Initial Problem
Start: n_evalcousot9start
Program_Vars: Arg_0, Arg_1, Arg_2
Temp_Vars: NoDet0
Locations: n_evalcousot9bb1in___13, n_evalcousot9bb1in___16, n_evalcousot9bb1in___22, n_evalcousot9bb2in___12, n_evalcousot9bb2in___21, n_evalcousot9bb2in___8, n_evalcousot9bb3in___11, n_evalcousot9bb3in___15, n_evalcousot9bb3in___19, n_evalcousot9bb3in___20, n_evalcousot9bb3in___25, n_evalcousot9bb3in___7, n_evalcousot9bbin___10, n_evalcousot9bbin___14, n_evalcousot9bbin___18, n_evalcousot9bbin___24, n_evalcousot9bbin___6, n_evalcousot9entryin___26, n_evalcousot9returnin___17, n_evalcousot9returnin___23, n_evalcousot9returnin___5, n_evalcousot9returnin___9, n_evalcousot9start, n_evalcousot9stop___1, n_evalcousot9stop___2, n_evalcousot9stop___3, n_evalcousot9stop___4
Transitions:
0:n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_0
1:n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
2:n_evalcousot9bb1in___22(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___20(Arg_0-1,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
3:n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___11(Arg_2,Arg_1-1,Arg_2):|:Arg_0<=0 && 1<=Arg_1
4:n_evalcousot9bb2in___21(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___19(Arg_2,Arg_1-1,Arg_2):|:Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
5:n_evalcousot9bb2in___8(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___7(Arg_2,Arg_1-1,Arg_2):|:Arg_0<=0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0
6:n_evalcousot9bb3in___11(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2):|:Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
7:n_evalcousot9bb3in___11(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___9(Arg_0,Arg_1,Arg_2):|:Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
8:n_evalcousot9bb3in___15(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
9:n_evalcousot9bb3in___19(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___18(Arg_0,Arg_1,Arg_2):|:1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
10:n_evalcousot9bb3in___19(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___17(Arg_0,Arg_1,Arg_2):|:1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
11:n_evalcousot9bb3in___20(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
12:n_evalcousot9bb3in___25(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
13:n_evalcousot9bb3in___25(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___23(Arg_0,Arg_1,Arg_2):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
14:n_evalcousot9bb3in___7(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___6(Arg_0,Arg_1,Arg_2):|:Arg_0<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
15:n_evalcousot9bb3in___7(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___5(Arg_0,Arg_1,Arg_2):|:Arg_0<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
16:n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
17:n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___8(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_0<=0
18:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_0
19:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_0<=0
20:n_evalcousot9bbin___18(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
21:n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___22(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
22:n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___21(Arg_0,Arg_1,Arg_2):|:1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
