Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19
Temp_Vars: B_P, D_P, F_P, H_P, J_P, L_P, M_P, N_P, NoDet0, NoDet1, NoDet2, NoDet3, NoDet4, NoDet5, NoDet6, NoDet7, NoDet8, O_P
Locations: n_f0, n_f101___1, n_f14___5, n_f14___6, n_f14___7, n_f57___2, n_f57___3, n_f57___4, n_f6___10, n_f6___8, n_f6___9
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f6___10(0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19)
1:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f14___5(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
2:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f57___4(Arg_0,Arg_1,7,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 1+Arg_2<=0
3:n_f14___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f14___5(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
4:n_f14___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f14___6(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:0<=Arg_2 && 0<=Arg_2 && Arg_2<=7 && 7<=Arg_2 && 64<=Arg_1 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
5:n_f57___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f101___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 1+Arg_2<=0
6:n_f57___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f57___2(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
7:n_f57___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f57___2(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
8:n_f57___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f57___3(Arg_0,Arg_1,Arg_2-1,D_P,NoDet0,F_P,NoDet1,H_P,NoDet2,J_P,NoDet3,L_P,M_P,N_P,O_P,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8):|:0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && Arg_2<=7 && 7<=Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
9:n_f6___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f6___9(NoDet0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_1<=63 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=63 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1
10:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f14___7(Arg_0,Arg_1,7,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_1<=64 && 64<=Arg_1
11:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f6___8(NoDet0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1
12:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19) -> n_f6___8(NoDet0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19):|:Arg_1<=63 && Arg_1<=63 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1

Preprocessing

Eliminate variables {NoDet1,NoDet2,NoDet3,NoDet4,NoDet5,NoDet6,NoDet7,NoDet8,Arg_4,Arg_6,Arg_8,Arg_10,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19} that do not contribute to the problem

Found invariant Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f6___10

Found invariant Arg_2<=6 && 58+Arg_2<=Arg_1 && Arg_1+Arg_2<=70 && 6<=Arg_2 && 70<=Arg_1+Arg_2 && Arg_1<=58+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f57___3

Found invariant Arg_2<=7 && 57+Arg_2<=Arg_1 && Arg_1+Arg_2<=71 && 7<=Arg_2 && 71<=Arg_1+Arg_2 && Arg_1<=57+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f14___7

Found invariant 1+Arg_2<=0 && 65+Arg_2<=Arg_1 && Arg_1+Arg_2<=63 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f101___1

Found invariant Arg_1<=1 && 1<=Arg_1 for location n_f6___9

Found invariant Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f14___5

Found invariant Arg_2<=7 && 57+Arg_2<=Arg_1 && Arg_1+Arg_2<=71 && 7<=Arg_2 && 71<=Arg_1+Arg_2 && Arg_1<=57+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f57___4

Found invariant Arg_2<=6 && 58+Arg_2<=Arg_1 && Arg_1+Arg_2<=70 && 6<=Arg_2 && 70<=Arg_1+Arg_2 && Arg_1<=58+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f14___6

Found invariant Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 for location n_f57___2

Found invariant Arg_1<=64 && 2<=Arg_1 for location n_f6___8

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_5, Arg_7, Arg_9, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: B_P, D_P, F_P, H_P, J_P, L_P, M_P, N_P, NoDet0, O_P
Locations: n_f0, n_f101___1, n_f14___5, n_f14___6, n_f14___7, n_f57___2, n_f57___3, n_f57___4, n_f6___10, n_f6___8, n_f6___9
Transitions:
26:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f6___10(0,0,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14)
27:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f14___5(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
28:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f57___4(Arg_0,Arg_1,7,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 1+Arg_2<=0
29:n_f14___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f14___5(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=6 && 58+Arg_2<=Arg_1 && Arg_1+Arg_2<=70 && 6<=Arg_2 && 70<=Arg_1+Arg_2 && Arg_1<=58+Arg_2 && Arg_1<=64 && 64<=Arg_1 && 0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
30:n_f14___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f14___6(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=7 && 57+Arg_2<=Arg_1 && Arg_1+Arg_2<=71 && 7<=Arg_2 && 71<=Arg_1+Arg_2 && Arg_1<=57+Arg_2 && Arg_1<=64 && 64<=Arg_1 && 0<=Arg_2 && 0<=Arg_2 && Arg_2<=7 && 7<=Arg_2 && 64<=Arg_1 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
31:n_f57___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f101___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 1+Arg_2<=0
32:n_f57___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f57___2(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
33:n_f57___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f57___2(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=6 && 58+Arg_2<=Arg_1 && Arg_1+Arg_2<=70 && 6<=Arg_2 && 70<=Arg_1+Arg_2 && Arg_1<=58+Arg_2 && Arg_1<=64 && 64<=Arg_1 && 0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
34:n_f57___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f57___3(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=7 && 57+Arg_2<=Arg_1 && Arg_1+Arg_2<=71 && 7<=Arg_2 && 71<=Arg_1+Arg_2 && Arg_1<=57+Arg_2 && Arg_1<=64 && 64<=Arg_1 && 0<=Arg_2 && 0<=Arg_2 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && Arg_2<=7 && 7<=Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P
35:n_f6___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f6___9(NoDet0,B_P,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=63 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=63 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1
36:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f14___7(Arg_0,Arg_1,7,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_1<=64 && 2<=Arg_1 && Arg_1<=64 && 64<=Arg_1
37:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f6___8(NoDet0,B_P,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_1<=64 && 2<=Arg_1 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1
38:n_f6___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f6___8(NoDet0,B_P,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_1<=1 && 1<=Arg_1 && Arg_1<=63 && Arg_1<=63 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1

