Initial Problem

Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_lbl71___5, n_lbl71___8, n_start0, n_start___9, n_stop___1, n_stop___2, n_stop___3, n_stop___4, n_stop___6, n_stop___7
Transitions:
0:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___5(Arg_0,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1,Arg_2,Arg_3-1,Arg_4,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3,Arg_6,Arg_1+1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0+Arg_4+Arg_6<=101+Arg_1+Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
1:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_3<=Arg_1 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
2:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 102+Arg_1+Arg_3<=Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
3:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___5(Arg_0,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1,Arg_2,Arg_3-1,Arg_4,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3,Arg_6,Arg_1+1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0+Arg_4+Arg_6<=101+Arg_1+Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
4:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && Arg_3<=Arg_1 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
5:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && 102+Arg_1+Arg_3<=Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
6:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___9(Arg_0,Arg_2,Arg_2,Arg_4,Arg_4,Arg_6,Arg_6,Arg_0)
7:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___8(Arg_0,Arg_0,Arg_1,Arg_3-1,Arg_3,Arg_0+1,Arg_5,Arg_5):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_3 && Arg_0<=100 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0
8:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_3<=Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0
9:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___7(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 101<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0

Preprocessing

Found invariant Arg_6<=Arg_4 && Arg_0+Arg_6<=200 && Arg_5<=101 && Arg_3+Arg_5<=201 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_0+Arg_5<=201 && 1+Arg_3<=Arg_5 && 1+Arg_1<=Arg_5 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=100 && Arg_3<=Arg_1 && Arg_1+Arg_3<=200 && Arg_0+Arg_3<=200 && Arg_1<=100 && Arg_0+Arg_1<=200 && Arg_0<=100 for location n_stop___1

Found invariant Arg_6<=Arg_4 && Arg_0+Arg_6<=200 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_1<=100 && Arg_0+Arg_1<=200 && Arg_0<=100 for location n_stop___2

Found invariant Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_start___9

Found invariant Arg_7<=Arg_0 && 101<=Arg_7 && 202<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 101<=Arg_0 for location n_stop___7

Found invariant Arg_6<=101 && Arg_6<=Arg_5 && Arg_5+Arg_6<=202 && Arg_6<=Arg_4 && Arg_4+Arg_6<=202 && Arg_6<=1+Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=201 && Arg_6<=1+Arg_0 && Arg_0+Arg_6<=201 && Arg_5<=101 && Arg_4+Arg_5<=202 && Arg_3+Arg_5<=201 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=101 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=201 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=201 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=201 && 1+Arg_3<=Arg_4 && Arg_3<=100 && Arg_3<=Arg_1 && Arg_1+Arg_3<=200 && Arg_3<=Arg_0 && Arg_0+Arg_3<=200 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 for location n_stop___3

Found invariant Arg_7<=101 && 1+Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_0+Arg_7<=201 && Arg_6<=Arg_4 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_0<=100 for location n_lbl71___5

Found invariant Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=1+Arg_3 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 for location n_stop___4

Found invariant Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && 1+Arg_4<=Arg_6 && 1+Arg_3<=Arg_6 && 1+Arg_4<=Arg_5 && 1+Arg_3<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_stop___6

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=1+Arg_3 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 for location n_lbl71___8

Problem after Preprocessing

Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_lbl71___5, n_lbl71___8, n_start0, n_start___9, n_stop___1, n_stop___2, n_stop___3, n_stop___4, n_stop___6, n_stop___7
Transitions:
0:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___5(Arg_0,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1,Arg_2,Arg_3-1,Arg_4,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3,Arg_6,Arg_1+1):|:Arg_7<=101 && 1+Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_0+Arg_7<=201 && Arg_6<=Arg_4 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0+Arg_4+Arg_6<=101+Arg_1+Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
1:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_7<=101 && 1+Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_0+Arg_7<=201 && Arg_6<=Arg_4 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_3<=Arg_1 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
2:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_7<=101 && 1+Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_0+Arg_7<=201 && Arg_6<=Arg_4 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 102+Arg_1+Arg_3<=Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
3:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___5(Arg_0,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1,Arg_2,Arg_3-1,Arg_4,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3,Arg_6,Arg_1+1):|:Arg_7<=Arg_6 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=1+Arg_3 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0+Arg_4+Arg_6<=101+Arg_1+Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
4:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_7<=Arg_6 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=1+Arg_3 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && Arg_3<=Arg_1 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
5:n_lbl71___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1+1,Arg_6,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1):|:Arg_7<=Arg_6 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_5<=101 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=201 && Arg_5<=1+Arg_0 && Arg_0+Arg_5<=201 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && Arg_4<=1+Arg_3 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 1+Arg_0<=Arg_5 && Arg_5<=1+Arg_0 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_6<=1+Arg_3 && Arg_0<=100 && 102+Arg_1+Arg_3<=Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6
6:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___9(Arg_0,Arg_2,Arg_2,Arg_4,Arg_4,Arg_6,Arg_6,Arg_0)
7:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___8(Arg_0,Arg_0,Arg_1,Arg_3-1,Arg_3,Arg_0+1,Arg_5,Arg_5):|:Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_3 && Arg_0<=100 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0
8:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0):|:Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_3<=Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0
9:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___7(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_5,Arg_5,Arg_0):|:Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 101<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg_0<=Arg_7 && Arg_7<=Arg_0

