Initial Problem

Start: n_f300
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13
Temp_Vars: C_P, E_P, G_P, H_P, I_P, J_P, NoDet0, NoDet1, NoDet2
Locations: n_f11___3, n_f11___4, n_f11___6, n_f11___7, n_f13___1, n_f13___2, n_f13___9, n_f16___5, n_f16___8, n_f300
Transitions:
0:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___3(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1+Arg_1<=0 && 0<=Arg_0
1:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___4(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1<=Arg_1 && 0<=Arg_0
2:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f13___1(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet0,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
3:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___3(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_1<=0 && 0<=Arg_0
4:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___4(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1<=Arg_1 && 0<=Arg_0
5:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f13___2(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet0,Arg_11,Arg_12,Arg_13):|:0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
6:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___3(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1+Arg_1<=0 && 0<=Arg_0
7:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___4(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1<=Arg_1 && 0<=Arg_0
8:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f13___1(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet0,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
9:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___3(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_1<=0 && 0<=Arg_0
10:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___4(Arg_0,NoDet0,Arg_1,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1<=Arg_1 && 0<=Arg_0
11:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f13___2(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet0,Arg_11,Arg_12,Arg_13):|:Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
12:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___6(Arg_0,NoDet0,C_P,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet2,Arg_9,Arg_9,Arg_13):|:0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1+C_P<=0 && 0<=Arg_4
13:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___7(Arg_0,NoDet0,C_P,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet2,Arg_9,Arg_9,Arg_13):|:0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1<=C_P && 0<=Arg_4
14:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f16___5(Arg_0,Arg_1,Arg_2,Arg_3,E_P,Arg_5,G_P,H_P,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13):|:0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && 1+G_P<=Arg_5 && 0<=E_P && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P && Arg_6+1<=G_P && G_P<=1+Arg_6 && Arg_4<=E_P && E_P<=Arg_4
15:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___6(Arg_0,NoDet0,C_P,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet2,Arg_9,Arg_9,Arg_13):|:Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && Arg_5<=1+Arg_6 && 1+C_P<=0 && 0<=Arg_4
16:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f11___7(Arg_0,NoDet0,C_P,NoDet1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,NoDet2,Arg_9,Arg_9,Arg_13):|:Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && Arg_5<=1+Arg_6 && 1<=C_P && 0<=Arg_4
17:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f16___5(Arg_0,Arg_1,Arg_2,Arg_3,E_P,Arg_5,G_P,H_P,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13):|:Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && 1+G_P<=Arg_5 && 0<=E_P && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P && Arg_6+1<=G_P && G_P<=1+Arg_6 && Arg_4<=E_P && E_P<=Arg_4
18:n_f300(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f13___9(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,0,NoDet0,0,0,NoDet1):|:Arg_5<=1
19:n_f300(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13) -> n_f16___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,H_P,I_P,J_P,Arg_10,Arg_11,Arg_12,NoDet0):|:2<=Arg_5 && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P

Preprocessing

Eliminate variables {NoDet1,NoDet2,Arg_3,Arg_10,Arg_13} that do not contribute to the problem

Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_5+Arg_9<=1 && Arg_9<=Arg_12 && Arg_12+Arg_9<=0 && Arg_9<=Arg_11 && Arg_11+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && Arg_5<=1+Arg_9 && 0<=Arg_12+Arg_9 && Arg_12<=Arg_9 && 0<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_5+Arg_6<=1 && Arg_6<=Arg_12 && Arg_12+Arg_6<=0 && Arg_6<=Arg_11 && Arg_11+Arg_6<=0 && Arg_6<=Arg_1 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_5<=1+Arg_6 && 0<=Arg_12+Arg_6 && Arg_12<=Arg_6 && 0<=Arg_11+Arg_6 && Arg_11<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=1 && Arg_5<=1+Arg_12 && Arg_12+Arg_5<=1 && Arg_5<=1+Arg_11 && Arg_11+Arg_5<=1 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=1 && Arg_12<=0 && Arg_12<=Arg_11 && Arg_11+Arg_12<=0 && Arg_12<=Arg_1 && Arg_1+Arg_12<=0 && 0<=Arg_12 && 0<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 0<=Arg_1+Arg_12 && Arg_1<=Arg_12 && Arg_11<=0 && Arg_11<=Arg_1 && Arg_1+Arg_11<=0 && 0<=Arg_11 && 0<=Arg_1+Arg_11 && Arg_1<=Arg_11 && Arg_1<=0 && 0<=Arg_1 for location n_f13___9

