Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16
Temp_Vars: C_P, E_P, F_P, G_P, I_P, J_P, K_P, M_P, NoDet0, O_P, P_P, Q_P
Locations: n_f0, n_f21___6, n_f21___7, n_f29___1, n_f29___4, n_f41___2, n_f41___3, n_f41___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f21___6(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,NoDet0,0,1,O_P,P_P,Q_P):|:1<=K_P && 1<=Arg_10 && K_P<=O_P && O_P<=K_P && K_P<=Q_P && Q_P<=K_P && K_P<=P_P && P_P<=K_P
1:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f21___7(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,NoDet0,M_P,Arg_13,Arg_14,Arg_15,Arg_16):|:K_P<=0 && K_P<=M_P && M_P<=K_P && Arg_10<=K_P && K_P<=Arg_10
2:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___5(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,NoDet0,0,1,O_P,P_P,Q_P):|:K_P<=0 && 1<=Arg_10 && K_P<=O_P && O_P<=K_P && K_P<=Q_P && Q_P<=K_P && K_P<=P_P && P_P<=K_P
3:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f29___1(0,Arg_1,C_P,Arg_3,Arg_4,Arg_5,Arg_6,0,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:1<=Arg_15 && Arg_12<=0 && 0<=Arg_12 && Arg_10<=Arg_15 && Arg_15<=Arg_10 && Arg_15<=Arg_16 && Arg_16<=Arg_15 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_0<=1 && 1<=Arg_0 && Arg_13<=1 && 1<=Arg_13 && 1<=Arg_0 && C_P<=J_P && J_P<=C_P && C_P<=I_P && I_P<=C_P
4:n_f21___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f29___4(0,Arg_1,C_P,Arg_3,Arg_4,Arg_5,Arg_6,0,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_10<=0 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && C_P<=J_P && J_P<=C_P && C_P<=I_P && I_P<=C_P
5:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(1,NoDet0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:1<=Arg_14 && Arg_7<=0 && 0<=Arg_7 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_0<=0 && 1000+Arg_2<=E_P && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
6:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,NoDet0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:1<=Arg_14 && Arg_7<=0 && 0<=Arg_7 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_0<=0 && E_P<=999+Arg_2 && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
7:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(1,NoDet0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_10<=0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_0<=0 && 1000+Arg_2<=E_P && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
8:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,NoDet0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_10<=0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_0<=0 && E_P<=999+Arg_2 && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
9:n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=1 && 1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1000+Arg_2<=Arg_5
10:n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=0 && 0<=Arg_3 && Arg_4<=Arg_6 && Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=999+Arg_2 && Arg_0<=0
11:n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:1<=Arg_0 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_0<=1 && 1<=Arg_0 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_14<=0

Preprocessing

