Initial Problem

Start: n_eval0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_end___18, n_eval0, n_eval11___1, n_eval11___6, n_eval11___7, n_eval11___9, n_eval1___19, n_eval3___16, n_eval3___17, n_eval5___13, n_eval5___15, n_eval5___2, n_eval5___5, n_eval5___8, n_eval7___14, n_eval7___4, n_eval9___10, n_eval9___11, n_eval9___12, n_eval9___3
Transitions:
0:n_eval0(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval1___19(Arg_1,Arg_1,1,Arg_3)
1:n_eval11___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___15(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:0<=Arg_2 && 91<=Arg_0
2:n_eval11___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___2(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2
3:n_eval11___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___5(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:Arg_2<=1 && 0<=Arg_2 && 91<=Arg_0
4:n_eval11___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___8(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2
5:n_eval1___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_end___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && 101<=Arg_0
6:n_eval1___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=100
7:n_eval3___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___16(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:Arg_0<=111 && Arg_0<=100
8:n_eval3___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___15(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=111 && 101<=Arg_0
9:n_eval3___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___16(Arg_0+11,Arg_1,Arg_2+1,Arg_3):|:Arg_0<=100 && Arg_0<=110 && Arg_2<=3 && Arg_0<=100 && Arg_0<=100 && Arg_0<=111 && Arg_0<=100
10:n_eval5___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:101<=Arg_0 && 2<=Arg_2
11:n_eval5___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:2<=Arg_2 && Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2
12:n_eval5___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2
13:n_eval5___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:2<=Arg_2 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2
14:n_eval7___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___13(Arg_0,Arg_1,1,Arg_0-10):|:1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 && Arg_2<=1 && 1<=Arg_2
15:n_eval7___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___10(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2
16:n_eval7___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___11(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && Arg_2<=2
17:n_eval7___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___12(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
18:n_eval7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval5___13(Arg_0,Arg_1,1,Arg_0-10):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 && Arg_2<=1 && 1<=Arg_2
19:n_eval7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_2<=2
20:n_eval7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2
21:n_eval7___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval9___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
22:n_eval9___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___1(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0
23:n_eval9___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___9(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
24:n_eval9___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
25:n_eval9___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___7(Arg_0-10,Arg_1,Arg_2-1,Arg_3):|:Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0
26:n_eval9___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 && Arg_0<=100
27:n_eval9___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval11___6(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2 && Arg_0<=100

Preprocessing

Eliminate variables {Arg_3} that do not contribute to the problem

Found invariant Arg_2<=1 && Arg_1+Arg_2<=101 && Arg_0+Arg_2<=101 && 1<=Arg_2 && Arg_1<=99+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 for location n_eval3___17

Found invariant Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 92<=Arg_0 for location n_eval9___3

Found invariant Arg_2<=1 && 1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 for location n_eval1___19

Found invariant Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 for location n_eval9___11

Found invariant Arg_2<=2 && Arg_1+Arg_2<=102 && 100+Arg_2<=Arg_0 && Arg_0+Arg_2<=104 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=101+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=202 && Arg_0<=102 && 102<=Arg_0 for location n_eval5___5

Found invariant Arg_2<=3 && Arg_1+Arg_2<=103 && 99+Arg_2<=Arg_0 && Arg_0+Arg_2<=114 && 2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 for location n_eval5___2

Found invariant 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 for location n_eval7___14

Found invariant Arg_2<=1 && Arg_1+Arg_2<=101 && 100+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 102<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 101<=Arg_0 for location n_eval5___13

Found invariant 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 for location n_eval9___12

Found invariant Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 for location n_eval11___6

Found invariant Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 for location n_eval7___4

Found invariant Arg_2<=1 && 100+Arg_2<=Arg_1 && 100+Arg_2<=Arg_0 && 1<=Arg_2 && 102<=Arg_1+Arg_2 && 102<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 101<=Arg_1 && 202<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 101<=Arg_0 for location n_end___18

Found invariant 2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 for location n_eval5___8

Found invariant 0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 for location n_eval11___1

Found invariant 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 for location n_eval11___9

Found invariant 2<=Arg_2 && Arg_1<=98+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 11+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 for location n_eval3___16

Found invariant Arg_2<=1 && Arg_1+Arg_2<=101 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=92 && 0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 for location n_eval11___7

Found invariant 1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 101<=Arg_0 for location n_eval5___15

Found invariant 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 for location n_eval9___10

