Initial Problem

Start: n_l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: n_l0, n_l1___10, n_l1___3, n_l1___6, n_l1___9, n_l2___4, n_l2___7, n_l2___8, n_l3___1, n_l3___2, n_l3___5
Transitions:
0:n_l0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___10(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6)
1:n_l1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1<=Arg_0
2:n_l1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=0
3:n_l1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && Arg_0<=0
4:n_l1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && 1<=Arg_0
5:n_l1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && Arg_0<=0
6:n_l1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_0+Arg_2 && 1<=Arg_0
7:n_l1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_0+Arg_2 && Arg_0<=0
8:n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___3(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && 0<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1<=Arg_3
9:n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && 0<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3<=0
10:n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___6(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && Arg_1<=Arg_0+Arg_2 && 1<=Arg_3
11:n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && Arg_1<=Arg_0+Arg_2 && Arg_3<=0
12:n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___3(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && 1<=Arg_3
13:n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_3<=0

Preprocessing

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_l1___6

Found invariant 1+Arg_2<=Arg_6 && 1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_0<=0 for location n_l2___7

Found invariant 1+Arg_2<=Arg_6 && 1<=Arg_4 for location n_l1___9

Found invariant 1+Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_0+Arg_3<=0 && Arg_1<=Arg_2 && Arg_0<=0 for location n_l3___5

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 for location n_l1___10

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_0<=0 for location n_l1___3

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=0 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && Arg_3<=0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 for location n_l3___2

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && Arg_0<=0 for location n_l2___8

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_3+Arg_4<=0 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && Arg_3<=0 && Arg_0+Arg_3<=0 && Arg_0<=0 for location n_l3___1

Found invariant Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 0<=Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 for location n_l2___4

Cut unsatisfiable transition 5: n_l1___6->n_l2___4

Problem after Preprocessing

Start: n_l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: n_l0, n_l1___10, n_l1___3, n_l1___6, n_l1___9, n_l2___4, n_l2___7, n_l2___8, n_l3___1, n_l3___2, n_l3___5
Transitions:
0:n_l0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___10(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6)
1:n_l1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1<=Arg_0
2:n_l1___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && Arg_0<=Arg_4 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=0
3:n_l1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && Arg_0<=0
4:n_l1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && 1<=Arg_0
6:n_l1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && Arg_1<=Arg_0+Arg_2 && 1<=Arg_0
7:n_l1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && Arg_1<=Arg_0+Arg_2 && Arg_0<=0
8:n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___3(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 0<=Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && Arg_0<=0 && 0<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1<=Arg_3
9:n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 0<=Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && Arg_0<=0 && 0<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3<=0
10:n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___6(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_0+Arg_2 && 1<=Arg_3
11:n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_0+Arg_2 && Arg_3<=0
12:n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___3(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && 1<=Arg_3
13:n_l2___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l3___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_3<=0

MPRF for transition 4:n_l1___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___9(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && 1<=Arg_0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

n_l1___9 [Arg_3-1 ]
n_l2___7 [Arg_3 ]
n_l1___6 [Arg_3 ]

MPRF for transition 10:n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___6(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_0+Arg_2 && 1<=Arg_3 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

n_l1___9 [Arg_3-1 ]
n_l2___7 [Arg_3 ]
n_l1___6 [Arg_3-1 ]

MPRF for transition 7:n_l1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___7(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:1+Arg_2<=Arg_6 && 1<=Arg_4 && Arg_1<=Arg_0+Arg_2 && Arg_0<=0 of depth 1:

new bound:

Arg_3+2 {O(n)}

MPRF:

n_l1___6 [1 ]
n_l1___9 [1 ]
n_l2___7 [0 ]

MPRF for transition 3:n_l1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_0<=0 && Arg_0<=0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_0<=0 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && 1<=Arg_3 && Arg_0<=0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

n_l2___4 [Arg_3 ]
n_l1___3 [Arg_3 ]