Eliminate variables {NoDet0,Arg_1,Arg_11} that do not contribute to the problem

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_16 && 1+Arg_7<=Arg_15 && 1+Arg_7<=Arg_14 && 1+Arg_7<=Arg_13 && Arg_13+Arg_7<=1 && Arg_7<=Arg_12 && Arg_12+Arg_7<=0 && 1+Arg_7<=Arg_10 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_16+Arg_7 && 1<=Arg_15+Arg_7 && 1<=Arg_14+Arg_7 && 1<=Arg_13+Arg_7 && Arg_13<=1+Arg_7 && 0<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 1<=Arg_10+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_16<=Arg_15 && Arg_16<=Arg_14 && Arg_16<=Arg_10 && 1<=Arg_16 && 2<=Arg_15+Arg_16 && Arg_15<=Arg_16 && 2<=Arg_14+Arg_16 && Arg_14<=Arg_16 && 2<=Arg_13+Arg_16 && Arg_13<=Arg_16 && 1<=Arg_12+Arg_16 && 1+Arg_12<=Arg_16 && 2<=Arg_10+Arg_16 && Arg_10<=Arg_16 && 1<=Arg_0+Arg_16 && 1+Arg_0<=Arg_16 && Arg_15<=Arg_14 && Arg_15<=Arg_10 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 2<=Arg_13+Arg_15 && Arg_13<=Arg_15 && 1<=Arg_12+Arg_15 && 1+Arg_12<=Arg_15 && 2<=Arg_10+Arg_15 && Arg_10<=Arg_15 && 1<=Arg_0+Arg_15 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_10 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 1<=Arg_12+Arg_14 && 1+Arg_12<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_13<=Arg_10 && Arg_13<=1+Arg_0 && Arg_0+Arg_13<=1 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 2<=Arg_10+Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=0 && 1+Arg_12<=Arg_10 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && 0<=Arg_12 && 1<=Arg_10+Arg_12 && 0<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 for location n_f29___1

Found invariant Arg_16<=Arg_15 && Arg_16<=Arg_14 && Arg_16<=Arg_10 && 1<=Arg_16 && 2<=Arg_15+Arg_16 && Arg_15<=Arg_16 && 2<=Arg_14+Arg_16 && Arg_14<=Arg_16 && 2<=Arg_13+Arg_16 && Arg_13<=Arg_16 && 1<=Arg_12+Arg_16 && 1+Arg_12<=Arg_16 && 2<=Arg_10+Arg_16 && Arg_10<=Arg_16 && 2<=Arg_0+Arg_16 && Arg_0<=Arg_16 && Arg_15<=Arg_14 && Arg_15<=Arg_10 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 2<=Arg_13+Arg_15 && Arg_13<=Arg_15 && 1<=Arg_12+Arg_15 && 1+Arg_12<=Arg_15 && 2<=Arg_10+Arg_15 && Arg_10<=Arg_15 && 2<=Arg_0+Arg_15 && Arg_0<=Arg_15 && Arg_14<=Arg_10 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 1<=Arg_12+Arg_14 && 1+Arg_12<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 2<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_13<=Arg_10 && Arg_13<=Arg_0 && Arg_0+Arg_13<=2 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=0 && 1+Arg_12<=Arg_10 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && 0<=Arg_12 && 1<=Arg_10+Arg_12 && 1<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 for location n_f21___6

Found invariant Arg_9<=Arg_8 && 1000+Arg_9<=Arg_6 && 1000+Arg_9<=Arg_5 && 1000+Arg_9<=Arg_4 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && 1000+Arg_8<=Arg_6 && 1000+Arg_8<=Arg_5 && 1000+Arg_8<=Arg_4 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_12+Arg_7<=0 && 1+Arg_7<=Arg_0 && Arg_0+Arg_7<=1 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_12<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && 1000+Arg_2<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1000+Arg_2<=Arg_5 && 1000+Arg_2<=Arg_4 && Arg_3<=0 && Arg_12+Arg_3<=0 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=1 && 0<=Arg_3 && Arg_12<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_12<=0 && Arg_12<=Arg_10 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_0<=1 && 1<=Arg_0 for location n_f41___2

