Initial Problem

Start: n_f9
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31, Arg_32, Arg_33, Arg_34, Arg_35, Arg_36, Arg_37
Temp_Vars: A_P, C1_P, C_P, D_P, E1_P, G_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet13, NoDet14, NoDet15, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, NoDet9, Q_P, R_P, T_P, W_P, Z_P
Locations: n_f10___1, n_f10___10, n_f10___3, n_f10___9, n_f16___4, n_f16___6, n_f16___7, n_f1___11, n_f1___8, n_f8___2, n_f8___5, n_f9
Transitions:
0:n_f16___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f16___4(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,NoDet1,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_23,Arg_24,NoDet2,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_2 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
1:n_f16___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_8,Arg_6,Arg_10,Arg_6,G_P,Arg_6,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_2 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
2:n_f16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f16___4(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,NoDet1,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_23,Arg_24,NoDet2,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
3:n_f16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_8,Arg_6,Arg_10,Arg_6,G_P,Arg_6,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
4:n_f16___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f16___6(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,NoDet1,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_24,Arg_23,Arg_24,NoDet2,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_2<=0 && 0<=Arg_2 && 2<=Arg_4 && Arg_4<=Arg_0 && Arg_4<=Arg_37 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
5:n_f16___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_8,Arg_6,Arg_10,Arg_6,G_P,Arg_6,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_2<=0 && 0<=Arg_2 && 2<=Arg_4 && Arg_4<=Arg_0 && Arg_4<=Arg_37 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
6:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f16___7(A_P,Arg_1,0,Arg_3,C_P,Arg_5,Arg_29,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,G_P,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_29,Arg_25,Arg_26,Arg_27,NoDet0,NoDet1,NoDet2,NoDet3,Arg_32,Arg_33,NoDet4,NoDet5,NoDet6,Z_P):|:0<=Arg_0 && Arg_4<=Arg_28 && Arg_28<=Arg_4 && Arg_0<=2 && 2<=Arg_0 && Arg_23<=2 && 2<=Arg_23 && Arg_29<=Arg_34 && Arg_34<=Arg_29 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && 2<=Arg_4 && Arg_28<=Arg_0 && C_P<=Z_P && C_P<=A_P && 2<=C_P && 0<=Arg_0 && A_P<=G_P && G_P<=A_P && Arg_12<=A_P && A_P<=Arg_12 && Arg_2<=0 && 0<=Arg_2
7:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f1___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,NoDet0,Arg_30,NoDet1,Arg_0,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_0 && Arg_4<=Arg_28 && Arg_28<=Arg_4 && Arg_0<=2 && 2<=Arg_0 && Arg_23<=2 && 2<=Arg_23 && Arg_29<=Arg_34 && Arg_34<=Arg_29 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && 2<=Arg_4 && 1+Arg_0<=Arg_28 && 0<=Arg_0
8:n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f16___7(A_P,Arg_1,0,Arg_3,C_P,Arg_5,Arg_29,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,G_P,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_29,Arg_25,Arg_26,Arg_27,NoDet0,NoDet1,NoDet2,NoDet3,Arg_32,Arg_33,NoDet4,NoDet5,NoDet6,Z_P):|:0<=Arg_0 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && Arg_0<=1+Arg_33 && 1+Arg_33<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_28 && Arg_28<=Arg_0 && C_P<=Z_P && C_P<=A_P && 2<=C_P && 0<=Arg_0 && A_P<=G_P && G_P<=A_P && Arg_12<=A_P && A_P<=Arg_12 && Arg_2<=0 && 0<=Arg_2
9:n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f1___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_30,NoDet0,Arg_30,NoDet1,Arg_0,Arg_34,Arg_35,Arg_36,Arg_37):|:0<=Arg_0 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && Arg_0<=1+Arg_33 && 1+Arg_33<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_28 && 1+Arg_0<=Arg_28 && 0<=Arg_0
10:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f10___1(Arg_0,Arg_1,Arg_2,NoDet1,C_P,NoDet2,Arg_6,NoDet3,Arg_8,NoDet4,Arg_10,NoDet5,Arg_12,NoDet6,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,NoDet0,Arg_37):|:Arg_3<=0 && 0<=Arg_3 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && 2<=Arg_4 && 0<=Arg_1 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_15<=Arg_17 && Arg_17<=Arg_15 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && 2<=Arg_4 && 0<=1+Arg_17 && 2<=C_P && 0<=Arg_15 && Arg_3<=Arg_13 && Arg_13<=Arg_3
11:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f8___2(Arg_0,Arg_1,Arg_2,0,C_P,C1_P,D_P,0,NoDet0,E1_P,Arg_10,Arg_13,Arg_12,Arg_13,Arg_14,Arg_15-1,Arg_16,Arg_15-1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:Arg_3<=0 && 0<=Arg_3 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && 2<=Arg_4 && 0<=Arg_1 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_15<=Arg_17 && Arg_17<=Arg_15 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && 2<=Arg_4 && 0<=1+Arg_17 && 2<=C_P && 0<=Arg_15 && D_P<=E1_P && E1_P<=D_P && D_P<=C1_P && C1_P<=D_P && Arg_3<=0 && 0<=Arg_3
12:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f10___3(Arg_0,Arg_1,Arg_2,NoDet1,C_P,NoDet2,Arg_6,NoDet3,Arg_8,NoDet4,Arg_10,NoDet5,Arg_12,NoDet6,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,NoDet0,Arg_37):|:Arg_3<=0 && 0<=Arg_3 && Arg_2<=1+Arg_15 && 1+Arg_15<=Arg_2 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_24<=0 && 0<=Arg_24 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_13 && Arg_13<=Arg_6 && 2<=Arg_4 && 0<=Arg_12 && 2<=C_P && 0<=Arg_15 && Arg_3<=Arg_13 && Arg_13<=Arg_3
13:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f8___2(Arg_0,Arg_1,Arg_2,0,C_P,C1_P,D_P,0,NoDet0,E1_P,Arg_10,Arg_13,Arg_12,Arg_13,Arg_14,Arg_15-1,Arg_16,Arg_15-1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37):|:Arg_3<=0 && 0<=Arg_3 && Arg_2<=1+Arg_15 && 1+Arg_15<=Arg_2 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_24<=0 && 0<=Arg_24 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_13 && Arg_13<=Arg_6 && 2<=Arg_4 && 0<=Arg_12 && 2<=C_P && 0<=Arg_15 && D_P<=E1_P && E1_P<=D_P && D_P<=C1_P && C1_P<=D_P && Arg_3<=0 && 0<=Arg_3
14:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f10___10(NoDet0,Arg_1,Arg_2,NoDet8,C_P,NoDet9,0,NoDet10,Arg_8,NoDet11,Arg_10,NoDet12,Arg_12,NoDet13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,NoDet14,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,NoDet1,NoDet2,NoDet3,NoDet4,Arg_32,Arg_33,NoDet5,NoDet6,NoDet7,Arg_37):|:C_P<=0
15:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f10___9(NoDet0,Arg_1,Arg_2,NoDet9,1,NoDet10,NoDet1,NoDet11,Arg_8,NoDet12,Arg_10,NoDet13,Arg_12,NoDet14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,NoDet15,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26,Arg_27,NoDet2,NoDet3,NoDet4,NoDet5,Arg_32,Arg_33,NoDet6,NoDet7,NoDet8,Arg_37):|:Arg_30<=0 && 0<=Arg_30
16:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37) -> n_f1___11(2,Arg_1,Arg_2,Arg_3,C_P,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,NoDet1,Arg_20,NoDet2,Arg_22,2,Arg_24,Arg_25,Arg_26,Arg_27,Q_P,R_P,NoDet0,T_P,Arg_32,Arg_33,W_P,Arg_35,Arg_36,Arg_37):|:2<=C_P && R_P<=W_P && W_P<=R_P && R_P<=T_P && T_P<=R_P && C_P<=Q_P && Q_P<=C_P

Preprocessing

Eliminate variables {NoDet15,NoDet7,Arg_8,Arg_10,Arg_14,Arg_16,Arg_18,Arg_19,Arg_20,Arg_21,Arg_25,Arg_32,Arg_35,Arg_36} that do not contribute to the problem

Found invariant Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_4<=Arg_37 && Arg_4<=Arg_12 && Arg_4<=Arg_0 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_2+Arg_37 && 2+Arg_2<=Arg_37 && 4<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_23<=2 && Arg_23<=2+Arg_2 && Arg_2+Arg_23<=2 && Arg_23<=Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_2+Arg_23 && 2+Arg_2<=Arg_23 && 4<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=0 && 2+Arg_2<=Arg_12 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_12+Arg_2 && 2<=Arg_0+Arg_2 && Arg_12<=Arg_0 && 2<=Arg_12 && 4<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 2<=Arg_0 for location n_f16___7

Found invariant Arg_4<=Arg_28 && 2<=Arg_4 && 4<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_34<=Arg_31 && Arg_34<=Arg_29 && Arg_31<=Arg_34 && Arg_29<=Arg_34 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 2<=Arg_28 && 4<=Arg_23+Arg_28 && Arg_23<=Arg_28 && 4<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && Arg_23<=Arg_0 && Arg_0+Arg_23<=4 && 2<=Arg_23 && 4<=Arg_0+Arg_23 && Arg_0<=Arg_23 && Arg_0<=2 && 2<=Arg_0 for location n_f1___11

