Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: C_P, D_P, F_P, G_P, N_P, NoDet0, O_P, Q_P
Locations: n_f0, n_f10___19, n_f10___22, n_f10___4, n_f10___8, n_f13___14, n_f13___16, n_f13___17, n_f13___18, n_f13___21, n_f13___6, n_f29___12, n_f29___13, n_f34___11, n_f53___1, n_f53___10, n_f53___9, n_f55___7, n_f61___2, n_f73___15, n_f73___20, n_f73___3, n_f73___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0
1:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___16(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
2:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
3:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
4:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___21(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && 1+Arg_1<=Arg_0
5:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && Arg_0<=Arg_1
6:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0 && Arg_0<=Arg_1
7:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___6(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
8:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
9:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
10:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___6(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0
11:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
12:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f73___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
13:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
14:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
15:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
16:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
17:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
18:n_f13___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
19:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
20:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
21:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
22:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
23:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3
24:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
25:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
26:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
27:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
28:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
29:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f13___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
30:n_f13___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
31:n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
32:n_f29___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
33:n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,NoDet0,N_P,O_P,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && N_P<=O_P && O_P<=N_P
34:n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,O_P,NoDet0,Q_P,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && O_P+Q_P<=0 && 0<=O_P+Q_P
35:n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
36:n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
37:n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
38:n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
39:n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
40:n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
41:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f61___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,NoDet0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
42:n_f61___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3

Preprocessing

Eliminate variables {NoDet0,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12,Arg_15} that do not contribute to the problem

Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f10___19

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f53___9

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 5<=Arg_1+Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f73___5

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f61___2

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___17

Found invariant 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f73___20

Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___16

Found invariant 1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___18

Found invariant 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_1 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f73___15

Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_1 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 5<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_1 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_1+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 5<=Arg_1+Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_f73___3

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f29___12

Found invariant 1<=0 for location n_f29___13

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f53___1

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f55___7

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f10___8

Found invariant 2<=Arg_0 for location n_f10___22

Found invariant Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___21

Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_f10___4

Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___6

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f53___10

Found invariant Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f13___14

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_f34___11

Cut unsatisfiable transition 105: n_f13___14->n_f29___13

Cut unsatisfiable transition 111: n_f13___17->n_f29___13

Cut unsatisfiable transition 120: n_f29___13->n_f34___11

Cut unreachable locations [n_f29___13] from the program graph

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_10, Arg_13, Arg_14, Arg_16, Arg_17
Temp_Vars: C_P, D_P, F_P, G_P, N_P, O_P, Q_P
Locations: n_f0, n_f10___19, n_f10___22, n_f10___4, n_f10___8, n_f13___14, n_f13___16, n_f13___17, n_f13___18, n_f13___21, n_f13___6, n_f29___12, n_f34___11, n_f53___1, n_f53___10, n_f53___9, n_f55___7, n_f61___2, n_f73___15, n_f73___20, n_f73___3, n_f73___5
Transitions:
88:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0
89:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___16(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
90:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
91:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
92:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___21(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && 1+Arg_1<=Arg_0
93:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1
94:n_f10___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1
95:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___6(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0
96:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
97:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_1
98:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___6(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0
99:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
100:n_f10___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f73___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 4<=Arg_10+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=Arg_1
101:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
102:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
103:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
104:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
106:n_f13___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
107:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
108:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
109:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
110:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1<=Arg_2 && 1+Arg_0<=Arg_3
112:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
113:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
114:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
115:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
116:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3
117:n_f13___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3
118:n_f13___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
119:n_f29___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
121:n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,N_P,O_P,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && N_P<=O_P && O_P<=N_P
122:n_f34___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,O_P,Q_P,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && O_P+Q_P<=0 && 0<=O_P+Q_P
123:n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
124:n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
125:n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
126:n_f53___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14<=Arg_13 && Arg_13<=Arg_14 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_13<=Arg_14 && Arg_14<=Arg_13 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
127:n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___8(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10
128:n_f53___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_14+Arg_16<=0 && 0<=Arg_14+Arg_16 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0
129:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f61___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3
130:n_f61___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10+1,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3

MPRF for transition 114:n_f13___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___18(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:1+Arg_6<=0 && Arg_6<=Arg_5 && 2+Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_4 && 1+Arg_4+Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_2+Arg_6<=0 && 3+Arg_6<=Arg_0 && Arg_5<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_4+Arg_5<=0 && 1+Arg_5<=Arg_2 && 1+Arg_2+Arg_5<=0 && 3+Arg_5<=Arg_0 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 2+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

Arg_0+Arg_3+3 {O(n)}

MPRF:

n_f13___18 [Arg_0+2-Arg_3 ]

MPRF for transition 102:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+10 {O(n)}

MPRF:

n_f13___14 [Arg_0+2-Arg_3 ]
n_f13___17 [Arg_0+1-Arg_3 ]

MPRF for transition 103:n_f13___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 1+Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<=1+Arg_0 && 1+Arg_5<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+10 {O(n)}

MPRF:

n_f13___14 [Arg_0+2-Arg_3 ]
n_f13___17 [Arg_0+1-Arg_3 ]

MPRF for transition 108:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___14(Arg_0,Arg_1,Arg_2,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && 1+F_P<=Arg_2 && D_P<=1+Arg_0 && F_P<=G_P && G_P<=F_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f13___14 [Arg_0+1-Arg_3 ]
n_f13___17 [Arg_0+2-Arg_3 ]