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 for location n_f11___7

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_2<=0 && 1+Arg_2<=Arg_1 && 1+Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_1<=0 && Arg_1<=Arg_0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_f13___1

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_1<=0 && Arg_1<=Arg_0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_f13___2

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_2<=0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 for location n_f11___6

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 for location n_f11___3

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && Arg_6<=1 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 2<=Arg_5 for location n_f16___8

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_5 && 2<=Arg_6 && 5<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 0<=Arg_4 for location n_f16___5

Found invariant Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 for location n_f11___4

Problem after Preprocessing

Start: n_f300
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_11, Arg_12
Temp_Vars: C_P, E_P, G_P, H_P, I_P, J_P, NoDet0
Locations: n_f11___3, n_f11___4, n_f11___6, n_f11___7, n_f13___1, n_f13___2, n_f13___9, n_f16___5, n_f16___8, n_f300
Transitions:
39:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___3(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1+Arg_1<=0 && 0<=Arg_0
40:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___4(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1<=Arg_1 && 0<=Arg_0
41:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f13___1(Arg_0,0,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_2<=0 && 1+Arg_2<=Arg_0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1+Arg_2<=0 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
42:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___3(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_1<=0 && 0<=Arg_0
43:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___4(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1<=Arg_1 && 0<=Arg_0
44:n_f11___4(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f13___2(Arg_0,0,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && 0<=Arg_0 && 0<=Arg_0 && 0<=Arg_0 && 1<=Arg_2 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
45:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___3(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_2<=0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1+Arg_1<=0 && 0<=Arg_0
46:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___4(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_2<=0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 1<=Arg_1 && 0<=Arg_0
47:n_f11___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f13___1(Arg_0,0,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2+Arg_2<=Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3+Arg_2<=Arg_5 && 0<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_2<=0 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_2<=0 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
48:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___3(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1+Arg_1<=0 && 0<=Arg_0
49:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___4(Arg_0,NoDet0,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 1<=Arg_1 && 0<=Arg_0
50:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f13___2(Arg_0,0,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_9<=Arg_12 && Arg_9<=Arg_11 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && Arg_8<=Arg_7 && Arg_8<=Arg_12 && Arg_8<=Arg_11 && Arg_7<=Arg_8 && Arg_12<=Arg_8 && Arg_11<=Arg_8 && Arg_7<=Arg_12 && Arg_7<=Arg_11 && Arg_12<=Arg_7 && Arg_11<=Arg_7 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 1<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 0<=Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_2 && Arg_12<=Arg_11 && Arg_11<=Arg_12 && Arg_9<=Arg_11 && Arg_11<=Arg_9 && Arg_9<=Arg_12 && Arg_12<=Arg_9 && 1<=Arg_2 && 0<=Arg_4 && Arg_5<=1+Arg_6 && 0<=Arg_0 && Arg_1<=0 && 0<=Arg_1
51:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___6(Arg_0,NoDet0,C_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_9):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_5 && 2<=Arg_6 && 5<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 0<=Arg_4 && 0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1+C_P<=0 && 0<=Arg_4
52:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___7(Arg_0,NoDet0,C_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_9):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_5 && 2<=Arg_6 && 5<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 0<=Arg_4 && 0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && Arg_5<=1+Arg_6 && 1<=C_P && 0<=Arg_4
53:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f16___5(Arg_0,Arg_1,Arg_2,E_P,Arg_5,G_P,H_P,I_P,J_P,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_5 && 2<=Arg_6 && 5<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 0<=Arg_4 && 0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && 1+G_P<=Arg_5 && 0<=E_P && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P && Arg_6+1<=G_P && G_P<=1+Arg_6 && Arg_4<=E_P && E_P<=Arg_4
54:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___6(Arg_0,NoDet0,C_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_9):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && Arg_6<=1 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 2<=Arg_5 && Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && Arg_5<=1+Arg_6 && 1+C_P<=0 && 0<=Arg_4
55:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f11___7(Arg_0,NoDet0,C_P,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_9):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && Arg_6<=1 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 2<=Arg_5 && Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && Arg_5<=1+Arg_6 && 1<=C_P && 0<=Arg_4
56:n_f16___8(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f16___5(Arg_0,Arg_1,Arg_2,E_P,Arg_5,G_P,H_P,I_P,J_P,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && Arg_6<=1 && 1+Arg_6<=Arg_5 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 2<=Arg_5 && Arg_6<=1 && 1<=Arg_6 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && 2<=Arg_5 && 1+G_P<=Arg_5 && 0<=E_P && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P && Arg_6+1<=G_P && G_P<=1+Arg_6 && Arg_4<=E_P && E_P<=Arg_4
57:n_f300(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f13___9(Arg_0,0,Arg_2,Arg_4,Arg_5,0,Arg_7,Arg_8,0,0,0):|:Arg_5<=1
58:n_f300(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f16___8(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,1,H_P,I_P,J_P,Arg_11,Arg_12):|:2<=Arg_5 && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P