Problem after Preprocessing

Start: n_eval0
Program_Vars: Arg_0, Arg_1, Arg_2
Temp_Vars:
Locations: n_end___18, n_eval0, n_eval11___1, n_eval11___6, n_eval11___7, n_eval11___9, n_eval1___19, n_eval3___16, n_eval3___17, n_eval5___13, n_eval5___15, n_eval5___2, n_eval5___5, n_eval5___8, n_eval7___14, n_eval7___4, n_eval9___10, n_eval9___11, n_eval9___12, n_eval9___3
Transitions:
56:n_eval0(Arg_0,Arg_1,Arg_2) -> n_eval1___19(Arg_1,Arg_1,1)
57:n_eval11___1(Arg_0,Arg_1,Arg_2) -> n_eval5___15(Arg_0+11,Arg_1,Arg_2+1):|:0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 && 0<=Arg_2 && 91<=Arg_0
58:n_eval11___6(Arg_0,Arg_1,Arg_2) -> n_eval5___2(Arg_0+11,Arg_1,Arg_2+1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2
59:n_eval11___7(Arg_0,Arg_1,Arg_2) -> n_eval5___5(Arg_0+11,Arg_1,Arg_2+1):|:Arg_2<=1 && Arg_1+Arg_2<=101 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=92 && 0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 && Arg_2<=1 && 0<=Arg_2 && 91<=Arg_0
60:n_eval11___9(Arg_0,Arg_1,Arg_2) -> n_eval5___8(Arg_0+11,Arg_1,Arg_2+1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2
61:n_eval1___19(Arg_0,Arg_1,Arg_2) -> n_end___18(Arg_0,Arg_1,Arg_2):|:Arg_2<=1 && 1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && 101<=Arg_0
62:n_eval1___19(Arg_0,Arg_1,Arg_2) -> n_eval3___17(Arg_0,Arg_1,Arg_2):|:Arg_2<=1 && 1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_1 && Arg_1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=100
63:n_eval3___16(Arg_0,Arg_1,Arg_2) -> n_eval3___16(Arg_0+11,Arg_1,Arg_2+1):|:2<=Arg_2 && Arg_1<=98+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 11+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && Arg_0<=111 && Arg_0<=100
64:n_eval3___16(Arg_0,Arg_1,Arg_2) -> n_eval5___15(Arg_0,Arg_1,Arg_2):|:2<=Arg_2 && Arg_1<=98+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 11+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && Arg_0<=111 && 101<=Arg_0
65:n_eval3___17(Arg_0,Arg_1,Arg_2) -> n_eval3___16(Arg_0+11,Arg_1,Arg_2+1):|:Arg_2<=1 && Arg_1+Arg_2<=101 && Arg_0+Arg_2<=101 && 1<=Arg_2 && Arg_1<=99+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=Arg_1 && Arg_0<=100 && Arg_0<=100 && Arg_0<=110 && Arg_2<=3 && Arg_0<=100 && Arg_0<=100 && Arg_0<=111 && Arg_0<=100
66:n_eval5___15(Arg_0,Arg_1,Arg_2) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 101<=Arg_0 && 101<=Arg_0 && 2<=Arg_2
67:n_eval5___2(Arg_0,Arg_1,Arg_2) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=3 && Arg_1+Arg_2<=103 && 99+Arg_2<=Arg_0 && Arg_0+Arg_2<=114 && 2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 && 2<=Arg_2 && Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2
68:n_eval5___5(Arg_0,Arg_1,Arg_2) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 100+Arg_2<=Arg_0 && Arg_0+Arg_2<=104 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=101+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=202 && Arg_0<=102 && 102<=Arg_0 && Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2
69:n_eval5___8(Arg_0,Arg_1,Arg_2) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1):|:2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 && 2<=Arg_2 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2
70:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval5___13(Arg_0,Arg_1,1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 && Arg_2<=1 && 1<=Arg_2
71:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval9___10(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2
72:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval9___11(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_2<=2
73:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval9___12(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
74:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval5___13(Arg_0,Arg_1,1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 && Arg_2<=1 && 1<=Arg_2
75:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___11(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_2<=2
76:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___11(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2
77:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___3(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
78:n_eval9___10(Arg_0,Arg_1,Arg_2) -> n_eval11___1(Arg_0-10,Arg_1,Arg_2-1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0
79:n_eval9___10(Arg_0,Arg_1,Arg_2) -> n_eval11___9(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
80:n_eval9___11(Arg_0,Arg_1,Arg_2) -> n_eval11___6(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100
81:n_eval9___11(Arg_0,Arg_1,Arg_2) -> n_eval11___7(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0
82:n_eval9___12(Arg_0,Arg_1,Arg_2) -> n_eval11___9(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 && Arg_0<=100
83:n_eval9___3(Arg_0,Arg_1,Arg_2) -> n_eval11___6(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 92<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2 && Arg_0<=100