MPRF for transition 109:n_f13___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___17(Arg_0,Arg_1,C_P,D_P,Arg_2,F_P,G_P,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=1+Arg_0 && Arg_4<=Arg_2 && Arg_2<=C_P && D_P<=1+Arg_0 && C_P<=G_P && G_P<=C_P && C_P<=F_P && F_P<=C_P && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:

new bound:

4*Arg_0+4*Arg_3+12 {O(n)}

MPRF:

n_f13___14 [Arg_0+1-Arg_3 ]
n_f13___17 [Arg_0+2-Arg_3 ]

MPRF for transition 89:n_f10___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___16(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 of depth 1:

new bound:

30*Arg_0+30*Arg_1+13 {O(n)}

MPRF:

n_f13___16 [Arg_0-Arg_1 ]
n_f10___19 [Arg_0+1-Arg_1 ]

MPRF for transition 106:n_f13___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___19(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}

MPRF:

n_f13___16 [Arg_3-Arg_1-1 ]
n_f10___19 [Arg_3-Arg_1-1 ]

MPRF for transition 124:n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=1+Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 of depth 1:

new bound:

54*Arg_0+54*Arg_10+2 {O(n)}

MPRF:

n_f55___7 [Arg_0+1-Arg_10 ]
n_f61___2 [Arg_0+1-Arg_10 ]
n_f53___1 [Arg_0+2-Arg_10 ]

MPRF for transition 129:n_f55___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f61___2(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_10<=Arg_0 && 1+Arg_0<=D_P && Arg_3<=D_P && D_P<=Arg_3 of depth 1:

new bound:

54*Arg_0+54*Arg_10+2 {O(n)}

MPRF:

n_f55___7 [Arg_0+1-Arg_10 ]
n_f61___2 [Arg_0-Arg_10 ]
n_f53___1 [Arg_0+1-Arg_10 ]

MPRF for transition 130:n_f61___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f53___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10+1,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_5<=Arg_2 && Arg_4<=Arg_2 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 of depth 1:

new bound:

146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}

MPRF:

n_f55___7 [Arg_3-Arg_10 ]
n_f61___2 [Arg_3-Arg_10 ]
n_f53___1 [Arg_3-Arg_10 ]

MPRF for transition 95:n_f10___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f13___6(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 0<=Arg_17+Arg_4 && Arg_17<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 3<=Arg_17+Arg_3 && 3+Arg_17<=Arg_3 && 6<=Arg_10+Arg_3 && 1+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_17 && Arg_17+Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_17+Arg_2 && Arg_17<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && Arg_17<=0 && 3+Arg_17<=Arg_10 && 2+Arg_17<=Arg_0 && 0<=Arg_17 && 3<=Arg_10+Arg_17 && 2<=Arg_0+Arg_17 && 3<=Arg_10 && 1+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_10 && 1+Arg_0<=Arg_10 && Arg_17<=0 && 0<=Arg_17 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 of depth 1:

new bound:

108*Arg_0+108*Arg_1+4 {O(n)}

MPRF:

n_f13___6 [Arg_0-Arg_1-1 ]
n_f10___4 [Arg_0-Arg_1 ]

MPRF for transition 118:n_f13___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,Arg_17) -> n_f10___4(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_10,Arg_13,Arg_14,Arg_16,0):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_10 && Arg_3<=1+Arg_0 && 3<=Arg_3 && 3<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 6<=Arg_10+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_10 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_10+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_10 && 2+Arg_1<=Arg_10 && 5<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_10 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_1<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

108*Arg_0+108*Arg_1+3 {O(n)}

MPRF:

n_f13___6 [Arg_0-Arg_1 ]
n_f10___4 [Arg_0-Arg_1 ]

All Bounds

Timebounds

Overall timebound:162*Arg_10+276*Arg_1+321*Arg_3+591*Arg_0+861 {O(n)}
88: n_f0->n_f10___22: 1 {O(1)}
89: n_f10___19->n_f13___16: 30*Arg_0+30*Arg_1+13 {O(n)}
90: n_f10___19->n_f73___15: 1 {O(1)}
91: n_f10___19->n_f73___15: 1 {O(1)}
92: n_f10___22->n_f13___21: 1 {O(1)}
93: n_f10___22->n_f73___20: 1 {O(1)}
94: n_f10___22->n_f73___20: 1 {O(1)}
95: n_f10___4->n_f13___6: 108*Arg_0+108*Arg_1+4 {O(n)}
96: n_f10___4->n_f73___3: 1 {O(1)}
97: n_f10___4->n_f73___3: 1 {O(1)}
98: n_f10___8->n_f13___6: 1 {O(1)}
99: n_f10___8->n_f73___5: 1 {O(1)}
100: n_f10___8->n_f73___5: 1 {O(1)}
101: n_f13___14->n_f10___19: 1 {O(1)}
102: n_f13___14->n_f13___14: 4*Arg_0+4*Arg_3+10 {O(n)}
103: n_f13___14->n_f13___17: 4*Arg_0+4*Arg_3+10 {O(n)}
104: n_f13___14->n_f29___12: 1 {O(1)}
106: n_f13___16->n_f10___19: 104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}
107: n_f13___17->n_f10___19: 1 {O(1)}
108: n_f13___17->n_f13___14: 4*Arg_0+4*Arg_3+12 {O(n)}
109: n_f13___17->n_f13___17: 4*Arg_0+4*Arg_3+12 {O(n)}
110: n_f13___17->n_f29___12: 1 {O(1)}
112: n_f13___18->n_f10___19: 1 {O(1)}
113: n_f13___18->n_f13___17: 1 {O(1)}
114: n_f13___18->n_f13___18: Arg_0+Arg_3+3 {O(n)}
115: n_f13___21->n_f10___19: 1 {O(1)}
116: n_f13___21->n_f13___17: 1 {O(1)}
117: n_f13___21->n_f13___18: 1 {O(1)}
118: n_f13___6->n_f10___4: 108*Arg_0+108*Arg_1+3 {O(n)}
119: n_f29___12->n_f34___11: 1 {O(1)}
121: n_f34___11->n_f53___10: 1 {O(1)}
122: n_f34___11->n_f53___9: 1 {O(1)}
123: n_f53___1->n_f10___8: 1 {O(1)}
124: n_f53___1->n_f55___7: 54*Arg_0+54*Arg_10+2 {O(n)}
125: n_f53___10->n_f10___8: 1 {O(1)}
126: n_f53___10->n_f55___7: 1 {O(1)}
127: n_f53___9->n_f10___8: 1 {O(1)}
128: n_f53___9->n_f55___7: 1 {O(1)}
129: n_f55___7->n_f61___2: 54*Arg_0+54*Arg_10+2 {O(n)}
130: n_f61___2->n_f53___1: 146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}