Found invariant Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && 1+Arg_7<=Arg_2 && Arg_7<=1+Arg_17 && Arg_7<=1+Arg_15 && Arg_7<=Arg_12 && Arg_7<=Arg_1 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 1<=Arg_2+Arg_7 && 0<=1+Arg_17+Arg_7 && 0<=1+Arg_15+Arg_7 && 0<=Arg_12+Arg_7 && 0<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1<=Arg_17+Arg_4 && 1<=Arg_15+Arg_4 && 2<=Arg_12+Arg_4 && 2<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1<=Arg_17+Arg_37 && 1<=Arg_15+Arg_37 && 2<=Arg_12+Arg_37 && 2<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && 1+Arg_3<=Arg_2 && Arg_3<=1+Arg_17 && Arg_3<=1+Arg_15 && Arg_3<=Arg_12 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_17+Arg_3 && 0<=1+Arg_15+Arg_3 && 0<=Arg_12+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 1+Arg_24<=Arg_2 && Arg_24<=1+Arg_17 && Arg_24<=1+Arg_15 && Arg_24<=Arg_12 && Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 1<=Arg_2+Arg_24 && 0<=1+Arg_17+Arg_24 && 0<=1+Arg_15+Arg_24 && 0<=Arg_12+Arg_24 && 0<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_23<=3+Arg_17 && Arg_23<=3+Arg_15 && Arg_23<=2+Arg_12 && Arg_23<=2+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1<=Arg_17+Arg_23 && 1<=Arg_15+Arg_23 && 2<=Arg_12+Arg_23 && 2<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 0<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 0<=Arg_15+Arg_2 && 2+Arg_15<=Arg_2 && 1<=Arg_12+Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_17<=Arg_15 && 1+Arg_17<=Arg_1 && 0<=1+Arg_17 && 0<=2+Arg_15+Arg_17 && Arg_15<=Arg_17 && 0<=1+Arg_12+Arg_17 && 0<=1+Arg_1+Arg_17 && 1<=Arg_0+Arg_17 && 1+Arg_15<=Arg_1 && 0<=1+Arg_15 && 0<=1+Arg_12+Arg_15 && 0<=1+Arg_1+Arg_15 && 1<=Arg_0+Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 0<=Arg_1+Arg_12 && 2<=Arg_0+Arg_12 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f8___2

Found invariant Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_9<=Arg_13 && Arg_9<=Arg_11 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_13<=Arg_9 && Arg_11<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && Arg_7<=Arg_12 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 0<=Arg_12+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_13 && Arg_6<=Arg_11 && Arg_5<=Arg_6 && Arg_13<=Arg_6 && Arg_11<=Arg_6 && Arg_5<=Arg_13 && Arg_5<=Arg_11 && Arg_13<=Arg_5 && Arg_11<=Arg_5 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && Arg_3<=Arg_12 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 0<=Arg_12+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && Arg_24<=Arg_12 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 0<=Arg_12+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=2+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_15 && Arg_2<=1+Arg_1 && 1+Arg_15<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_15<=Arg_1 && Arg_1<=Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 2<=Arg_0+Arg_12 && 2<=Arg_0 for location n_f8___5

Found invariant 2<=Arg_4 && 4<=Arg_37+Arg_4 && 1<=Arg_27+Arg_4 && 4<=Arg_26+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 1<=Arg_27+Arg_37 && 4<=Arg_26+Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 4<=Arg_2+Arg_37 && 1<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 2+Arg_27<=Arg_0 && 0<=1+Arg_27 && 2<=Arg_26+Arg_27 && 1<=Arg_23+Arg_27 && Arg_23<=3+Arg_27 && 2<=Arg_2+Arg_27 && 0<=2+Arg_12+Arg_27 && Arg_12<=Arg_27 && 1<=Arg_0+Arg_27 && Arg_26<=Arg_2 && 2<=Arg_26 && 4<=Arg_23+Arg_26 && Arg_23<=Arg_26 && 4<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 4<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=Arg_2 && Arg_23<=3+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 4<=Arg_2+Arg_23 && 1<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && 2<=Arg_2 && 2<=Arg_12+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_12<=Arg_0 && 0<=1+Arg_12 && 1<=Arg_0+Arg_12 && 2<=Arg_0 for location n_f16___4

Found invariant 2<=Arg_4 && 4<=Arg_37+Arg_4 && 3<=Arg_27+Arg_4 && 3<=Arg_26+Arg_4 && 1+Arg_26<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 3<=Arg_27+Arg_37 && 3<=Arg_26+Arg_37 && 1+Arg_26<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1+Arg_2<=Arg_37 && 3<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 1+Arg_27<=Arg_0 && 1<=Arg_27 && 2<=Arg_26+Arg_27 && Arg_26<=Arg_27 && 3<=Arg_23+Arg_27 && Arg_23<=1+Arg_27 && 2<=Arg_2+Arg_27 && Arg_2<=Arg_27 && 2<=Arg_12+Arg_27 && Arg_12<=Arg_27 && 3<=Arg_0+Arg_27 && Arg_0<=1+Arg_27 && Arg_26<=1 && 1+Arg_26<=Arg_23 && Arg_23+Arg_26<=3 && Arg_26<=Arg_2 && Arg_2+Arg_26<=2 && Arg_26<=Arg_12 && 1+Arg_26<=Arg_0 && 1<=Arg_26 && 3<=Arg_23+Arg_26 && Arg_23<=1+Arg_26 && 2<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 3<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_2+Arg_23<=3 && Arg_23<=1+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1+Arg_2<=Arg_23 && 3<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1 && Arg_2<=Arg_12 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_12+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_12<=Arg_0 && 1<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && 2<=Arg_0 for location n_f16___6

Found invariant 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_17+Arg_4 && 2<=Arg_15+Arg_4 && 3<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 4<=Arg_2+Arg_37 && 2<=Arg_17+Arg_37 && 2<=Arg_15+Arg_37 && 3<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 2+Arg_24<=Arg_2 && Arg_24<=Arg_17 && Arg_24<=Arg_15 && 1+Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 2<=Arg_2+Arg_24 && 0<=Arg_17+Arg_24 && 0<=Arg_15+Arg_24 && 1<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=Arg_2 && Arg_23<=2+Arg_17 && Arg_23<=2+Arg_15 && Arg_23<=1+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 4<=Arg_2+Arg_23 && 2<=Arg_17+Arg_23 && 2<=Arg_15+Arg_23 && 3<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_1 && 2<=Arg_2 && 2<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 2<=Arg_15+Arg_2 && 2+Arg_15<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_17<=Arg_15 && 1+Arg_17<=Arg_1 && 0<=Arg_17 && 0<=Arg_15+Arg_17 && Arg_15<=Arg_17 && 1<=Arg_1+Arg_17 && 2<=Arg_0+Arg_17 && 1+Arg_15<=Arg_1 && 0<=Arg_15 && 1<=Arg_1+Arg_15 && 2<=Arg_0+Arg_15 && Arg_12<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f10___1

Found invariant Arg_4<=1 && Arg_4<=1+Arg_24 && Arg_24+Arg_4<=1 && 1<=Arg_4 && 1<=Arg_24+Arg_4 && 1+Arg_24<=Arg_4 && Arg_24<=0 && 0<=Arg_24 for location n_f10___9

Found invariant Arg_6<=0 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_37 && Arg_6<=Arg_24 && Arg_24+Arg_6<=0 && 2+Arg_6<=Arg_23 && Arg_23+Arg_6<=2 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_15 && Arg_6<=Arg_12 && Arg_6<=Arg_1 && 2+Arg_6<=Arg_0 && 0<=Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_37+Arg_6 && 0<=Arg_24+Arg_6 && Arg_24<=Arg_6 && 2<=Arg_23+Arg_6 && Arg_23<=2+Arg_6 && 1<=Arg_2+Arg_6 && 0<=Arg_15+Arg_6 && 0<=Arg_12+Arg_6 && 0<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 2<=Arg_15+Arg_4 && 2<=Arg_12+Arg_4 && 2<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 2<=Arg_15+Arg_37 && 2<=Arg_12+Arg_37 && 2<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 1+Arg_24<=Arg_2 && Arg_24<=Arg_15 && Arg_24<=Arg_12 && Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 1<=Arg_2+Arg_24 && 0<=Arg_15+Arg_24 && 0<=Arg_12+Arg_24 && 0<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_23<=2+Arg_15 && Arg_23<=2+Arg_12 && Arg_23<=2+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 2<=Arg_15+Arg_23 && 2<=Arg_12+Arg_23 && 2<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_15 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_15+Arg_2 && 1+Arg_15<=Arg_2 && 1<=Arg_12+Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_15<=Arg_1 && 0<=Arg_15 && 0<=Arg_12+Arg_15 && 0<=Arg_1+Arg_15 && Arg_1<=Arg_15 && 2<=Arg_0+Arg_15 && Arg_12<=Arg_0 && 0<=Arg_12 && 0<=Arg_1+Arg_12 && 2<=Arg_0+Arg_12 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f10___3

Found invariant Arg_6<=0 && Arg_4+Arg_6<=0 && Arg_6<=Arg_24 && Arg_24+Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_24+Arg_6 && Arg_24<=Arg_6 && Arg_4<=0 && Arg_4<=Arg_24 && Arg_24+Arg_4<=0 && Arg_24<=0 && 0<=Arg_24 for location n_f10___10