MPRF for transition 0:n_lbl71___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl71___5(Arg_0,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3-1,Arg_2,Arg_3-1,Arg_4,Arg_0+Arg_4+Arg_6-Arg_1-Arg_3,Arg_6,Arg_1+1):|:Arg_7<=101 && 1+Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_0+Arg_7<=201 && Arg_6<=Arg_4 && 2+Arg_3<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_0<=100 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_5<=101 && Arg_0<=100 && 1+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && 1+Arg_1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_3+Arg_5+Arg_7 && Arg_3+Arg_5+Arg_7<=Arg_0+Arg_4+Arg_6 && Arg_5<=101 && 2+Arg_0+Arg_6<=Arg_5+Arg_7 && Arg_5+2*Arg_7<=1+Arg_0+Arg_4+Arg_6 && Arg_7<=101 && Arg_0<=100 && 2*Arg_5+Arg_7<=3+Arg_0+Arg_4+Arg_6 && Arg_6<=Arg_4 && Arg_6<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=100 && Arg_0+Arg_4+Arg_6<=2+Arg_1+2*Arg_3 && Arg_0+Arg_4+Arg_6<=101+Arg_1+Arg_3 && Arg_0<=100 && Arg_1+1<=Arg_5 && Arg_5<=1+Arg_1 && Arg_0+Arg_4+Arg_6<=Arg_1+Arg_3+Arg_7+1 && 1+Arg_1+Arg_3+Arg_7<=Arg_0+Arg_4+Arg_6 of depth 1:

new bound:

2*Arg_4+Arg_0+Arg_6+6 {O(n)}

MPRF:

n_lbl71___5 [2*Arg_3+1-Arg_1-Arg_7 ]

All Bounds

Timebounds

Overall timebound:2*Arg_4+Arg_0+Arg_6+15 {O(n)}
0: n_lbl71___5->n_lbl71___5: 2*Arg_4+Arg_0+Arg_6+6 {O(n)}
1: n_lbl71___5->n_stop___1: 1 {O(1)}
2: n_lbl71___5->n_stop___2: 1 {O(1)}
3: n_lbl71___8->n_lbl71___5: 1 {O(1)}
4: n_lbl71___8->n_stop___3: 1 {O(1)}
5: n_lbl71___8->n_stop___4: 1 {O(1)}
6: n_start0->n_start___9: 1 {O(1)}
7: n_start___9->n_lbl71___8: 1 {O(1)}
8: n_start___9->n_stop___6: 1 {O(1)}
9: n_start___9->n_stop___7: 1 {O(1)}

Costbounds

Overall costbound: 2*Arg_4+Arg_0+Arg_6+15 {O(n)}
0: n_lbl71___5->n_lbl71___5: 2*Arg_4+Arg_0+Arg_6+6 {O(n)}
1: n_lbl71___5->n_stop___1: 1 {O(1)}
2: n_lbl71___5->n_stop___2: 1 {O(1)}
3: n_lbl71___8->n_lbl71___5: 1 {O(1)}
4: n_lbl71___8->n_stop___3: 1 {O(1)}
5: n_lbl71___8->n_stop___4: 1 {O(1)}
6: n_start0->n_start___9: 1 {O(1)}
7: n_start___9->n_lbl71___8: 1 {O(1)}
8: n_start___9->n_stop___6: 1 {O(1)}
9: n_start___9->n_stop___7: 1 {O(1)}

