Initial Problem
Start: n_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: D_P, E_P, F_P, G_P, NoDet0
Locations: n_f0___1, n_f0___22, n_f0___29, n_f0___7, n_f12___18, n_f12___21, n_f12___25, n_f12___26, n_f12___28, n_f22___15, n_f22___17, n_f29___13, n_f35___12, n_f35___14, n_f35___16, n_f35___19, n_f35___23, n_f35___24, n_f37___10, n_f37___11, n_f37___2, n_f37___3, n_f37___4, n_f37___9, n_f43___8, n_f48___5, n_f58___20, n_f58___27, n_f58___6, n_start
Transitions:
0:n_f0___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1 && Arg_0<=Arg_1
1:n_f0___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0
2:n_f0___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1
3:n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___28(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0
4:n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<=Arg_1
5:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
6:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
7:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
8:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
9:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4
10:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
11:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___14(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
12:n_f12___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___19(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
13:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
14:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
15:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
16:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___16(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
17:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
18:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
19:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___23(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
20:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
21:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
22:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___24(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
23:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
24:n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
25:n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
26:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
27:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
28:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
29:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
30:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
31:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
32:n_f35___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___1(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
33:n_f35___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
34:n_f35___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
35:n_f35___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
36:n_f35___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
37:n_f35___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
38:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
39:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
40:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
41:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
42:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
43:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
44:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && 1+Arg_0<=Arg_3
45:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0
46:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
47:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
48:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
49:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
50:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
51:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
52:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
53:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
54:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
55:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
56:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
57:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0
58:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
59:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
60:n_f43___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f48___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4
61:n_f48___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4
62:n_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Preprocessing
Found invariant Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 for location n_f37___4
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f43___8
Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f35___23
Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 for location n_f35___14
Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 3+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f22___15
Found invariant Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 for location n_f0___7
Found invariant 1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f12___25
Found invariant Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f12___28
Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f35___19
Found invariant Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f37___2
Found invariant 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f58___20
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f37___10
Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f12___21
Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f12___26
Found invariant Arg_0<=Arg_1 for location n_f58___27
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f29___13
Found invariant 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 for location n_f35___24
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 for location n_f22___17
Found invariant 1<=0 for location n_f35___16
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 for location n_f37___11
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f35___12
Found invariant 1<=0 for location n_f0___1
Found invariant 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 for location n_f0___22
Found invariant Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f12___18
Found invariant Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 for location n_f37___3
Found invariant Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 for location n_f37___9
Found invariant Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 for location n_f48___5
Found invariant Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_f58___6
Cut unsatisfiable transition 0: n_f0___1->n_f58___20
Cut unsatisfiable transition 16: n_f12___25->n_f35___16
Cut unsatisfiable transition 32: n_f35___16->n_f0___1
Cut unsatisfiable transition 33: n_f35___16->n_f37___10
Cut unsatisfiable transition 34: n_f35___16->n_f37___11
Cut unreachable locations [n_f0___1; n_f35___16] from the program graph
Problem after Preprocessing
Start: n_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: D_P, E_P, F_P, G_P, NoDet0
Locations: n_f0___22, n_f0___29, n_f0___7, n_f12___18, n_f12___21, n_f12___25, n_f12___26, n_f12___28, n_f22___15, n_f22___17, n_f29___13, n_f35___12, n_f35___14, n_f35___19, n_f35___23, n_f35___24, n_f37___10, n_f37___11, n_f37___2, n_f37___3, n_f37___4, n_f37___9, n_f43___8, n_f48___5, n_f58___20, n_f58___27, n_f58___6, n_start
Transitions:
1:n_f0___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0
2:n_f0___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_0<=Arg_1
3:n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___28(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_1<=Arg_0
4:n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<=Arg_1
5:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
6:n_f0___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f58___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
7:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
8:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
9:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4
10:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
11:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___14(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
12:n_f12___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___19(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
13:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
14:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
15:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4
17:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
18:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
19:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___23(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
20:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P
21:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4
22:n_f12___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___24(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1
23:n_f22___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 3+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
24:n_f22___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
25:n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg_4
26:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
27:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
28:n_f35___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
29:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
30:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1<=Arg_2
31:n_f35___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_2<=0
35:n_f35___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
36:n_f35___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_2<=0 && 0<=Arg_2
37:n_f35___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2
38:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
39:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
40:n_f37___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
41:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && Arg_3<=Arg_0
42:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
43:n_f37___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
44:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && 1+Arg_0<=Arg_3
45:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && Arg_3<=Arg_0
46:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
47:n_f37___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_7<=Arg_2 && 0<=Arg_7 && 1<=Arg_2+Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1<=Arg_2 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
48:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
49:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
50:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
51:n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 0<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
52:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_3
53:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___3(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0
54:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
55:n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
56:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___7(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
57:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && Arg_3<=Arg_0
58:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
59:n_f37___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___8(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,NoDet0):|:Arg_7<=0 && 1+Arg_2+Arg_7<=0 && 0<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_4<=1+Arg_0 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_2<=0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_2<=0 && D_P<=Arg_0 && Arg_3<=D_P && D_P<=Arg_3
60:n_f43___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f48___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_3<=Arg_0 && 1+Arg_0<=Arg_4
61:n_f48___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f37___4(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4
62:n_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