Found invariant Arg_4<=Arg_28 && 3<=Arg_4 && 5<=Arg_33+Arg_4 && 1+Arg_33<=Arg_4 && 6<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 5<=Arg_23+Arg_4 && 1+Arg_23<=Arg_4 && 6<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1+Arg_33<=Arg_28 && 1+Arg_33<=Arg_0 && 2<=Arg_33 && 5<=Arg_28+Arg_33 && 4<=Arg_23+Arg_33 && Arg_23<=Arg_33 && 5<=Arg_0+Arg_33 && Arg_0<=1+Arg_33 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 3<=Arg_28 && 5<=Arg_23+Arg_28 && 1+Arg_23<=Arg_28 && 6<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && 1+Arg_23<=Arg_0 && 2<=Arg_23 && 5<=Arg_0+Arg_23 && 3<=Arg_0 for location n_f1___8

Problem after Preprocessing

Start: n_f9
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_9, Arg_11, Arg_12, Arg_13, Arg_15, Arg_17, Arg_22, Arg_23, Arg_24, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31, Arg_33, Arg_34, Arg_37
Temp_Vars: A_P, C1_P, C_P, D_P, E1_P, G_P, NoDet0, NoDet1, NoDet10, NoDet11, NoDet12, NoDet13, NoDet14, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet8, NoDet9, Q_P, R_P, T_P, W_P, Z_P
Locations: n_f10___1, n_f10___10, n_f10___3, n_f10___9, n_f16___4, n_f16___6, n_f16___7, n_f1___11, n_f1___8, n_f8___2, n_f8___5, n_f9
Transitions:
33:n_f16___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___4(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,Arg_9,Arg_11,Arg_12-1,Arg_13,Arg_15,Arg_17,Arg_24,Arg_23,Arg_24,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:2<=Arg_4 && 4<=Arg_37+Arg_4 && 1<=Arg_27+Arg_4 && 4<=Arg_26+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 1<=Arg_27+Arg_37 && 4<=Arg_26+Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 4<=Arg_2+Arg_37 && 1<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 2+Arg_27<=Arg_0 && 0<=1+Arg_27 && 2<=Arg_26+Arg_27 && 1<=Arg_23+Arg_27 && Arg_23<=3+Arg_27 && 2<=Arg_2+Arg_27 && 0<=2+Arg_12+Arg_27 && Arg_12<=Arg_27 && 1<=Arg_0+Arg_27 && Arg_26<=Arg_2 && 2<=Arg_26 && 4<=Arg_23+Arg_26 && Arg_23<=Arg_26 && 4<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 4<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=Arg_2 && Arg_23<=3+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 4<=Arg_2+Arg_23 && 1<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && 2<=Arg_2 && 2<=Arg_12+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_12<=Arg_0 && 0<=1+Arg_12 && 1<=Arg_0+Arg_12 && 2<=Arg_0 && 0<=Arg_2 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
34:n_f16___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_6,Arg_6,G_P,Arg_6,Arg_15,Arg_17,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:2<=Arg_4 && 4<=Arg_37+Arg_4 && 1<=Arg_27+Arg_4 && 4<=Arg_26+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 1<=Arg_27+Arg_37 && 4<=Arg_26+Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 4<=Arg_2+Arg_37 && 1<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 2+Arg_27<=Arg_0 && 0<=1+Arg_27 && 2<=Arg_26+Arg_27 && 1<=Arg_23+Arg_27 && Arg_23<=3+Arg_27 && 2<=Arg_2+Arg_27 && 0<=2+Arg_12+Arg_27 && Arg_12<=Arg_27 && 1<=Arg_0+Arg_27 && Arg_26<=Arg_2 && 2<=Arg_26 && 4<=Arg_23+Arg_26 && Arg_23<=Arg_26 && 4<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 4<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=Arg_2 && Arg_23<=3+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 4<=Arg_2+Arg_23 && 1<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && 2<=Arg_2 && 2<=Arg_12+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_12<=Arg_0 && 0<=1+Arg_12 && 1<=Arg_0+Arg_12 && 2<=Arg_0 && 0<=Arg_2 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
35:n_f16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___4(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,Arg_9,Arg_11,Arg_12-1,Arg_13,Arg_15,Arg_17,Arg_24,Arg_23,Arg_24,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:2<=Arg_4 && 4<=Arg_37+Arg_4 && 3<=Arg_27+Arg_4 && 3<=Arg_26+Arg_4 && 1+Arg_26<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 3<=Arg_27+Arg_37 && 3<=Arg_26+Arg_37 && 1+Arg_26<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1+Arg_2<=Arg_37 && 3<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 1+Arg_27<=Arg_0 && 1<=Arg_27 && 2<=Arg_26+Arg_27 && Arg_26<=Arg_27 && 3<=Arg_23+Arg_27 && Arg_23<=1+Arg_27 && 2<=Arg_2+Arg_27 && Arg_2<=Arg_27 && 2<=Arg_12+Arg_27 && Arg_12<=Arg_27 && 3<=Arg_0+Arg_27 && Arg_0<=1+Arg_27 && Arg_26<=1 && 1+Arg_26<=Arg_23 && Arg_23+Arg_26<=3 && Arg_26<=Arg_2 && Arg_2+Arg_26<=2 && Arg_26<=Arg_12 && 1+Arg_26<=Arg_0 && 1<=Arg_26 && 3<=Arg_23+Arg_26 && Arg_23<=1+Arg_26 && 2<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 3<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_2+Arg_23<=3 && Arg_23<=1+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1+Arg_2<=Arg_23 && 3<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1 && Arg_2<=Arg_12 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_12+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_12<=Arg_0 && 1<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && 2<=Arg_0 && 0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
36:n_f16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_6,Arg_6,G_P,Arg_6,Arg_15,Arg_17,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:2<=Arg_4 && 4<=Arg_37+Arg_4 && 3<=Arg_27+Arg_4 && 3<=Arg_26+Arg_4 && 1+Arg_26<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 3<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 3<=Arg_27+Arg_37 && 3<=Arg_26+Arg_37 && 1+Arg_26<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1+Arg_2<=Arg_37 && 3<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 1+Arg_27<=Arg_0 && 1<=Arg_27 && 2<=Arg_26+Arg_27 && Arg_26<=Arg_27 && 3<=Arg_23+Arg_27 && Arg_23<=1+Arg_27 && 2<=Arg_2+Arg_27 && Arg_2<=Arg_27 && 2<=Arg_12+Arg_27 && Arg_12<=Arg_27 && 3<=Arg_0+Arg_27 && Arg_0<=1+Arg_27 && Arg_26<=1 && 1+Arg_26<=Arg_23 && Arg_23+Arg_26<=3 && Arg_26<=Arg_2 && Arg_2+Arg_26<=2 && Arg_26<=Arg_12 && 1+Arg_26<=Arg_0 && 1<=Arg_26 && 3<=Arg_23+Arg_26 && Arg_23<=1+Arg_26 && 2<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 3<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_2+Arg_23<=3 && Arg_23<=1+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1+Arg_2<=Arg_23 && 3<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1 && Arg_2<=Arg_12 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_12+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_12<=Arg_0 && 1<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_0<=1+Arg_12 && 2<=Arg_0 && 0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
37:n_f16___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___6(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,Arg_9,Arg_11,Arg_12-1,Arg_13,Arg_15,Arg_17,Arg_24,Arg_23,Arg_24,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_4<=Arg_37 && Arg_4<=Arg_12 && Arg_4<=Arg_0 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_2+Arg_37 && 2+Arg_2<=Arg_37 && 4<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_23<=2 && Arg_23<=2+Arg_2 && Arg_2+Arg_23<=2 && Arg_23<=Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_2+Arg_23 && 2+Arg_2<=Arg_23 && 4<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=0 && 2+Arg_2<=Arg_12 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_12+Arg_2 && 2<=Arg_0+Arg_2 && Arg_12<=Arg_0 && 2<=Arg_12 && 4<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 2<=Arg_0 && 0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_2<=0 && 0<=Arg_2 && 2<=Arg_4 && Arg_4<=Arg_0 && Arg_4<=Arg_37 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2
38:n_f16___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___5(Arg_0,Arg_15,Arg_15+1,0,C_P,Arg_6,Arg_6,0,Arg_6,Arg_6,G_P,Arg_6,Arg_15,Arg_17,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_4<=Arg_37 && Arg_4<=Arg_12 && Arg_4<=Arg_0 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 4<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_2+Arg_37 && 2+Arg_2<=Arg_37 && 4<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_23<=2 && Arg_23<=2+Arg_2 && Arg_2+Arg_23<=2 && Arg_23<=Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_2+Arg_23 && 2+Arg_2<=Arg_23 && 4<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=0 && 2+Arg_2<=Arg_12 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 2<=Arg_12+Arg_2 && 2<=Arg_0+Arg_2 && Arg_12<=Arg_0 && 2<=Arg_12 && 4<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 2<=Arg_0 && 0<=Arg_12 && 0<=Arg_2 && 0<=Arg_2 && 0<=Arg_12 && Arg_0<=Arg_12 && Arg_12<=Arg_0 && Arg_6<=Arg_24 && Arg_24<=Arg_6 && Arg_2<=0 && 0<=Arg_2 && 2<=Arg_4 && Arg_4<=Arg_0 && Arg_4<=Arg_37 && 2<=C_P && 0<=G_P && 0<=Arg_2 && Arg_24<=0 && 0<=Arg_24 && Arg_12<=G_P && G_P<=Arg_12
39:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___7(A_P,Arg_1,0,Arg_3,C_P,Arg_5,Arg_29,Arg_7,Arg_9,Arg_11,G_P,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_29,Arg_26,Arg_27,NoDet0,NoDet1,NoDet2,NoDet3,Arg_33,NoDet4,Z_P):|:Arg_4<=Arg_28 && 2<=Arg_4 && 4<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_34<=Arg_31 && Arg_34<=Arg_29 && Arg_31<=Arg_34 && Arg_29<=Arg_34 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 2<=Arg_28 && 4<=Arg_23+Arg_28 && Arg_23<=Arg_28 && 4<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && Arg_23<=Arg_0 && Arg_0+Arg_23<=4 && 2<=Arg_23 && 4<=Arg_0+Arg_23 && Arg_0<=Arg_23 && Arg_0<=2 && 2<=Arg_0 && 0<=Arg_0 && Arg_4<=Arg_28 && Arg_28<=Arg_4 && Arg_0<=2 && 2<=Arg_0 && Arg_23<=2 && 2<=Arg_23 && Arg_29<=Arg_34 && Arg_34<=Arg_29 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && 2<=Arg_4 && Arg_28<=Arg_0 && C_P<=Z_P && C_P<=A_P && 2<=C_P && 0<=Arg_0 && A_P<=G_P && G_P<=A_P && Arg_12<=A_P && A_P<=Arg_12 && Arg_2<=0 && 0<=Arg_2
40:n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f1___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_30,NoDet0,Arg_30,Arg_0,Arg_34,Arg_37):|:Arg_4<=Arg_28 && 2<=Arg_4 && 4<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_34<=Arg_31 && Arg_34<=Arg_29 && Arg_31<=Arg_34 && Arg_29<=Arg_34 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 2<=Arg_28 && 4<=Arg_23+Arg_28 && Arg_23<=Arg_28 && 4<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && Arg_23<=Arg_0 && Arg_0+Arg_23<=4 && 2<=Arg_23 && 4<=Arg_0+Arg_23 && Arg_0<=Arg_23 && Arg_0<=2 && 2<=Arg_0 && 0<=Arg_0 && Arg_4<=Arg_28 && Arg_28<=Arg_4 && Arg_0<=2 && 2<=Arg_0 && Arg_23<=2 && 2<=Arg_23 && Arg_29<=Arg_34 && Arg_34<=Arg_29 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && 2<=Arg_4 && 1+Arg_0<=Arg_28 && 0<=Arg_0
