Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars: E_P, F_P, NoDet0
Locations: n_f0, n_f10___11, n_f10___12, n_f18___10, n_f18___5, n_f18___9, n_f21___6, n_f21___8, n_f32___3, n_f32___4, n_f32___7, n_f41___1, n_f41___2
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___12(NoDet0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
1:n_f10___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___11(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
2:n_f10___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___9(Arg_0,Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1
3:n_f10___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___11(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=0 && 0<=Arg_1 && 1+Arg_1<=Arg_2
4:n_f10___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___10(Arg_0,Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6):|:Arg_1<=0 && 0<=Arg_1 && Arg_2<=Arg_1
5:n_f18___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f32___7(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_3<=1+Arg_4 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
6:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6):|:Arg_3<=Arg_4+Arg_5 && 2+Arg_4<=Arg_3
7:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f32___4(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_3<=Arg_4+Arg_5 && Arg_3<=1+Arg_4
8:n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && 2+Arg_4<=Arg_3
9:n_f18___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f32___7(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
10:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && Arg_3<=1+Arg_4+Arg_5
11:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3
12:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,NoDet0):|:1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5
13:n_f21___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6):|:2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3
14:n_f21___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,E_P,F_P,NoDet0):|:2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5
15:n_f32___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f32___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3
16:n_f32___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f41___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:1+Arg_4<=Arg_3 && Arg_3<=1+Arg_4
17:n_f32___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f32___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && 2+Arg_4<=Arg_3
18:n_f32___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4
19:n_f32___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4

Preprocessing

Eliminate variables {NoDet0,Arg_0,Arg_6} that do not contribute to the problem

Found invariant Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 for location n_f32___7

Found invariant 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f18___5

Found invariant 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f32___3

Found invariant Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f21___6

Found invariant Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 3<=Arg_2+Arg_4 && Arg_2<=1+Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f41___1

Found invariant Arg_4<=0 && Arg_3+Arg_4<=0 && Arg_2+Arg_4<=0 && Arg_4<=Arg_1 && Arg_1+Arg_4<=0 && 0<=Arg_4 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && Arg_2<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=0 && 0<=Arg_1 for location n_f18___10

Found invariant Arg_5<=0 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f21___8

Found invariant Arg_1<=0 && 0<=Arg_1 for location n_f10___12

Found invariant Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 for location n_f41___2

Found invariant Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f18___9

Found invariant 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f32___4

Found invariant 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f10___11

Cut unsatisfiable transition 58: n_f32___4->n_f41___2

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: E_P, F_P
Locations: n_f0, n_f10___11, n_f10___12, n_f18___10, n_f18___5, n_f18___9, n_f21___6, n_f21___8, n_f32___3, n_f32___4, n_f32___7, n_f41___1, n_f41___2
Transitions:
40:n_f0(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f10___12(0,Arg_2,Arg_3,Arg_4,Arg_5)
41:n_f10___11(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f10___11(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
42:n_f10___11(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___9(Arg_1,Arg_2,Arg_2,0,Arg_5):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
43:n_f10___12(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f10___11(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && 1+Arg_1<=Arg_2
44:n_f10___12(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___10(Arg_1,Arg_2,Arg_2,0,Arg_5):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=Arg_1
45:n_f18___10(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___7(Arg_1,Arg_2,Arg_3,0,Arg_5):|:Arg_4<=0 && Arg_3+Arg_4<=0 && Arg_2+Arg_4<=0 && Arg_4<=Arg_1 && Arg_1+Arg_4<=0 && 0<=Arg_4 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && Arg_2<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<=1+Arg_4 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
46:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,0):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_4+Arg_5 && 2+Arg_4<=Arg_3
47:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___4(Arg_1,Arg_2,Arg_3,0,Arg_5):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_4+Arg_5 && Arg_3<=1+Arg_4
48:n_f18___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,0):|:Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && 2+Arg_4<=Arg_3
49:n_f18___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___7(Arg_1,Arg_2,Arg_3,0,Arg_5):|:Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
50:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && Arg_3<=1+Arg_4+Arg_5
51:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3
52:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,E_P,F_P):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5
53:n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=0 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3
54:n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,E_P,F_P):|:Arg_5<=0 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5
55:n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3
56:n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f41___1(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && Arg_3<=1+Arg_4
57:n_f32___4(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && 2+Arg_4<=Arg_3
59:n_f32___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f41___2(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4

MPRF for transition 41:n_f10___11(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f10___11(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_2 of depth 1:

new bound:

Arg_2+2 {O(n)}

MPRF:

n_f10___11 [Arg_2+1-Arg_1 ]

MPRF for transition 46:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,0):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_4+Arg_5 && 2+Arg_4<=Arg_3 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_f18___5 [Arg_3-Arg_4 ]
n_f21___8 [Arg_3-Arg_4-1 ]
n_f21___6 [Arg_3-Arg_4-1 ]