Found invariant Arg_16<=0 && Arg_16<=Arg_15 && Arg_15+Arg_16<=0 && Arg_16<=Arg_14 && Arg_14+Arg_16<=0 && 1+Arg_16<=Arg_13 && Arg_13+Arg_16<=1 && Arg_16<=Arg_12 && Arg_12+Arg_16<=0 && Arg_16<=Arg_10 && Arg_10+Arg_16<=0 && 1+Arg_16<=Arg_0 && Arg_0+Arg_16<=1 && Arg_15<=Arg_16 && Arg_14<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && Arg_13+Arg_15<=1 && Arg_15<=Arg_12 && Arg_12+Arg_15<=0 && Arg_15<=Arg_10 && Arg_10+Arg_15<=0 && 1+Arg_15<=Arg_0 && Arg_0+Arg_15<=1 && Arg_14<=Arg_15 && Arg_10<=Arg_15 && Arg_14<=0 && 1+Arg_14<=Arg_13 && Arg_13+Arg_14<=1 && Arg_14<=Arg_12 && Arg_12+Arg_14<=0 && Arg_14<=Arg_10 && Arg_10+Arg_14<=0 && 1+Arg_14<=Arg_0 && Arg_0+Arg_14<=1 && Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_10+Arg_13<=1 && Arg_13<=Arg_0 && Arg_0+Arg_13<=2 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_10<=Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=0 && Arg_10+Arg_12<=0 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && 0<=Arg_12 && Arg_10<=Arg_12 && 1<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && Arg_10<=0 && 1+Arg_10<=Arg_0 && Arg_0+Arg_10<=1 && Arg_0<=1 && 1<=Arg_0 for location n_f41___5

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_12+Arg_7<=0 && Arg_10+Arg_7<=0 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && Arg_12<=Arg_7 && Arg_10<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_12<=0 && Arg_12<=Arg_10 && Arg_10+Arg_12<=0 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && Arg_10<=Arg_12 && Arg_10<=0 && Arg_10<=Arg_0 && Arg_0+Arg_10<=0 && Arg_0<=0 && 0<=Arg_0 for location n_f29___4

Found invariant Arg_12<=0 && Arg_12<=Arg_10 && Arg_10+Arg_12<=0 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_10<=Arg_12 && Arg_10<=0 && 1+Arg_10<=Arg_0 && Arg_0+Arg_10<=1 && Arg_0<=1 && 1<=Arg_0 for location n_f21___7

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_6<=999+Arg_9 && Arg_5<=999+Arg_9 && Arg_4<=999+Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_6<=999+Arg_8 && Arg_5<=999+Arg_8 && Arg_4<=999+Arg_8 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_12+Arg_7<=0 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_12<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=999+Arg_2 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=999+Arg_2 && Arg_4<=Arg_5 && Arg_4<=999+Arg_2 && Arg_3<=0 && Arg_12+Arg_3<=0 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && Arg_12<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_12<=0 && Arg_12<=Arg_10 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && Arg_0<=0 && 0<=Arg_0 for location n_f41___3

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16
Temp_Vars: C_P, E_P, F_P, G_P, I_P, J_P, K_P, M_P, O_P, P_P, Q_P
Locations: n_f0, n_f21___6, n_f21___7, n_f29___1, n_f29___4, n_f41___2, n_f41___3, n_f41___5
Transitions:
25:n_f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f21___6(1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,0,1,O_P,P_P,Q_P):|:1<=K_P && 1<=Arg_10 && K_P<=O_P && O_P<=K_P && K_P<=Q_P && Q_P<=K_P && K_P<=P_P && P_P<=K_P