41:n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___7(A_P,Arg_1,0,Arg_3,C_P,Arg_5,Arg_29,Arg_7,Arg_9,Arg_11,G_P,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_29,Arg_26,Arg_27,NoDet0,NoDet1,NoDet2,NoDet3,Arg_33,NoDet4,Z_P):|:Arg_4<=Arg_28 && 3<=Arg_4 && 5<=Arg_33+Arg_4 && 1+Arg_33<=Arg_4 && 6<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 5<=Arg_23+Arg_4 && 1+Arg_23<=Arg_4 && 6<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1+Arg_33<=Arg_28 && 1+Arg_33<=Arg_0 && 2<=Arg_33 && 5<=Arg_28+Arg_33 && 4<=Arg_23+Arg_33 && Arg_23<=Arg_33 && 5<=Arg_0+Arg_33 && Arg_0<=1+Arg_33 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 3<=Arg_28 && 5<=Arg_23+Arg_28 && 1+Arg_23<=Arg_28 && 6<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && 1+Arg_23<=Arg_0 && 2<=Arg_23 && 5<=Arg_0+Arg_23 && 3<=Arg_0 && 0<=Arg_0 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && Arg_0<=1+Arg_33 && 1+Arg_33<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_28 && Arg_28<=Arg_0 && C_P<=Z_P && C_P<=A_P && 2<=C_P && 0<=Arg_0 && A_P<=G_P && G_P<=A_P && Arg_12<=A_P && A_P<=Arg_12 && Arg_2<=0 && 0<=Arg_2
42:n_f1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f1___8(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_30,NoDet0,Arg_30,Arg_0,Arg_34,Arg_37):|:Arg_4<=Arg_28 && 3<=Arg_4 && 5<=Arg_33+Arg_4 && 1+Arg_33<=Arg_4 && 6<=Arg_28+Arg_4 && Arg_28<=Arg_4 && 5<=Arg_23+Arg_4 && 1+Arg_23<=Arg_4 && 6<=Arg_0+Arg_4 && Arg_0<=Arg_4 && 1+Arg_33<=Arg_28 && 1+Arg_33<=Arg_0 && 2<=Arg_33 && 5<=Arg_28+Arg_33 && 4<=Arg_23+Arg_33 && Arg_23<=Arg_33 && 5<=Arg_0+Arg_33 && Arg_0<=1+Arg_33 && Arg_31<=Arg_29 && Arg_29<=Arg_31 && 3<=Arg_28 && 5<=Arg_23+Arg_28 && 1+Arg_23<=Arg_28 && 6<=Arg_0+Arg_28 && Arg_0<=Arg_28 && Arg_23<=2 && 1+Arg_23<=Arg_0 && 2<=Arg_23 && 5<=Arg_0+Arg_23 && 3<=Arg_0 && 0<=Arg_0 && Arg_29<=Arg_31 && Arg_31<=Arg_29 && Arg_0<=1+Arg_33 && 1+Arg_33<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_28 && 1+Arg_0<=Arg_28 && 0<=Arg_0
43:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f10___1(Arg_0,Arg_1,Arg_2,NoDet1,C_P,NoDet2,Arg_6,NoDet3,NoDet4,NoDet5,Arg_12,NoDet6,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && 1+Arg_7<=Arg_2 && Arg_7<=1+Arg_17 && Arg_7<=1+Arg_15 && Arg_7<=Arg_12 && Arg_7<=Arg_1 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 1<=Arg_2+Arg_7 && 0<=1+Arg_17+Arg_7 && 0<=1+Arg_15+Arg_7 && 0<=Arg_12+Arg_7 && 0<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1<=Arg_17+Arg_4 && 1<=Arg_15+Arg_4 && 2<=Arg_12+Arg_4 && 2<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1<=Arg_17+Arg_37 && 1<=Arg_15+Arg_37 && 2<=Arg_12+Arg_37 && 2<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && 1+Arg_3<=Arg_2 && Arg_3<=1+Arg_17 && Arg_3<=1+Arg_15 && Arg_3<=Arg_12 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_17+Arg_3 && 0<=1+Arg_15+Arg_3 && 0<=Arg_12+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 1+Arg_24<=Arg_2 && Arg_24<=1+Arg_17 && Arg_24<=1+Arg_15 && Arg_24<=Arg_12 && Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 1<=Arg_2+Arg_24 && 0<=1+Arg_17+Arg_24 && 0<=1+Arg_15+Arg_24 && 0<=Arg_12+Arg_24 && 0<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_23<=3+Arg_17 && Arg_23<=3+Arg_15 && Arg_23<=2+Arg_12 && Arg_23<=2+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1<=Arg_17+Arg_23 && 1<=Arg_15+Arg_23 && 2<=Arg_12+Arg_23 && 2<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 0<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 0<=Arg_15+Arg_2 && 2+Arg_15<=Arg_2 && 1<=Arg_12+Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_17<=Arg_15 && 1+Arg_17<=Arg_1 && 0<=1+Arg_17 && 0<=2+Arg_15+Arg_17 && Arg_15<=Arg_17 && 0<=1+Arg_12+Arg_17 && 0<=1+Arg_1+Arg_17 && 1<=Arg_0+Arg_17 && 1+Arg_15<=Arg_1 && 0<=1+Arg_15 && 0<=1+Arg_12+Arg_15 && 0<=1+Arg_1+Arg_15 && 1<=Arg_0+Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 0<=Arg_1+Arg_12 && 2<=Arg_0+Arg_12 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && 2<=Arg_4 && 0<=Arg_1 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_15<=Arg_17 && Arg_17<=Arg_15 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && 2<=Arg_4 && 0<=1+Arg_17 && 2<=C_P && 0<=Arg_15 && Arg_3<=Arg_13 && Arg_13<=Arg_3
44:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___2(Arg_0,Arg_1,Arg_2,0,C_P,C1_P,D_P,0,E1_P,Arg_13,Arg_12,Arg_13,Arg_15-1,Arg_15-1,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && 1+Arg_7<=Arg_2 && Arg_7<=1+Arg_17 && Arg_7<=1+Arg_15 && Arg_7<=Arg_12 && Arg_7<=Arg_1 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 1<=Arg_2+Arg_7 && 0<=1+Arg_17+Arg_7 && 0<=1+Arg_15+Arg_7 && 0<=Arg_12+Arg_7 && 0<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1<=Arg_17+Arg_4 && 1<=Arg_15+Arg_4 && 2<=Arg_12+Arg_4 && 2<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1<=Arg_17+Arg_37 && 1<=Arg_15+Arg_37 && 2<=Arg_12+Arg_37 && 2<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && 1+Arg_3<=Arg_2 && Arg_3<=1+Arg_17 && Arg_3<=1+Arg_15 && Arg_3<=Arg_12 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_17+Arg_3 && 0<=1+Arg_15+Arg_3 && 0<=Arg_12+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 1+Arg_24<=Arg_2 && Arg_24<=1+Arg_17 && Arg_24<=1+Arg_15 && Arg_24<=Arg_12 && Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 1<=Arg_2+Arg_24 && 0<=1+Arg_17+Arg_24 && 0<=1+Arg_15+Arg_24 && 0<=Arg_12+Arg_24 && 0<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_23<=3+Arg_17 && Arg_23<=3+Arg_15 && Arg_23<=2+Arg_12 && Arg_23<=2+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1<=Arg_17+Arg_23 && 1<=Arg_15+Arg_23 && 2<=Arg_12+Arg_23 && 2<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 0<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 0<=Arg_15+Arg_2 && 2+Arg_15<=Arg_2 && 1<=Arg_12+Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_17<=Arg_15 && 1+Arg_17<=Arg_1 && 0<=1+Arg_17 && 0<=2+Arg_15+Arg_17 && Arg_15<=Arg_17 && 0<=1+Arg_12+Arg_17 && 0<=1+Arg_1+Arg_17 && 1<=Arg_0+Arg_17 && 1+Arg_15<=Arg_1 && 0<=1+Arg_15 && 0<=1+Arg_12+Arg_15 && 0<=1+Arg_1+Arg_15 && 1<=Arg_0+Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 0<=Arg_1+Arg_12 && 2<=Arg_0+Arg_12 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && 2<=Arg_4 && 0<=Arg_1 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_15<=Arg_17 && Arg_17<=Arg_15 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && 2<=Arg_4 && 0<=1+Arg_17 && 2<=C_P && 0<=Arg_15 && D_P<=E1_P && E1_P<=D_P && D_P<=C1_P && C1_P<=D_P && Arg_3<=0 && 0<=Arg_3
45:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f10___3(Arg_0,Arg_1,Arg_2,NoDet1,C_P,NoDet2,Arg_6,NoDet3,NoDet4,NoDet5,Arg_12,NoDet6,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_9<=Arg_13 && Arg_9<=Arg_11 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_13<=Arg_9 && Arg_11<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && Arg_7<=Arg_12 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 0<=Arg_12+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_13 && Arg_6<=Arg_11 && Arg_5<=Arg_6 && Arg_13<=Arg_6 && Arg_11<=Arg_6 && Arg_5<=Arg_13 && Arg_5<=Arg_11 && Arg_13<=Arg_5 && Arg_11<=Arg_5 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && Arg_3<=Arg_12 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 0<=Arg_12+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && Arg_24<=Arg_12 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 0<=Arg_12+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=2+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_15 && Arg_2<=1+Arg_1 && 1+Arg_15<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_15<=Arg_1 && Arg_1<=Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 2<=Arg_0+Arg_12 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=1+Arg_15 && 1+Arg_15<=Arg_2 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_24<=0 && 0<=Arg_24 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_13 && Arg_13<=Arg_6 && 2<=Arg_4 && 0<=Arg_12 && 2<=C_P && 0<=Arg_15 && Arg_3<=Arg_13 && Arg_13<=Arg_3
46:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___2(Arg_0,Arg_1,Arg_2,0,C_P,C1_P,D_P,0,E1_P,Arg_13,Arg_12,Arg_13,Arg_15-1,Arg_15-1,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_9<=Arg_13 && Arg_9<=Arg_11 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_13<=Arg_9 && Arg_11<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && Arg_7<=Arg_12 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 0<=Arg_12+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_13 && Arg_6<=Arg_11 && Arg_5<=Arg_6 && Arg_13<=Arg_6 && Arg_11<=Arg_6 && Arg_5<=Arg_13 && Arg_5<=Arg_11 && Arg_13<=Arg_5 && Arg_11<=Arg_5 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 2<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 2<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && Arg_3<=Arg_12 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 0<=Arg_12+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && Arg_24<=Arg_12 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 0<=Arg_12+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=2+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 2<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_15 && Arg_2<=1+Arg_1 && 1+Arg_15<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_15<=Arg_1 && Arg_1<=Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 2<=Arg_0+Arg_12 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=1+Arg_15 && 1+Arg_15<=Arg_2 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_24<=0 && 0<=Arg_24 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_6<=Arg_11 && Arg_11<=Arg_6 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_13 && Arg_13<=Arg_6 && 2<=Arg_4 && 0<=Arg_12 && 2<=C_P && 0<=Arg_15 && D_P<=E1_P && E1_P<=D_P && D_P<=C1_P && C1_P<=D_P && Arg_3<=0 && 0<=Arg_3
47:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f10___10(NoDet0,Arg_1,Arg_2,NoDet8,C_P,NoDet9,0,NoDet10,NoDet11,NoDet12,Arg_12,NoDet13,Arg_15,Arg_17,Arg_22,Arg_23,0,Arg_26,Arg_27,NoDet1,NoDet2,NoDet3,NoDet4,Arg_33,NoDet5,Arg_37):|:C_P<=0
48:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f10___9(NoDet0,Arg_1,Arg_2,NoDet9,1,NoDet10,NoDet1,NoDet11,NoDet12,NoDet13,Arg_12,NoDet14,Arg_15,Arg_17,Arg_22,Arg_23,0,Arg_26,Arg_27,NoDet2,NoDet3,NoDet4,NoDet5,Arg_33,NoDet6,Arg_37):|:Arg_30<=0 && 0<=Arg_30
49:n_f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f1___11(2,Arg_1,Arg_2,Arg_3,C_P,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,2,Arg_24,Arg_26,Arg_27,Q_P,R_P,NoDet0,T_P,Arg_33,W_P,Arg_37):|:2<=C_P && R_P<=W_P && W_P<=R_P && R_P<=T_P && T_P<=R_P && C_P<=Q_P && Q_P<=C_P