MPRF for transition 50:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && Arg_3<=1+Arg_4+Arg_5 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_f18___5 [Arg_2-Arg_4-1 ]
n_f21___8 [Arg_2-Arg_4-1 ]
n_f21___6 [Arg_2-Arg_4-1 ]

MPRF for transition 53:n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=0 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_f18___5 [Arg_5-1 ]
n_f21___8 [Arg_3-Arg_4-1 ]
n_f21___6 [Arg_3-Arg_4-2 ]

MPRF for transition 54:n_f21___8(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,E_P,F_P):|:Arg_5<=0 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 2+Arg_4+Arg_5<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_f18___5 [Arg_2-Arg_4-1 ]
n_f21___8 [Arg_2-Arg_4-1 ]
n_f21___6 [Arg_2-Arg_4-2 ]

MPRF for transition 51:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 2+Arg_4+Arg_5<=Arg_3 of depth 1:

new bound:

8*Arg_2*Arg_2+44*Arg_2+20 {O(n^2)}

MPRF:

n_f21___8 [0 ]
n_f18___5 [0 ]
n_f21___6 [Arg_1+1-Arg_5 ]

MPRF for transition 52:n_f21___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f21___6(Arg_1,Arg_2,Arg_3,E_P,F_P):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4+Arg_5<=Arg_3 && 1+Arg_4+Arg_5<=Arg_3 && 1+E_P+F_P<=Arg_3 && Arg_4<=E_P && E_P<=Arg_4 && Arg_5+1<=F_P && F_P<=1+Arg_5 of depth 1:

new bound:

16*Arg_2*Arg_2+16*Arg_2+4 {O(n^2)}

MPRF:

n_f21___8 [0 ]
n_f18___5 [0 ]
n_f21___6 [Arg_3+1-Arg_5 ]

MPRF for transition 55:n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_f32___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5):|:1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3 of depth 1:

new bound:

2*Arg_2+9 {O(n)}

MPRF:

n_f32___3 [Arg_1-Arg_4 ]

All Bounds

Timebounds

Overall timebound:24*Arg_2*Arg_2+71*Arg_2+50 {O(n^2)}
40: n_f0->n_f10___12: 1 {O(1)}
41: n_f10___11->n_f10___11: Arg_2+2 {O(n)}
42: n_f10___11->n_f18___9: 1 {O(1)}
43: n_f10___12->n_f10___11: 1 {O(1)}
44: n_f10___12->n_f18___10: 1 {O(1)}
45: n_f18___10->n_f32___7: 1 {O(1)}
46: n_f18___5->n_f21___8: 2*Arg_2+1 {O(n)}
47: n_f18___5->n_f32___4: 1 {O(1)}
48: n_f18___9->n_f21___8: 1 {O(1)}
49: n_f18___9->n_f32___7: 1 {O(1)}
50: n_f21___6->n_f18___5: 2*Arg_2+1 {O(n)}
51: n_f21___6->n_f21___6: 8*Arg_2*Arg_2+44*Arg_2+20 {O(n^2)}
52: n_f21___6->n_f21___6: 16*Arg_2*Arg_2+16*Arg_2+4 {O(n^2)}
53: n_f21___8->n_f21___6: 2*Arg_2+1 {O(n)}
54: n_f21___8->n_f21___6: 2*Arg_2+1 {O(n)}
55: n_f32___3->n_f32___3: 2*Arg_2+9 {O(n)}
56: n_f32___3->n_f41___1: 1 {O(1)}
57: n_f32___4->n_f32___3: 1 {O(1)}
59: n_f32___7->n_f41___2: 1 {O(1)}

Costbounds

Overall costbound: 24*Arg_2*Arg_2+71*Arg_2+50 {O(n^2)}
40: n_f0->n_f10___12: 1 {O(1)}
41: n_f10___11->n_f10___11: Arg_2+2 {O(n)}
42: n_f10___11->n_f18___9: 1 {O(1)}
43: n_f10___12->n_f10___11: 1 {O(1)}
44: n_f10___12->n_f18___10: 1 {O(1)}
45: n_f18___10->n_f32___7: 1 {O(1)}
46: n_f18___5->n_f21___8: 2*Arg_2+1 {O(n)}
47: n_f18___5->n_f32___4: 1 {O(1)}
48: n_f18___9->n_f21___8: 1 {O(1)}
49: n_f18___9->n_f32___7: 1 {O(1)}
50: n_f21___6->n_f18___5: 2*Arg_2+1 {O(n)}
51: n_f21___6->n_f21___6: 8*Arg_2*Arg_2+44*Arg_2+20 {O(n^2)}
52: n_f21___6->n_f21___6: 16*Arg_2*Arg_2+16*Arg_2+4 {O(n^2)}
53: n_f21___8->n_f21___6: 2*Arg_2+1 {O(n)}
54: n_f21___8->n_f21___6: 2*Arg_2+1 {O(n)}
55: n_f32___3->n_f32___3: 2*Arg_2+9 {O(n)}
56: n_f32___3->n_f41___1: 1 {O(1)}
57: n_f32___4->n_f32___3: 1 {O(1)}
59: n_f32___7->n_f41___2: 1 {O(1)}