MPRF for transition 63:n_eval3___16(Arg_0,Arg_1,Arg_2) -> n_eval3___16(Arg_0+11,Arg_1,Arg_2+1):|:2<=Arg_2 && Arg_1<=98+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 11+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && Arg_0<=111 && Arg_0<=100 of depth 1:

new bound:

Arg_1+123 {O(n)}

MPRF:

n_eval3___16 [112-Arg_0 ]

MPRF for transition 57:n_eval11___1(Arg_0,Arg_1,Arg_2) -> n_eval5___15(Arg_0+11,Arg_1,Arg_2+1):|:0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 && 0<=Arg_2 && 91<=Arg_0 of depth 1:

new bound:

11*Arg_1+1408 {O(n)}

MPRF:

n_eval5___15 [11*Arg_2-11 ]
n_eval5___8 [11*Arg_2-11 ]
n_eval7___14 [11*Arg_2 ]
n_eval11___1 [11*Arg_2+1 ]
n_eval9___10 [11*Arg_2 ]
n_eval9___12 [11*Arg_2 ]
n_eval11___9 [11*Arg_2 ]

MPRF for transition 60:n_eval11___9(Arg_0,Arg_1,Arg_2) -> n_eval5___8(Arg_0+11,Arg_1,Arg_2+1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 of depth 1:

new bound:

9*Arg_1+1347 {O(n)}

MPRF:

n_eval5___15 [9*Arg_2+93-Arg_0 ]
n_eval5___8 [9*Arg_2+93-Arg_0 ]
n_eval7___14 [9*Arg_2+92-Arg_0 ]
n_eval11___1 [9*Arg_2 ]
n_eval9___10 [9*Arg_2+92-Arg_0 ]
n_eval9___12 [9*Arg_2+92-Arg_0 ]
n_eval11___9 [9*Arg_2+92-Arg_0 ]

MPRF for transition 66:n_eval5___15(Arg_0,Arg_1,Arg_2) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 101<=Arg_0 && 101<=Arg_0 && 2<=Arg_2 of depth 1:

new bound:

Arg_1+128 {O(n)}

MPRF:

n_eval5___15 [Arg_2-1 ]
n_eval5___8 [Arg_2-2 ]
n_eval7___14 [Arg_2-1 ]
n_eval11___1 [Arg_2 ]
n_eval9___10 [Arg_2-1 ]
n_eval9___12 [Arg_2-1 ]
n_eval11___9 [Arg_2-1 ]

MPRF for transition 69:n_eval5___8(Arg_0,Arg_1,Arg_2) -> n_eval7___14(Arg_0-10,Arg_1,Arg_2-1):|:2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 && 2<=Arg_2 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2 of depth 1:

new bound:

9*Arg_1+1347 {O(n)}

MPRF:

n_eval5___15 [9*Arg_2+93-Arg_0 ]
n_eval5___8 [9*Arg_2+94-Arg_0 ]
n_eval7___14 [9*Arg_2+92-Arg_0 ]
n_eval11___1 [9*Arg_2 ]
n_eval9___10 [9*Arg_2+92-Arg_0 ]
n_eval9___12 [9*Arg_2+92-Arg_0 ]
n_eval11___9 [9*Arg_2+92-Arg_0 ]

MPRF for transition 71:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval9___10(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2 of depth 1:

new bound:

10*Arg_1+1473 {O(n)}

MPRF:

n_eval5___15 [10*Arg_2+92-Arg_0 ]
n_eval5___8 [10*Arg_2+92-Arg_0 ]
n_eval7___14 [10*Arg_2+92-Arg_0 ]
n_eval11___1 [10*Arg_2+91-Arg_0 ]
n_eval9___10 [10*Arg_2+91-Arg_0 ]
n_eval9___12 [10*Arg_2+92-Arg_0 ]
n_eval11___9 [10*Arg_2+91-Arg_0 ]

MPRF for transition 73:n_eval7___14(Arg_0,Arg_1,Arg_2) -> n_eval9___12(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 of depth 1:

new bound:

90*Arg_1+11519 {O(n)}

MPRF:

n_eval5___15 [90*Arg_2-89 ]
n_eval5___8 [90*Arg_2+820-9*Arg_0 ]
n_eval7___14 [90*Arg_2+820-9*Arg_0 ]
n_eval11___1 [90*Arg_2+1 ]
n_eval9___10 [90*Arg_2+820-9*Arg_0 ]
n_eval9___12 [90*Arg_2+811-9*Arg_0 ]
n_eval11___9 [90*Arg_2+811-9*Arg_0 ]