26:n_f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f21___7(1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,M_P,Arg_13,Arg_14,Arg_15,Arg_16):|:K_P<=0 && K_P<=M_P && M_P<=K_P && Arg_10<=K_P && K_P<=Arg_10
27:n_f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___5(1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,K_P,0,1,O_P,P_P,Q_P):|:K_P<=0 && 1<=Arg_10 && K_P<=O_P && O_P<=K_P && K_P<=Q_P && Q_P<=K_P && K_P<=P_P && P_P<=K_P
28:n_f21___6(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f29___1(0,C_P,Arg_3,Arg_4,Arg_5,Arg_6,0,I_P,J_P,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_16<=Arg_15 && Arg_16<=Arg_14 && Arg_16<=Arg_10 && 1<=Arg_16 && 2<=Arg_15+Arg_16 && Arg_15<=Arg_16 && 2<=Arg_14+Arg_16 && Arg_14<=Arg_16 && 2<=Arg_13+Arg_16 && Arg_13<=Arg_16 && 1<=Arg_12+Arg_16 && 1+Arg_12<=Arg_16 && 2<=Arg_10+Arg_16 && Arg_10<=Arg_16 && 2<=Arg_0+Arg_16 && Arg_0<=Arg_16 && Arg_15<=Arg_14 && Arg_15<=Arg_10 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 2<=Arg_13+Arg_15 && Arg_13<=Arg_15 && 1<=Arg_12+Arg_15 && 1+Arg_12<=Arg_15 && 2<=Arg_10+Arg_15 && Arg_10<=Arg_15 && 2<=Arg_0+Arg_15 && Arg_0<=Arg_15 && Arg_14<=Arg_10 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 1<=Arg_12+Arg_14 && 1+Arg_12<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 2<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_13<=Arg_10 && Arg_13<=Arg_0 && Arg_0+Arg_13<=2 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 2<=Arg_10+Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=0 && 1+Arg_12<=Arg_10 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && 0<=Arg_12 && 1<=Arg_10+Arg_12 && 1<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_15 && Arg_12<=0 && 0<=Arg_12 && Arg_10<=Arg_15 && Arg_15<=Arg_10 && Arg_15<=Arg_16 && Arg_16<=Arg_15 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_0<=1 && 1<=Arg_0 && Arg_13<=1 && 1<=Arg_13 && 1<=Arg_0 && C_P<=J_P && J_P<=C_P && C_P<=I_P && I_P<=C_P
29:n_f21___7(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f29___4(0,C_P,Arg_3,Arg_4,Arg_5,Arg_6,0,I_P,J_P,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_12<=0 && Arg_12<=Arg_10 && Arg_10+Arg_12<=0 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_10<=Arg_12 && Arg_10<=0 && 1+Arg_10<=Arg_0 && Arg_0+Arg_10<=1 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=0 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && 1<=Arg_0 && C_P<=J_P && J_P<=C_P && C_P<=I_P && I_P<=C_P
30:n_f29___1(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(1,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_16 && 1+Arg_7<=Arg_15 && 1+Arg_7<=Arg_14 && 1+Arg_7<=Arg_13 && Arg_13+Arg_7<=1 && Arg_7<=Arg_12 && Arg_12+Arg_7<=0 && 1+Arg_7<=Arg_10 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_16+Arg_7 && 1<=Arg_15+Arg_7 && 1<=Arg_14+Arg_7 && 1<=Arg_13+Arg_7 && Arg_13<=1+Arg_7 && 0<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 1<=Arg_10+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_16<=Arg_15 && Arg_16<=Arg_14 && Arg_16<=Arg_10 && 1<=Arg_16 && 2<=Arg_15+Arg_16 && Arg_15<=Arg_16 && 2<=Arg_14+Arg_16 && Arg_14<=Arg_16 && 2<=Arg_13+Arg_16 && Arg_13<=Arg_16 && 