Sizebounds

40: n_f0->n_f10___12, Arg_1: 0 {O(1)}
40: n_f0->n_f10___12, Arg_2: Arg_2 {O(n)}
40: n_f0->n_f10___12, Arg_3: Arg_3 {O(n)}
40: n_f0->n_f10___12, Arg_4: Arg_4 {O(n)}
40: n_f0->n_f10___12, Arg_5: Arg_5 {O(n)}
41: n_f10___11->n_f10___11, Arg_1: Arg_2+3 {O(n)}
41: n_f10___11->n_f10___11, Arg_2: Arg_2 {O(n)}
41: n_f10___11->n_f10___11, Arg_3: Arg_3 {O(n)}
41: n_f10___11->n_f10___11, Arg_4: Arg_4 {O(n)}
41: n_f10___11->n_f10___11, Arg_5: Arg_5 {O(n)}
42: n_f10___11->n_f18___9, Arg_1: Arg_2+4 {O(n)}
42: n_f10___11->n_f18___9, Arg_2: 2*Arg_2 {O(n)}
42: n_f10___11->n_f18___9, Arg_3: 2*Arg_2 {O(n)}
42: n_f10___11->n_f18___9, Arg_4: 0 {O(1)}
42: n_f10___11->n_f18___9, Arg_5: 2*Arg_5 {O(n)}
43: n_f10___12->n_f10___11, Arg_1: 1 {O(1)}
43: n_f10___12->n_f10___11, Arg_2: Arg_2 {O(n)}
43: n_f10___12->n_f10___11, Arg_3: Arg_3 {O(n)}
43: n_f10___12->n_f10___11, Arg_4: Arg_4 {O(n)}
43: n_f10___12->n_f10___11, Arg_5: Arg_5 {O(n)}
44: n_f10___12->n_f18___10, Arg_1: 0 {O(1)}
44: n_f10___12->n_f18___10, Arg_2: Arg_2 {O(n)}
44: n_f10___12->n_f18___10, Arg_3: Arg_2 {O(n)}
44: n_f10___12->n_f18___10, Arg_4: 0 {O(1)}
44: n_f10___12->n_f18___10, Arg_5: Arg_5 {O(n)}
45: n_f18___10->n_f32___7, Arg_1: 0 {O(1)}
45: n_f18___10->n_f32___7, Arg_2: Arg_2 {O(n)}
45: n_f18___10->n_f32___7, Arg_3: Arg_2 {O(n)}
45: n_f18___10->n_f32___7, Arg_4: 0 {O(1)}
45: n_f18___10->n_f32___7, Arg_5: Arg_5 {O(n)}
46: n_f18___5->n_f21___8, Arg_1: 2*Arg_2+8 {O(n)}
46: n_f18___5->n_f21___8, Arg_2: 4*Arg_2 {O(n)}
46: n_f18___5->n_f21___8, Arg_3: 4*Arg_2 {O(n)}
46: n_f18___5->n_f21___8, Arg_4: 2*Arg_2+1 {O(n)}
46: n_f18___5->n_f21___8, Arg_5: 0 {O(1)}
47: n_f18___5->n_f32___4, Arg_1: 2*Arg_2+8 {O(n)}
47: n_f18___5->n_f32___4, Arg_2: 4*Arg_2 {O(n)}
47: n_f18___5->n_f32___4, Arg_3: 4*Arg_2 {O(n)}
47: n_f18___5->n_f32___4, Arg_4: 0 {O(1)}
47: n_f18___5->n_f32___4, Arg_5: 48*Arg_2*Arg_2+120*Arg_2+58 {O(n^2)}
48: n_f18___9->n_f21___8, Arg_1: Arg_2+4 {O(n)}
48: n_f18___9->n_f21___8, Arg_2: 2*Arg_2 {O(n)}
48: n_f18___9->n_f21___8, Arg_3: 2*Arg_2 {O(n)}
48: n_f18___9->n_f21___8, Arg_4: 0 {O(1)}
48: n_f18___9->n_f21___8, Arg_5: 0 {O(1)}
49: n_f18___9->n_f32___7, Arg_1: 1 {O(1)}
49: n_f18___9->n_f32___7, Arg_2: 1 {O(1)}
49: n_f18___9->n_f32___7, Arg_3: 1 {O(1)}
49: n_f18___9->n_f32___7, Arg_4: 0 {O(1)}
49: n_f18___9->n_f32___7, Arg_5: 2*Arg_5 {O(n)}