MPRF for transition 37:n_f6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f6___8(NoDet0,B_P,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_1<=64 && 2<=Arg_1 && Arg_1<=64 && B_P<=64 && Arg_1+1<=B_P && B_P<=1+Arg_1 of depth 1:

new bound:

67 {O(1)}

MPRF:

n_f6___8 [65-Arg_1 ]

MPRF for transition 27:n_f14___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f14___5(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P of depth 1:

new bound:

6 {O(1)}

MPRF:

n_f14___5 [Arg_2+1 ]

MPRF for transition 32:n_f57___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_7,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f57___2(Arg_0,Arg_1,Arg_2-1,D_P,F_P,H_P,J_P,L_P,M_P,N_P,O_P):|:Arg_2<=5 && 59+Arg_2<=Arg_1 && Arg_1+Arg_2<=69 && 0<=1+Arg_2 && 63<=Arg_1+Arg_2 && Arg_1<=65+Arg_2 && Arg_1<=64 && 64<=Arg_1 && Arg_3<=Arg_9+Arg_12 && Arg_9+Arg_12<=Arg_3 && Arg_5+Arg_7<=Arg_13 && Arg_13<=Arg_5+Arg_7 && Arg_5<=Arg_7+Arg_14 && Arg_7+Arg_14<=Arg_5 && Arg_3+Arg_9<=Arg_11 && Arg_11<=Arg_3+Arg_9 && 0<=1+Arg_2 && 0<=Arg_2 && D_P<=J_P+M_P && J_P+M_P<=D_P && D_P+J_P<=L_P && L_P<=D_P+J_P && F_P+H_P<=N_P && N_P<=F_P+H_P && F_P<=H_P+O_P && H_P+O_P<=F_P of depth 1:

new bound:

6 {O(1)}

MPRF:

n_f57___2 [Arg_2+1 ]

All Bounds

Timebounds

Overall timebound:89 {O(1)}
26: n_f0->n_f6___10: 1 {O(1)}
27: n_f14___5->n_f14___5: 6 {O(1)}
28: n_f14___5->n_f57___4: 1 {O(1)}
29: n_f14___6->n_f14___5: 1 {O(1)}
30: n_f14___7->n_f14___6: 1 {O(1)}
31: n_f57___2->n_f101___1: 1 {O(1)}
32: n_f57___2->n_f57___2: 6 {O(1)}
33: n_f57___3->n_f57___2: 1 {O(1)}
34: n_f57___4->n_f57___3: 1 {O(1)}
35: n_f6___10->n_f6___9: 1 {O(1)}
36: n_f6___8->n_f14___7: 1 {O(1)}
37: n_f6___8->n_f6___8: 67 {O(1)}
38: n_f6___9->n_f6___8: 1 {O(1)}

Costbounds

Overall costbound: 89 {O(1)}
26: n_f0->n_f6___10: 1 {O(1)}
27: n_f14___5->n_f14___5: 6 {O(1)}
28: n_f14___5->n_f57___4: 1 {O(1)}
29: n_f14___6->n_f14___5: 1 {O(1)}
30: n_f14___7->n_f14___6: 1 {O(1)}
31: n_f57___2->n_f101___1: 1 {O(1)}
32: n_f57___2->n_f57___2: 6 {O(1)}
33: n_f57___3->n_f57___2: 1 {O(1)}
34: n_f57___4->n_f57___3: 1 {O(1)}
35: n_f6___10->n_f6___9: 1 {O(1)}
36: n_f6___8->n_f14___7: 1 {O(1)}
37: n_f6___8->n_f6___8: 67 {O(1)}
38: n_f6___9->n_f6___8: 1 {O(1)}