Costbounds

Overall costbound: 162*Arg_10+276*Arg_1+321*Arg_3+591*Arg_0+861 {O(n)}
88: n_f0->n_f10___22: 1 {O(1)}
89: n_f10___19->n_f13___16: 30*Arg_0+30*Arg_1+13 {O(n)}
90: n_f10___19->n_f73___15: 1 {O(1)}
91: n_f10___19->n_f73___15: 1 {O(1)}
92: n_f10___22->n_f13___21: 1 {O(1)}
93: n_f10___22->n_f73___20: 1 {O(1)}
94: n_f10___22->n_f73___20: 1 {O(1)}
95: n_f10___4->n_f13___6: 108*Arg_0+108*Arg_1+4 {O(n)}
96: n_f10___4->n_f73___3: 1 {O(1)}
97: n_f10___4->n_f73___3: 1 {O(1)}
98: n_f10___8->n_f13___6: 1 {O(1)}
99: n_f10___8->n_f73___5: 1 {O(1)}
100: n_f10___8->n_f73___5: 1 {O(1)}
101: n_f13___14->n_f10___19: 1 {O(1)}
102: n_f13___14->n_f13___14: 4*Arg_0+4*Arg_3+10 {O(n)}
103: n_f13___14->n_f13___17: 4*Arg_0+4*Arg_3+10 {O(n)}
104: n_f13___14->n_f29___12: 1 {O(1)}
106: n_f13___16->n_f10___19: 104*Arg_3+30*Arg_1+74*Arg_0+266 {O(n)}
107: n_f13___17->n_f10___19: 1 {O(1)}
108: n_f13___17->n_f13___14: 4*Arg_0+4*Arg_3+12 {O(n)}
109: n_f13___17->n_f13___17: 4*Arg_0+4*Arg_3+12 {O(n)}
110: n_f13___17->n_f29___12: 1 {O(1)}
112: n_f13___18->n_f10___19: 1 {O(1)}
113: n_f13___18->n_f13___17: 1 {O(1)}
114: n_f13___18->n_f13___18: Arg_0+Arg_3+3 {O(n)}
115: n_f13___21->n_f10___19: 1 {O(1)}
116: n_f13___21->n_f13___17: 1 {O(1)}
117: n_f13___21->n_f13___18: 1 {O(1)}
118: n_f13___6->n_f10___4: 108*Arg_0+108*Arg_1+3 {O(n)}
119: n_f29___12->n_f34___11: 1 {O(1)}
121: n_f34___11->n_f53___10: 1 {O(1)}
122: n_f34___11->n_f53___9: 1 {O(1)}
123: n_f53___1->n_f10___8: 1 {O(1)}
124: n_f53___1->n_f55___7: 54*Arg_0+54*Arg_10+2 {O(n)}
125: n_f53___10->n_f10___8: 1 {O(1)}
126: n_f53___10->n_f55___7: 1 {O(1)}
127: n_f53___9->n_f10___8: 1 {O(1)}
128: n_f53___9->n_f55___7: 1 {O(1)}
129: n_f55___7->n_f61___2: 54*Arg_0+54*Arg_10+2 {O(n)}
130: n_f61___2->n_f53___1: 146*Arg_0+200*Arg_3+54*Arg_10+496 {O(n)}