MPRF for transition 78:n_eval9___10(Arg_0,Arg_1,Arg_2) -> n_eval11___1(Arg_0-10,Arg_1,Arg_2-1):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 of depth 1:

new bound:

Arg_1+128 {O(n)}

MPRF:

n_eval5___15 [Arg_2-1 ]
n_eval5___8 [Arg_2-1 ]
n_eval7___14 [Arg_2 ]
n_eval11___1 [Arg_2 ]
n_eval9___10 [Arg_2 ]
n_eval9___12 [Arg_2 ]
n_eval11___9 [Arg_2 ]

MPRF for transition 79:n_eval9___10(Arg_0,Arg_1,Arg_2) -> n_eval11___9(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 of depth 1:

new bound:

10*Arg_1+1280 {O(n)}

MPRF:

n_eval5___15 [10*Arg_2-10 ]
n_eval5___8 [10*Arg_2+91-Arg_0 ]
n_eval7___14 [10*Arg_2+91-Arg_0 ]
n_eval11___1 [10*Arg_2 ]
n_eval9___10 [10*Arg_2+91-Arg_0 ]
n_eval9___12 [10*Arg_2+90-Arg_0 ]
n_eval11___9 [10*Arg_2+90-Arg_0 ]

MPRF for transition 82:n_eval9___12(Arg_0,Arg_1,Arg_2) -> n_eval11___9(Arg_0,Arg_1,Arg_2):|:1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 && Arg_0<=100 of depth 1:

new bound:

9*Arg_1+1356 {O(n)}

MPRF:

n_eval5___15 [9*Arg_2+102-Arg_0 ]
n_eval5___8 [9*Arg_2+102-Arg_0 ]
n_eval7___14 [9*Arg_2+101-Arg_0 ]
n_eval11___1 [9*Arg_2+9 ]
n_eval9___10 [9*Arg_2+101-Arg_0 ]
n_eval9___12 [9*Arg_2+101-Arg_0 ]
n_eval11___9 [9*Arg_2+100-Arg_0 ]

MPRF for transition 58:n_eval11___6(Arg_0,Arg_1,Arg_2) -> n_eval5___2(Arg_0+11,Arg_1,Arg_2+1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 91<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2 of depth 1:

new bound:

211 {O(1)}

MPRF:

n_eval5___2 [9*Arg_2+93-Arg_0 ]
n_eval5___5 [9*Arg_2-9 ]
n_eval7___4 [9*Arg_2+92-Arg_0 ]
n_eval9___11 [9*Arg_2+92-Arg_0 ]
n_eval11___7 [9*Arg_2 ]
n_eval9___3 [9*Arg_2+92-Arg_0 ]
n_eval11___6 [9*Arg_2+92-Arg_0 ]

MPRF for transition 59:n_eval11___7(Arg_0,Arg_1,Arg_2) -> n_eval5___5(Arg_0+11,Arg_1,Arg_2+1):|:Arg_2<=1 && Arg_1+Arg_2<=101 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=92 && 0<=Arg_2 && Arg_1<=100+Arg_2 && 91<=Arg_0+Arg_2 && Arg_0<=91+Arg_2 && Arg_1<=100 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=191 && Arg_0<=91 && 91<=Arg_0 && Arg_2<=1 && 0<=Arg_2 && 91<=Arg_0 of depth 1:

new bound:

2 {O(1)}

MPRF:

n_eval5___2 [Arg_2-1 ]
n_eval5___5 [Arg_2-1 ]
n_eval7___4 [Arg_2 ]
n_eval9___11 [Arg_2 ]
n_eval11___7 [Arg_2+1 ]
n_eval9___3 [Arg_2 ]
n_eval11___6 [Arg_2 ]

MPRF for transition 67:n_eval5___2(Arg_0,Arg_1,Arg_2) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=3 && Arg_1+Arg_2<=103 && 99+Arg_2<=Arg_0 && Arg_0+Arg_2<=114 && 2<=Arg_2 && Arg_1<=98+Arg_2 && 104<=Arg_0+Arg_2 && Arg_0<=109+Arg_2 && Arg_1<=100 && 3+Arg_1<=Arg_0 && Arg_0+Arg_1<=211 && Arg_0<=111 && 102<=Arg_0 && 2<=Arg_2 && Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2 && 2<=Arg_2 of depth 1:

new bound:

211 {O(1)}

MPRF:

n_eval5___2 [9*Arg_2+94-Arg_0 ]
n_eval5___5 [9*Arg_2-9 ]
n_eval7___4 [9*Arg_2+92-Arg_0 ]
n_eval9___11 [9*Arg_2+92-Arg_0 ]
n_eval11___7 [9*Arg_2 ]
n_eval9___3 [9*Arg_2+92-Arg_0 ]
n_eval11___6 [9*Arg_2+92-Arg_0 ]

MPRF for transition 68:n_eval5___5(Arg_0,Arg_1,Arg_2) -> n_eval7___4(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 100+Arg_2<=Arg_0 && Arg_0+Arg_2<=104 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 103<=Arg_0+Arg_2 && Arg_0<=101+Arg_2 && Arg_1<=100 && 2+Arg_1<=Arg_0 && Arg_0+Arg_1<=202 && Arg_0<=102 && 102<=Arg_0 && Arg_2<=3 && 101<=Arg_0 && 2<=Arg_2 of depth 1:

new bound:

3 {O(1)}

MPRF:

n_eval5___2 [Arg_2-2 ]
n_eval5___5 [Arg_2-1 ]
n_eval7___4 [Arg_2-1 ]
n_eval9___11 [Arg_2-1 ]
n_eval11___7 [Arg_2 ]
n_eval9___3 [Arg_2-1 ]
n_eval11___6 [Arg_2-1 ]

MPRF for transition 75:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___11(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_2<=2 of depth 1:

new bound:

212 {O(1)}

MPRF:

n_eval5___2 [10*Arg_2+92-Arg_0 ]
n_eval5___5 [10*Arg_2-10 ]
n_eval7___4 [10*Arg_2+92-Arg_0 ]
n_eval9___11 [10*Arg_2+91-Arg_0 ]
n_eval11___7 [10*Arg_2 ]
n_eval9___3 [10*Arg_2+91-Arg_0 ]
n_eval11___6 [10*Arg_2+91-Arg_0 ]

MPRF for transition 76:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___11(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 0<=Arg_2 of depth 1:

new bound:

1689 {O(1)}

MPRF:

n_eval5___2 [73*Arg_2+743-8*Arg_0 ]
n_eval5___5 [73*Arg_2-73 ]
n_eval7___4 [73*Arg_2+736-8*Arg_0 ]
n_eval9___11 [73*Arg_2+735-8*Arg_0 ]
n_eval11___7 [73*Arg_2 ]
n_eval9___3 [73*Arg_2+736-8*Arg_0 ]
n_eval11___6 [73*Arg_2+728-8*Arg_0 ]

MPRF for transition 77:n_eval7___4(Arg_0,Arg_1,Arg_2) -> n_eval9___3(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 92<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 of depth 1:

new bound:

1909 {O(1)}

MPRF:

n_eval5___2 [90*Arg_2+931-10*Arg_0 ]
n_eval5___5 [90*Arg_2-89 ]
n_eval7___4 [90*Arg_2+921-10*Arg_0 ]
n_eval9___11 [90*Arg_2+820-9*Arg_0 ]
n_eval11___7 [90*Arg_2+1 ]
n_eval9___3 [90*Arg_2+911-10*Arg_0 ]
n_eval11___6 [90*Arg_2+911-10*Arg_0 ]

MPRF for transition 80:n_eval9___11(Arg_0,Arg_1,Arg_2) -> n_eval11___6(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 of depth 1:

new bound:

212 {O(1)}

MPRF:

n_eval5___2 [9*Arg_2+94-Arg_0 ]
n_eval5___5 [9*Arg_2-8 ]
n_eval7___4 [9*Arg_2+93-Arg_0 ]
n_eval9___11 [9*Arg_2+93-Arg_0 ]
n_eval11___7 [9*Arg_2+1 ]
n_eval9___3 [9*Arg_2+92-Arg_0 ]
n_eval11___6 [9*Arg_2+92-Arg_0 ]

MPRF for transition 81:n_eval9___11(Arg_0,Arg_1,Arg_2) -> n_eval11___7(Arg_0-10,Arg_1,Arg_2-1):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 89+Arg_2<=Arg_0 && Arg_0+Arg_2<=103 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 92<=Arg_0+Arg_2 && Arg_0<=100+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=201 && Arg_0<=101 && 91<=Arg_0 && Arg_2<=2 && 1<=Arg_2 && 91<=Arg_0 && 101<=Arg_0 of depth 1:

new bound:

2 {O(1)}

MPRF:

n_eval5___2 [Arg_2-1 ]
n_eval5___5 [Arg_2+101-Arg_0 ]
n_eval7___4 [Arg_2 ]
n_eval9___11 [Arg_2 ]
n_eval11___7 [Arg_2 ]
n_eval9___3 [Arg_2 ]
n_eval11___6 [Arg_2 ]

