77: n_f10___5->n_f10___5, Arg_14: 96*Arg_14 {O(n)}
77: n_f10___5->n_f10___5, Arg_16: 96*Arg_25 {O(n)}
77: n_f10___5->n_f10___5, Arg_25: 96*Arg_25+65 {O(n)}
77: n_f10___5->n_f10___5, Arg_27: 294*Arg_14 {O(n)}
78: n_f10___5->n_f10___6, Arg_7: 96*Arg_25+96 {O(n)}
78: n_f10___5->n_f10___6, Arg_9: 96*Arg_14 {O(n)}
78: n_f10___5->n_f10___6, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
78: n_f10___5->n_f10___6, Arg_14: 96*Arg_14 {O(n)}
78: n_f10___5->n_f10___6, Arg_16: 96*Arg_25 {O(n)}
78: n_f10___5->n_f10___6, Arg_25: 96*Arg_25+65 {O(n)}
78: n_f10___5->n_f10___6, Arg_27: 294*Arg_14 {O(n)}
79: n_f10___5->n_f4___2, Arg_7: 288*Arg_25+288 {O(n)}
79: n_f10___5->n_f4___2, Arg_9: 288*Arg_14 {O(n)}
79: n_f10___5->n_f4___2, Arg_13: 192*Arg_14+96*Arg_13 {O(n)}
79: n_f10___5->n_f4___2, Arg_14: 288*Arg_14 {O(n)}
79: n_f10___5->n_f4___2, Arg_16: 288*Arg_25 {O(n)}
79: n_f10___5->n_f4___2, Arg_25: 288*Arg_25+195 {O(n)}
79: n_f10___5->n_f4___2, Arg_27: 1176*Arg_14 {O(n)}
80: n_f10___6->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
80: n_f10___6->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
80: n_f10___6->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
80: n_f10___6->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
80: n_f10___6->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
80: n_f10___6->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
80: n_f10___6->n_f10___4, Arg_27: 294*Arg_14 {O(n)}
81: n_f10___6->n_f10___4, Arg_7: 96*Arg_25+96 {O(n)}
81: n_f10___6->n_f10___4, Arg_9: 96*Arg_14 {O(n)}
81: n_f10___6->n_f10___4, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
81: n_f10___6->n_f10___4, Arg_14: 96*Arg_14 {O(n)}
81: n_f10___6->n_f10___4, Arg_16: 96*Arg_25 {O(n)}
81: n_f10___6->n_f10___4, Arg_25: 96*Arg_25+65 {O(n)}
81: n_f10___6->n_f10___4, Arg_27: 294*Arg_14 {O(n)}
82: n_f10___6->n_f10___5, Arg_7: 96*Arg_25+96 {O(n)}
82: n_f10___6->n_f10___5, Arg_9: 96*Arg_14 {O(n)}
82: n_f10___6->n_f10___5, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
82: n_f10___6->n_f10___5, Arg_14: 96*Arg_14 {O(n)}
82: n_f10___6->n_f10___5, Arg_16: 96*Arg_25 {O(n)}
82: n_f10___6->n_f10___5, Arg_25: 96*Arg_25+65 {O(n)}
82: n_f10___6->n_f10___5, Arg_27: 294*Arg_14 {O(n)}
83: n_f10___6->n_f10___6, Arg_7: 96*Arg_25+96 {O(n)}
83: n_f10___6->n_f10___6, Arg_9: 96*Arg_14 {O(n)}
83: n_f10___6->n_f10___6, Arg_13: 32*Arg_13+64*Arg_14 {O(n)}
83: n_f10___6->n_f10___6, Arg_14: 96*Arg_14 {O(n)}
83: n_f10___6->n_f10___6, Arg_16: 96*Arg_25 {O(n)}