Sizebounds

0: n_lbl71___5->n_lbl71___5, Arg_0: Arg_0 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_1: 2*Arg_0+2*Arg_6+200 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_2: Arg_2 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_3: 3*Arg_4+Arg_0+Arg_6+8 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_4: Arg_4 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_5: 2*Arg_0+2*Arg_6+202 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_6: Arg_6 {O(n)}
0: n_lbl71___5->n_lbl71___5, Arg_7: 2*Arg_0+3*Arg_6+202 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_0: 2*Arg_0 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_1: 2*Arg_0+3*Arg_6+200 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_2: 2*Arg_2 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_3: 4*Arg_4+Arg_0+Arg_6+10 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_4: 2*Arg_4 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_5: 2*Arg_0+3*Arg_6+202 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_6: 2*Arg_6 {O(n)}
1: n_lbl71___5->n_stop___1, Arg_7: 3*Arg_0+3*Arg_6+203 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_0: 2*Arg_0 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_1: 2*Arg_0+3*Arg_6+200 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_2: 2*Arg_2 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_3: 4*Arg_4+Arg_0+Arg_6+10 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_4: 2*Arg_4 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_5: 2*Arg_0+3*Arg_6+202 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_6: 2*Arg_6 {O(n)}
2: n_lbl71___5->n_stop___2, Arg_7: 101 {O(1)}
3: n_lbl71___8->n_lbl71___5, Arg_0: Arg_0 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_1: Arg_6 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_2: Arg_2 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_3: Arg_4+2 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_4: Arg_4 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_5: Arg_6+1 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_6: Arg_6 {O(n)}
3: n_lbl71___8->n_lbl71___5, Arg_7: Arg_0+1 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_0: Arg_0 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_1: Arg_0 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_2: Arg_2 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_3: Arg_4+1 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_4: Arg_4 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_5: Arg_0+1 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_6: Arg_6 {O(n)}
4: n_lbl71___8->n_stop___3, Arg_7: Arg_6 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_0: Arg_0 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_1: Arg_0 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_2: Arg_2 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_3: Arg_4+1 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_4: Arg_4 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_5: Arg_0+1 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_6: Arg_6 {O(n)}
5: n_lbl71___8->n_stop___4, Arg_7: Arg_4+2 {O(n)}
6: n_start0->n_start___9, Arg_0: Arg_0 {O(n)}
6: n_start0->n_start___9, Arg_1: Arg_2 {O(n)}
6: n_start0->n_start___9, Arg_2: Arg_2 {O(n)}
6: n_start0->n_start___9, Arg_3: Arg_4 {O(n)}
6: n_start0->n_start___9, Arg_4: Arg_4 {O(n)}
6: n_start0->n_start___9, Arg_5: Arg_6 {O(n)}
6: n_start0->n_start___9, Arg_6: Arg_6 {O(n)}
6: n_start0->n_start___9, Arg_7: Arg_0 {O(n)}
7: n_start___9->n_lbl71___8, Arg_0: Arg_0 {O(n)}
7: n_start___9->n_lbl71___8, Arg_1: Arg_0 {O(n)}
7: n_start___9->n_lbl71___8, Arg_2: Arg_2 {O(n)}
7: n_start___9->n_lbl71___8, Arg_3: Arg_4+1 {O(n)}
7: n_start___9->n_lbl71___8, Arg_4: Arg_4 {O(n)}
7: n_start___9->n_lbl71___8, Arg_5: Arg_0+1 {O(n)}
7: n_start___9->n_lbl71___8, Arg_6: Arg_6 {O(n)}
7: n_start___9->n_lbl71___8, Arg_7: Arg_6 {O(n)}
8: n_start___9->n_stop___6, Arg_0: Arg_0 {O(n)}
8: n_start___9->n_stop___6, Arg_1: Arg_2 {O(n)}
8: n_start___9->n_stop___6, Arg_2: Arg_2 {O(n)}
8: n_start___9->n_stop___6, Arg_3: Arg_4 {O(n)}
8: n_start___9->n_stop___6, Arg_4: Arg_4 {O(n)}
8: n_start___9->n_stop___6, Arg_5: Arg_6 {O(n)}
8: n_start___9->n_stop___6, Arg_6: Arg_6 {O(n)}
8: n_start___9->n_stop___6, Arg_7: Arg_0 {O(n)}
9: n_start___9->n_stop___7, Arg_0: Arg_0 {O(n)}
9: n_start___9->n_stop___7, Arg_1: Arg_2 {O(n)}
9: n_start___9->n_stop___7, Arg_2: Arg_2 {O(n)}
9: n_start___9->n_stop___7, Arg_3: Arg_4 {O(n)}
9: n_start___9->n_stop___7, Arg_4: Arg_4 {O(n)}
9: n_start___9->n_stop___7, Arg_5: Arg_6 {O(n)}
9: n_start___9->n_stop___7, Arg_6: Arg_6 {O(n)}
9: n_start___9->n_stop___7, Arg_7: Arg_0 {O(n)}