1<=Arg_12+Arg_16 && 1+Arg_12<=Arg_16 && 2<=Arg_10+Arg_16 && Arg_10<=Arg_16 && 1<=Arg_0+Arg_16 && 1+Arg_0<=Arg_16 && Arg_15<=Arg_14 && Arg_15<=Arg_10 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 2<=Arg_13+Arg_15 && Arg_13<=Arg_15 && 1<=Arg_12+Arg_15 && 1+Arg_12<=Arg_15 && 2<=Arg_10+Arg_15 && Arg_10<=Arg_15 && 1<=Arg_0+Arg_15 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_10 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 1<=Arg_12+Arg_14 && 1+Arg_12<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_13<=Arg_10 && Arg_13<=1+Arg_0 && Arg_0+Arg_13<=1 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 2<=Arg_10+Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=0 && 1+Arg_12<=Arg_10 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && 0<=Arg_12 && 1<=Arg_10+Arg_12 && 0<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 && 1<=Arg_14 && Arg_7<=0 && 0<=Arg_7 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_0<=0 && 1000+Arg_2<=E_P && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
31:n_f29___1(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_16 && 1+Arg_7<=Arg_15 && 1+Arg_7<=Arg_14 && 1+Arg_7<=Arg_13 && Arg_13+Arg_7<=1 && Arg_7<=Arg_12 && Arg_12+Arg_7<=0 && 1+Arg_7<=Arg_10 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_16+Arg_7 && 1<=Arg_15+Arg_7 && 1<=Arg_14+Arg_7 && 1<=Arg_13+Arg_7 && Arg_13<=1+Arg_7 && 0<=Arg_12+Arg_7 && Arg_12<=Arg_7 && 1<=Arg_10+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_16<=Arg_15 && Arg_16<=Arg_14 && Arg_16<=Arg_10 && 1<=Arg_16 && 2<=Arg_15+Arg_16 && Arg_15<=Arg_16 && 2<=Arg_14+Arg_16 && Arg_14<=Arg_16 && 2<=Arg_13+Arg_16 && Arg_13<=Arg_16 && 1<=Arg_12+Arg_16 && 1+Arg_12<=Arg_16 && 2<=Arg_10+Arg_16 && Arg_10<=Arg_16 && 1<=Arg_0+Arg_16 && 1+Arg_0<=Arg_16 && Arg_15<=Arg_14 && Arg_15<=Arg_10 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && Arg_14<=Arg_15 && 2<=Arg_13+Arg_15 && Arg_13<=Arg_15 && 1<=Arg_12+Arg_15 && 1+Arg_12<=Arg_15 && 2<=Arg_10+Arg_15 && Arg_10<=Arg_15 && 1<=Arg_0+Arg_15 && 1+Arg_0<=Arg_15 && Arg_14<=Arg_10 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 1<=Arg_12+Arg_14 && 1+Arg_12<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_13<=Arg_10 && Arg_13<=1+Arg_0 && Arg_0+Arg_13<=1 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 2<=Arg_10+Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=0 && 1+Arg_12<=Arg_10 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && 0<=Arg_12 && 1<=Arg_10+Arg_12 && 0<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 && 1<=Arg_14 && Arg_7<=0 && 0<=Arg_7 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_0<=0 && E_P<=999+Arg_2 && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
32:n_f29___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(1,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_12+Arg_7<=0 && Arg_10+Arg_7<=0 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && Arg_12<=Arg_7 && Arg_10<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_12<=0 && Arg_12<=Arg_10 && Arg_10+Arg_12<=0 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && Arg_10<=Arg_12 && Arg_10<=0 && Arg_10<=Arg_0 && Arg_0+Arg_10<=0 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_0<=0 && 1000+Arg_2<=E_P && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