23:n_evalcousot9bbin___6(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___8(Arg_0,Arg_1,Arg_2):|:Arg_0<=0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_0<=0
24:n_evalcousot9entryin___26(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___25(NoDet0,Arg_2,Arg_2)
25:n_evalcousot9returnin___17(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___2(Arg_0,Arg_1,Arg_2):|:Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
26:n_evalcousot9returnin___23(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___1(Arg_0,Arg_1,Arg_2):|:Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
27:n_evalcousot9returnin___5(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___4(Arg_0,Arg_1,Arg_2):|:Arg_0<=0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
28:n_evalcousot9returnin___9(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___3(Arg_0,Arg_1,Arg_2):|:Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
29:n_evalcousot9start(Arg_0,Arg_1,Arg_2) -> n_evalcousot9entryin___26(Arg_0,Arg_1,Arg_2)
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___8
n_evalcousot9bb2in___8
n_evalcousot9bb3in___7
n_evalcousot9bb3in___7
n_evalcousot9bb2in___8->n_evalcousot9bb3in___7
t₅
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_0<=0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___6
n_evalcousot9bbin___6
n_evalcousot9bb3in___7->n_evalcousot9bbin___6
t₁₄
τ = Arg_0<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___5
n_evalcousot9returnin___5
n_evalcousot9bb3in___7->n_evalcousot9returnin___5
t₁₅
τ = Arg_0<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___10->n_evalcousot9bb2in___8
t₁₇
τ = 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_0<=0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___6->n_evalcousot9bb2in___8
t₂₃
τ = Arg_0<=0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___4
n_evalcousot9stop___4
n_evalcousot9returnin___5->n_evalcousot9stop___4
t₂₇
τ = Arg_0<=0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
Preprocessing
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_evalcousot9bb3in___11
Found invariant 1<=0 for location n_evalcousot9bb3in___7
Found invariant Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 for location n_evalcousot9stop___1
Found invariant Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 for location n_evalcousot9bb3in___20
Found invariant 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 for location n_evalcousot9bbin___14
Found invariant Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 for location n_evalcousot9bbin___18
Found invariant 1<=0 for location n_evalcousot9returnin___5
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_evalcousot9bb1in___16
Found invariant 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_evalcousot9bb2in___12
Found invariant Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_evalcousot9bb2in___21
Found invariant Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 for location n_evalcousot9bb3in___19
Found invariant Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 for location n_evalcousot9returnin___23
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_evalcousot9returnin___9
Found invariant 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_evalcousot9bb1in___13
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_evalcousot9stop___3