MPRF for transition 33:n_f16___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f16___4(Arg_0,Arg_1,Arg_2+1,Arg_3,C_P,Arg_5,NoDet0,Arg_7,Arg_9,Arg_11,Arg_12-1,Arg_13,Arg_15,Arg_17,Arg_24,Arg_23,Arg_24,Arg_2+1,Arg_12-1,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:2<=Arg_4 && 4<=Arg_37+Arg_4 && 1<=Arg_27+Arg_4 && 4<=Arg_26+Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_12+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 1<=Arg_27+Arg_37 && 4<=Arg_26+Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 4<=Arg_2+Arg_37 && 1<=Arg_12+Arg_37 && 4<=Arg_0+Arg_37 && Arg_27<=Arg_12 && 2+Arg_27<=Arg_0 && 0<=1+Arg_27 && 2<=Arg_26+Arg_27 && 1<=Arg_23+Arg_27 && Arg_23<=3+Arg_27 && 2<=Arg_2+Arg_27 && 0<=2+Arg_12+Arg_27 && Arg_12<=Arg_27 && 1<=Arg_0+Arg_27 && Arg_26<=Arg_2 && 2<=Arg_26 && 4<=Arg_23+Arg_26 && Arg_23<=Arg_26 && 4<=Arg_2+Arg_26 && Arg_2<=Arg_26 && 2<=Arg_12+Arg_26 && 4<=Arg_0+Arg_26 && Arg_24<=Arg_22 && Arg_22<=Arg_24 && Arg_23<=2 && Arg_23<=Arg_2 && Arg_23<=3+Arg_12 && Arg_23<=Arg_0 && 2<=Arg_23 && 4<=Arg_2+Arg_23 && 1<=Arg_12+Arg_23 && 4<=Arg_0+Arg_23 && 2<=Arg_2 && 2<=Arg_12+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_12<=Arg_0 && 0<=1+Arg_12 && 1<=Arg_0+Arg_12 && 2<=Arg_0 && 0<=Arg_2 && Arg_2<=Arg_26 && Arg_26<=Arg_2 && Arg_22<=Arg_24 && Arg_24<=Arg_22 && Arg_12<=Arg_27 && Arg_27<=Arg_12 && 1<=Arg_2 && 2<=Arg_4 && 0<=1+Arg_12 && 2<=C_P && 0<=Arg_12 && 0<=Arg_2 of depth 1:

new bound:

3*Arg_12+1 {O(n)}

MPRF:

n_f16___4 [Arg_12+1 ]