33:n_f29___4(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,Arg_2,0,E_P,F_P,G_P,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_12+Arg_7<=0 && Arg_10+Arg_7<=0 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && Arg_12<=Arg_7 && Arg_10<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_12<=0 && Arg_12<=Arg_10 && Arg_10+Arg_12<=0 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && Arg_10<=Arg_12 && Arg_10<=0 && Arg_10<=Arg_0 && Arg_0+Arg_10<=0 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=0 && Arg_2<=Arg_9 && Arg_9<=Arg_2 && Arg_2<=Arg_8 && Arg_8<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_0<=0 && 0<=Arg_0 && Arg_10<=Arg_12 && Arg_12<=Arg_10 && Arg_0<=0 && E_P<=999+Arg_2 && E_P<=G_P && G_P<=E_P && E_P<=F_P && F_P<=E_P
34:n_f41___2(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___2(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && 1000+Arg_9<=Arg_6 && 1000+Arg_9<=Arg_5 && 1000+Arg_9<=Arg_4 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_2<=Arg_9 && 1000+Arg_8<=Arg_6 && 1000+Arg_8<=Arg_5 && 1000+Arg_8<=Arg_4 && Arg_8<=Arg_2 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_12+Arg_7<=0 && 1+Arg_7<=Arg_0 && Arg_0+Arg_7<=1 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_12<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && 1000+Arg_2<=Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1000+Arg_2<=Arg_5 && 1000+Arg_2<=Arg_4 && Arg_3<=0 && Arg_12+Arg_3<=0 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=1 && 0<=Arg_3 && Arg_12<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_12<=0 && Arg_12<=Arg_10 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=1 && 1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1000+Arg_2<=Arg_5
35:n_f41___3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___3(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_9<=Arg_8 && Arg_9<=Arg_2 && Arg_8<=Arg_9 && Arg_6<=999+Arg_9 && Arg_5<=999+Arg_9 && Arg_4<=999+Arg_9 && Arg_2<=Arg_9 && Arg_8<=Arg_2 && Arg_6<=999+Arg_8 && Arg_5<=999+Arg_8 && Arg_4<=999+Arg_8 && Arg_2<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_12+Arg_7<=0 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_12<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=999+Arg_2 && Arg_5<=Arg_6 && Arg_4<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=999+Arg_2 && Arg_4<=Arg_5 && Arg_4<=999+Arg_2 && Arg_3<=0 && Arg_12+Arg_3<=0 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && Arg_12<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_12<=0 && Arg_12<=Arg_10 && Arg_12<=Arg_0 && Arg_0+Arg_12<=0 && Arg_0<=0 && 0<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_4<=Arg_6 && Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=999+Arg_2 && Arg_0<=0