83: n_f10___6->n_f10___6, Arg_25: 96*Arg_25+65 {O(n)}
83: n_f10___6->n_f10___6, Arg_27: 294*Arg_14 {O(n)}
84: n_f10___6->n_f4___3, Arg_7: 288*Arg_25+288 {O(n)}
84: n_f10___6->n_f4___3, Arg_9: 288*Arg_14 {O(n)}
84: n_f10___6->n_f4___3, Arg_13: 192*Arg_14+96*Arg_13 {O(n)}
84: n_f10___6->n_f4___3, Arg_14: 288*Arg_14 {O(n)}
84: n_f10___6->n_f4___3, Arg_16: 288*Arg_25 {O(n)}
84: n_f10___6->n_f4___3, Arg_25: 288*Arg_25+195 {O(n)}
84: n_f10___6->n_f4___3, Arg_27: 1176*Arg_14 {O(n)}
85: n_f10___7->n_f10___4, Arg_7: 3*Arg_25+3 {O(n)}
85: n_f10___7->n_f10___4, Arg_9: 3*Arg_14 {O(n)}
85: n_f10___7->n_f10___4, Arg_13: 2*Arg_14+Arg_13 {O(n)}
85: n_f10___7->n_f10___4, Arg_14: 3*Arg_14 {O(n)}
85: n_f10___7->n_f10___4, Arg_16: 3*Arg_25 {O(n)}
85: n_f10___7->n_f10___4, Arg_25: 3*Arg_25+2 {O(n)}
85: n_f10___7->n_f10___4, Arg_27: 3*Arg_14 {O(n)}
86: n_f10___7->n_f10___4, Arg_7: 3*Arg_25+3 {O(n)}
86: n_f10___7->n_f10___4, Arg_9: 3*Arg_14 {O(n)}
86: n_f10___7->n_f10___4, Arg_13: 2*Arg_14+Arg_13 {O(n)}
86: n_f10___7->n_f10___4, Arg_14: 3*Arg_14 {O(n)}
86: n_f10___7->n_f10___4, Arg_16: 3*Arg_25 {O(n)}
86: n_f10___7->n_f10___4, Arg_25: 3*Arg_25+2 {O(n)}
86: n_f10___7->n_f10___4, Arg_27: 3*Arg_14 {O(n)}
87: n_f10___7->n_f10___5, Arg_7: 3*Arg_25+3 {O(n)}
87: n_f10___7->n_f10___5, Arg_9: 3*Arg_14 {O(n)}
87: n_f10___7->n_f10___5, Arg_13: 2*Arg_14+Arg_13 {O(n)}
87: n_f10___7->n_f10___5, Arg_14: 3*Arg_14 {O(n)}
87: n_f10___7->n_f10___5, Arg_16: 3*Arg_25 {O(n)}
87: n_f10___7->n_f10___5, Arg_25: 3*Arg_25+2 {O(n)}
87: n_f10___7->n_f10___5, Arg_27: 3*Arg_14 {O(n)}
88: n_f10___7->n_f10___6, Arg_7: 3*Arg_25+3 {O(n)}
88: n_f10___7->n_f10___6, Arg_9: 3*Arg_14 {O(n)}
88: n_f10___7->n_f10___6, Arg_13: 2*Arg_14+Arg_13 {O(n)}
88: n_f10___7->n_f10___6, Arg_14: 3*Arg_14 {O(n)}
88: n_f10___7->n_f10___6, Arg_16: 3*Arg_25 {O(n)}
88: n_f10___7->n_f10___6, Arg_25: 3*Arg_25+2 {O(n)}
88: n_f10___7->n_f10___6, Arg_27: 3*Arg_14 {O(n)}
89: n_f10___8->n_f10___4, Arg_7: 3*Arg_25+3 {O(n)}
89: n_f10___8->n_f10___4, Arg_9: 3*Arg_14 {O(n)}
89: n_f10___8->n_f10___4, Arg_13: 2*Arg_14+Arg_13 {O(n)}
89: n_f10___8->n_f10___4, Arg_14: 3*Arg_14 {O(n)}
89: n_f10___8->n_f10___4, Arg_16: 3*Arg_25 {O(n)}
89: n_f10___8->n_f10___4, Arg_25: 3*Arg_25+2 {O(n)}
89: n_f10___8->n_f10___4, Arg_27: 3*Arg_14 {O(n)}
90: n_f10___8->n_f10___4, Arg_7: 3*Arg_25+3 {O(n)}
90: n_f10___8->n_f10___4, Arg_9: 3*Arg_14 {O(n)}
90: n_f10___8->n_f10___4, Arg_13: 2*Arg_14+Arg_13 {O(n)}
90: n_f10___8->n_f10___4, Arg_14: 3*Arg_14 {O(n)}