Found invariant Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_evalcousot9bb3in___25
Found invariant Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_evalcousot9stop___2
Found invariant 1<=0 for location n_evalcousot9stop___4
Found invariant Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_evalcousot9bb1in___22
Found invariant 1<=0 for location n_evalcousot9bb2in___8
Found invariant Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_evalcousot9returnin___17
Found invariant 1<=0 for location n_evalcousot9bbin___6
Found invariant 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 for location n_evalcousot9bb3in___15
Found invariant Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_evalcousot9bbin___24
Found invariant Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 for location n_evalcousot9bbin___10
Cut unsatisfiable transition 5: n_evalcousot9bb2in___8->n_evalcousot9bb3in___7
Cut unsatisfiable transition 14: n_evalcousot9bb3in___7->n_evalcousot9bbin___6
Cut unsatisfiable transition 15: n_evalcousot9bb3in___7->n_evalcousot9returnin___5
Cut unsatisfiable transition 17: n_evalcousot9bbin___10->n_evalcousot9bb2in___8
Cut unsatisfiable transition 23: n_evalcousot9bbin___6->n_evalcousot9bb2in___8
Cut unsatisfiable transition 27: n_evalcousot9returnin___5->n_evalcousot9stop___4
Cut unreachable locations [n_evalcousot9bb2in___8; n_evalcousot9bb3in___7; n_evalcousot9bbin___6; n_evalcousot9returnin___5; n_evalcousot9stop___4] from the program graph
Problem after Preprocessing
Start: n_evalcousot9start
Program_Vars: Arg_0, Arg_1, Arg_2
Temp_Vars: NoDet0
Locations: n_evalcousot9bb1in___13, n_evalcousot9bb1in___16, n_evalcousot9bb1in___22, n_evalcousot9bb2in___12, n_evalcousot9bb2in___21, n_evalcousot9bb3in___11, n_evalcousot9bb3in___15, n_evalcousot9bb3in___19, n_evalcousot9bb3in___20, n_evalcousot9bb3in___25, n_evalcousot9bbin___10, n_evalcousot9bbin___14, n_evalcousot9bbin___18, n_evalcousot9bbin___24, n_evalcousot9entryin___26, n_evalcousot9returnin___17, n_evalcousot9returnin___23, n_evalcousot9returnin___9, n_evalcousot9start, n_evalcousot9stop___1, n_evalcousot9stop___2, n_evalcousot9stop___3
Transitions:
0:n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
1:n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
2:n_evalcousot9bb1in___22(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___20(Arg_0-1,Arg_1,Arg_2):|:Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
3:n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___11(Arg_2,Arg_1-1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
4:n_evalcousot9bb2in___21(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___19(Arg_2,Arg_1-1,Arg_2):|:Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
6:n_evalcousot9bb3in___11(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
7:n_evalcousot9bb3in___11(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___9(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
8:n_evalcousot9bb3in___15(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
9:n_evalcousot9bb3in___19(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___18(Arg_0,Arg_1,Arg_2):|:Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
10:n_evalcousot9bb3in___19(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___17(Arg_0,Arg_1,Arg_2):|:Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
11:n_evalcousot9bb3in___20(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