36:n_f41___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f41___5(Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_16<=0 && Arg_16<=Arg_15 && Arg_15+Arg_16<=0 && Arg_16<=Arg_14 && Arg_14+Arg_16<=0 && 1+Arg_16<=Arg_13 && Arg_13+Arg_16<=1 && Arg_16<=Arg_12 && Arg_12+Arg_16<=0 && Arg_16<=Arg_10 && Arg_10+Arg_16<=0 && 1+Arg_16<=Arg_0 && Arg_0+Arg_16<=1 && Arg_15<=Arg_16 && Arg_14<=Arg_16 && Arg_10<=Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_14+Arg_15<=0 && 1+Arg_15<=Arg_13 && Arg_13+Arg_15<=1 && Arg_15<=Arg_12 && Arg_12+Arg_15<=0 && Arg_15<=Arg_10 && Arg_10+Arg_15<=0 && 1+Arg_15<=Arg_0 && Arg_0+Arg_15<=1 && Arg_14<=Arg_15 && Arg_10<=Arg_15 && Arg_14<=0 && 1+Arg_14<=Arg_13 && Arg_13+Arg_14<=1 && Arg_14<=Arg_12 && Arg_12+Arg_14<=0 && Arg_14<=Arg_10 && Arg_10+Arg_14<=0 && 1+Arg_14<=Arg_0 && Arg_0+Arg_14<=1 && Arg_10<=Arg_14 && Arg_13<=1 && Arg_13<=1+Arg_12 && Arg_12+Arg_13<=1 && Arg_10+Arg_13<=1 && Arg_13<=Arg_0 && Arg_0+Arg_13<=2 && 1<=Arg_13 && 1<=Arg_12+Arg_13 && 1+Arg_12<=Arg_13 && 1+Arg_10<=Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=0 && Arg_10+Arg_12<=0 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && 0<=Arg_12 && Arg_10<=Arg_12 && 1<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && Arg_10<=0 && 1+Arg_10<=Arg_0 && Arg_0+Arg_10<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_14<=Arg_16 && Arg_16<=Arg_14 && Arg_0<=1 && 1<=Arg_0 && Arg_13<=1 && 1<=Arg_13 && Arg_12<=0 && 0<=Arg_12 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_10<=Arg_14 && Arg_14<=Arg_10 && Arg_14<=0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
25: n_f0->n_f21___6: 1 {O(1)}
26: n_f0->n_f21___7: 1 {O(1)}
27: n_f0->n_f41___5: 1 {O(1)}
28: n_f21___6->n_f29___1: 1 {O(1)}
29: n_f21___7->n_f29___4: 1 {O(1)}
30: n_f29___1->n_f41___2: 1 {O(1)}
31: n_f29___1->n_f41___3: 1 {O(1)}
32: n_f29___4->n_f41___2: 1 {O(1)}
33: n_f29___4->n_f41___3: 1 {O(1)}
34: n_f41___2->n_f41___2: inf {Infinity}
35: n_f41___3->n_f41___3: inf {Infinity}
36: n_f41___5->n_f41___5: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
25: n_f0->n_f21___6: 1 {O(1)}
26: n_f0->n_f21___7: 1 {O(1)}
27: n_f0->n_f41___5: 1 {O(1)}
28: n_f21___6->n_f29___1: 1 {O(1)}
29: n_f21___7->n_f29___4: 1 {O(1)}
30: n_f29___1->n_f41___2: 1 {O(1)}
31: n_f29___1->n_f41___3: 1 {O(1)}
32: n_f29___4->n_f41___2: 1 {O(1)}
33: n_f29___4->n_f41___3: 1 {O(1)}
34: n_f41___2->n_f41___2: inf {Infinity}
35: n_f41___3->n_f41___3: inf {Infinity}
36: n_f41___5->n_f41___5: inf {Infinity}

Sizebounds

25: n_f0->n_f21___6, Arg_0: 1 {O(1)}
25: n_f0->n_f21___6, Arg_2: Arg_2 {O(n)}
25: n_f0->n_f21___6, Arg_3: Arg_3 {O(n)}
25: n_f0->n_f21___6, Arg_4: Arg_4 {O(n)}
25: n_f0->n_f21___6, Arg_5: Arg_5 {O(n)}
25: n_f0->n_f21___6, Arg_6: Arg_6 {O(n)}
25: n_f0->n_f21___6, Arg_7: Arg_7 {O(n)}
25: n_f0->n_f21___6, Arg_8: Arg_8 {O(n)}
25: n_f0->n_f21___6, Arg_9: Arg_9 {O(n)}
25: n_f0->n_f21___6, Arg_12: 0 {O(1)}
25: n_f0->n_f21___6, Arg_13: 1 {O(1)}
26: n_f0->n_f21___7, Arg_0: 1 {O(1)}
26: n_f0->n_f21___7, Arg_2: Arg_2 {O(n)}
26: n_f0->n_f21___7, Arg_3: Arg_3 {O(n)}
26: n_f0->n_f21___7, Arg_4: Arg_4 {O(n)}
26: n_f0->n_f21___7, Arg_5: Arg_5 {O(n)}
26: n_f0->n_f21___7, Arg_6: Arg_6 {O(n)}
26: n_f0->n_f21___7, Arg_7: Arg_7 {O(n)}
26: n_f0->n_f21___7, Arg_8: Arg_8 {O(n)}
26: n_f0->n_f21___7, Arg_9: Arg_9 {O(n)}
26: n_f0->n_f21___7, Arg_10: Arg_10 {O(n)}
26: n_f0->n_f21___7, Arg_13: Arg_13 {O(n)}
26: n_f0->n_f21___7, Arg_14: Arg_14 {O(n)}
26: n_f0->n_f21___7, Arg_15: Arg_15 {O(n)}
26: n_f0->n_f21___7, Arg_16: Arg_16 {O(n)}
27: n_f0->n_f41___5, Arg_0: 1 {O(1)}
27: n_f0->n_f41___5, Arg_2: Arg_2 {O(n)}
27: n_f0->n_f41___5, Arg_3: Arg_3 {O(n)}