90: n_f10___8->n_f10___4, Arg_16: 3*Arg_25 {O(n)}
90: n_f10___8->n_f10___4, Arg_25: 3*Arg_25+2 {O(n)}
90: n_f10___8->n_f10___4, Arg_27: 3*Arg_14 {O(n)}
91: n_f10___8->n_f10___5, Arg_7: 3*Arg_25+3 {O(n)}
91: n_f10___8->n_f10___5, Arg_9: 3*Arg_14 {O(n)}
91: n_f10___8->n_f10___5, Arg_13: 2*Arg_14+Arg_13 {O(n)}
91: n_f10___8->n_f10___5, Arg_14: 3*Arg_14 {O(n)}
91: n_f10___8->n_f10___5, Arg_16: 3*Arg_25 {O(n)}
91: n_f10___8->n_f10___5, Arg_25: 3*Arg_25+2 {O(n)}
91: n_f10___8->n_f10___5, Arg_27: 3*Arg_14 {O(n)}
92: n_f10___8->n_f10___6, Arg_7: 3*Arg_25+3 {O(n)}
92: n_f10___8->n_f10___6, Arg_9: 3*Arg_14 {O(n)}
92: n_f10___8->n_f10___6, Arg_13: 2*Arg_14+Arg_13 {O(n)}
92: n_f10___8->n_f10___6, Arg_14: 3*Arg_14 {O(n)}
92: n_f10___8->n_f10___6, Arg_16: 3*Arg_25 {O(n)}
92: n_f10___8->n_f10___6, Arg_25: 3*Arg_25+2 {O(n)}
92: n_f10___8->n_f10___6, Arg_27: 3*Arg_14 {O(n)}
93: n_f1___11->n_f10___7, Arg_7: Arg_25+1 {O(n)}
93: n_f1___11->n_f10___7, Arg_9: Arg_14 {O(n)}
93: n_f1___11->n_f10___7, Arg_12: Arg_12 {O(n)}
93: n_f1___11->n_f10___7, Arg_13: Arg_13 {O(n)}
93: n_f1___11->n_f10___7, Arg_14: Arg_14 {O(n)}
93: n_f1___11->n_f10___7, Arg_16: Arg_25 {O(n)}
93: n_f1___11->n_f10___7, Arg_25: Arg_25 {O(n)}
93: n_f1___11->n_f10___7, Arg_27: Arg_27 {O(n)}
93: n_f1___11->n_f10___7, Arg_28: Arg_28 {O(n)}
94: n_f1___11->n_f10___8, Arg_7: Arg_25+1 {O(n)}
94: n_f1___11->n_f10___8, Arg_9: Arg_14 {O(n)}
94: n_f1___11->n_f10___8, Arg_12: Arg_12 {O(n)}
94: n_f1___11->n_f10___8, Arg_13: Arg_13 {O(n)}
94: n_f1___11->n_f10___8, Arg_14: Arg_14 {O(n)}
94: n_f1___11->n_f10___8, Arg_16: Arg_25 {O(n)}
94: n_f1___11->n_f10___8, Arg_25: Arg_25 {O(n)}
94: n_f1___11->n_f10___8, Arg_27: Arg_27 {O(n)}
94: n_f1___11->n_f10___8, Arg_28: Arg_28 {O(n)}
95: n_f1___11->n_f1___9, Arg_2: 3 {O(1)}
95: n_f1___11->n_f1___9, Arg_7: Arg_7 {O(n)}
95: n_f1___11->n_f1___9, Arg_9: Arg_9 {O(n)}
95: n_f1___11->n_f1___9, Arg_12: 2 {O(1)}
95: n_f1___11->n_f1___9, Arg_13: Arg_14 {O(n)}
95: n_f1___11->n_f1___9, Arg_14: Arg_14 {O(n)}
95: n_f1___11->n_f1___9, Arg_15: Arg_15 {O(n)}
95: n_f1___11->n_f1___9, Arg_16: Arg_16 {O(n)}
95: n_f1___11->n_f1___9, Arg_18: Arg_18 {O(n)}
95: n_f1___11->n_f1___9, Arg_21: Arg_21 {O(n)}
95: n_f1___11->n_f1___9, Arg_22: Arg_22 {O(n)}
95: n_f1___11->n_f1___9, Arg_23: Arg_23 {O(n)}
95: n_f1___11->n_f1___9, Arg_25: Arg_25 {O(n)}
95: n_f1___11->n_f1___9, Arg_27: Arg_27 {O(n)}
95: n_f1___11->n_f1___9, Arg_28: Arg_28 {O(n)}
96: n_f1___9->n_f10___7, Arg_7: 2*Arg_25+2 {O(n)}