Sizebounds

88: n_f0->n_f10___22, Arg_0: Arg_0 {O(n)}
88: n_f0->n_f10___22, Arg_1: Arg_1 {O(n)}
88: n_f0->n_f10___22, Arg_2: Arg_2 {O(n)}
88: n_f0->n_f10___22, Arg_3: Arg_3 {O(n)}
88: n_f0->n_f10___22, Arg_4: Arg_4 {O(n)}
88: n_f0->n_f10___22, Arg_5: Arg_5 {O(n)}
88: n_f0->n_f10___22, Arg_6: Arg_6 {O(n)}
88: n_f0->n_f10___22, Arg_10: Arg_10 {O(n)}
88: n_f0->n_f10___22, Arg_13: Arg_13 {O(n)}
88: n_f0->n_f10___22, Arg_14: Arg_14 {O(n)}
88: n_f0->n_f10___22, Arg_16: Arg_16 {O(n)}
88: n_f0->n_f10___22, Arg_17: Arg_17 {O(n)}
89: n_f10___19->n_f13___16, Arg_0: 30*Arg_0 {O(n)}
89: n_f10___19->n_f13___16, Arg_1: 104*Arg_3+60*Arg_1+74*Arg_0+275 {O(n)}
89: n_f10___19->n_f13___16, Arg_2: 0 {O(1)}
89: n_f10___19->n_f13___16, Arg_3: 104*Arg_3+74*Arg_0+253 {O(n)}
89: n_f10___19->n_f13___16, Arg_4: Arg_4 {O(n)}
89: n_f10___19->n_f13___16, Arg_10: 30*Arg_10 {O(n)}
89: n_f10___19->n_f13___16, Arg_13: 30*Arg_13 {O(n)}
89: n_f10___19->n_f13___16, Arg_14: 30*Arg_14 {O(n)}
89: n_f10___19->n_f13___16, Arg_16: 30*Arg_16 {O(n)}
89: n_f10___19->n_f13___16, Arg_17: 0 {O(1)}
90: n_f10___19->n_f73___15, Arg_0: 60*Arg_0 {O(n)}
90: n_f10___19->n_f73___15, Arg_1: 104*Arg_3+74*Arg_0+90*Arg_1+284 {O(n)}
90: n_f10___19->n_f73___15, Arg_2: 0 {O(1)}
90: n_f10___19->n_f73___15, Arg_3: 148*Arg_0+208*Arg_3+506 {O(n)}
90: n_f10___19->n_f73___15, Arg_4: 2*Arg_4 {O(n)}
90: n_f10___19->n_f73___15, Arg_10: 60*Arg_10 {O(n)}
90: n_f10___19->n_f73___15, Arg_13: 60*Arg_13 {O(n)}
90: n_f10___19->n_f73___15, Arg_14: 60*Arg_14 {O(n)}
90: n_f10___19->n_f73___15, Arg_16: 60*Arg_16 {O(n)}
90: n_f10___19->n_f73___15, Arg_17: 0 {O(1)}
91: n_f10___19->n_f73___15, Arg_0: 60*Arg_0 {O(n)}
91: n_f10___19->n_f73___15, Arg_1: 104*Arg_3+74*Arg_0+90*Arg_1+284 {O(n)}
91: n_f10___19->n_f73___15, Arg_2: 0 {O(1)}
91: n_f10___19->n_f73___15, Arg_3: 148*Arg_0+208*Arg_3+506 {O(n)}
91: n_f10___19->n_f73___15, Arg_4: 2*Arg_4 {O(n)}
91: n_f10___19->n_f73___15, Arg_10: 60*Arg_10 {O(n)}
91: n_f10___19->n_f73___15, Arg_13: 60*Arg_13 {O(n)}
91: n_f10___19->n_f73___15, Arg_14: 60*Arg_14 {O(n)}
91: n_f10___19->n_f73___15, Arg_16: 60*Arg_16 {O(n)}
91: n_f10___19->n_f73___15, Arg_17: 0 {O(1)}
92: n_f10___22->n_f13___21, Arg_0: Arg_0 {O(n)}
92: n_f10___22->n_f13___21, Arg_1: Arg_1 {O(n)}
92: n_f10___22->n_f13___21, Arg_2: 0 {O(1)}
92: n_f10___22->n_f13___21, Arg_3: Arg_3 {O(n)}
92: n_f10___22->n_f13___21, Arg_4: Arg_4 {O(n)}
92: n_f10___22->n_f13___21, Arg_5: Arg_5 {O(n)}
92: n_f10___22->n_f13___21, Arg_6: Arg_6 {O(n)}
92: n_f10___22->n_f13___21, Arg_10: Arg_10 {O(n)}
92: n_f10___22->n_f13___21, Arg_13: Arg_13 {O(n)}
92: n_f10___22->n_f13___21, Arg_14: Arg_14 {O(n)}
92: n_f10___22->n_f13___21, Arg_16: Arg_16 {O(n)}
92: n_f10___22->n_f13___21, Arg_17: Arg_17 {O(n)}
93: n_f10___22->n_f73___20, Arg_0: Arg_0 {O(n)}
93: n_f10___22->n_f73___20, Arg_1: Arg_1 {O(n)}
93: n_f10___22->n_f73___20, Arg_2: Arg_2 {O(n)}
93: n_f10___22->n_f73___20, Arg_3: Arg_3 {O(n)}
93: n_f10___22->n_f73___20, Arg_4: Arg_4 {O(n)}
93: n_f10___22->n_f73___20, Arg_5: Arg_5 {O(n)}
93: n_f10___22->n_f73___20, Arg_6: Arg_6 {O(n)}
93: n_f10___22->n_f73___20, Arg_10: Arg_10 {O(n)}
93: n_f10___22->n_f73___20, Arg_13: Arg_13 {O(n)}
93: n_f10___22->n_f73___20, Arg_14: Arg_14 {O(n)}
93: n_f10___22->n_f73___20, Arg_16: Arg_16 {O(n)}
93: n_f10___22->n_f73___20, Arg_17: Arg_17 {O(n)}
94: n_f10___22->n_f73___20, Arg_0: Arg_0 {O(n)}
94: n_f10___22->n_f73___20, Arg_1: Arg_1 {O(n)}
94: n_f10___22->n_f73___20, Arg_2: Arg_2 {O(n)}