27: n_f0->n_f41___5, Arg_4: Arg_4 {O(n)}
27: n_f0->n_f41___5, Arg_5: Arg_5 {O(n)}
27: n_f0->n_f41___5, Arg_6: Arg_6 {O(n)}
27: n_f0->n_f41___5, Arg_7: Arg_7 {O(n)}
27: n_f0->n_f41___5, Arg_8: Arg_8 {O(n)}
27: n_f0->n_f41___5, Arg_9: Arg_9 {O(n)}
27: n_f0->n_f41___5, Arg_12: 0 {O(1)}
27: n_f0->n_f41___5, Arg_13: 1 {O(1)}
28: n_f21___6->n_f29___1, Arg_0: 0 {O(1)}
28: n_f21___6->n_f29___1, Arg_3: Arg_3 {O(n)}
28: n_f21___6->n_f29___1, Arg_4: Arg_4 {O(n)}
28: n_f21___6->n_f29___1, Arg_5: Arg_5 {O(n)}
28: n_f21___6->n_f29___1, Arg_6: Arg_6 {O(n)}
28: n_f21___6->n_f29___1, Arg_7: 0 {O(1)}
28: n_f21___6->n_f29___1, Arg_12: 0 {O(1)}
28: n_f21___6->n_f29___1, Arg_13: 1 {O(1)}
29: n_f21___7->n_f29___4, Arg_0: 0 {O(1)}
29: n_f21___7->n_f29___4, Arg_3: Arg_3 {O(n)}
29: n_f21___7->n_f29___4, Arg_4: Arg_4 {O(n)}
29: n_f21___7->n_f29___4, Arg_5: Arg_5 {O(n)}
29: n_f21___7->n_f29___4, Arg_6: Arg_6 {O(n)}
29: n_f21___7->n_f29___4, Arg_7: 0 {O(1)}
29: n_f21___7->n_f29___4, Arg_10: Arg_10 {O(n)}
29: n_f21___7->n_f29___4, Arg_13: Arg_13 {O(n)}
29: n_f21___7->n_f29___4, Arg_14: Arg_14 {O(n)}
29: n_f21___7->n_f29___4, Arg_15: Arg_15 {O(n)}
29: n_f21___7->n_f29___4, Arg_16: Arg_16 {O(n)}
30: n_f29___1->n_f41___2, Arg_0: 1 {O(1)}
30: n_f29___1->n_f41___2, Arg_3: 0 {O(1)}
30: n_f29___1->n_f41___2, Arg_7: 0 {O(1)}
30: n_f29___1->n_f41___2, Arg_12: 0 {O(1)}
30: n_f29___1->n_f41___2, Arg_13: 1 {O(1)}
31: n_f29___1->n_f41___3, Arg_0: 0 {O(1)}
31: n_f29___1->n_f41___3, Arg_3: 0 {O(1)}
31: n_f29___1->n_f41___3, Arg_7: 0 {O(1)}
31: n_f29___1->n_f41___3, Arg_12: 0 {O(1)}
31: n_f29___1->n_f41___3, Arg_13: 1 {O(1)}
32: n_f29___4->n_f41___2, Arg_0: 1 {O(1)}
32: n_f29___4->n_f41___2, Arg_3: 0 {O(1)}
32: n_f29___4->n_f41___2, Arg_7: 0 {O(1)}
32: n_f29___4->n_f41___2, Arg_10: Arg_10 {O(n)}
32: n_f29___4->n_f41___2, Arg_13: Arg_13 {O(n)}
32: n_f29___4->n_f41___2, Arg_14: Arg_14 {O(n)}
32: n_f29___4->n_f41___2, Arg_15: Arg_15 {O(n)}
32: n_f29___4->n_f41___2, Arg_16: Arg_16 {O(n)}
33: n_f29___4->n_f41___3, Arg_0: 0 {O(1)}
33: n_f29___4->n_f41___3, Arg_3: 0 {O(1)}
33: n_f29___4->n_f41___3, Arg_7: 0 {O(1)}
33: n_f29___4->n_f41___3, Arg_10: Arg_10 {O(n)}
33: n_f29___4->n_f41___3, Arg_13: Arg_13 {O(n)}
33: n_f29___4->n_f41___3, Arg_14: Arg_14 {O(n)}
33: n_f29___4->n_f41___3, Arg_15: Arg_15 {O(n)}
33: n_f29___4->n_f41___3, Arg_16: Arg_16 {O(n)}
34: n_f41___2->n_f41___2, Arg_0: 1 {O(1)}
34: n_f41___2->n_f41___2, Arg_3: 0 {O(1)}
34: n_f41___2->n_f41___2, Arg_7: 0 {O(1)}
34: n_f41___2->n_f41___2, Arg_13: Arg_13+1 {O(n)}
35: n_f41___3->n_f41___3, Arg_0: 0 {O(1)}
35: n_f41___3->n_f41___3, Arg_3: 0 {O(1)}
35: n_f41___3->n_f41___3, Arg_7: 0 {O(1)}
35: n_f41___3->n_f41___3, Arg_13: Arg_13+1 {O(n)}
36: n_f41___5->n_f41___5, Arg_0: 1 {O(1)}
36: n_f41___5->n_f41___5, Arg_2: Arg_2 {O(n)}
36: n_f41___5->n_f41___5, Arg_3: Arg_3 {O(n)}
36: n_f41___5->n_f41___5, Arg_4: Arg_4 {O(n)}
36: n_f41___5->n_f41___5, Arg_5: Arg_5 {O(n)}
36: n_f41___5->n_f41___5, Arg_6: Arg_6 {O(n)}
36: n_f41___5->n_f41___5, Arg_7: Arg_7 {O(n)}
36: n_f41___5->n_f41___5, Arg_8: Arg_8 {O(n)}
36: n_f41___5->n_f41___5, Arg_9: Arg_9 {O(n)}
36: n_f41___5->n_f41___5, Arg_12: 0 {O(1)}
36: n_f41___5->n_f41___5, Arg_13: 1 {O(1)}