MPRF for transition 44:n_f8___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_15,Arg_17,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37) -> n_f8___2(Arg_0,Arg_1,Arg_2,0,C_P,C1_P,D_P,0,E1_P,Arg_13,Arg_12,Arg_13,Arg_15-1,Arg_15-1,Arg_22,Arg_23,0,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_33,Arg_34,Arg_37):|:Arg_9<=Arg_6 && Arg_9<=Arg_5 && Arg_6<=Arg_9 && Arg_5<=Arg_9 && Arg_7<=0 && 2+Arg_7<=Arg_4 && 2+Arg_7<=Arg_37 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_24 && Arg_24+Arg_7<=0 && 2+Arg_7<=Arg_23 && Arg_23+Arg_7<=2 && 1+Arg_7<=Arg_2 && Arg_7<=1+Arg_17 && Arg_7<=1+Arg_15 && Arg_7<=Arg_12 && Arg_7<=Arg_1 && 2+Arg_7<=Arg_0 && 0<=Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_37+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_24+Arg_7 && Arg_24<=Arg_7 && 2<=Arg_23+Arg_7 && Arg_23<=2+Arg_7 && 1<=Arg_2+Arg_7 && 0<=1+Arg_17+Arg_7 && 0<=1+Arg_15+Arg_7 && 0<=Arg_12+Arg_7 && 0<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && 2<=Arg_4 && 4<=Arg_37+Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_24+Arg_4 && 2+Arg_24<=Arg_4 && 4<=Arg_23+Arg_4 && Arg_23<=Arg_4 && 3<=Arg_2+Arg_4 && 1<=Arg_17+Arg_4 && 1<=Arg_15+Arg_4 && 2<=Arg_12+Arg_4 && 2<=Arg_1+Arg_4 && 4<=Arg_0+Arg_4 && 2<=Arg_37 && 2<=Arg_3+Arg_37 && 2+Arg_3<=Arg_37 && 2<=Arg_24+Arg_37 && 2+Arg_24<=Arg_37 && 4<=Arg_23+Arg_37 && Arg_23<=Arg_37 && 3<=Arg_2+Arg_37 && 1<=Arg_17+Arg_37 && 1<=Arg_15+Arg_37 && 2<=Arg_12+Arg_37 && 2<=Arg_1+Arg_37 && 4<=Arg_0+Arg_37 && Arg_3<=0 && Arg_3<=Arg_24 && Arg_24+Arg_3<=0 && 2+Arg_3<=Arg_23 && Arg_23+Arg_3<=2 && 1+Arg_3<=Arg_2 && Arg_3<=1+Arg_17 && Arg_3<=1+Arg_15 && Arg_3<=Arg_12 && Arg_3<=Arg_1 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_24+Arg_3 && Arg_24<=Arg_3 && 2<=Arg_23+Arg_3 && Arg_23<=2+Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_17+Arg_3 && 0<=1+Arg_15+Arg_3 && 0<=Arg_12+Arg_3 && 0<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_24<=0 && 2+Arg_24<=Arg_23 && Arg_23+Arg_24<=2 && 1+Arg_24<=Arg_2 && Arg_24<=1+Arg_17 && Arg_24<=1+Arg_15 && Arg_24<=Arg_12 && Arg_24<=Arg_1 && 2+Arg_24<=Arg_0 && 0<=Arg_24 && 2<=Arg_23+Arg_24 && Arg_23<=2+Arg_24 && 1<=Arg_2+Arg_24 && 0<=1+Arg_17+Arg_24 && 0<=1+Arg_15+Arg_24 && 0<=Arg_12+Arg_24 && 0<=Arg_1+Arg_24 && 2<=Arg_0+Arg_24 && Arg_23<=2 && Arg_23<=1+Arg_2 && Arg_23<=3+Arg_17 && Arg_23<=3+Arg_15 && Arg_23<=2+Arg_12 && Arg_23<=2+Arg_1 && Arg_23<=Arg_0 && 2<=Arg_23 && 3<=Arg_2+Arg_23 && 1<=Arg_17+Arg_23 && 1<=Arg_15+Arg_23 && 2<=Arg_12+Arg_23 && 2<=Arg_1+Arg_23 && 4<=Arg_0+Arg_23 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 0<=Arg_17+Arg_2 && 2+Arg_17<=Arg_2 && 0<=Arg_15+Arg_2 && 2+Arg_15<=Arg_2 && 1<=Arg_12+Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_17<=Arg_15 && 1+Arg_17<=Arg_1 && 0<=1+Arg_17 && 0<=2+Arg_15+Arg_17 && Arg_15<=Arg_17 && 0<=1+Arg_12+Arg_17 && 0<=1+Arg_1+Arg_17 && 1<=Arg_0+Arg_17 && 1+Arg_15<=Arg_1 && 0<=1+Arg_15 && 0<=1+Arg_12+Arg_15 && 0<=1+Arg_1+Arg_15 && 1<=Arg_0+Arg_15 && Arg_13<=Arg_11 && Arg_11<=Arg_13 && Arg_12<=Arg_0 && 0<=Arg_12 && 0<=Arg_1+Arg_12 && 2<=Arg_0+Arg_12 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && 2<=Arg_4 && 0<=Arg_1 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_9 && Arg_9<=Arg_6 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_7<=0 && 0<=Arg_7 && Arg_15<=Arg_17 && Arg_17<=Arg_15 && Arg_24<=0 && 0<=Arg_24 && Arg_3<=0 && 0<=Arg_3 && 2<=Arg_4 && 0<=1+Arg_17 && 2<=C_P && 0<=Arg_15 && D_P<=E1_P && E1_P<=D_P && D_P<=C1_P && C1_P<=D_P && Arg_3<=0 && 0<=Arg_3 of depth 1:

new bound:

12*Arg_15+4 {O(n)}

MPRF:

n_f8___2 [Arg_15+1 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
33: n_f16___4->n_f16___4: 3*Arg_12+1 {O(n)}
34: n_f16___4->n_f8___5: 1 {O(1)}
35: n_f16___6->n_f16___4: 1 {O(1)}
36: n_f16___6->n_f8___5: 1 {O(1)}
37: n_f16___7->n_f16___6: 1 {O(1)}
38: n_f16___7->n_f8___5: 1 {O(1)}
39: n_f1___11->n_f16___7: 1 {O(1)}
40: n_f1___11->n_f1___8: 1 {O(1)}
41: n_f1___8->n_f16___7: 1 {O(1)}
42: n_f1___8->n_f1___8: inf {Infinity}
43: n_f8___2->n_f10___1: 1 {O(1)}
44: n_f8___2->n_f8___2: 12*Arg_15+4 {O(n)}
45: n_f8___5->n_f10___3: 1 {O(1)}
46: n_f8___5->n_f8___2: 1 {O(1)}
47: n_f9->n_f10___10: 1 {O(1)}
48: n_f9->n_f10___9: 1 {O(1)}
49: n_f9->n_f1___11: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
33: n_f16___4->n_f16___4: 3*Arg_12+1 {O(n)}
34: n_f16___4->n_f8___5: 1 {O(1)}
35: n_f16___6->n_f16___4: 1 {O(1)}
36: n_f16___6->n_f8___5: 1 {O(1)}
37: n_f16___7->n_f16___6: 1 {O(1)}
38: n_f16___7->n_f8___5: 1 {O(1)}
39: n_f1___11->n_f16___7: 1 {O(1)}
40: n_f1___11->n_f1___8: 1 {O(1)}
41: n_f1___8->n_f16___7: 1 {O(1)}
42: n_f1___8->n_f1___8: inf {Infinity}
43: n_f8___2->n_f10___1: 1 {O(1)}
44: n_f8___2->n_f8___2: 12*Arg_15+4 {O(n)}
45: n_f8___5->n_f10___3: 1 {O(1)}
46: n_f8___5->n_f8___2: 1 {O(1)}
47: n_f9->n_f10___10: 1 {O(1)}
48: n_f9->n_f10___9: 1 {O(1)}
49: n_f9->n_f1___11: 1 {O(1)}