94: n_f10___22->n_f73___20, Arg_3: Arg_3 {O(n)}
94: n_f10___22->n_f73___20, Arg_4: Arg_4 {O(n)}
94: n_f10___22->n_f73___20, Arg_5: Arg_5 {O(n)}
94: n_f10___22->n_f73___20, Arg_6: Arg_6 {O(n)}
94: n_f10___22->n_f73___20, Arg_10: Arg_10 {O(n)}
94: n_f10___22->n_f73___20, Arg_13: Arg_13 {O(n)}
94: n_f10___22->n_f73___20, Arg_14: Arg_14 {O(n)}
94: n_f10___22->n_f73___20, Arg_16: Arg_16 {O(n)}
94: n_f10___22->n_f73___20, Arg_17: Arg_17 {O(n)}
95: n_f10___4->n_f13___6, Arg_0: 108*Arg_0 {O(n)}
95: n_f10___4->n_f13___6, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
95: n_f10___4->n_f13___6, Arg_2: 0 {O(1)}
95: n_f10___4->n_f13___6, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
95: n_f10___4->n_f13___6, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
95: n_f10___4->n_f13___6, Arg_17: 0 {O(1)}
96: n_f10___4->n_f73___3, Arg_0: 108*Arg_0 {O(n)}
96: n_f10___4->n_f73___3, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
96: n_f10___4->n_f73___3, Arg_2: 0 {O(1)}
96: n_f10___4->n_f73___3, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
96: n_f10___4->n_f73___3, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
96: n_f10___4->n_f73___3, Arg_17: 0 {O(1)}
97: n_f10___4->n_f73___3, Arg_0: 108*Arg_0 {O(n)}
97: n_f10___4->n_f73___3, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
97: n_f10___4->n_f73___3, Arg_2: 0 {O(1)}
97: n_f10___4->n_f73___3, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
97: n_f10___4->n_f73___3, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
97: n_f10___4->n_f73___3, Arg_17: 0 {O(1)}
98: n_f10___8->n_f13___6, Arg_0: 108*Arg_0 {O(n)}
98: n_f10___8->n_f13___6, Arg_1: 108*Arg_1+3 {O(n)}
98: n_f10___8->n_f13___6, Arg_2: 0 {O(1)}
98: n_f10___8->n_f13___6, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
98: n_f10___8->n_f13___6, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
98: n_f10___8->n_f13___6, Arg_17: 108*Arg_17 {O(n)}
99: n_f10___8->n_f73___5, Arg_0: 108*Arg_0 {O(n)}
99: n_f10___8->n_f73___5, Arg_1: 108*Arg_1+3 {O(n)}
99: n_f10___8->n_f73___5, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
99: n_f10___8->n_f73___5, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
99: n_f10___8->n_f73___5, Arg_17: 108*Arg_17 {O(n)}
100: n_f10___8->n_f73___5, Arg_0: 108*Arg_0 {O(n)}
100: n_f10___8->n_f73___5, Arg_1: 108*Arg_1+3 {O(n)}
100: n_f10___8->n_f73___5, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
100: n_f10___8->n_f73___5, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
100: n_f10___8->n_f73___5, Arg_17: 108*Arg_17 {O(n)}
101: n_f13___14->n_f10___19, Arg_0: 12*Arg_0 {O(n)}
101: n_f13___14->n_f10___19, Arg_1: 12*Arg_1+2 {O(n)}
101: n_f13___14->n_f10___19, Arg_2: 0 {O(1)}
101: n_f13___14->n_f10___19, Arg_3: 36*Arg_0+48*Arg_3+120 {O(n)}
101: n_f13___14->n_f10___19, Arg_4: 0 {O(1)}
101: n_f13___14->n_f10___19, Arg_10: 12*Arg_10 {O(n)}
101: n_f13___14->n_f10___19, Arg_13: 12*Arg_13 {O(n)}
101: n_f13___14->n_f10___19, Arg_14: 12*Arg_14 {O(n)}
101: n_f13___14->n_f10___19, Arg_16: 12*Arg_16 {O(n)}
101: n_f13___14->n_f10___19, Arg_17: 0 {O(1)}
102: n_f13___14->n_f13___14, Arg_0: 6*Arg_0 {O(n)}
102: n_f13___14->n_f13___14, Arg_1: 6*Arg_1 {O(n)}
102: n_f13___14->n_f13___14, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
102: n_f13___14->n_f13___14, Arg_10: 6*Arg_10 {O(n)}
102: n_f13___14->n_f13___14, Arg_13: 6*Arg_13 {O(n)}
102: n_f13___14->n_f13___14, Arg_14: 6*Arg_14 {O(n)}
102: n_f13___14->n_f13___14, Arg_16: 6*Arg_16 {O(n)}
102: n_f13___14->n_f13___14, Arg_17: 6*Arg_17 {O(n)}