MPRF for transition 53:n_f16___5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12) -> n_f16___5(Arg_0,Arg_1,Arg_2,E_P,Arg_5,G_P,H_P,I_P,J_P,Arg_11,Arg_12):|:Arg_9<=Arg_8 && Arg_9<=Arg_7 && Arg_8<=Arg_9 && Arg_7<=Arg_9 && Arg_8<=Arg_7 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_5 && 2<=Arg_6 && 5<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_5 && 3<=Arg_4+Arg_5 && 0<=Arg_4 && 0<=Arg_4 && Arg_7<=Arg_9 && Arg_9<=Arg_7 && Arg_7<=Arg_8 && Arg_8<=Arg_7 && 0<=Arg_4 && 1+Arg_6<=Arg_5 && 1+G_P<=Arg_5 && 0<=E_P && H_P<=J_P && J_P<=H_P && H_P<=I_P && I_P<=H_P && Arg_6+1<=G_P && G_P<=1+Arg_6 && Arg_4<=E_P && E_P<=Arg_4 of depth 1:

new bound:

Arg_5+2 {O(n)}

MPRF:

n_f16___5 [Arg_5-Arg_6 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
39: n_f11___3->n_f11___3: inf {Infinity}
40: n_f11___3->n_f11___4: inf {Infinity}
41: n_f11___3->n_f13___1: 1 {O(1)}
42: n_f11___4->n_f11___3: inf {Infinity}
43: n_f11___4->n_f11___4: inf {Infinity}
44: n_f11___4->n_f13___2: 1 {O(1)}
45: n_f11___6->n_f11___3: 1 {O(1)}
46: n_f11___6->n_f11___4: 1 {O(1)}
47: n_f11___6->n_f13___1: 1 {O(1)}
48: n_f11___7->n_f11___3: 1 {O(1)}
49: n_f11___7->n_f11___4: 1 {O(1)}
50: n_f11___7->n_f13___2: 1 {O(1)}
51: n_f16___5->n_f11___6: 1 {O(1)}
52: n_f16___5->n_f11___7: 1 {O(1)}
53: n_f16___5->n_f16___5: Arg_5+2 {O(n)}
54: n_f16___8->n_f11___6: 1 {O(1)}
55: n_f16___8->n_f11___7: 1 {O(1)}
56: n_f16___8->n_f16___5: 1 {O(1)}
57: n_f300->n_f13___9: 1 {O(1)}
58: n_f300->n_f16___8: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
39: n_f11___3->n_f11___3: inf {Infinity}
40: n_f11___3->n_f11___4: inf {Infinity}
41: n_f11___3->n_f13___1: 1 {O(1)}
42: n_f11___4->n_f11___3: inf {Infinity}
43: n_f11___4->n_f11___4: inf {Infinity}
44: n_f11___4->n_f13___2: 1 {O(1)}
45: n_f11___6->n_f11___3: 1 {O(1)}
46: n_f11___6->n_f11___4: 1 {O(1)}
47: n_f11___6->n_f13___1: 1 {O(1)}
48: n_f11___7->n_f11___3: 1 {O(1)}
49: n_f11___7->n_f11___4: 1 {O(1)}
50: n_f11___7->n_f13___2: 1 {O(1)}
51: n_f16___5->n_f11___6: 1 {O(1)}
52: n_f16___5->n_f11___7: 1 {O(1)}
53: n_f16___5->n_f16___5: Arg_5+2 {O(n)}
54: n_f16___8->n_f11___6: 1 {O(1)}
55: n_f16___8->n_f11___7: 1 {O(1)}
56: n_f16___8->n_f16___5: 1 {O(1)}
57: n_f300->n_f13___9: 1 {O(1)}
58: n_f300->n_f16___8: 1 {O(1)}