Sizebounds

33: n_f16___4->n_f16___4, Arg_1: 3*Arg_1 {O(n)}
33: n_f16___4->n_f16___4, Arg_2: 3*Arg_12+3 {O(n)}
33: n_f16___4->n_f16___4, Arg_3: 3*Arg_3 {O(n)}
33: n_f16___4->n_f16___4, Arg_5: 3*Arg_5 {O(n)}
33: n_f16___4->n_f16___4, Arg_7: 3*Arg_7 {O(n)}
33: n_f16___4->n_f16___4, Arg_9: 3*Arg_9 {O(n)}
33: n_f16___4->n_f16___4, Arg_11: 3*Arg_11 {O(n)}
33: n_f16___4->n_f16___4, Arg_12: 3*Arg_12+1 {O(n)}
33: n_f16___4->n_f16___4, Arg_13: 3*Arg_13 {O(n)}
33: n_f16___4->n_f16___4, Arg_15: 3*Arg_15 {O(n)}
33: n_f16___4->n_f16___4, Arg_17: 3*Arg_17 {O(n)}
33: n_f16___4->n_f16___4, Arg_23: 2 {O(1)}
33: n_f16___4->n_f16___4, Arg_26: 3*Arg_12+7 {O(n)}
33: n_f16___4->n_f16___4, Arg_27: 6*Arg_12+3 {O(n)}
34: n_f16___4->n_f8___5, Arg_1: 6*Arg_15 {O(n)}
34: n_f16___4->n_f8___5, Arg_2: 6*Arg_15+2 {O(n)}
34: n_f16___4->n_f8___5, Arg_3: 0 {O(1)}
34: n_f16___4->n_f8___5, Arg_7: 0 {O(1)}
34: n_f16___4->n_f8___5, Arg_12: 6*Arg_12+1 {O(n)}
34: n_f16___4->n_f8___5, Arg_15: 6*Arg_15 {O(n)}
34: n_f16___4->n_f8___5, Arg_17: 6*Arg_17 {O(n)}
34: n_f16___4->n_f8___5, Arg_22: 0 {O(1)}
34: n_f16___4->n_f8___5, Arg_23: 2 {O(1)}
34: n_f16___4->n_f8___5, Arg_24: 0 {O(1)}
34: n_f16___4->n_f8___5, Arg_26: 3*Arg_12+9 {O(n)}
34: n_f16___4->n_f8___5, Arg_27: 9*Arg_12+3 {O(n)}
35: n_f16___6->n_f16___4, Arg_1: 3*Arg_1 {O(n)}
35: n_f16___6->n_f16___4, Arg_2: 2 {O(1)}
35: n_f16___6->n_f16___4, Arg_3: 3*Arg_3 {O(n)}
35: n_f16___6->n_f16___4, Arg_5: 3*Arg_5 {O(n)}
35: n_f16___6->n_f16___4, Arg_7: 3*Arg_7 {O(n)}
35: n_f16___6->n_f16___4, Arg_9: 3*Arg_9 {O(n)}
35: n_f16___6->n_f16___4, Arg_11: 3*Arg_11 {O(n)}
35: n_f16___6->n_f16___4, Arg_12: 3*Arg_12 {O(n)}
35: n_f16___6->n_f16___4, Arg_13: 3*Arg_13 {O(n)}
35: n_f16___6->n_f16___4, Arg_15: 3*Arg_15 {O(n)}
35: n_f16___6->n_f16___4, Arg_17: 3*Arg_17 {O(n)}
35: n_f16___6->n_f16___4, Arg_23: 2 {O(1)}
35: n_f16___6->n_f16___4, Arg_26: 2 {O(1)}
35: n_f16___6->n_f16___4, Arg_27: 3*Arg_12 {O(n)}
36: n_f16___6->n_f8___5, Arg_1: 3*Arg_15 {O(n)}
36: n_f16___6->n_f8___5, Arg_2: 3*Arg_15+1 {O(n)}
36: n_f16___6->n_f8___5, Arg_3: 0 {O(1)}
36: n_f16___6->n_f8___5, Arg_7: 0 {O(1)}
36: n_f16___6->n_f8___5, Arg_12: 3*Arg_12 {O(n)}
36: n_f16___6->n_f8___5, Arg_15: 3*Arg_15 {O(n)}
36: n_f16___6->n_f8___5, Arg_17: 3*Arg_17 {O(n)}
36: n_f16___6->n_f8___5, Arg_22: 0 {O(1)}
36: n_f16___6->n_f8___5, Arg_23: 2 {O(1)}
36: n_f16___6->n_f8___5, Arg_24: 0 {O(1)}
36: n_f16___6->n_f8___5, Arg_26: 1 {O(1)}
36: n_f16___6->n_f8___5, Arg_27: 3*Arg_12 {O(n)}
37: n_f16___7->n_f16___6, Arg_1: 3*Arg_1 {O(n)}
37: n_f16___7->n_f16___6, Arg_2: 1 {O(1)}
37: n_f16___7->n_f16___6, Arg_3: 3*Arg_3 {O(n)}
37: n_f16___7->n_f16___6, Arg_5: 3*Arg_5 {O(n)}
37: n_f16___7->n_f16___6, Arg_7: 3*Arg_7 {O(n)}
37: n_f16___7->n_f16___6, Arg_9: 3*Arg_9 {O(n)}
37: n_f16___7->n_f16___6, Arg_11: 3*Arg_11 {O(n)}
37: n_f16___7->n_f16___6, Arg_12: 3*Arg_12 {O(n)}
37: n_f16___7->n_f16___6, Arg_13: 3*Arg_13 {O(n)}
37: n_f16___7->n_f16___6, Arg_15: 3*Arg_15 {O(n)}
37: n_f16___7->n_f16___6, Arg_17: 3*Arg_17 {O(n)}
37: n_f16___7->n_f16___6, Arg_23: 2 {O(1)}
37: n_f16___7->n_f16___6, Arg_26: 1 {O(1)}
37: n_f16___7->n_f16___6, Arg_27: 3*Arg_12 {O(n)}
38: n_f16___7->n_f8___5, Arg_1: 3*Arg_15 {O(n)}
38: n_f16___7->n_f8___5, Arg_2: 3*Arg_15+2 {O(n)}
38: n_f16___7->n_f8___5, Arg_3: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_5: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_6: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_7: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_9: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_11: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_12: 3*Arg_12 {O(n)}
38: n_f16___7->n_f8___5, Arg_13: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_15: 3*Arg_15 {O(n)}
38: n_f16___7->n_f8___5, Arg_17: 3*Arg_17 {O(n)}
38: n_f16___7->n_f8___5, Arg_22: 3*Arg_22 {O(n)}
38: n_f16___7->n_f8___5, Arg_23: 2 {O(1)}
38: n_f16___7->n_f8___5, Arg_24: 0 {O(1)}
38: n_f16___7->n_f8___5, Arg_26: 3*Arg_26 {O(n)}
38: n_f16___7->n_f8___5, Arg_27: 3*Arg_27 {O(n)}
39: n_f1___11->n_f16___7, Arg_1: Arg_1 {O(n)}
39: n_f1___11->n_f16___7, Arg_2: 0 {O(1)}
39: n_f1___11->n_f16___7, Arg_3: Arg_3 {O(n)}
39: n_f1___11->n_f16___7, Arg_5: Arg_5 {O(n)}
39: n_f1___11->n_f16___7, Arg_7: Arg_7 {O(n)}
39: n_f1___11->n_f16___7, Arg_9: Arg_9 {O(n)}
39: n_f1___11->n_f16___7, Arg_11: Arg_11 {O(n)}
39: n_f1___11->n_f16___7, Arg_12: Arg_12 {O(n)}
39: n_f1___11->n_f16___7, Arg_13: Arg_13 {O(n)}
39: n_f1___11->n_f16___7, Arg_15: Arg_15 {O(n)}
39: n_f1___11->n_f16___7, Arg_17: Arg_17 {O(n)}
39: n_f1___11->n_f16___7, Arg_22: Arg_22 {O(n)}
39: n_f1___11->n_f16___7, Arg_23: 2 {O(1)}
39: n_f1___11->n_f16___7, Arg_26: Arg_26 {O(n)}
39: n_f1___11->n_f16___7, Arg_27: Arg_27 {O(n)}
39: n_f1___11->n_f16___7, Arg_33: Arg_33 {O(n)}
40: n_f1___11->n_f1___8, Arg_0: 3 {O(1)}
40: n_f1___11->n_f1___8, Arg_1: Arg_1 {O(n)}
40: n_f1___11->n_f1___8, Arg_2: Arg_2 {O(n)}
40: n_f1___11->n_f1___8, Arg_3: Arg_3 {O(n)}
40: n_f1___11->n_f1___8, Arg_5: Arg_5 {O(n)}
40: n_f1___11->n_f1___8, Arg_6: Arg_6 {O(n)}
40: n_f1___11->n_f1___8, Arg_7: Arg_7 {O(n)}
40: n_f1___11->n_f1___8, Arg_9: Arg_9 {O(n)}
40: n_f1___11->n_f1___8, Arg_11: Arg_11 {O(n)}
40: n_f1___11->n_f1___8, Arg_12: Arg_12 {O(n)}
40: n_f1___11->n_f1___8, Arg_13: Arg_13 {O(n)}
40: n_f1___11->n_f1___8, Arg_15: Arg_15 {O(n)}
40: n_f1___11->n_f1___8, Arg_17: Arg_17 {O(n)}
40: n_f1___11->n_f1___8, Arg_22: Arg_22 {O(n)}
40: n_f1___11->n_f1___8, Arg_23: 2 {O(1)}
40: n_f1___11->n_f1___8, Arg_24: Arg_24 {O(n)}
40: n_f1___11->n_f1___8, Arg_26: Arg_26 {O(n)}
40: n_f1___11->n_f1___8, Arg_27: Arg_27 {O(n)}
40: n_f1___11->n_f1___8, Arg_33: 2 {O(1)}
40: n_f1___11->n_f1___8, Arg_37: Arg_37 {O(n)}