103: n_f13___14->n_f13___17, Arg_0: 6*Arg_0 {O(n)}
103: n_f13___14->n_f13___17, Arg_1: 6*Arg_1 {O(n)}
103: n_f13___14->n_f13___17, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
103: n_f13___14->n_f13___17, Arg_10: 6*Arg_10 {O(n)}
103: n_f13___14->n_f13___17, Arg_13: 6*Arg_13 {O(n)}
103: n_f13___14->n_f13___17, Arg_14: 6*Arg_14 {O(n)}
103: n_f13___14->n_f13___17, Arg_16: 6*Arg_16 {O(n)}
103: n_f13___14->n_f13___17, Arg_17: 6*Arg_17 {O(n)}
104: n_f13___14->n_f29___12, Arg_0: 12*Arg_0 {O(n)}
104: n_f13___14->n_f29___12, Arg_1: 12*Arg_1 {O(n)}
104: n_f13___14->n_f29___12, Arg_3: 36*Arg_0+48*Arg_3+120 {O(n)}
104: n_f13___14->n_f29___12, Arg_10: 12*Arg_10 {O(n)}
104: n_f13___14->n_f29___12, Arg_13: 12*Arg_13 {O(n)}
104: n_f13___14->n_f29___12, Arg_14: 12*Arg_14 {O(n)}
104: n_f13___14->n_f29___12, Arg_16: 12*Arg_16 {O(n)}
104: n_f13___14->n_f29___12, Arg_17: 12*Arg_17 {O(n)}
106: n_f13___16->n_f10___19, Arg_0: 30*Arg_0 {O(n)}
106: n_f13___16->n_f10___19, Arg_1: 104*Arg_3+60*Arg_1+74*Arg_0+275 {O(n)}
106: n_f13___16->n_f10___19, Arg_2: 0 {O(1)}
106: n_f13___16->n_f10___19, Arg_3: 104*Arg_3+74*Arg_0+253 {O(n)}
106: n_f13___16->n_f10___19, Arg_4: Arg_4 {O(n)}
106: n_f13___16->n_f10___19, Arg_10: 30*Arg_10 {O(n)}
106: n_f13___16->n_f10___19, Arg_13: 30*Arg_13 {O(n)}
106: n_f13___16->n_f10___19, Arg_14: 30*Arg_14 {O(n)}
106: n_f13___16->n_f10___19, Arg_16: 30*Arg_16 {O(n)}
106: n_f13___16->n_f10___19, Arg_17: 0 {O(1)}
107: n_f13___17->n_f10___19, Arg_0: 15*Arg_0 {O(n)}
107: n_f13___17->n_f10___19, Arg_1: 15*Arg_1+4 {O(n)}
107: n_f13___17->n_f10___19, Arg_2: 0 {O(1)}
107: n_f13___17->n_f10___19, Arg_3: 37*Arg_0+52*Arg_3+128 {O(n)}
107: n_f13___17->n_f10___19, Arg_4: 0 {O(1)}
107: n_f13___17->n_f10___19, Arg_5: 0 {O(1)}
107: n_f13___17->n_f10___19, Arg_6: 0 {O(1)}
107: n_f13___17->n_f10___19, Arg_10: 15*Arg_10 {O(n)}
107: n_f13___17->n_f10___19, Arg_13: 15*Arg_13 {O(n)}
107: n_f13___17->n_f10___19, Arg_14: 15*Arg_14 {O(n)}
107: n_f13___17->n_f10___19, Arg_16: 15*Arg_16 {O(n)}
107: n_f13___17->n_f10___19, Arg_17: 0 {O(1)}
108: n_f13___17->n_f13___14, Arg_0: 6*Arg_0 {O(n)}
108: n_f13___17->n_f13___14, Arg_1: 6*Arg_1 {O(n)}
108: n_f13___17->n_f13___14, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
108: n_f13___17->n_f13___14, Arg_10: 6*Arg_10 {O(n)}
108: n_f13___17->n_f13___14, Arg_13: 6*Arg_13 {O(n)}
108: n_f13___17->n_f13___14, Arg_14: 6*Arg_14 {O(n)}
108: n_f13___17->n_f13___14, Arg_16: 6*Arg_16 {O(n)}
108: n_f13___17->n_f13___14, Arg_17: 6*Arg_17 {O(n)}
109: n_f13___17->n_f13___17, Arg_0: 6*Arg_0 {O(n)}
109: n_f13___17->n_f13___17, Arg_1: 6*Arg_1 {O(n)}
109: n_f13___17->n_f13___17, Arg_3: 18*Arg_0+24*Arg_3+60 {O(n)}
109: n_f13___17->n_f13___17, Arg_10: 6*Arg_10 {O(n)}
109: n_f13___17->n_f13___17, Arg_13: 6*Arg_13 {O(n)}
109: n_f13___17->n_f13___17, Arg_14: 6*Arg_14 {O(n)}
109: n_f13___17->n_f13___17, Arg_16: 6*Arg_16 {O(n)}
109: n_f13___17->n_f13___17, Arg_17: 6*Arg_17 {O(n)}
110: n_f13___17->n_f29___12, Arg_0: 15*Arg_0 {O(n)}
110: n_f13___17->n_f29___12, Arg_1: 15*Arg_1 {O(n)}
110: n_f13___17->n_f29___12, Arg_3: 37*Arg_0+52*Arg_3+128 {O(n)}
110: n_f13___17->n_f29___12, Arg_10: 15*Arg_10 {O(n)}
110: n_f13___17->n_f29___12, Arg_13: 15*Arg_13 {O(n)}
110: n_f13___17->n_f29___12, Arg_14: 15*Arg_14 {O(n)}
110: n_f13___17->n_f29___12, Arg_16: 15*Arg_16 {O(n)}
110: n_f13___17->n_f29___12, Arg_17: 15*Arg_17 {O(n)}
112: n_f13___18->n_f10___19, Arg_0: 2*Arg_0 {O(n)}
112: n_f13___18->n_f10___19, Arg_1: 2*Arg_1+2 {O(n)}