MPRF for transition 18:n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___26(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:
new bound:
Arg_0+Arg_4+3 {O(n)}
MPRF:
n_f12___26 [Arg_0+2-Arg_4 ]
MPRF for transition 7:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:
new bound:
4*Arg_0+4*Arg_4+10 {O(n)}
MPRF:
n_f12___18 [Arg_0+2-Arg_4 ]
n_f12___25 [Arg_0+1-Arg_4 ]
MPRF for transition 8:n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:Arg_5<=Arg_6 && Arg_4<=1+Arg_0 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && Arg_4<=1+Arg_0 && Arg_5<=Arg_6 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P of depth 1:
new bound:
4*Arg_0+4*Arg_4+10 {O(n)}
MPRF:
n_f12___18 [Arg_0-Arg_3 ]
n_f12___25 [Arg_0+1-Arg_4 ]
MPRF for transition 13:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___18(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && F_P<=G_P && E_P<=1+Arg_0 && Arg_4+1<=E_P && E_P<=1+Arg_4 of depth 1:
new bound:
4*Arg_0+4*Arg_4+12 {O(n)}
MPRF:
n_f12___18 [Arg_0+1-Arg_4 ]
n_f12___25 [Arg_0+2-Arg_4 ]
MPRF for transition 14:n_f12___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___25(Arg_0,Arg_1,NoDet0,D_P,E_P,F_P,G_P,Arg_7):|:1+Arg_6<=Arg_5 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_0 && 1+Arg_3<=Arg_4 && Arg_3<=Arg_0 && 1+Arg_1<=Arg_0 && Arg_3<=Arg_0 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 1+Arg_6<=Arg_5 && Arg_3<=Arg_0 && D_P<=Arg_0 && 1+G_P<=F_P && Arg_4<=D_P && D_P<=Arg_4 && D_P+1<=E_P && E_P<=1+D_P of depth 1:
new bound:
4*Arg_0+4*Arg_4+10 {O(n)}
MPRF:
n_f12___18 [Arg_0-Arg_3 ]
n_f12___25 [Arg_0+1-Arg_4 ]
MPRF for transition 1:n_f0___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f12___21(Arg_0,Arg_1,0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
1848*Arg_0+1848*Arg_1+15 {O(n)}
MPRF:
n_f12___21 [Arg_0-Arg_1 ]
n_f35___19 [Arg_0-Arg_3 ]
n_f0___22 [Arg_0+1-Arg_1 ]
MPRF for transition 12:n_f12___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f35___19(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:
new bound:
1848*Arg_1+5208*Arg_0+7056*Arg_4+16990 {O(n)}
MPRF:
n_f12___21 [Arg_4-Arg_3 ]
n_f35___19 [Arg_4-Arg_3-1 ]
n_f0___22 [Arg_4-Arg_1 ]
MPRF for transition 35:n_f35___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f0___22(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
1848*Arg_0+1848*Arg_1+11 {O(n)}
MPRF:
n_f12___21 [Arg_0-Arg_3 ]
n_f35___19 [Arg_0-Arg_3 ]
n_f0___22 [Arg_0-Arg_1 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
1: n_f0___22->n_f12___21: 1848*Arg_0+1848*Arg_1+15 {O(n)}
2: n_f0___22->n_f58___20: 1 {O(1)}
3: n_f0___29->n_f12___28: 1 {O(1)}
4: n_f0___29->n_f58___27: 1 {O(1)}
5: n_f0___7->n_f12___21: 1 {O(1)}
6: n_f0___7->n_f58___6: 1 {O(1)}
7: n_f12___18->n_f12___18: 4*Arg_0+4*Arg_4+10 {O(n)}
8: n_f12___18->n_f12___25: 4*Arg_0+4*Arg_4+10 {O(n)}
9: n_f12___18->n_f22___15: 1 {O(1)}
10: n_f12___18->n_f22___17: 1 {O(1)}
11: n_f12___18->n_f35___14: 1 {O(1)}
12: n_f12___21->n_f35___19: 1848*Arg_1+5208*Arg_0+7056*Arg_4+16990 {O(n)}
13: n_f12___25->n_f12___18: 4*Arg_0+4*Arg_4+12 {O(n)}
14: n_f12___25->n_f12___25: 4*Arg_0+4*Arg_4+10 {O(n)}
15: n_f12___25->n_f22___17: 1 {O(1)}
17: n_f12___26->n_f12___25: 1 {O(1)}
18: n_f12___26->n_f12___26: Arg_0+Arg_4+3 {O(n)}
19: n_f12___26->n_f35___23: 1 {O(1)}
20: n_f12___28->n_f12___25: 1 {O(1)}
21: n_f12___28->n_f12___26: 1 {O(1)}
22: n_f12___28->n_f35___24: 1 {O(1)}
23: n_f22___15->n_f29___13: 1 {O(1)}
24: n_f22___17->n_f29___13: 1 {O(1)}
25: n_f29___13->n_f35___12: 1 {O(1)}
26: n_f35___12->n_f0___22: 1 {O(1)}
27: n_f35___12->n_f37___10: 1 {O(1)}
28: n_f35___12->n_f37___11: 1 {O(1)}
29: n_f35___14->n_f0___22: 1 {O(1)}
30: n_f35___14->n_f37___10: 1 {O(1)}
31: n_f35___14->n_f37___11: 1 {O(1)}
35: n_f35___19->n_f0___22: 1848*Arg_0+1848*Arg_1+11 {O(n)}
36: n_f35___23->n_f0___22: 1 {O(1)}
37: n_f35___24->n_f0___22: 1 {O(1)}
38: n_f37___10->n_f37___2: 1 {O(1)}
39: n_f37___10->n_f43___8: 1 {O(1)}
40: n_f37___10->n_f43___8: 1 {O(1)}
41: n_f37___11->n_f37___9: 1 {O(1)}
42: n_f37___11->n_f43___8: 1 {O(1)}
43: n_f37___11->n_f43___8: 1 {O(1)}
44: n_f37___2->n_f0___7: 1 {O(1)}
45: n_f37___2->n_f37___2: inf {Infinity}
46: n_f37___2->n_f43___8: 1 {O(1)}
47: n_f37___2->n_f43___8: 1 {O(1)}