MPRF for transition 83:n_eval9___3(Arg_0,Arg_1,Arg_2) -> n_eval11___6(Arg_0,Arg_1,Arg_2):|:Arg_2<=2 && Arg_1+Arg_2<=102 && 90+Arg_2<=Arg_0 && Arg_0+Arg_2<=102 && 1<=Arg_2 && Arg_1<=99+Arg_2 && 93<=Arg_0+Arg_2 && Arg_0<=99+Arg_2 && Arg_1<=100 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 && 92<=Arg_0 && 1<=Arg_2 && 91<=Arg_0 && Arg_0<=100 && Arg_2<=2 && Arg_0<=100 of depth 1:

new bound:

1900 {O(1)}

MPRF:

n_eval5___2 [90*Arg_2+811-9*Arg_0 ]
n_eval5___5 [90*Arg_2-98 ]
n_eval7___4 [90*Arg_2+811-9*Arg_0 ]
n_eval9___11 [90*Arg_2+811-9*Arg_0 ]
n_eval11___7 [90*Arg_2-8 ]
n_eval9___3 [90*Arg_2+711-8*Arg_0 ]
n_eval11___6 [90*Arg_2+802-9*Arg_0 ]

All Bounds

Timebounds

Overall timebound:151*Arg_1+26468 {O(n)}
56: n_eval0->n_eval1___19: 1 {O(1)}
57: n_eval11___1->n_eval5___15: 11*Arg_1+1408 {O(n)}
58: n_eval11___6->n_eval5___2: 211 {O(1)}
59: n_eval11___7->n_eval5___5: 2 {O(1)}
60: n_eval11___9->n_eval5___8: 9*Arg_1+1347 {O(n)}
61: n_eval1___19->n_end___18: 1 {O(1)}
62: n_eval1___19->n_eval3___17: 1 {O(1)}
63: n_eval3___16->n_eval3___16: Arg_1+123 {O(n)}
64: n_eval3___16->n_eval5___15: 1 {O(1)}
65: n_eval3___17->n_eval3___16: 1 {O(1)}
66: n_eval5___15->n_eval7___14: Arg_1+128 {O(n)}
67: n_eval5___2->n_eval7___4: 211 {O(1)}
68: n_eval5___5->n_eval7___4: 3 {O(1)}
69: n_eval5___8->n_eval7___14: 9*Arg_1+1347 {O(n)}
70: n_eval7___14->n_eval5___13: 1 {O(1)}
71: n_eval7___14->n_eval9___10: 10*Arg_1+1473 {O(n)}
72: n_eval7___14->n_eval9___11: 1 {O(1)}
73: n_eval7___14->n_eval9___12: 90*Arg_1+11519 {O(n)}
74: n_eval7___4->n_eval5___13: 1 {O(1)}
75: n_eval7___4->n_eval9___11: 212 {O(1)}
76: n_eval7___4->n_eval9___11: 1689 {O(1)}
77: n_eval7___4->n_eval9___3: 1909 {O(1)}
78: n_eval9___10->n_eval11___1: Arg_1+128 {O(n)}
79: n_eval9___10->n_eval11___9: 10*Arg_1+1280 {O(n)}
80: n_eval9___11->n_eval11___6: 212 {O(1)}
81: n_eval9___11->n_eval11___7: 2 {O(1)}
82: n_eval9___12->n_eval11___9: 9*Arg_1+1356 {O(n)}
83: n_eval9___3->n_eval11___6: 1900 {O(1)}