12:n_evalcousot9bb3in___25(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
13:n_evalcousot9bb3in___25(Arg_0,Arg_1,Arg_2) -> n_evalcousot9returnin___23(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
16:n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
18:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
19:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
20:n_evalcousot9bbin___18(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2):|:Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
21:n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___22(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
22:n_evalcousot9bbin___24(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___21(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
24:n_evalcousot9entryin___26(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___25(NoDet0,Arg_2,Arg_2)
25:n_evalcousot9returnin___17(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___2(Arg_0,Arg_1,Arg_2):|:Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
26:n_evalcousot9returnin___23(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___1(Arg_0,Arg_1,Arg_2):|:Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
28:n_evalcousot9returnin___9(Arg_0,Arg_1,Arg_2) -> n_evalcousot9stop___3(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
29:n_evalcousot9start(Arg_0,Arg_1,Arg_2) -> n_evalcousot9entryin___26(Arg_0,Arg_1,Arg_2)
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 1:n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 of depth 1:
new bound:
2*Arg_2+1 {O(n)}
MPRF:
n_evalcousot9bb3in___11 [Arg_1+1 ]
n_evalcousot9bb3in___15 [Arg_1 ]
n_evalcousot9bbin___10 [Arg_1+1 ]
n_evalcousot9bb1in___16 [Arg_1+1 ]
n_evalcousot9bb1in___13 [Arg_1 ]
n_evalcousot9bbin___14 [Arg_1 ]
n_evalcousot9bb2in___12 [Arg_1 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 3:n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___11(Arg_2,Arg_1-1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_evalcousot9bb3in___11 [Arg_1 ]
n_evalcousot9bb3in___15 [Arg_1 ]
n_evalcousot9bbin___10 [Arg_1 ]
n_evalcousot9bb1in___16 [Arg_1 ]
n_evalcousot9bb1in___13 [Arg_1 ]
n_evalcousot9bbin___14 [Arg_1 ]
n_evalcousot9bb2in___12 [Arg_1 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 6:n_evalcousot9bb3in___11(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_evalcousot9bb3in___11 [Arg_1+1 ]
n_evalcousot9bb3in___15 [Arg_1 ]
n_evalcousot9bbin___10 [Arg_1 ]
n_evalcousot9bb1in___16 [Arg_1 ]
n_evalcousot9bb1in___13 [Arg_1 ]
n_evalcousot9bbin___14 [Arg_1 ]
n_evalcousot9bb2in___12 [Arg_1 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 16:n_evalcousot9bbin___10(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___16(Arg_0,Arg_1,Arg_2):|:Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_evalcousot9bb3in___11 [Arg_1+1 ]
n_evalcousot9bb3in___15 [Arg_1 ]
n_evalcousot9bbin___10 [Arg_1+1 ]
n_evalcousot9bb1in___16 [Arg_1 ]
n_evalcousot9bb1in___13 [Arg_1 ]
n_evalcousot9bbin___14 [Arg_1 ]
n_evalcousot9bb2in___12 [Arg_1 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 19:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb2in___12(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0 of depth 1:
new bound:
4*Arg_2 {O(n)}
MPRF:
n_evalcousot9bb3in___11 [2*Arg_1 ]
n_evalcousot9bb3in___15 [2*Arg_1 ]
n_evalcousot9bbin___10 [2*Arg_1 ]
n_evalcousot9bb1in___16 [2*Arg_1 ]
n_evalcousot9bb1in___13 [2*Arg_1 ]
n_evalcousot9bbin___14 [2*Arg_1 ]