MPRF for transition 8:n_l2___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_l1___3(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=Arg_1 && Arg_1<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_0<=Arg_4 && 0<=Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && Arg_0<=0 && 0<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_1<=Arg_5 && Arg_5<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && 1<=Arg_3 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

n_l2___4 [Arg_3+1 ]
n_l1___3 [Arg_3 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
0: n_l0->n_l1___10: 1 {O(1)}
1: n_l1___10->n_l1___9: 1 {O(1)}
2: n_l1___10->n_l2___8: 1 {O(1)}
3: n_l1___3->n_l2___4: Arg_3+1 {O(n)}
4: n_l1___6->n_l1___9: Arg_3+1 {O(n)}
6: n_l1___9->n_l1___9: inf {Infinity}
7: n_l1___9->n_l2___7: Arg_3+2 {O(n)}
8: n_l2___4->n_l1___3: Arg_3+1 {O(n)}
9: n_l2___4->n_l3___2: 1 {O(1)}
10: n_l2___7->n_l1___6: Arg_3+1 {O(n)}
11: n_l2___7->n_l3___5: 1 {O(1)}
12: n_l2___8->n_l1___3: 1 {O(1)}
13: n_l2___8->n_l3___1: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
0: n_l0->n_l1___10: 1 {O(1)}
1: n_l1___10->n_l1___9: 1 {O(1)}
2: n_l1___10->n_l2___8: 1 {O(1)}
3: n_l1___3->n_l2___4: Arg_3+1 {O(n)}
4: n_l1___6->n_l1___9: Arg_3+1 {O(n)}
6: n_l1___9->n_l1___9: inf {Infinity}
7: n_l1___9->n_l2___7: Arg_3+2 {O(n)}
8: n_l2___4->n_l1___3: Arg_3+1 {O(n)}
9: n_l2___4->n_l3___2: 1 {O(1)}
10: n_l2___7->n_l1___6: Arg_3+1 {O(n)}
11: n_l2___7->n_l3___5: 1 {O(1)}
12: n_l2___8->n_l1___3: 1 {O(1)}
13: n_l2___8->n_l3___1: 1 {O(1)}