Costbounds

Overall costbound: 151*Arg_1+26468 {O(n)}
56: n_eval0->n_eval1___19: 1 {O(1)}
57: n_eval11___1->n_eval5___15: 11*Arg_1+1408 {O(n)}
58: n_eval11___6->n_eval5___2: 211 {O(1)}
59: n_eval11___7->n_eval5___5: 2 {O(1)}
60: n_eval11___9->n_eval5___8: 9*Arg_1+1347 {O(n)}
61: n_eval1___19->n_end___18: 1 {O(1)}
62: n_eval1___19->n_eval3___17: 1 {O(1)}
63: n_eval3___16->n_eval3___16: Arg_1+123 {O(n)}
64: n_eval3___16->n_eval5___15: 1 {O(1)}
65: n_eval3___17->n_eval3___16: 1 {O(1)}
66: n_eval5___15->n_eval7___14: Arg_1+128 {O(n)}
67: n_eval5___2->n_eval7___4: 211 {O(1)}
68: n_eval5___5->n_eval7___4: 3 {O(1)}
69: n_eval5___8->n_eval7___14: 9*Arg_1+1347 {O(n)}
70: n_eval7___14->n_eval5___13: 1 {O(1)}
71: n_eval7___14->n_eval9___10: 10*Arg_1+1473 {O(n)}
72: n_eval7___14->n_eval9___11: 1 {O(1)}
73: n_eval7___14->n_eval9___12: 90*Arg_1+11519 {O(n)}
74: n_eval7___4->n_eval5___13: 1 {O(1)}
75: n_eval7___4->n_eval9___11: 212 {O(1)}
76: n_eval7___4->n_eval9___11: 1689 {O(1)}
77: n_eval7___4->n_eval9___3: 1909 {O(1)}
78: n_eval9___10->n_eval11___1: Arg_1+128 {O(n)}
79: n_eval9___10->n_eval11___9: 10*Arg_1+1280 {O(n)}
80: n_eval9___11->n_eval11___6: 212 {O(1)}
81: n_eval9___11->n_eval11___7: 2 {O(1)}
82: n_eval9___12->n_eval11___9: 9*Arg_1+1356 {O(n)}
83: n_eval9___3->n_eval11___6: 1900 {O(1)}