96: n_f1___9->n_f10___7, Arg_9: 2*Arg_14 {O(n)}
96: n_f1___9->n_f10___7, Arg_13: 2*Arg_14 {O(n)}
96: n_f1___9->n_f10___7, Arg_14: 2*Arg_14 {O(n)}
96: n_f1___9->n_f10___7, Arg_16: 2*Arg_25 {O(n)}
96: n_f1___9->n_f10___7, Arg_25: 2*Arg_25 {O(n)}
96: n_f1___9->n_f10___7, Arg_27: 2*Arg_27 {O(n)}
96: n_f1___9->n_f10___7, Arg_28: 2*Arg_28 {O(n)}
97: n_f1___9->n_f10___8, Arg_7: 2*Arg_25+2 {O(n)}
97: n_f1___9->n_f10___8, Arg_9: 2*Arg_14 {O(n)}
97: n_f1___9->n_f10___8, Arg_13: 2*Arg_14 {O(n)}
97: n_f1___9->n_f10___8, Arg_14: 2*Arg_14 {O(n)}
97: n_f1___9->n_f10___8, Arg_16: 2*Arg_25 {O(n)}
97: n_f1___9->n_f10___8, Arg_25: 2*Arg_25 {O(n)}
97: n_f1___9->n_f10___8, Arg_27: 2*Arg_27 {O(n)}
97: n_f1___9->n_f10___8, Arg_28: 2*Arg_28 {O(n)}
98: n_f1___9->n_f1___9, Arg_7: Arg_7 {O(n)}
98: n_f1___9->n_f1___9, Arg_9: Arg_9 {O(n)}
98: n_f1___9->n_f1___9, Arg_13: Arg_14 {O(n)}
98: n_f1___9->n_f1___9, Arg_14: Arg_14 {O(n)}
98: n_f1___9->n_f1___9, Arg_15: Arg_15 {O(n)}
98: n_f1___9->n_f1___9, Arg_16: Arg_16 {O(n)}
98: n_f1___9->n_f1___9, Arg_18: Arg_18 {O(n)}
98: n_f1___9->n_f1___9, Arg_21: Arg_21 {O(n)}
98: n_f1___9->n_f1___9, Arg_22: Arg_22 {O(n)}
98: n_f1___9->n_f1___9, Arg_23: Arg_23 {O(n)}
98: n_f1___9->n_f1___9, Arg_25: Arg_25 {O(n)}
98: n_f1___9->n_f1___9, Arg_27: Arg_27 {O(n)}
98: n_f1___9->n_f1___9, Arg_28: Arg_28 {O(n)}
99: n_f3->n_f1___11, Arg_2: 2 {O(1)}
99: n_f3->n_f1___11, Arg_7: Arg_7 {O(n)}
99: n_f3->n_f1___11, Arg_9: Arg_9 {O(n)}
99: n_f3->n_f1___11, Arg_12: Arg_12 {O(n)}
99: n_f3->n_f1___11, Arg_13: Arg_13 {O(n)}
99: n_f3->n_f1___11, Arg_14: Arg_14 {O(n)}
99: n_f3->n_f1___11, Arg_15: Arg_15 {O(n)}
99: n_f3->n_f1___11, Arg_16: Arg_16 {O(n)}
99: n_f3->n_f1___11, Arg_18: Arg_18 {O(n)}
99: n_f3->n_f1___11, Arg_21: Arg_21 {O(n)}
99: n_f3->n_f1___11, Arg_22: Arg_22 {O(n)}
99: n_f3->n_f1___11, Arg_23: Arg_23 {O(n)}
99: n_f3->n_f1___11, Arg_25: Arg_25 {O(n)}
99: n_f3->n_f1___11, Arg_27: Arg_27 {O(n)}
99: n_f3->n_f1___11, Arg_28: Arg_28 {O(n)}
100: n_f3->n_f4___10, Arg_7: Arg_7 {O(n)}
100: n_f3->n_f4___10, Arg_9: Arg_9 {O(n)}
100: n_f3->n_f4___10, Arg_12: Arg_12 {O(n)}
100: n_f3->n_f4___10, Arg_13: Arg_13 {O(n)}
100: n_f3->n_f4___10, Arg_14: Arg_14 {O(n)}
100: n_f3->n_f4___10, Arg_16: Arg_16 {O(n)}
100: n_f3->n_f4___10, Arg_17: Arg_29 {O(n)}
100: n_f3->n_f4___10, Arg_19: Arg_29 {O(n)}
100: n_f3->n_f4___10, Arg_21: Arg_29 {O(n)}
100: n_f3->n_f4___10, Arg_25: Arg_25 {O(n)}
100: n_f3->n_f4___10, Arg_27: Arg_27 {O(n)}
100: n_f3->n_f4___10, Arg_28: Arg_28 {O(n)}