112: n_f13___18->n_f10___19, Arg_2: 0 {O(1)}
112: n_f13___18->n_f10___19, Arg_3: 3*Arg_3+Arg_0+5 {O(n)}
112: n_f13___18->n_f10___19, Arg_4: 0 {O(1)}
112: n_f13___18->n_f10___19, Arg_10: 2*Arg_10 {O(n)}
112: n_f13___18->n_f10___19, Arg_13: 2*Arg_13 {O(n)}
112: n_f13___18->n_f10___19, Arg_14: 2*Arg_14 {O(n)}
112: n_f13___18->n_f10___19, Arg_16: 2*Arg_16 {O(n)}
112: n_f13___18->n_f10___19, Arg_17: 0 {O(1)}
113: n_f13___18->n_f13___17, Arg_0: 2*Arg_0 {O(n)}
113: n_f13___18->n_f13___17, Arg_1: 2*Arg_1 {O(n)}
113: n_f13___18->n_f13___17, Arg_3: 3*Arg_3+Arg_0+7 {O(n)}
113: n_f13___18->n_f13___17, Arg_4: 0 {O(1)}
113: n_f13___18->n_f13___17, Arg_10: 2*Arg_10 {O(n)}
113: n_f13___18->n_f13___17, Arg_13: 2*Arg_13 {O(n)}
113: n_f13___18->n_f13___17, Arg_14: 2*Arg_14 {O(n)}
113: n_f13___18->n_f13___17, Arg_16: 2*Arg_16 {O(n)}
113: n_f13___18->n_f13___17, Arg_17: 2*Arg_17 {O(n)}
114: n_f13___18->n_f13___18, Arg_0: Arg_0 {O(n)}
114: n_f13___18->n_f13___18, Arg_1: Arg_1 {O(n)}
114: n_f13___18->n_f13___18, Arg_2: 0 {O(1)}
114: n_f13___18->n_f13___18, Arg_3: 2*Arg_3+Arg_0+4 {O(n)}
114: n_f13___18->n_f13___18, Arg_4: 0 {O(1)}
114: n_f13___18->n_f13___18, Arg_10: Arg_10 {O(n)}
114: n_f13___18->n_f13___18, Arg_13: Arg_13 {O(n)}
114: n_f13___18->n_f13___18, Arg_14: Arg_14 {O(n)}
114: n_f13___18->n_f13___18, Arg_16: Arg_16 {O(n)}
114: n_f13___18->n_f13___18, Arg_17: Arg_17 {O(n)}
115: n_f13___21->n_f10___19, Arg_0: Arg_0 {O(n)}
115: n_f13___21->n_f10___19, Arg_1: Arg_1+1 {O(n)}
115: n_f13___21->n_f10___19, Arg_2: 0 {O(1)}
115: n_f13___21->n_f10___19, Arg_3: Arg_3 {O(n)}
115: n_f13___21->n_f10___19, Arg_4: Arg_4 {O(n)}
115: n_f13___21->n_f10___19, Arg_5: Arg_5 {O(n)}
115: n_f13___21->n_f10___19, Arg_6: Arg_6 {O(n)}
115: n_f13___21->n_f10___19, Arg_10: Arg_10 {O(n)}
115: n_f13___21->n_f10___19, Arg_13: Arg_13 {O(n)}
115: n_f13___21->n_f10___19, Arg_14: Arg_14 {O(n)}
115: n_f13___21->n_f10___19, Arg_16: Arg_16 {O(n)}
115: n_f13___21->n_f10___19, Arg_17: 0 {O(1)}
116: n_f13___21->n_f13___17, Arg_0: Arg_0 {O(n)}
116: n_f13___21->n_f13___17, Arg_1: Arg_1 {O(n)}
116: n_f13___21->n_f13___17, Arg_3: Arg_3+1 {O(n)}
116: n_f13___21->n_f13___17, Arg_4: 0 {O(1)}
116: n_f13___21->n_f13___17, Arg_10: Arg_10 {O(n)}
116: n_f13___21->n_f13___17, Arg_13: Arg_13 {O(n)}
116: n_f13___21->n_f13___17, Arg_14: Arg_14 {O(n)}
116: n_f13___21->n_f13___17, Arg_16: Arg_16 {O(n)}
116: n_f13___21->n_f13___17, Arg_17: Arg_17 {O(n)}
117: n_f13___21->n_f13___18, Arg_0: Arg_0 {O(n)}
117: n_f13___21->n_f13___18, Arg_1: Arg_1 {O(n)}
117: n_f13___21->n_f13___18, Arg_2: 0 {O(1)}
117: n_f13___21->n_f13___18, Arg_3: Arg_3+1 {O(n)}
117: n_f13___21->n_f13___18, Arg_4: 0 {O(1)}
117: n_f13___21->n_f13___18, Arg_10: Arg_10 {O(n)}
117: n_f13___21->n_f13___18, Arg_13: Arg_13 {O(n)}
117: n_f13___21->n_f13___18, Arg_14: Arg_14 {O(n)}
117: n_f13___21->n_f13___18, Arg_16: Arg_16 {O(n)}
117: n_f13___21->n_f13___18, Arg_17: Arg_17 {O(n)}
118: n_f13___6->n_f10___4, Arg_0: 108*Arg_0 {O(n)}
118: n_f13___6->n_f10___4, Arg_1: 108*Arg_0+216*Arg_1+6 {O(n)}
118: n_f13___6->n_f10___4, Arg_2: 0 {O(1)}
118: n_f13___6->n_f10___4, Arg_3: 292*Arg_0+400*Arg_3+992 {O(n)}
118: n_f13___6->n_f10___4, Arg_10: 146*Arg_0+162*Arg_10+200*Arg_3+496 {O(n)}
118: n_f13___6->n_f10___4, Arg_17: 0 {O(1)}
119: n_f29___12->n_f34___11, Arg_0: 27*Arg_0 {O(n)}
119: n_f29___12->n_f34___11, Arg_1: 27*Arg_1 {O(n)}
119: n_f29___12->n_f34___11, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
119: n_f29___12->n_f34___11, Arg_10: 27*Arg_10 {O(n)}