n_evalcousot9bb2in___12 [2*Arg_1-2 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 0:n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb3in___15(Arg_0-1,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 of depth 1:
new bound:
8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
MPRF:
n_evalcousot9bb2in___12 [Arg_2 ]
n_evalcousot9bb3in___11 [Arg_0 ]
n_evalcousot9bb3in___15 [Arg_0 ]
n_evalcousot9bbin___10 [Arg_2 ]
n_evalcousot9bb1in___16 [Arg_0 ]
n_evalcousot9bbin___14 [Arg_0 ]
n_evalcousot9bb1in___13 [Arg_0 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 8:n_evalcousot9bb3in___15(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1 of depth 1:
new bound:
8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
MPRF:
n_evalcousot9bb2in___12 [Arg_2 ]
n_evalcousot9bb3in___11 [2*Arg_0-Arg_2 ]
n_evalcousot9bb3in___15 [Arg_0+1 ]
n_evalcousot9bbin___10 [Arg_0 ]
n_evalcousot9bb1in___16 [Arg_0 ]
n_evalcousot9bbin___14 [Arg_0 ]
n_evalcousot9bb1in___13 [Arg_0 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
MPRF for transition 18:n_evalcousot9bbin___14(Arg_0,Arg_1,Arg_2) -> n_evalcousot9bb1in___13(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 of depth 1:
new bound:
8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
MPRF:
n_evalcousot9bb2in___12 [Arg_2 ]
n_evalcousot9bb3in___11 [Arg_2 ]
n_evalcousot9bb3in___15 [Arg_0 ]
n_evalcousot9bbin___10 [Arg_0 ]
n_evalcousot9bb1in___16 [Arg_0 ]
n_evalcousot9bbin___14 [Arg_0 ]
n_evalcousot9bb1in___13 [Arg_0-1 ]
Show Graph
G
n_evalcousot9bb1in___13
n_evalcousot9bb1in___13
n_evalcousot9bb3in___15
n_evalcousot9bb3in___15
n_evalcousot9bb1in___13->n_evalcousot9bb3in___15
t₀
η (Arg_0) = Arg_0-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16
n_evalcousot9bb1in___16->n_evalcousot9bb3in___15
t₁
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9bb1in___22
n_evalcousot9bb1in___22
n_evalcousot9bb3in___20
n_evalcousot9bb3in___20
n_evalcousot9bb1in___22->n_evalcousot9bb3in___20
t₂
η (Arg_0) = Arg_0-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bb2in___12
n_evalcousot9bb2in___12
n_evalcousot9bb3in___11
n_evalcousot9bb3in___11
n_evalcousot9bb2in___12->n_evalcousot9bb3in___11
t₃
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=0 && 1<=Arg_1
n_evalcousot9bb2in___21
n_evalcousot9bb2in___21
n_evalcousot9bb3in___19
n_evalcousot9bb3in___19
n_evalcousot9bb2in___21->n_evalcousot9bb3in___19
t₄
η (Arg_0) = Arg_2
η (Arg_1) = Arg_1-1
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9bbin___10
n_evalcousot9bbin___10
n_evalcousot9bb3in___11->n_evalcousot9bbin___10
t₆
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___9
n_evalcousot9returnin___9
n_evalcousot9bb3in___11->n_evalcousot9returnin___9
t₇
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___14
n_evalcousot9bbin___14
n_evalcousot9bb3in___15->n_evalcousot9bbin___14
t₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bbin___18
n_evalcousot9bbin___18
n_evalcousot9bb3in___19->n_evalcousot9bbin___18
t₉
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_1
n_evalcousot9returnin___17
n_evalcousot9returnin___17
n_evalcousot9bb3in___19->n_evalcousot9returnin___17
t₁₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && Arg_1<=0
n_evalcousot9bbin___24
n_evalcousot9bbin___24
n_evalcousot9bb3in___20->n_evalcousot9bbin___24
t₁₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1 && 1<=Arg_1
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25