50: n_f21___6->n_f18___5, Arg_1: 2*Arg_2+8 {O(n)}
50: n_f21___6->n_f18___5, Arg_2: 4*Arg_2 {O(n)}
50: n_f21___6->n_f18___5, Arg_3: 4*Arg_2 {O(n)}
50: n_f21___6->n_f18___5, Arg_4: 2*Arg_2+1 {O(n)}
50: n_f21___6->n_f18___5, Arg_5: 48*Arg_2*Arg_2+120*Arg_2+58 {O(n^2)}
51: n_f21___6->n_f21___6, Arg_1: 2*Arg_2+8 {O(n)}
51: n_f21___6->n_f21___6, Arg_2: 4*Arg_2 {O(n)}
51: n_f21___6->n_f21___6, Arg_3: 4*Arg_2 {O(n)}
51: n_f21___6->n_f21___6, Arg_4: 2*Arg_2+1 {O(n)}
51: n_f21___6->n_f21___6, Arg_5: 24*Arg_2*Arg_2+60*Arg_2+28 {O(n^2)}
52: n_f21___6->n_f21___6, Arg_1: 2*Arg_2+8 {O(n)}
52: n_f21___6->n_f21___6, Arg_2: 4*Arg_2 {O(n)}
52: n_f21___6->n_f21___6, Arg_3: 4*Arg_2 {O(n)}
52: n_f21___6->n_f21___6, Arg_4: 2*Arg_2+1 {O(n)}
52: n_f21___6->n_f21___6, Arg_5: 24*Arg_2*Arg_2+60*Arg_2+28 {O(n^2)}
53: n_f21___8->n_f21___6, Arg_1: 2*Arg_2+8 {O(n)}
53: n_f21___8->n_f21___6, Arg_2: 4*Arg_2 {O(n)}
53: n_f21___8->n_f21___6, Arg_3: 4*Arg_2 {O(n)}
53: n_f21___8->n_f21___6, Arg_4: 2*Arg_2+1 {O(n)}
53: n_f21___8->n_f21___6, Arg_5: 1 {O(1)}
54: n_f21___8->n_f21___6, Arg_1: 2*Arg_2+8 {O(n)}
54: n_f21___8->n_f21___6, Arg_2: 4*Arg_2 {O(n)}
54: n_f21___8->n_f21___6, Arg_3: 4*Arg_2 {O(n)}
54: n_f21___8->n_f21___6, Arg_4: 2*Arg_2+1 {O(n)}
54: n_f21___8->n_f21___6, Arg_5: 1 {O(1)}
55: n_f32___3->n_f32___3, Arg_1: 2*Arg_2+8 {O(n)}
55: n_f32___3->n_f32___3, Arg_2: 4*Arg_2 {O(n)}
55: n_f32___3->n_f32___3, Arg_3: 4*Arg_2 {O(n)}
55: n_f32___3->n_f32___3, Arg_4: 2*Arg_2+10 {O(n)}
55: n_f32___3->n_f32___3, Arg_5: 48*Arg_2*Arg_2+120*Arg_2+58 {O(n^2)}
56: n_f32___3->n_f41___1, Arg_1: 4*Arg_2+16 {O(n)}
56: n_f32___3->n_f41___1, Arg_2: 8*Arg_2 {O(n)}
56: n_f32___3->n_f41___1, Arg_3: 8*Arg_2 {O(n)}
56: n_f32___3->n_f41___1, Arg_4: 2*Arg_2+11 {O(n)}
56: n_f32___3->n_f41___1, Arg_5: 96*Arg_2*Arg_2+240*Arg_2+116 {O(n^2)}
57: n_f32___4->n_f32___3, Arg_1: 2*Arg_2+8 {O(n)}
57: n_f32___4->n_f32___3, Arg_2: 4*Arg_2 {O(n)}
57: n_f32___4->n_f32___3, Arg_3: 4*Arg_2 {O(n)}
57: n_f32___4->n_f32___3, Arg_4: 1 {O(1)}
57: n_f32___4->n_f32___3, Arg_5: 48*Arg_2*Arg_2+120*Arg_2+58 {O(n^2)}
59: n_f32___7->n_f41___2, Arg_1: 1 {O(1)}
59: n_f32___7->n_f41___2, Arg_2: Arg_2+1 {O(n)}
59: n_f32___7->n_f41___2, Arg_3: Arg_2+1 {O(n)}
59: n_f32___7->n_f41___2, Arg_4: 0 {O(1)}
59: n_f32___7->n_f41___2, Arg_5: 3*Arg_5 {O(n)}