119: n_f29___12->n_f34___11, Arg_13: 27*Arg_13 {O(n)}
119: n_f29___12->n_f34___11, Arg_14: 27*Arg_14 {O(n)}
119: n_f29___12->n_f34___11, Arg_16: 27*Arg_16 {O(n)}
119: n_f29___12->n_f34___11, Arg_17: 27*Arg_17 {O(n)}
121: n_f34___11->n_f53___10, Arg_0: 27*Arg_0 {O(n)}
121: n_f34___11->n_f53___10, Arg_1: 27*Arg_1 {O(n)}
121: n_f34___11->n_f53___10, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
121: n_f34___11->n_f53___10, Arg_10: 27*Arg_10 {O(n)}
121: n_f34___11->n_f53___10, Arg_16: 27*Arg_16 {O(n)}
121: n_f34___11->n_f53___10, Arg_17: 27*Arg_17 {O(n)}
122: n_f34___11->n_f53___9, Arg_0: 27*Arg_0 {O(n)}
122: n_f34___11->n_f53___9, Arg_1: 27*Arg_1 {O(n)}
122: n_f34___11->n_f53___9, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
122: n_f34___11->n_f53___9, Arg_10: 27*Arg_10 {O(n)}
122: n_f34___11->n_f53___9, Arg_13: 27*Arg_13 {O(n)}
122: n_f34___11->n_f53___9, Arg_17: 27*Arg_17 {O(n)}
123: n_f53___1->n_f10___8, Arg_0: 54*Arg_0 {O(n)}
123: n_f53___1->n_f10___8, Arg_1: 54*Arg_1+1 {O(n)}
123: n_f53___1->n_f10___8, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
123: n_f53___1->n_f10___8, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
123: n_f53___1->n_f10___8, Arg_17: 54*Arg_17 {O(n)}
124: n_f53___1->n_f55___7, Arg_0: 54*Arg_0 {O(n)}
124: n_f53___1->n_f55___7, Arg_1: 54*Arg_1 {O(n)}
124: n_f53___1->n_f55___7, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
124: n_f53___1->n_f55___7, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
124: n_f53___1->n_f55___7, Arg_17: 54*Arg_17 {O(n)}
125: n_f53___10->n_f10___8, Arg_0: 27*Arg_0 {O(n)}
125: n_f53___10->n_f10___8, Arg_1: 27*Arg_1+1 {O(n)}
125: n_f53___10->n_f10___8, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
125: n_f53___10->n_f10___8, Arg_10: 27*Arg_10 {O(n)}
125: n_f53___10->n_f10___8, Arg_16: 27*Arg_16 {O(n)}
125: n_f53___10->n_f10___8, Arg_17: 27*Arg_17 {O(n)}
126: n_f53___10->n_f55___7, Arg_0: 27*Arg_0 {O(n)}
126: n_f53___10->n_f55___7, Arg_1: 27*Arg_1 {O(n)}
126: n_f53___10->n_f55___7, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
126: n_f53___10->n_f55___7, Arg_10: 27*Arg_10 {O(n)}
126: n_f53___10->n_f55___7, Arg_16: 27*Arg_16 {O(n)}
126: n_f53___10->n_f55___7, Arg_17: 27*Arg_17 {O(n)}
127: n_f53___9->n_f10___8, Arg_0: 27*Arg_0 {O(n)}
127: n_f53___9->n_f10___8, Arg_1: 27*Arg_1+1 {O(n)}
127: n_f53___9->n_f10___8, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
127: n_f53___9->n_f10___8, Arg_10: 27*Arg_10 {O(n)}
127: n_f53___9->n_f10___8, Arg_13: 27*Arg_13 {O(n)}
127: n_f53___9->n_f10___8, Arg_17: 27*Arg_17 {O(n)}
128: n_f53___9->n_f55___7, Arg_0: 27*Arg_0 {O(n)}
128: n_f53___9->n_f55___7, Arg_1: 27*Arg_1 {O(n)}
128: n_f53___9->n_f55___7, Arg_3: 100*Arg_3+73*Arg_0+248 {O(n)}
128: n_f53___9->n_f55___7, Arg_10: 27*Arg_10 {O(n)}
128: n_f53___9->n_f55___7, Arg_13: 27*Arg_13 {O(n)}
128: n_f53___9->n_f55___7, Arg_17: 27*Arg_17 {O(n)}
129: n_f55___7->n_f61___2, Arg_0: 54*Arg_0 {O(n)}
129: n_f55___7->n_f61___2, Arg_1: 54*Arg_1 {O(n)}
129: n_f55___7->n_f61___2, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
129: n_f55___7->n_f61___2, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
129: n_f55___7->n_f61___2, Arg_17: 54*Arg_17 {O(n)}
130: n_f61___2->n_f53___1, Arg_0: 54*Arg_0 {O(n)}
130: n_f61___2->n_f53___1, Arg_1: 54*Arg_1 {O(n)}
130: n_f61___2->n_f53___1, Arg_3: 146*Arg_0+200*Arg_3+496 {O(n)}
130: n_f61___2->n_f53___1, Arg_10: 108*Arg_10+146*Arg_0+200*Arg_3+496 {O(n)}
130: n_f61___2->n_f53___1, Arg_17: 54*Arg_17 {O(n)}