n_evalcousot9bb3in___25->n_evalcousot9bbin___24
t₁₂
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_1
n_evalcousot9returnin___23
n_evalcousot9returnin___23
n_evalcousot9bb3in___25->n_evalcousot9returnin___23
t₁₃
τ = Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=0
n_evalcousot9bbin___10->n_evalcousot9bb1in___16
t₁₆
τ = Arg_2<=Arg_0 && 3<=Arg_2 && 4<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 6<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 1<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb1in___13
t₁₈
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___14->n_evalcousot9bb2in___12
t₁₉
τ = 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 0<=Arg_0 && 1<=Arg_1 && Arg_0<=0
n_evalcousot9bbin___18->n_evalcousot9bb1in___16
t₂₀
τ = Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && 1<=Arg_1 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb1in___22
t₂₁
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && 1<=Arg_0
n_evalcousot9bbin___24->n_evalcousot9bb2in___21
t₂₂
τ = Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_0<=0
n_evalcousot9entryin___26
n_evalcousot9entryin___26
n_evalcousot9entryin___26->n_evalcousot9bb3in___25
t₂₄
η (Arg_0) = NoDet0
η (Arg_1) = Arg_2
n_evalcousot9stop___2
n_evalcousot9stop___2
n_evalcousot9returnin___17->n_evalcousot9stop___2
t₂₅
τ = Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=1 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 1<=Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9stop___1
n_evalcousot9stop___1
n_evalcousot9returnin___23->n_evalcousot9stop___1
t₂₆
τ = Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=Arg_2 && Arg_1<=0 && Arg_1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_evalcousot9stop___3
n_evalcousot9stop___3
n_evalcousot9returnin___9->n_evalcousot9stop___3
t₂₈
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 2<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_0<=Arg_2 && Arg_2<=Arg_0
n_evalcousot9start
n_evalcousot9start
n_evalcousot9start->n_evalcousot9entryin___26
t₂₉
All Bounds
Timebounds
Overall timebound:inf {Infinity}
0: n_evalcousot9bb1in___13->n_evalcousot9bb3in___15: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
1: n_evalcousot9bb1in___16->n_evalcousot9bb3in___15: 2*Arg_2+1 {O(n)}
2: n_evalcousot9bb1in___22->n_evalcousot9bb3in___20: inf {Infinity}
3: n_evalcousot9bb2in___12->n_evalcousot9bb3in___11: 2*Arg_2 {O(n)}
4: n_evalcousot9bb2in___21->n_evalcousot9bb3in___19: 1 {O(1)}
6: n_evalcousot9bb3in___11->n_evalcousot9bbin___10: 2*Arg_2 {O(n)}
7: n_evalcousot9bb3in___11->n_evalcousot9returnin___9: 1 {O(1)}
8: n_evalcousot9bb3in___15->n_evalcousot9bbin___14: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
9: n_evalcousot9bb3in___19->n_evalcousot9bbin___18: 1 {O(1)}
10: n_evalcousot9bb3in___19->n_evalcousot9returnin___17: 1 {O(1)}
11: n_evalcousot9bb3in___20->n_evalcousot9bbin___24: inf {Infinity}
12: n_evalcousot9bb3in___25->n_evalcousot9bbin___24: 1 {O(1)}
13: n_evalcousot9bb3in___25->n_evalcousot9returnin___23: 1 {O(1)}
16: n_evalcousot9bbin___10->n_evalcousot9bb1in___16: 2*Arg_2 {O(n)}
18: n_evalcousot9bbin___14->n_evalcousot9bb1in___13: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
19: n_evalcousot9bbin___14->n_evalcousot9bb2in___12: 4*Arg_2 {O(n)}
20: n_evalcousot9bbin___18->n_evalcousot9bb1in___16: 1 {O(1)}
21: n_evalcousot9bbin___24->n_evalcousot9bb1in___22: inf {Infinity}