48: n_f37___3->n_f0___7: 1 {O(1)}
49: n_f37___3->n_f37___3: inf {Infinity}
50: n_f37___3->n_f43___8: inf {Infinity}
51: n_f37___3->n_f43___8: inf {Infinity}
52: n_f37___4->n_f0___7: 1 {O(1)}
53: n_f37___4->n_f37___3: inf {Infinity}
54: n_f37___4->n_f43___8: inf {Infinity}
55: n_f37___4->n_f43___8: inf {Infinity}
56: n_f37___9->n_f0___7: 1 {O(1)}
57: n_f37___9->n_f37___9: inf {Infinity}
58: n_f37___9->n_f43___8: 1 {O(1)}
59: n_f37___9->n_f43___8: 1 {O(1)}
60: n_f43___8->n_f48___5: inf {Infinity}
61: n_f48___5->n_f37___4: inf {Infinity}
62: n_start->n_f0___29: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
1: n_f0___22->n_f12___21: 1848*Arg_0+1848*Arg_1+15 {O(n)}
2: n_f0___22->n_f58___20: 1 {O(1)}
3: n_f0___29->n_f12___28: 1 {O(1)}
4: n_f0___29->n_f58___27: 1 {O(1)}
5: n_f0___7->n_f12___21: 1 {O(1)}
6: n_f0___7->n_f58___6: 1 {O(1)}
7: n_f12___18->n_f12___18: 4*Arg_0+4*Arg_4+10 {O(n)}
8: n_f12___18->n_f12___25: 4*Arg_0+4*Arg_4+10 {O(n)}
9: n_f12___18->n_f22___15: 1 {O(1)}
10: n_f12___18->n_f22___17: 1 {O(1)}
11: n_f12___18->n_f35___14: 1 {O(1)}
12: n_f12___21->n_f35___19: 1848*Arg_1+5208*Arg_0+7056*Arg_4+16990 {O(n)}
13: n_f12___25->n_f12___18: 4*Arg_0+4*Arg_4+12 {O(n)}
14: n_f12___25->n_f12___25: 4*Arg_0+4*Arg_4+10 {O(n)}
15: n_f12___25->n_f22___17: 1 {O(1)}
17: n_f12___26->n_f12___25: 1 {O(1)}
18: n_f12___26->n_f12___26: Arg_0+Arg_4+3 {O(n)}
19: n_f12___26->n_f35___23: 1 {O(1)}
20: n_f12___28->n_f12___25: 1 {O(1)}
21: n_f12___28->n_f12___26: 1 {O(1)}
22: n_f12___28->n_f35___24: 1 {O(1)}
23: n_f22___15->n_f29___13: 1 {O(1)}
24: n_f22___17->n_f29___13: 1 {O(1)}
25: n_f29___13->n_f35___12: 1 {O(1)}
26: n_f35___12->n_f0___22: 1 {O(1)}
27: n_f35___12->n_f37___10: 1 {O(1)}
28: n_f35___12->n_f37___11: 1 {O(1)}
29: n_f35___14->n_f0___22: 1 {O(1)}
30: n_f35___14->n_f37___10: 1 {O(1)}
31: n_f35___14->n_f37___11: 1 {O(1)}
35: n_f35___19->n_f0___22: 1848*Arg_0+1848*Arg_1+11 {O(n)}
36: n_f35___23->n_f0___22: 1 {O(1)}
37: n_f35___24->n_f0___22: 1 {O(1)}
38: n_f37___10->n_f37___2: 1 {O(1)}
39: n_f37___10->n_f43___8: 1 {O(1)}
40: n_f37___10->n_f43___8: 1 {O(1)}
41: n_f37___11->n_f37___9: 1 {O(1)}
42: n_f37___11->n_f43___8: 1 {O(1)}
43: n_f37___11->n_f43___8: 1 {O(1)}
44: n_f37___2->n_f0___7: 1 {O(1)}
45: n_f37___2->n_f37___2: inf {Infinity}
46: n_f37___2->n_f43___8: 1 {O(1)}
47: n_f37___2->n_f43___8: 1 {O(1)}
48: n_f37___3->n_f0___7: 1 {O(1)}
49: n_f37___3->n_f37___3: inf {Infinity}
50: n_f37___3->n_f43___8: inf {Infinity}
51: n_f37___3->n_f43___8: inf {Infinity}
52: n_f37___4->n_f0___7: 1 {O(1)}
53: n_f37___4->n_f37___3: inf {Infinity}
54: n_f37___4->n_f43___8: inf {Infinity}
55: n_f37___4->n_f43___8: inf {Infinity}
56: n_f37___9->n_f0___7: 1 {O(1)}
57: n_f37___9->n_f37___9: inf {Infinity}
58: n_f37___9->n_f43___8: 1 {O(1)}
59: n_f37___9->n_f43___8: 1 {O(1)}
60: n_f43___8->n_f48___5: inf {Infinity}
61: n_f48___5->n_f37___4: inf {Infinity}
62: n_start->n_f0___29: 1 {O(1)}
Sizebounds
1: n_f0___22->n_f12___21, Arg_0: 1848*Arg_0 {O(n)}
1: n_f0___22->n_f12___21, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
1: n_f0___22->n_f12___21, Arg_2: 0 {O(1)}
1: n_f0___22->n_f12___21, Arg_3: 1848*Arg_0+3744*Arg_1+26 {O(n)}
1: n_f0___22->n_f12___21, Arg_4: 5208*Arg_0+7056*Arg_4+16979 {O(n)}
2: n_f0___22->n_f58___20, Arg_0: 1896*Arg_0 {O(n)}
2: n_f0___22->n_f58___20, Arg_1: 1848*Arg_0+3744*Arg_1+26 {O(n)}
2: n_f0___22->n_f58___20, Arg_2: 0 {O(1)}
2: n_f0___22->n_f58___20, Arg_4: 5336*Arg_0+7232*Arg_4+17398 {O(n)}
3: n_f0___29->n_f12___28, Arg_0: Arg_0 {O(n)}
3: n_f0___29->n_f12___28, Arg_1: Arg_1 {O(n)}
3: n_f0___29->n_f12___28, Arg_2: 0 {O(1)}
3: n_f0___29->n_f12___28, Arg_3: Arg_1 {O(n)}
3: n_f0___29->n_f12___28, Arg_4: Arg_4 {O(n)}
3: n_f0___29->n_f12___28, Arg_5: Arg_5 {O(n)}
3: n_f0___29->n_f12___28, Arg_6: Arg_6 {O(n)}
3: n_f0___29->n_f12___28, Arg_7: Arg_7 {O(n)}
4: n_f0___29->n_f58___27, Arg_0: Arg_0 {O(n)}
4: n_f0___29->n_f58___27, Arg_1: Arg_1 {O(n)}
4: n_f0___29->n_f58___27, Arg_2: Arg_2 {O(n)}
4: n_f0___29->n_f58___27, Arg_3: Arg_3 {O(n)}
4: n_f0___29->n_f58___27, Arg_4: Arg_4 {O(n)}
4: n_f0___29->n_f58___27, Arg_5: Arg_5 {O(n)}
4: n_f0___29->n_f58___27, Arg_6: Arg_6 {O(n)}