41: n_f1___8->n_f16___7, Arg_1: 2*Arg_1 {O(n)}
41: n_f1___8->n_f16___7, Arg_2: 0 {O(1)}
41: n_f1___8->n_f16___7, Arg_3: 2*Arg_3 {O(n)}
41: n_f1___8->n_f16___7, Arg_5: 2*Arg_5 {O(n)}
41: n_f1___8->n_f16___7, Arg_7: 2*Arg_7 {O(n)}
41: n_f1___8->n_f16___7, Arg_9: 2*Arg_9 {O(n)}
41: n_f1___8->n_f16___7, Arg_11: 2*Arg_11 {O(n)}
41: n_f1___8->n_f16___7, Arg_12: 2*Arg_12 {O(n)}
41: n_f1___8->n_f16___7, Arg_13: 2*Arg_13 {O(n)}
41: n_f1___8->n_f16___7, Arg_15: 2*Arg_15 {O(n)}
41: n_f1___8->n_f16___7, Arg_17: 2*Arg_17 {O(n)}
41: n_f1___8->n_f16___7, Arg_22: 2*Arg_22 {O(n)}
41: n_f1___8->n_f16___7, Arg_23: 2 {O(1)}
41: n_f1___8->n_f16___7, Arg_26: 2*Arg_26 {O(n)}
41: n_f1___8->n_f16___7, Arg_27: 2*Arg_27 {O(n)}
42: n_f1___8->n_f1___8, Arg_1: Arg_1 {O(n)}
42: n_f1___8->n_f1___8, Arg_2: Arg_2 {O(n)}
42: n_f1___8->n_f1___8, Arg_3: Arg_3 {O(n)}
42: n_f1___8->n_f1___8, Arg_5: Arg_5 {O(n)}
42: n_f1___8->n_f1___8, Arg_6: Arg_6 {O(n)}
42: n_f1___8->n_f1___8, Arg_7: Arg_7 {O(n)}
42: n_f1___8->n_f1___8, Arg_9: Arg_9 {O(n)}
42: n_f1___8->n_f1___8, Arg_11: Arg_11 {O(n)}
42: n_f1___8->n_f1___8, Arg_12: Arg_12 {O(n)}
42: n_f1___8->n_f1___8, Arg_13: Arg_13 {O(n)}
42: n_f1___8->n_f1___8, Arg_15: Arg_15 {O(n)}
42: n_f1___8->n_f1___8, Arg_17: Arg_17 {O(n)}
42: n_f1___8->n_f1___8, Arg_22: Arg_22 {O(n)}
42: n_f1___8->n_f1___8, Arg_23: 2 {O(1)}
42: n_f1___8->n_f1___8, Arg_24: Arg_24 {O(n)}
42: n_f1___8->n_f1___8, Arg_26: Arg_26 {O(n)}
42: n_f1___8->n_f1___8, Arg_27: Arg_27 {O(n)}
42: n_f1___8->n_f1___8, Arg_37: Arg_37 {O(n)}
43: n_f8___2->n_f10___1, Arg_1: 24*Arg_15 {O(n)}
43: n_f8___2->n_f10___1, Arg_2: 24*Arg_15+10 {O(n)}
43: n_f8___2->n_f10___1, Arg_12: 24*Arg_12+2 {O(n)}
43: n_f8___2->n_f10___1, Arg_15: 24*Arg_15+7 {O(n)}
43: n_f8___2->n_f10___1, Arg_17: 36*Arg_15+12 {O(n)}
43: n_f8___2->n_f10___1, Arg_22: 6*Arg_22 {O(n)}
43: n_f8___2->n_f10___1, Arg_23: 2 {O(1)}
43: n_f8___2->n_f10___1, Arg_24: 0 {O(1)}
43: n_f8___2->n_f10___1, Arg_26: 6*Arg_12+6*Arg_26+20 {O(n)}
43: n_f8___2->n_f10___1, Arg_27: 24*Arg_12+6*Arg_27+6 {O(n)}
44: n_f8___2->n_f8___2, Arg_1: 12*Arg_15 {O(n)}
44: n_f8___2->n_f8___2, Arg_2: 12*Arg_15+5 {O(n)}
44: n_f8___2->n_f8___2, Arg_3: 0 {O(1)}
44: n_f8___2->n_f8___2, Arg_7: 0 {O(1)}
44: n_f8___2->n_f8___2, Arg_12: 12*Arg_12+1 {O(n)}
44: n_f8___2->n_f8___2, Arg_15: 12*Arg_15+4 {O(n)}
44: n_f8___2->n_f8___2, Arg_17: 24*Arg_15+9 {O(n)}
44: n_f8___2->n_f8___2, Arg_22: 3*Arg_22 {O(n)}
44: n_f8___2->n_f8___2, Arg_23: 2 {O(1)}
44: n_f8___2->n_f8___2, Arg_24: 0 {O(1)}
44: n_f8___2->n_f8___2, Arg_26: 3*Arg_12+3*Arg_26+10 {O(n)}
44: n_f8___2->n_f8___2, Arg_27: 12*Arg_12+3*Arg_27+3 {O(n)}
45: n_f8___5->n_f10___3, Arg_1: 12*Arg_15 {O(n)}
45: n_f8___5->n_f10___3, Arg_2: 12*Arg_15+5 {O(n)}
45: n_f8___5->n_f10___3, Arg_6: 0 {O(1)}
45: n_f8___5->n_f10___3, Arg_12: 12*Arg_12+1 {O(n)}
45: n_f8___5->n_f10___3, Arg_15: 12*Arg_15 {O(n)}
45: n_f8___5->n_f10___3, Arg_17: 12*Arg_17 {O(n)}
45: n_f8___5->n_f10___3, Arg_22: 3*Arg_22 {O(n)}
45: n_f8___5->n_f10___3, Arg_23: 2 {O(1)}
45: n_f8___5->n_f10___3, Arg_24: 0 {O(1)}
45: n_f8___5->n_f10___3, Arg_26: 3*Arg_12+3*Arg_26+10 {O(n)}
45: n_f8___5->n_f10___3, Arg_27: 12*Arg_12+3*Arg_27+3 {O(n)}
46: n_f8___5->n_f8___2, Arg_1: 12*Arg_15 {O(n)}
46: n_f8___5->n_f8___2, Arg_2: 12*Arg_15+5 {O(n)}
46: n_f8___5->n_f8___2, Arg_3: 0 {O(1)}
46: n_f8___5->n_f8___2, Arg_7: 0 {O(1)}
46: n_f8___5->n_f8___2, Arg_12: 12*Arg_12+1 {O(n)}
46: n_f8___5->n_f8___2, Arg_15: 12*Arg_15+3 {O(n)}
46: n_f8___5->n_f8___2, Arg_17: 12*Arg_15+3 {O(n)}
46: n_f8___5->n_f8___2, Arg_22: 3*Arg_22 {O(n)}
46: n_f8___5->n_f8___2, Arg_23: 2 {O(1)}
46: n_f8___5->n_f8___2, Arg_24: 0 {O(1)}
46: n_f8___5->n_f8___2, Arg_26: 3*Arg_12+3*Arg_26+10 {O(n)}
46: n_f8___5->n_f8___2, Arg_27: 12*Arg_12+3*Arg_27+3 {O(n)}
47: n_f9->n_f10___10, Arg_1: Arg_1 {O(n)}
47: n_f9->n_f10___10, Arg_2: Arg_2 {O(n)}
47: n_f9->n_f10___10, Arg_6: 0 {O(1)}
47: n_f9->n_f10___10, Arg_12: Arg_12 {O(n)}
47: n_f9->n_f10___10, Arg_15: Arg_15 {O(n)}
47: n_f9->n_f10___10, Arg_17: Arg_17 {O(n)}
47: n_f9->n_f10___10, Arg_22: Arg_22 {O(n)}
47: n_f9->n_f10___10, Arg_23: Arg_23 {O(n)}
47: n_f9->n_f10___10, Arg_24: 0 {O(1)}
47: n_f9->n_f10___10, Arg_26: Arg_26 {O(n)}
47: n_f9->n_f10___10, Arg_27: Arg_27 {O(n)}
47: n_f9->n_f10___10, Arg_33: Arg_33 {O(n)}
47: n_f9->n_f10___10, Arg_37: Arg_37 {O(n)}
48: n_f9->n_f10___9, Arg_1: Arg_1 {O(n)}
48: n_f9->n_f10___9, Arg_2: Arg_2 {O(n)}
48: n_f9->n_f10___9, Arg_4: 1 {O(1)}
48: n_f9->n_f10___9, Arg_12: Arg_12 {O(n)}
48: n_f9->n_f10___9, Arg_15: Arg_15 {O(n)}
48: n_f9->n_f10___9, Arg_17: Arg_17 {O(n)}
48: n_f9->n_f10___9, Arg_22: Arg_22 {O(n)}
48: n_f9->n_f10___9, Arg_23: Arg_23 {O(n)}
48: n_f9->n_f10___9, Arg_24: 0 {O(1)}
48: n_f9->n_f10___9, Arg_26: Arg_26 {O(n)}
48: n_f9->n_f10___9, Arg_27: Arg_27 {O(n)}
48: n_f9->n_f10___9, Arg_33: Arg_33 {O(n)}
48: n_f9->n_f10___9, Arg_37: Arg_37 {O(n)}
49: n_f9->n_f1___11, Arg_0: 2 {O(1)}
49: n_f9->n_f1___11, Arg_1: Arg_1 {O(n)}
49: n_f9->n_f1___11, Arg_2: Arg_2 {O(n)}
49: n_f9->n_f1___11, Arg_3: Arg_3 {O(n)}
49: n_f9->n_f1___11, Arg_5: Arg_5 {O(n)}
49: n_f9->n_f1___11, Arg_6: Arg_6 {O(n)}
49: n_f9->n_f1___11, Arg_7: Arg_7 {O(n)}
49: n_f9->n_f1___11, Arg_9: Arg_9 {O(n)}
49: n_f9->n_f1___11, Arg_11: Arg_11 {O(n)}
49: n_f9->n_f1___11, Arg_12: Arg_12 {O(n)}
49: n_f9->n_f1___11, Arg_13: Arg_13 {O(n)}
49: n_f9->n_f1___11, Arg_15: Arg_15 {O(n)}
49: n_f9->n_f1___11, Arg_17: Arg_17 {O(n)}
49: n_f9->n_f1___11, Arg_22: Arg_22 {O(n)}
49: n_f9->n_f1___11, Arg_23: 2 {O(1)}
49: n_f9->n_f1___11, Arg_24: Arg_24 {O(n)}
49: n_f9->n_f1___11, Arg_26: Arg_26 {O(n)}
49: n_f9->n_f1___11, Arg_27: Arg_27 {O(n)}
49: n_f9->n_f1___11, Arg_33: Arg_33 {O(n)}
49: n_f9->n_f1___11, Arg_37: Arg_37 {O(n)}