Sizebounds

56: n_eval0->n_eval1___19, Arg_0: Arg_1 {O(n)}
56: n_eval0->n_eval1___19, Arg_1: Arg_1 {O(n)}
56: n_eval0->n_eval1___19, Arg_2: 1 {O(1)}
57: n_eval11___1->n_eval5___15, Arg_0: 102 {O(1)}
57: n_eval11___1->n_eval5___15, Arg_1: 2*Arg_1 {O(n)}
57: n_eval11___1->n_eval5___15, Arg_2: 21*Arg_1+2882 {O(n)}
58: n_eval11___6->n_eval5___2, Arg_0: 111 {O(1)}
58: n_eval11___6->n_eval5___2, Arg_1: 8*Arg_1 {O(n)}
58: n_eval11___6->n_eval5___2, Arg_2: 3 {O(1)}
59: n_eval11___7->n_eval5___5, Arg_0: 102 {O(1)}
59: n_eval11___7->n_eval5___5, Arg_1: 8*Arg_1 {O(n)}
59: n_eval11___7->n_eval5___5, Arg_2: 2 {O(1)}
60: n_eval11___9->n_eval5___8, Arg_0: 111 {O(1)}
60: n_eval11___9->n_eval5___8, Arg_1: 2*Arg_1 {O(n)}
60: n_eval11___9->n_eval5___8, Arg_2: 21*Arg_1+2882 {O(n)}
61: n_eval1___19->n_end___18, Arg_0: Arg_1 {O(n)}
61: n_eval1___19->n_end___18, Arg_1: Arg_1 {O(n)}
61: n_eval1___19->n_end___18, Arg_2: 1 {O(1)}
62: n_eval1___19->n_eval3___17, Arg_0: Arg_1 {O(n)}
62: n_eval1___19->n_eval3___17, Arg_1: Arg_1 {O(n)}
62: n_eval1___19->n_eval3___17, Arg_2: 1 {O(1)}
63: n_eval3___16->n_eval3___16, Arg_0: 12*Arg_1+1364 {O(n)}
63: n_eval3___16->n_eval3___16, Arg_1: Arg_1 {O(n)}
63: n_eval3___16->n_eval3___16, Arg_2: Arg_1+125 {O(n)}
64: n_eval3___16->n_eval5___15, Arg_0: 111 {O(1)}
64: n_eval3___16->n_eval5___15, Arg_1: 2*Arg_1 {O(n)}
64: n_eval3___16->n_eval5___15, Arg_2: Arg_1+127 {O(n)}
65: n_eval3___17->n_eval3___16, Arg_0: Arg_1+11 {O(n)}
65: n_eval3___17->n_eval3___16, Arg_1: Arg_1 {O(n)}
65: n_eval3___17->n_eval3___16, Arg_2: 2 {O(1)}
66: n_eval5___15->n_eval7___14, Arg_0: 101 {O(1)}
66: n_eval5___15->n_eval7___14, Arg_1: 2*Arg_1 {O(n)}
66: n_eval5___15->n_eval7___14, Arg_2: 21*Arg_1+2882 {O(n)}
67: n_eval5___2->n_eval7___4, Arg_0: 101 {O(1)}
67: n_eval5___2->n_eval7___4, Arg_1: 8*Arg_1 {O(n)}
67: n_eval5___2->n_eval7___4, Arg_2: 2 {O(1)}
68: n_eval5___5->n_eval7___4, Arg_0: 92 {O(1)}
68: n_eval5___5->n_eval7___4, Arg_1: 8*Arg_1 {O(n)}
68: n_eval5___5->n_eval7___4, Arg_2: 1 {O(1)}
69: n_eval5___8->n_eval7___14, Arg_0: 101 {O(1)}
69: n_eval5___8->n_eval7___14, Arg_1: 2*Arg_1 {O(n)}
69: n_eval5___8->n_eval7___14, Arg_2: 21*Arg_1+2882 {O(n)}
70: n_eval7___14->n_eval5___13, Arg_0: 101 {O(1)}
70: n_eval7___14->n_eval5___13, Arg_1: 4*Arg_1 {O(n)}
70: n_eval7___14->n_eval5___13, Arg_2: 1 {O(1)}
71: n_eval7___14->n_eval9___10, Arg_0: 101 {O(1)}
71: n_eval7___14->n_eval9___10, Arg_1: 2*Arg_1 {O(n)}
71: n_eval7___14->n_eval9___10, Arg_2: 21*Arg_1+2882 {O(n)}
72: n_eval7___14->n_eval9___11, Arg_0: 101 {O(1)}
72: n_eval7___14->n_eval9___11, Arg_1: 4*Arg_1 {O(n)}
72: n_eval7___14->n_eval9___11, Arg_2: 2 {O(1)}
73: n_eval7___14->n_eval9___12, Arg_0: 100 {O(1)}
73: n_eval7___14->n_eval9___12, Arg_1: 2*Arg_1 {O(n)}
73: n_eval7___14->n_eval9___12, Arg_2: 21*Arg_1+2882 {O(n)}
74: n_eval7___4->n_eval5___13, Arg_0: 101 {O(1)}
74: n_eval7___4->n_eval5___13, Arg_1: 8*Arg_1 {O(n)}
74: n_eval7___4->n_eval5___13, Arg_2: 1 {O(1)}
75: n_eval7___4->n_eval9___11, Arg_0: 101 {O(1)}
75: n_eval7___4->n_eval9___11, Arg_1: 8*Arg_1 {O(n)}
75: n_eval7___4->n_eval9___11, Arg_2: 2 {O(1)}
76: n_eval7___4->n_eval9___11, Arg_0: 101 {O(1)}
76: n_eval7___4->n_eval9___11, Arg_1: 8*Arg_1 {O(n)}
76: n_eval7___4->n_eval9___11, Arg_2: 2 {O(1)}
77: n_eval7___4->n_eval9___3, Arg_0: 100 {O(1)}
77: n_eval7___4->n_eval9___3, Arg_1: 8*Arg_1 {O(n)}
77: n_eval7___4->n_eval9___3, Arg_2: 2 {O(1)}
78: n_eval9___10->n_eval11___1, Arg_0: 91 {O(1)}
78: n_eval9___10->n_eval11___1, Arg_1: 2*Arg_1 {O(n)}
78: n_eval9___10->n_eval11___1, Arg_2: 21*Arg_1+2882 {O(n)}
79: n_eval9___10->n_eval11___9, Arg_0: 100 {O(1)}
79: n_eval9___10->n_eval11___9, Arg_1: 2*Arg_1 {O(n)}
79: n_eval9___10->n_eval11___9, Arg_2: 21*Arg_1+2882 {O(n)}
80: n_eval9___11->n_eval11___6, Arg_0: 100 {O(1)}
80: n_eval9___11->n_eval11___6, Arg_1: 8*Arg_1 {O(n)}
80: n_eval9___11->n_eval11___6, Arg_2: 2 {O(1)}
81: n_eval9___11->n_eval11___7, Arg_0: 91 {O(1)}
81: n_eval9___11->n_eval11___7, Arg_1: 8*Arg_1 {O(n)}
81: n_eval9___11->n_eval11___7, Arg_2: 1 {O(1)}
82: n_eval9___12->n_eval11___9, Arg_0: 100 {O(1)}
82: n_eval9___12->n_eval11___9, Arg_1: 2*Arg_1 {O(n)}
82: n_eval9___12->n_eval11___9, Arg_2: 21*Arg_1+2882 {O(n)}
83: n_eval9___3->n_eval11___6, Arg_0: 100 {O(1)}
83: n_eval9___3->n_eval11___6, Arg_1: 8*Arg_1 {O(n)}
83: n_eval9___3->n_eval11___6, Arg_2: 2 {O(1)}