Sizebounds

0: n_l0->n_l1___10, Arg_0: Arg_4 {O(n)}
0: n_l0->n_l1___10, Arg_1: Arg_5 {O(n)}
0: n_l0->n_l1___10, Arg_2: Arg_6 {O(n)}
0: n_l0->n_l1___10, Arg_3: Arg_3 {O(n)}
0: n_l0->n_l1___10, Arg_4: Arg_4 {O(n)}
0: n_l0->n_l1___10, Arg_5: Arg_5 {O(n)}
0: n_l0->n_l1___10, Arg_6: Arg_6 {O(n)}
1: n_l1___10->n_l1___9, Arg_0: Arg_4+Arg_5 {O(n)}
1: n_l1___10->n_l1___9, Arg_1: Arg_5+Arg_6 {O(n)}
1: n_l1___10->n_l1___9, Arg_2: Arg_6+1 {O(n)}
1: n_l1___10->n_l1___9, Arg_3: Arg_3 {O(n)}
1: n_l1___10->n_l1___9, Arg_4: Arg_4 {O(n)}
1: n_l1___10->n_l1___9, Arg_5: Arg_5 {O(n)}
1: n_l1___10->n_l1___9, Arg_6: Arg_6 {O(n)}
2: n_l1___10->n_l2___8, Arg_0: Arg_4 {O(n)}
2: n_l1___10->n_l2___8, Arg_1: Arg_5 {O(n)}
2: n_l1___10->n_l2___8, Arg_2: Arg_6 {O(n)}
2: n_l1___10->n_l2___8, Arg_3: Arg_3+1 {O(n)}
2: n_l1___10->n_l2___8, Arg_4: Arg_4 {O(n)}
2: n_l1___10->n_l2___8, Arg_5: Arg_5 {O(n)}
2: n_l1___10->n_l2___8, Arg_6: Arg_6 {O(n)}
3: n_l1___3->n_l2___4, Arg_0: Arg_4 {O(n)}
3: n_l1___3->n_l2___4, Arg_1: Arg_5 {O(n)}
3: n_l1___3->n_l2___4, Arg_2: Arg_6 {O(n)}
3: n_l1___3->n_l2___4, Arg_3: Arg_3+1 {O(n)}
3: n_l1___3->n_l2___4, Arg_4: Arg_4 {O(n)}
3: n_l1___3->n_l2___4, Arg_5: Arg_5 {O(n)}
3: n_l1___3->n_l2___4, Arg_6: Arg_6 {O(n)}
4: n_l1___6->n_l1___9, Arg_0: 2*Arg_4+2*Arg_5 {O(n)}
4: n_l1___6->n_l1___9, Arg_1: 2*Arg_5+2*Arg_6 {O(n)}
4: n_l1___6->n_l1___9, Arg_2: 2*Arg_6+1 {O(n)}
4: n_l1___6->n_l1___9, Arg_3: 3*Arg_3+2 {O(n)}
4: n_l1___6->n_l1___9, Arg_4: 2*Arg_4 {O(n)}
4: n_l1___6->n_l1___9, Arg_5: 2*Arg_5 {O(n)}
4: n_l1___6->n_l1___9, Arg_6: 2*Arg_6 {O(n)}
6: n_l1___9->n_l1___9, Arg_3: 3*Arg_3+2 {O(n)}
6: n_l1___9->n_l1___9, Arg_4: 2*Arg_4 {O(n)}
6: n_l1___9->n_l1___9, Arg_5: 2*Arg_5 {O(n)}
6: n_l1___9->n_l1___9, Arg_6: 2*Arg_6 {O(n)}
7: n_l1___9->n_l2___7, Arg_3: 3*Arg_3+2 {O(n)}
7: n_l1___9->n_l2___7, Arg_4: 2*Arg_4 {O(n)}
7: n_l1___9->n_l2___7, Arg_5: 2*Arg_5 {O(n)}
7: n_l1___9->n_l2___7, Arg_6: 2*Arg_6 {O(n)}
8: n_l2___4->n_l1___3, Arg_0: Arg_4 {O(n)}
8: n_l2___4->n_l1___3, Arg_1: Arg_5 {O(n)}
8: n_l2___4->n_l1___3, Arg_2: Arg_6 {O(n)}
8: n_l2___4->n_l1___3, Arg_3: Arg_3+1 {O(n)}
8: n_l2___4->n_l1___3, Arg_4: Arg_4 {O(n)}
8: n_l2___4->n_l1___3, Arg_5: Arg_5 {O(n)}
8: n_l2___4->n_l1___3, Arg_6: Arg_6 {O(n)}
9: n_l2___4->n_l3___2, Arg_0: Arg_4 {O(n)}
9: n_l2___4->n_l3___2, Arg_1: Arg_5 {O(n)}
9: n_l2___4->n_l3___2, Arg_2: Arg_6 {O(n)}
9: n_l2___4->n_l3___2, Arg_3: 0 {O(1)}
9: n_l2___4->n_l3___2, Arg_4: Arg_4 {O(n)}
9: n_l2___4->n_l3___2, Arg_5: Arg_5 {O(n)}
9: n_l2___4->n_l3___2, Arg_6: Arg_6 {O(n)}
10: n_l2___7->n_l1___6, Arg_0: 2*Arg_4 {O(n)}
10: n_l2___7->n_l1___6, Arg_1: 2*Arg_5 {O(n)}
10: n_l2___7->n_l1___6, Arg_2: 2*Arg_6 {O(n)}
10: n_l2___7->n_l1___6, Arg_3: 3*Arg_3+2 {O(n)}
10: n_l2___7->n_l1___6, Arg_4: 2*Arg_4 {O(n)}
10: n_l2___7->n_l1___6, Arg_5: 2*Arg_5 {O(n)}
10: n_l2___7->n_l1___6, Arg_6: 2*Arg_6 {O(n)}
11: n_l2___7->n_l3___5, Arg_3: 3*Arg_3+2 {O(n)}
11: n_l2___7->n_l3___5, Arg_4: 2*Arg_4 {O(n)}
11: n_l2___7->n_l3___5, Arg_5: 2*Arg_5 {O(n)}
11: n_l2___7->n_l3___5, Arg_6: 2*Arg_6 {O(n)}
12: n_l2___8->n_l1___3, Arg_0: Arg_4 {O(n)}
12: n_l2___8->n_l1___3, Arg_1: Arg_5 {O(n)}
12: n_l2___8->n_l1___3, Arg_2: Arg_6 {O(n)}
12: n_l2___8->n_l1___3, Arg_3: Arg_3+1 {O(n)}
12: n_l2___8->n_l1___3, Arg_4: Arg_4 {O(n)}
12: n_l2___8->n_l1___3, Arg_5: Arg_5 {O(n)}
12: n_l2___8->n_l1___3, Arg_6: Arg_6 {O(n)}
13: n_l2___8->n_l3___1, Arg_0: Arg_4 {O(n)}
13: n_l2___8->n_l3___1, Arg_1: Arg_5 {O(n)}
13: n_l2___8->n_l3___1, Arg_2: Arg_6 {O(n)}
13: n_l2___8->n_l3___1, Arg_3: Arg_3+1 {O(n)}
13: n_l2___8->n_l3___1, Arg_4: Arg_4 {O(n)}
13: n_l2___8->n_l3___1, Arg_5: Arg_5 {O(n)}
13: n_l2___8->n_l3___1, Arg_6: Arg_6 {O(n)}