4: n_f0___29->n_f58___27, Arg_7: Arg_7 {O(n)}
5: n_f0___7->n_f12___21, Arg_0: 1800*Arg_0 {O(n)}
5: n_f0___7->n_f12___21, Arg_1: 1800*Arg_1+7 {O(n)}
5: n_f0___7->n_f12___21, Arg_2: 0 {O(1)}
5: n_f0___7->n_f12___21, Arg_3: 1800*Arg_1+7 {O(n)}
5: n_f0___7->n_f12___21, Arg_4: 5080*Arg_0+6880*Arg_4+16560 {O(n)}
6: n_f0___7->n_f58___6, Arg_0: 1800*Arg_0 {O(n)}
6: n_f0___7->n_f58___6, Arg_1: 1800*Arg_1+7 {O(n)}
6: n_f0___7->n_f58___6, Arg_4: 5080*Arg_0+6880*Arg_4+16560 {O(n)}
7: n_f12___18->n_f12___18, Arg_0: 6*Arg_0 {O(n)}
7: n_f12___18->n_f12___18, Arg_1: 6*Arg_1 {O(n)}
7: n_f12___18->n_f12___18, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
7: n_f12___18->n_f12___18, Arg_7: 6*Arg_7 {O(n)}
8: n_f12___18->n_f12___25, Arg_0: 6*Arg_0 {O(n)}
8: n_f12___18->n_f12___25, Arg_1: 6*Arg_1 {O(n)}
8: n_f12___18->n_f12___25, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
8: n_f12___18->n_f12___25, Arg_7: 6*Arg_7 {O(n)}
9: n_f12___18->n_f22___15, Arg_0: 6*Arg_0 {O(n)}
9: n_f12___18->n_f22___15, Arg_1: 6*Arg_1 {O(n)}
9: n_f12___18->n_f22___15, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
9: n_f12___18->n_f22___15, Arg_7: 6*Arg_7 {O(n)}
10: n_f12___18->n_f22___17, Arg_0: 12*Arg_0 {O(n)}
10: n_f12___18->n_f22___17, Arg_1: 12*Arg_1 {O(n)}
10: n_f12___18->n_f22___17, Arg_4: 36*Arg_0+48*Arg_4+116 {O(n)}
10: n_f12___18->n_f22___17, Arg_7: 12*Arg_7 {O(n)}
11: n_f12___18->n_f35___14, Arg_0: 12*Arg_0 {O(n)}
11: n_f12___18->n_f35___14, Arg_1: 12*Arg_1 {O(n)}
11: n_f12___18->n_f35___14, Arg_3: 12*Arg_1 {O(n)}
11: n_f12___18->n_f35___14, Arg_4: 36*Arg_0+48*Arg_4+116 {O(n)}
11: n_f12___18->n_f35___14, Arg_7: 12*Arg_7 {O(n)}
12: n_f12___21->n_f35___19, Arg_0: 1848*Arg_0 {O(n)}
12: n_f12___21->n_f35___19, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
12: n_f12___21->n_f35___19, Arg_2: 0 {O(1)}
12: n_f12___21->n_f35___19, Arg_3: 1848*Arg_0+5496*Arg_1+29 {O(n)}
12: n_f12___21->n_f35___19, Arg_4: 5208*Arg_0+7056*Arg_4+16979 {O(n)}
13: n_f12___25->n_f12___18, Arg_0: 6*Arg_0 {O(n)}
13: n_f12___25->n_f12___18, Arg_1: 6*Arg_1 {O(n)}
13: n_f12___25->n_f12___18, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
13: n_f12___25->n_f12___18, Arg_7: 6*Arg_7 {O(n)}
14: n_f12___25->n_f12___25, Arg_0: 6*Arg_0 {O(n)}
14: n_f12___25->n_f12___25, Arg_1: 6*Arg_1 {O(n)}
14: n_f12___25->n_f12___25, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
14: n_f12___25->n_f12___25, Arg_7: 6*Arg_7 {O(n)}
15: n_f12___25->n_f22___17, Arg_0: 15*Arg_0 {O(n)}
15: n_f12___25->n_f22___17, Arg_1: 15*Arg_1 {O(n)}
15: n_f12___25->n_f22___17, Arg_4: 37*Arg_0+52*Arg_4+124 {O(n)}
15: n_f12___25->n_f22___17, Arg_7: 15*Arg_7 {O(n)}
17: n_f12___26->n_f12___25, Arg_0: 2*Arg_0 {O(n)}
17: n_f12___26->n_f12___25, Arg_1: 2*Arg_1 {O(n)}
17: n_f12___26->n_f12___25, Arg_4: 3*Arg_4+Arg_0+7 {O(n)}
17: n_f12___26->n_f12___25, Arg_7: 2*Arg_7 {O(n)}
18: n_f12___26->n_f12___26, Arg_0: Arg_0 {O(n)}
18: n_f12___26->n_f12___26, Arg_1: Arg_1 {O(n)}
18: n_f12___26->n_f12___26, Arg_2: 0 {O(1)}
18: n_f12___26->n_f12___26, Arg_3: Arg_1 {O(n)}
18: n_f12___26->n_f12___26, Arg_4: 2*Arg_4+Arg_0+4 {O(n)}
18: n_f12___26->n_f12___26, Arg_7: Arg_7 {O(n)}
19: n_f12___26->n_f35___23, Arg_0: 2*Arg_0 {O(n)}
19: n_f12___26->n_f35___23, Arg_1: 2*Arg_1 {O(n)}
19: n_f12___26->n_f35___23, Arg_2: 0 {O(1)}
19: n_f12___26->n_f35___23, Arg_3: 2*Arg_1 {O(n)}
19: n_f12___26->n_f35___23, Arg_4: 3*Arg_4+Arg_0+5 {O(n)}
19: n_f12___26->n_f35___23, Arg_7: 2*Arg_7 {O(n)}
20: n_f12___28->n_f12___25, Arg_0: Arg_0 {O(n)}
20: n_f12___28->n_f12___25, Arg_1: Arg_1 {O(n)}
20: n_f12___28->n_f12___25, Arg_4: Arg_4+1 {O(n)}
20: n_f12___28->n_f12___25, Arg_7: Arg_7 {O(n)}
21: n_f12___28->n_f12___26, Arg_0: Arg_0 {O(n)}
21: n_f12___28->n_f12___26, Arg_1: Arg_1 {O(n)}
21: n_f12___28->n_f12___26, Arg_2: 0 {O(1)}
21: n_f12___28->n_f12___26, Arg_3: Arg_1 {O(n)}
21: n_f12___28->n_f12___26, Arg_4: Arg_4+1 {O(n)}
21: n_f12___28->n_f12___26, Arg_7: Arg_7 {O(n)}
22: n_f12___28->n_f35___24, Arg_0: Arg_0 {O(n)}
22: n_f12___28->n_f35___24, Arg_1: Arg_1 {O(n)}
22: n_f12___28->n_f35___24, Arg_2: 0 {O(1)}
22: n_f12___28->n_f35___24, Arg_3: Arg_1 {O(n)}
22: n_f12___28->n_f35___24, Arg_4: Arg_4 {O(n)}