Sizebounds

39: n_f11___3->n_f11___3, Arg_0: 24*Arg_0 {O(n)}
39: n_f11___3->n_f11___3, Arg_4: 24*Arg_4 {O(n)}
39: n_f11___3->n_f11___3, Arg_5: 16*Arg_5+16 {O(n)}
39: n_f11___3->n_f11___3, Arg_6: 8*Arg_5+56 {O(n)}
40: n_f11___3->n_f11___4, Arg_0: 24*Arg_0 {O(n)}
40: n_f11___3->n_f11___4, Arg_4: 24*Arg_4 {O(n)}
40: n_f11___3->n_f11___4, Arg_5: 16*Arg_5+16 {O(n)}
40: n_f11___3->n_f11___4, Arg_6: 8*Arg_5+56 {O(n)}
41: n_f11___3->n_f13___1, Arg_0: 54*Arg_0 {O(n)}
41: n_f11___3->n_f13___1, Arg_1: 0 {O(1)}
41: n_f11___3->n_f13___1, Arg_4: 54*Arg_4 {O(n)}
41: n_f11___3->n_f13___1, Arg_5: 36*Arg_5+36 {O(n)}
41: n_f11___3->n_f13___1, Arg_6: 18*Arg_5+126 {O(n)}
42: n_f11___4->n_f11___3, Arg_0: 24*Arg_0 {O(n)}
42: n_f11___4->n_f11___3, Arg_4: 24*Arg_4 {O(n)}
42: n_f11___4->n_f11___3, Arg_5: 16*Arg_5+16 {O(n)}
42: n_f11___4->n_f11___3, Arg_6: 8*Arg_5+56 {O(n)}
43: n_f11___4->n_f11___4, Arg_0: 24*Arg_0 {O(n)}
43: n_f11___4->n_f11___4, Arg_4: 24*Arg_4 {O(n)}
43: n_f11___4->n_f11___4, Arg_5: 16*Arg_5+16 {O(n)}
43: n_f11___4->n_f11___4, Arg_6: 8*Arg_5+56 {O(n)}
44: n_f11___4->n_f13___2, Arg_0: 54*Arg_0 {O(n)}
44: n_f11___4->n_f13___2, Arg_1: 0 {O(1)}
44: n_f11___4->n_f13___2, Arg_4: 54*Arg_4 {O(n)}
44: n_f11___4->n_f13___2, Arg_5: 36*Arg_5+36 {O(n)}
44: n_f11___4->n_f13___2, Arg_6: 18*Arg_5+126 {O(n)}
45: n_f11___6->n_f11___3, Arg_0: 3*Arg_0 {O(n)}
45: n_f11___6->n_f11___3, Arg_4: 3*Arg_4 {O(n)}
45: n_f11___6->n_f11___3, Arg_5: 2*Arg_5+2 {O(n)}
45: n_f11___6->n_f11___3, Arg_6: Arg_5+7 {O(n)}
46: n_f11___6->n_f11___4, Arg_0: 3*Arg_0 {O(n)}
46: n_f11___6->n_f11___4, Arg_4: 3*Arg_4 {O(n)}
46: n_f11___6->n_f11___4, Arg_5: 2*Arg_5+2 {O(n)}
46: n_f11___6->n_f11___4, Arg_6: Arg_5+7 {O(n)}
47: n_f11___6->n_f13___1, Arg_0: 3*Arg_0 {O(n)}
47: n_f11___6->n_f13___1, Arg_1: 0 {O(1)}
47: n_f11___6->n_f13___1, Arg_4: 3*Arg_4 {O(n)}
47: n_f11___6->n_f13___1, Arg_5: 2*Arg_5+2 {O(n)}
47: n_f11___6->n_f13___1, Arg_6: Arg_5+7 {O(n)}
48: n_f11___7->n_f11___3, Arg_0: 3*Arg_0 {O(n)}
48: n_f11___7->n_f11___3, Arg_4: 3*Arg_4 {O(n)}
48: n_f11___7->n_f11___3, Arg_5: 2*Arg_5+2 {O(n)}
48: n_f11___7->n_f11___3, Arg_6: Arg_5+7 {O(n)}
49: n_f11___7->n_f11___4, Arg_0: 3*Arg_0 {O(n)}
49: n_f11___7->n_f11___4, Arg_4: 3*Arg_4 {O(n)}
49: n_f11___7->n_f11___4, Arg_5: 2*Arg_5+2 {O(n)}
49: n_f11___7->n_f11___4, Arg_6: Arg_5+7 {O(n)}
50: n_f11___7->n_f13___2, Arg_0: 3*Arg_0 {O(n)}
50: n_f11___7->n_f13___2, Arg_1: 0 {O(1)}