22: n_evalcousot9bbin___24->n_evalcousot9bb2in___21: 1 {O(1)}
24: n_evalcousot9entryin___26->n_evalcousot9bb3in___25: 1 {O(1)}
25: n_evalcousot9returnin___17->n_evalcousot9stop___2: 1 {O(1)}
26: n_evalcousot9returnin___23->n_evalcousot9stop___1: 1 {O(1)}
28: n_evalcousot9returnin___9->n_evalcousot9stop___3: 1 {O(1)}
29: n_evalcousot9start->n_evalcousot9entryin___26: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
0: n_evalcousot9bb1in___13->n_evalcousot9bb3in___15: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
1: n_evalcousot9bb1in___16->n_evalcousot9bb3in___15: 2*Arg_2+1 {O(n)}
2: n_evalcousot9bb1in___22->n_evalcousot9bb3in___20: inf {Infinity}
3: n_evalcousot9bb2in___12->n_evalcousot9bb3in___11: 2*Arg_2 {O(n)}
4: n_evalcousot9bb2in___21->n_evalcousot9bb3in___19: 1 {O(1)}
6: n_evalcousot9bb3in___11->n_evalcousot9bbin___10: 2*Arg_2 {O(n)}
7: n_evalcousot9bb3in___11->n_evalcousot9returnin___9: 1 {O(1)}
8: n_evalcousot9bb3in___15->n_evalcousot9bbin___14: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
9: n_evalcousot9bb3in___19->n_evalcousot9bbin___18: 1 {O(1)}
10: n_evalcousot9bb3in___19->n_evalcousot9returnin___17: 1 {O(1)}
11: n_evalcousot9bb3in___20->n_evalcousot9bbin___24: inf {Infinity}
12: n_evalcousot9bb3in___25->n_evalcousot9bbin___24: 1 {O(1)}
13: n_evalcousot9bb3in___25->n_evalcousot9returnin___23: 1 {O(1)}
16: n_evalcousot9bbin___10->n_evalcousot9bb1in___16: 2*Arg_2 {O(n)}
18: n_evalcousot9bbin___14->n_evalcousot9bb1in___13: 8*Arg_2*Arg_2+2*Arg_2 {O(n^2)}
19: n_evalcousot9bbin___14->n_evalcousot9bb2in___12: 4*Arg_2 {O(n)}
20: n_evalcousot9bbin___18->n_evalcousot9bb1in___16: 1 {O(1)}
21: n_evalcousot9bbin___24->n_evalcousot9bb1in___22: inf {Infinity}
22: n_evalcousot9bbin___24->n_evalcousot9bb2in___21: 1 {O(1)}
24: n_evalcousot9entryin___26->n_evalcousot9bb3in___25: 1 {O(1)}
25: n_evalcousot9returnin___17->n_evalcousot9stop___2: 1 {O(1)}
26: n_evalcousot9returnin___23->n_evalcousot9stop___1: 1 {O(1)}
28: n_evalcousot9returnin___9->n_evalcousot9stop___3: 1 {O(1)}
29: n_evalcousot9start->n_evalcousot9entryin___26: 1 {O(1)}
Sizebounds
0: n_evalcousot9bb1in___13->n_evalcousot9bb3in___15, Arg_0: 4*Arg_2 {O(n)}
0: n_evalcousot9bb1in___13->n_evalcousot9bb3in___15, Arg_1: 2*Arg_2 {O(n)}
0: n_evalcousot9bb1in___13->n_evalcousot9bb3in___15, Arg_2: 2*Arg_2 {O(n)}
1: n_evalcousot9bb1in___16->n_evalcousot9bb3in___15, Arg_0: 4*Arg_2 {O(n)}
1: n_evalcousot9bb1in___16->n_evalcousot9bb3in___15, Arg_1: 2*Arg_2 {O(n)}
1: n_evalcousot9bb1in___16->n_evalcousot9bb3in___15, Arg_2: 2*Arg_2 {O(n)}
2: n_evalcousot9bb1in___22->n_evalcousot9bb3in___20, Arg_1: Arg_2 {O(n)}
2: n_evalcousot9bb1in___22->n_evalcousot9bb3in___20, Arg_2: Arg_2 {O(n)}
3: n_evalcousot9bb2in___12->n_evalcousot9bb3in___11, Arg_0: 2*Arg_2 {O(n)}
3: n_evalcousot9bb2in___12->n_evalcousot9bb3in___11, Arg_1: 2*Arg_2 {O(n)}
3: n_evalcousot9bb2in___12->n_evalcousot9bb3in___11, Arg_2: 2*Arg_2 {O(n)}
4: n_evalcousot9bb2in___21->n_evalcousot9bb3in___19, Arg_0: 2*Arg_2 {O(n)}
4: n_evalcousot9bb2in___21->n_evalcousot9bb3in___19, Arg_1: 2*Arg_2 {O(n)}
4: n_evalcousot9bb2in___21->n_evalcousot9bb3in___19, Arg_2: 2*Arg_2 {O(n)}
6: n_evalcousot9bb3in___11->n_evalcousot9bbin___10, Arg_0: 2*Arg_2 {O(n)}
6: n_evalcousot9bb3in___11->n_evalcousot9bbin___10, Arg_1: 2*Arg_2 {O(n)}
6: n_evalcousot9bb3in___11->n_evalcousot9bbin___10, Arg_2: 2*Arg_2 {O(n)}
7: n_evalcousot9bb3in___11->n_evalcousot9returnin___9, Arg_0: 2*Arg_2 {O(n)}