22: n_f12___28->n_f35___24, Arg_5: Arg_5 {O(n)}
22: n_f12___28->n_f35___24, Arg_6: Arg_6 {O(n)}
22: n_f12___28->n_f35___24, Arg_7: Arg_7 {O(n)}
23: n_f22___15->n_f29___13, Arg_0: 6*Arg_0 {O(n)}
23: n_f22___15->n_f29___13, Arg_1: 6*Arg_1 {O(n)}
23: n_f22___15->n_f29___13, Arg_4: 18*Arg_0+24*Arg_4+58 {O(n)}
23: n_f22___15->n_f29___13, Arg_7: 6*Arg_7 {O(n)}
24: n_f22___17->n_f29___13, Arg_0: 27*Arg_0 {O(n)}
24: n_f22___17->n_f29___13, Arg_1: 27*Arg_1 {O(n)}
24: n_f22___17->n_f29___13, Arg_4: 100*Arg_4+73*Arg_0+240 {O(n)}
24: n_f22___17->n_f29___13, Arg_7: 27*Arg_7 {O(n)}
25: n_f29___13->n_f35___12, Arg_0: 33*Arg_0 {O(n)}
25: n_f29___13->n_f35___12, Arg_1: 33*Arg_1 {O(n)}
25: n_f29___13->n_f35___12, Arg_4: 124*Arg_4+91*Arg_0+298 {O(n)}
25: n_f29___13->n_f35___12, Arg_7: 33*Arg_7 {O(n)}
26: n_f35___12->n_f0___22, Arg_0: 33*Arg_0 {O(n)}
26: n_f35___12->n_f0___22, Arg_1: 33*Arg_1+1 {O(n)}
26: n_f35___12->n_f0___22, Arg_2: 0 {O(1)}
26: n_f35___12->n_f0___22, Arg_4: 124*Arg_4+91*Arg_0+298 {O(n)}
26: n_f35___12->n_f0___22, Arg_7: 33*Arg_7 {O(n)}
27: n_f35___12->n_f37___10, Arg_0: 33*Arg_0 {O(n)}
27: n_f35___12->n_f37___10, Arg_1: 33*Arg_1 {O(n)}
27: n_f35___12->n_f37___10, Arg_4: 124*Arg_4+91*Arg_0+298 {O(n)}
27: n_f35___12->n_f37___10, Arg_7: 33*Arg_7 {O(n)}
28: n_f35___12->n_f37___11, Arg_0: 33*Arg_0 {O(n)}
28: n_f35___12->n_f37___11, Arg_1: 33*Arg_1 {O(n)}
28: n_f35___12->n_f37___11, Arg_4: 124*Arg_4+91*Arg_0+298 {O(n)}
28: n_f35___12->n_f37___11, Arg_7: 33*Arg_7 {O(n)}
29: n_f35___14->n_f0___22, Arg_0: 12*Arg_0 {O(n)}
29: n_f35___14->n_f0___22, Arg_1: 12*Arg_1+1 {O(n)}
29: n_f35___14->n_f0___22, Arg_2: 0 {O(1)}
29: n_f35___14->n_f0___22, Arg_3: 12*Arg_1 {O(n)}
29: n_f35___14->n_f0___22, Arg_4: 36*Arg_0+48*Arg_4+116 {O(n)}
29: n_f35___14->n_f0___22, Arg_7: 12*Arg_7 {O(n)}
30: n_f35___14->n_f37___10, Arg_0: 12*Arg_0 {O(n)}
30: n_f35___14->n_f37___10, Arg_1: 12*Arg_1 {O(n)}
30: n_f35___14->n_f37___10, Arg_3: 12*Arg_1 {O(n)}
30: n_f35___14->n_f37___10, Arg_4: 36*Arg_0+48*Arg_4+116 {O(n)}
30: n_f35___14->n_f37___10, Arg_7: 12*Arg_7 {O(n)}
31: n_f35___14->n_f37___11, Arg_0: 12*Arg_0 {O(n)}
31: n_f35___14->n_f37___11, Arg_1: 12*Arg_1 {O(n)}
31: n_f35___14->n_f37___11, Arg_3: 12*Arg_1 {O(n)}
31: n_f35___14->n_f37___11, Arg_4: 36*Arg_0+48*Arg_4+116 {O(n)}
31: n_f35___14->n_f37___11, Arg_7: 12*Arg_7 {O(n)}
35: n_f35___19->n_f0___22, Arg_0: 1848*Arg_0 {O(n)}
35: n_f35___19->n_f0___22, Arg_1: 1848*Arg_0+3696*Arg_1+22 {O(n)}
35: n_f35___19->n_f0___22, Arg_2: 0 {O(1)}
35: n_f35___19->n_f0___22, Arg_3: 1848*Arg_0+5496*Arg_1+29 {O(n)}
35: n_f35___19->n_f0___22, Arg_4: 5208*Arg_0+7056*Arg_4+16979 {O(n)}
36: n_f35___23->n_f0___22, Arg_0: 2*Arg_0 {O(n)}
36: n_f35___23->n_f0___22, Arg_1: 2*Arg_1+1 {O(n)}
36: n_f35___23->n_f0___22, Arg_2: 0 {O(1)}
36: n_f35___23->n_f0___22, Arg_3: 2*Arg_1 {O(n)}
36: n_f35___23->n_f0___22, Arg_4: 3*Arg_4+Arg_0+5 {O(n)}
36: n_f35___23->n_f0___22, Arg_7: 2*Arg_7 {O(n)}
37: n_f35___24->n_f0___22, Arg_0: Arg_0 {O(n)}
37: n_f35___24->n_f0___22, Arg_1: Arg_1+1 {O(n)}
37: n_f35___24->n_f0___22, Arg_2: 0 {O(1)}
37: n_f35___24->n_f0___22, Arg_3: Arg_1 {O(n)}
37: n_f35___24->n_f0___22, Arg_4: Arg_4 {O(n)}
37: n_f35___24->n_f0___22, Arg_5: Arg_5 {O(n)}
37: n_f35___24->n_f0___22, Arg_6: Arg_6 {O(n)}
37: n_f35___24->n_f0___22, Arg_7: Arg_7 {O(n)}
38: n_f37___10->n_f37___2, Arg_0: 45*Arg_0 {O(n)}
38: n_f37___10->n_f37___2, Arg_1: 45*Arg_1 {O(n)}
38: n_f37___10->n_f37___2, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
38: n_f37___10->n_f37___2, Arg_7: 0 {O(1)}
39: n_f37___10->n_f43___8, Arg_0: 45*Arg_0 {O(n)}
39: n_f37___10->n_f43___8, Arg_1: 45*Arg_1 {O(n)}
39: n_f37___10->n_f43___8, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
40: n_f37___10->n_f43___8, Arg_0: 45*Arg_0 {O(n)}
40: n_f37___10->n_f43___8, Arg_1: 45*Arg_1 {O(n)}
40: n_f37___10->n_f43___8, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
41: n_f37___11->n_f37___9, Arg_0: 45*Arg_0 {O(n)}
41: n_f37___11->n_f37___9, Arg_1: 45*Arg_1 {O(n)}
41: n_f37___11->n_f37___9, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
41: n_f37___11->n_f37___9, Arg_7: 0 {O(1)}