50: n_f11___7->n_f13___2, Arg_4: 3*Arg_4 {O(n)}
50: n_f11___7->n_f13___2, Arg_5: 2*Arg_5+2 {O(n)}
50: n_f11___7->n_f13___2, Arg_6: Arg_5+7 {O(n)}
51: n_f16___5->n_f11___6, Arg_0: 2*Arg_0 {O(n)}
51: n_f16___5->n_f11___6, Arg_4: 2*Arg_4 {O(n)}
51: n_f16___5->n_f11___6, Arg_5: 2*Arg_5 {O(n)}
51: n_f16___5->n_f11___6, Arg_6: Arg_5+6 {O(n)}
52: n_f16___5->n_f11___7, Arg_0: 2*Arg_0 {O(n)}
52: n_f16___5->n_f11___7, Arg_4: 2*Arg_4 {O(n)}
52: n_f16___5->n_f11___7, Arg_5: 2*Arg_5 {O(n)}
52: n_f16___5->n_f11___7, Arg_6: Arg_5+6 {O(n)}
53: n_f16___5->n_f16___5, Arg_0: Arg_0 {O(n)}
53: n_f16___5->n_f16___5, Arg_1: Arg_1 {O(n)}
53: n_f16___5->n_f16___5, Arg_2: Arg_2 {O(n)}
53: n_f16___5->n_f16___5, Arg_4: Arg_4 {O(n)}
53: n_f16___5->n_f16___5, Arg_5: Arg_5 {O(n)}
53: n_f16___5->n_f16___5, Arg_6: Arg_5+4 {O(n)}
53: n_f16___5->n_f16___5, Arg_11: Arg_11 {O(n)}
53: n_f16___5->n_f16___5, Arg_12: Arg_12 {O(n)}
54: n_f16___8->n_f11___6, Arg_0: Arg_0 {O(n)}
54: n_f16___8->n_f11___6, Arg_4: Arg_4 {O(n)}
54: n_f16___8->n_f11___6, Arg_5: 2 {O(1)}
54: n_f16___8->n_f11___6, Arg_6: 1 {O(1)}
55: n_f16___8->n_f11___7, Arg_0: Arg_0 {O(n)}
55: n_f16___8->n_f11___7, Arg_4: Arg_4 {O(n)}
55: n_f16___8->n_f11___7, Arg_5: 2 {O(1)}
55: n_f16___8->n_f11___7, Arg_6: 1 {O(1)}
56: n_f16___8->n_f16___5, Arg_0: Arg_0 {O(n)}
56: n_f16___8->n_f16___5, Arg_1: Arg_1 {O(n)}
56: n_f16___8->n_f16___5, Arg_2: Arg_2 {O(n)}
56: n_f16___8->n_f16___5, Arg_4: Arg_4 {O(n)}
56: n_f16___8->n_f16___5, Arg_5: Arg_5 {O(n)}
56: n_f16___8->n_f16___5, Arg_6: 2 {O(1)}
56: n_f16___8->n_f16___5, Arg_11: Arg_11 {O(n)}
56: n_f16___8->n_f16___5, Arg_12: Arg_12 {O(n)}
57: n_f300->n_f13___9, Arg_0: Arg_0 {O(n)}
57: n_f300->n_f13___9, Arg_1: 0 {O(1)}
57: n_f300->n_f13___9, Arg_2: Arg_2 {O(n)}
57: n_f300->n_f13___9, Arg_4: Arg_4 {O(n)}
57: n_f300->n_f13___9, Arg_5: Arg_5 {O(n)}
57: n_f300->n_f13___9, Arg_6: 0 {O(1)}
57: n_f300->n_f13___9, Arg_7: Arg_7 {O(n)}
57: n_f300->n_f13___9, Arg_8: Arg_8 {O(n)}
57: n_f300->n_f13___9, Arg_9: 0 {O(1)}
57: n_f300->n_f13___9, Arg_11: 0 {O(1)}
57: n_f300->n_f13___9, Arg_12: 0 {O(1)}
58: n_f300->n_f16___8, Arg_0: Arg_0 {O(n)}
58: n_f300->n_f16___8, Arg_1: Arg_1 {O(n)}
58: n_f300->n_f16___8, Arg_2: Arg_2 {O(n)}
58: n_f300->n_f16___8, Arg_4: Arg_4 {O(n)}
58: n_f300->n_f16___8, Arg_5: Arg_5 {O(n)}
58: n_f300->n_f16___8, Arg_6: 1 {O(1)}
58: n_f300->n_f16___8, Arg_11: Arg_11 {O(n)}
58: n_f300->n_f16___8, Arg_12: Arg_12 {O(n)}