7: n_evalcousot9bb3in___11->n_evalcousot9returnin___9, Arg_1: 0 {O(1)}
7: n_evalcousot9bb3in___11->n_evalcousot9returnin___9, Arg_2: 2*Arg_2 {O(n)}
8: n_evalcousot9bb3in___15->n_evalcousot9bbin___14, Arg_0: 4*Arg_2 {O(n)}
8: n_evalcousot9bb3in___15->n_evalcousot9bbin___14, Arg_1: 2*Arg_2 {O(n)}
8: n_evalcousot9bb3in___15->n_evalcousot9bbin___14, Arg_2: 2*Arg_2 {O(n)}
9: n_evalcousot9bb3in___19->n_evalcousot9bbin___18, Arg_0: 2*Arg_2 {O(n)}
9: n_evalcousot9bb3in___19->n_evalcousot9bbin___18, Arg_1: 2*Arg_2 {O(n)}
9: n_evalcousot9bb3in___19->n_evalcousot9bbin___18, Arg_2: 2*Arg_2 {O(n)}
10: n_evalcousot9bb3in___19->n_evalcousot9returnin___17, Arg_0: 1 {O(1)}
10: n_evalcousot9bb3in___19->n_evalcousot9returnin___17, Arg_1: 0 {O(1)}
10: n_evalcousot9bb3in___19->n_evalcousot9returnin___17, Arg_2: 1 {O(1)}
11: n_evalcousot9bb3in___20->n_evalcousot9bbin___24, Arg_1: Arg_2 {O(n)}
11: n_evalcousot9bb3in___20->n_evalcousot9bbin___24, Arg_2: Arg_2 {O(n)}
12: n_evalcousot9bb3in___25->n_evalcousot9bbin___24, Arg_1: Arg_2 {O(n)}
12: n_evalcousot9bb3in___25->n_evalcousot9bbin___24, Arg_2: Arg_2 {O(n)}
13: n_evalcousot9bb3in___25->n_evalcousot9returnin___23, Arg_1: Arg_2 {O(n)}
13: n_evalcousot9bb3in___25->n_evalcousot9returnin___23, Arg_2: Arg_2 {O(n)}
16: n_evalcousot9bbin___10->n_evalcousot9bb1in___16, Arg_0: 2*Arg_2 {O(n)}
16: n_evalcousot9bbin___10->n_evalcousot9bb1in___16, Arg_1: 2*Arg_2 {O(n)}
16: n_evalcousot9bbin___10->n_evalcousot9bb1in___16, Arg_2: 2*Arg_2 {O(n)}
18: n_evalcousot9bbin___14->n_evalcousot9bb1in___13, Arg_0: 4*Arg_2 {O(n)}
18: n_evalcousot9bbin___14->n_evalcousot9bb1in___13, Arg_1: 2*Arg_2 {O(n)}
18: n_evalcousot9bbin___14->n_evalcousot9bb1in___13, Arg_2: 2*Arg_2 {O(n)}
19: n_evalcousot9bbin___14->n_evalcousot9bb2in___12, Arg_0: 0 {O(1)}
19: n_evalcousot9bbin___14->n_evalcousot9bb2in___12, Arg_1: 2*Arg_2 {O(n)}
19: n_evalcousot9bbin___14->n_evalcousot9bb2in___12, Arg_2: 2*Arg_2 {O(n)}
20: n_evalcousot9bbin___18->n_evalcousot9bb1in___16, Arg_0: 2*Arg_2 {O(n)}
20: n_evalcousot9bbin___18->n_evalcousot9bb1in___16, Arg_1: 2*Arg_2 {O(n)}
20: n_evalcousot9bbin___18->n_evalcousot9bb1in___16, Arg_2: 2*Arg_2 {O(n)}
21: n_evalcousot9bbin___24->n_evalcousot9bb1in___22, Arg_1: Arg_2 {O(n)}
21: n_evalcousot9bbin___24->n_evalcousot9bb1in___22, Arg_2: Arg_2 {O(n)}
22: n_evalcousot9bbin___24->n_evalcousot9bb2in___21, Arg_1: 2*Arg_2 {O(n)}
22: n_evalcousot9bbin___24->n_evalcousot9bb2in___21, Arg_2: 2*Arg_2 {O(n)}
24: n_evalcousot9entryin___26->n_evalcousot9bb3in___25, Arg_1: Arg_2 {O(n)}
24: n_evalcousot9entryin___26->n_evalcousot9bb3in___25, Arg_2: Arg_2 {O(n)}
25: n_evalcousot9returnin___17->n_evalcousot9stop___2, Arg_0: 1 {O(1)}
25: n_evalcousot9returnin___17->n_evalcousot9stop___2, Arg_1: 0 {O(1)}
25: n_evalcousot9returnin___17->n_evalcousot9stop___2, Arg_2: 1 {O(1)}
26: n_evalcousot9returnin___23->n_evalcousot9stop___1, Arg_1: Arg_2 {O(n)}
26: n_evalcousot9returnin___23->n_evalcousot9stop___1, Arg_2: Arg_2 {O(n)}
28: n_evalcousot9returnin___9->n_evalcousot9stop___3, Arg_0: 2*Arg_2 {O(n)}
28: n_evalcousot9returnin___9->n_evalcousot9stop___3, Arg_1: 0 {O(1)}
28: n_evalcousot9returnin___9->n_evalcousot9stop___3, Arg_2: 2*Arg_2 {O(n)}
29: n_evalcousot9start->n_evalcousot9entryin___26, Arg_0: Arg_0 {O(n)}
29: n_evalcousot9start->n_evalcousot9entryin___26, Arg_1: Arg_1 {O(n)}
29: n_evalcousot9start->n_evalcousot9entryin___26, Arg_2: Arg_2 {O(n)}