42: n_f37___11->n_f43___8, Arg_0: 45*Arg_0 {O(n)}
42: n_f37___11->n_f43___8, Arg_1: 45*Arg_1 {O(n)}
42: n_f37___11->n_f43___8, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
43: n_f37___11->n_f43___8, Arg_0: 45*Arg_0 {O(n)}
43: n_f37___11->n_f43___8, Arg_1: 45*Arg_1 {O(n)}
43: n_f37___11->n_f43___8, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
44: n_f37___2->n_f0___7, Arg_0: 90*Arg_0 {O(n)}
44: n_f37___2->n_f0___7, Arg_1: 90*Arg_1+2 {O(n)}
44: n_f37___2->n_f0___7, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
44: n_f37___2->n_f0___7, Arg_7: 0 {O(1)}
45: n_f37___2->n_f37___2, Arg_0: 45*Arg_0 {O(n)}
45: n_f37___2->n_f37___2, Arg_1: 45*Arg_1 {O(n)}
45: n_f37___2->n_f37___2, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
45: n_f37___2->n_f37___2, Arg_7: 0 {O(1)}
46: n_f37___2->n_f43___8, Arg_0: 90*Arg_0 {O(n)}
46: n_f37___2->n_f43___8, Arg_1: 90*Arg_1 {O(n)}
46: n_f37___2->n_f43___8, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
47: n_f37___2->n_f43___8, Arg_0: 90*Arg_0 {O(n)}
47: n_f37___2->n_f43___8, Arg_1: 90*Arg_1 {O(n)}
47: n_f37___2->n_f43___8, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
48: n_f37___3->n_f0___7, Arg_0: 1080*Arg_0 {O(n)}
48: n_f37___3->n_f0___7, Arg_1: 1080*Arg_1+2 {O(n)}
48: n_f37___3->n_f0___7, Arg_4: 3048*Arg_0+4128*Arg_4+9936 {O(n)}
48: n_f37___3->n_f0___7, Arg_7: 0 {O(1)}
49: n_f37___3->n_f37___3, Arg_0: 540*Arg_0 {O(n)}
49: n_f37___3->n_f37___3, Arg_1: 540*Arg_1 {O(n)}
49: n_f37___3->n_f37___3, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
49: n_f37___3->n_f37___3, Arg_7: 0 {O(1)}
50: n_f37___3->n_f43___8, Arg_0: 540*Arg_0 {O(n)}
50: n_f37___3->n_f43___8, Arg_1: 540*Arg_1 {O(n)}
50: n_f37___3->n_f43___8, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
51: n_f37___3->n_f43___8, Arg_0: 540*Arg_0 {O(n)}
51: n_f37___3->n_f43___8, Arg_1: 540*Arg_1 {O(n)}
51: n_f37___3->n_f43___8, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
52: n_f37___4->n_f0___7, Arg_0: 540*Arg_0 {O(n)}
52: n_f37___4->n_f0___7, Arg_1: 540*Arg_1+1 {O(n)}
52: n_f37___4->n_f0___7, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
53: n_f37___4->n_f37___3, Arg_0: 540*Arg_0 {O(n)}
53: n_f37___4->n_f37___3, Arg_1: 540*Arg_1 {O(n)}
53: n_f37___4->n_f37___3, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
53: n_f37___4->n_f37___3, Arg_7: 0 {O(1)}
54: n_f37___4->n_f43___8, Arg_0: 540*Arg_0 {O(n)}
54: n_f37___4->n_f43___8, Arg_1: 540*Arg_1 {O(n)}
54: n_f37___4->n_f43___8, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
55: n_f37___4->n_f43___8, Arg_0: 540*Arg_0 {O(n)}
55: n_f37___4->n_f43___8, Arg_1: 540*Arg_1 {O(n)}
55: n_f37___4->n_f43___8, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
56: n_f37___9->n_f0___7, Arg_0: 90*Arg_0 {O(n)}
56: n_f37___9->n_f0___7, Arg_1: 90*Arg_1+2 {O(n)}
56: n_f37___9->n_f0___7, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
56: n_f37___9->n_f0___7, Arg_7: 0 {O(1)}
57: n_f37___9->n_f37___9, Arg_0: 45*Arg_0 {O(n)}
57: n_f37___9->n_f37___9, Arg_1: 45*Arg_1 {O(n)}
57: n_f37___9->n_f37___9, Arg_4: 127*Arg_0+172*Arg_4+414 {O(n)}
57: n_f37___9->n_f37___9, Arg_7: 0 {O(1)}
58: n_f37___9->n_f43___8, Arg_0: 90*Arg_0 {O(n)}
58: n_f37___9->n_f43___8, Arg_1: 90*Arg_1 {O(n)}
58: n_f37___9->n_f43___8, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
59: n_f37___9->n_f43___8, Arg_0: 90*Arg_0 {O(n)}
59: n_f37___9->n_f43___8, Arg_1: 90*Arg_1 {O(n)}
59: n_f37___9->n_f43___8, Arg_4: 254*Arg_0+344*Arg_4+828 {O(n)}
60: n_f43___8->n_f48___5, Arg_0: 540*Arg_0 {O(n)}
60: n_f43___8->n_f48___5, Arg_1: 540*Arg_1 {O(n)}
60: n_f43___8->n_f48___5, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
61: n_f48___5->n_f37___4, Arg_0: 540*Arg_0 {O(n)}
61: n_f48___5->n_f37___4, Arg_1: 540*Arg_1 {O(n)}
61: n_f48___5->n_f37___4, Arg_4: 1524*Arg_0+2064*Arg_4+4968 {O(n)}
62: n_start->n_f0___29, Arg_0: Arg_0 {O(n)}
62: n_start->n_f0___29, Arg_1: Arg_1 {O(n)}
62: n_start->n_f0___29, Arg_2: Arg_2 {O(n)}
62: n_start->n_f0___29, Arg_3: Arg_3 {O(n)}
62: n_start->n_f0___29, Arg_4: Arg_4 {O(n)}
62: n_start->n_f0___29, Arg_5: Arg_5 {O(n)}
62: n_start->n_f0___29, Arg_6: Arg_6 {O(n)}
62: n_start->n_f0___29, Arg_7: Arg_7 {O(n)}