Sizebounds

26: n_f0->n_f6___10, Arg_0: 0 {O(1)}
26: n_f0->n_f6___10, Arg_1: 0 {O(1)}
26: n_f0->n_f6___10, Arg_2: Arg_2 {O(n)}
26: n_f0->n_f6___10, Arg_3: Arg_3 {O(n)}
26: n_f0->n_f6___10, Arg_5: Arg_5 {O(n)}
26: n_f0->n_f6___10, Arg_7: Arg_7 {O(n)}
26: n_f0->n_f6___10, Arg_9: Arg_9 {O(n)}
26: n_f0->n_f6___10, Arg_11: Arg_11 {O(n)}
26: n_f0->n_f6___10, Arg_12: Arg_12 {O(n)}
26: n_f0->n_f6___10, Arg_13: Arg_13 {O(n)}
26: n_f0->n_f6___10, Arg_14: Arg_14 {O(n)}
27: n_f14___5->n_f14___5, Arg_1: 64 {O(1)}
27: n_f14___5->n_f14___5, Arg_2: 4 {O(1)}
28: n_f14___5->n_f57___4, Arg_1: 64 {O(1)}
28: n_f14___5->n_f57___4, Arg_2: 7 {O(1)}
29: n_f14___6->n_f14___5, Arg_1: 64 {O(1)}
29: n_f14___6->n_f14___5, Arg_2: 5 {O(1)}
30: n_f14___7->n_f14___6, Arg_1: 64 {O(1)}
30: n_f14___7->n_f14___6, Arg_2: 6 {O(1)}
31: n_f57___2->n_f101___1, Arg_1: 64 {O(1)}
31: n_f57___2->n_f101___1, Arg_2: 1 {O(1)}
32: n_f57___2->n_f57___2, Arg_1: 64 {O(1)}
32: n_f57___2->n_f57___2, Arg_2: 4 {O(1)}
33: n_f57___3->n_f57___2, Arg_1: 64 {O(1)}
33: n_f57___3->n_f57___2, Arg_2: 5 {O(1)}
34: n_f57___4->n_f57___3, Arg_1: 64 {O(1)}
34: n_f57___4->n_f57___3, Arg_2: 6 {O(1)}
35: n_f6___10->n_f6___9, Arg_1: 1 {O(1)}
35: n_f6___10->n_f6___9, Arg_2: Arg_2 {O(n)}
35: n_f6___10->n_f6___9, Arg_3: Arg_3 {O(n)}
35: n_f6___10->n_f6___9, Arg_5: Arg_5 {O(n)}
35: n_f6___10->n_f6___9, Arg_7: Arg_7 {O(n)}
35: n_f6___10->n_f6___9, Arg_9: Arg_9 {O(n)}
35: n_f6___10->n_f6___9, Arg_11: Arg_11 {O(n)}
35: n_f6___10->n_f6___9, Arg_12: Arg_12 {O(n)}
35: n_f6___10->n_f6___9, Arg_13: Arg_13 {O(n)}
35: n_f6___10->n_f6___9, Arg_14: Arg_14 {O(n)}
36: n_f6___8->n_f14___7, Arg_1: 64 {O(1)}
36: n_f6___8->n_f14___7, Arg_2: 7 {O(1)}
36: n_f6___8->n_f14___7, Arg_3: Arg_3 {O(n)}
36: n_f6___8->n_f14___7, Arg_5: Arg_5 {O(n)}
36: n_f6___8->n_f14___7, Arg_7: Arg_7 {O(n)}
36: n_f6___8->n_f14___7, Arg_9: Arg_9 {O(n)}
36: n_f6___8->n_f14___7, Arg_11: Arg_11 {O(n)}
36: n_f6___8->n_f14___7, Arg_12: Arg_12 {O(n)}
36: n_f6___8->n_f14___7, Arg_13: Arg_13 {O(n)}
36: n_f6___8->n_f14___7, Arg_14: Arg_14 {O(n)}
37: n_f6___8->n_f6___8, Arg_1: 64 {O(1)}
37: n_f6___8->n_f6___8, Arg_2: Arg_2 {O(n)}
37: n_f6___8->n_f6___8, Arg_3: Arg_3 {O(n)}
37: n_f6___8->n_f6___8, Arg_5: Arg_5 {O(n)}
37: n_f6___8->n_f6___8, Arg_7: Arg_7 {O(n)}
37: n_f6___8->n_f6___8, Arg_9: Arg_9 {O(n)}
37: n_f6___8->n_f6___8, Arg_11: Arg_11 {O(n)}
37: n_f6___8->n_f6___8, Arg_12: Arg_12 {O(n)}
37: n_f6___8->n_f6___8, Arg_13: Arg_13 {O(n)}
37: n_f6___8->n_f6___8, Arg_14: Arg_14 {O(n)}
38: n_f6___9->n_f6___8, Arg_1: 2 {O(1)}
38: n_f6___9->n_f6___8, Arg_2: Arg_2 {O(n)}
38: n_f6___9->n_f6___8, Arg_3: Arg_3 {O(n)}
38: n_f6___9->n_f6___8, Arg_5: Arg_5 {O(n)}
38: n_f6___9->n_f6___8, Arg_7: Arg_7 {O(n)}
38: n_f6___9->n_f6___8, Arg_9: Arg_9 {O(n)}
38: n_f6___9->n_f6___8, Arg_11: Arg_11 {O(n)}
38: n_f6___9->n_f6___8, Arg_12: Arg_12 {O(n)}
38: n_f6___9->n_f6___8, Arg_13: Arg_13 {O(n)}
38: n_f6___9->n_f6___8, Arg_14: Arg_14 {O(n)}