Initial Problem
Start: n_eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_eval_perfect1_0___39, n_eval_perfect1_12___23, n_eval_perfect1_13___22, n_eval_perfect1_14___19, n_eval_perfect1_14___20, n_eval_perfect1_14___21, n_eval_perfect1_15___18, n_eval_perfect1_15___4, n_eval_perfect1_15___7, n_eval_perfect1_16___17, n_eval_perfect1_16___3, n_eval_perfect1_16___6, n_eval_perfect1_17___16, n_eval_perfect1_17___2, n_eval_perfect1_17___5, n_eval_perfect1_1___38, n_eval_perfect1_2___35, n_eval_perfect1_3___34, n_eval_perfect1_4___33, n_eval_perfect1_5___32, n_eval_perfect1_6___31, n_eval_perfect1_7___30, n_eval_perfect1_8___29, n_eval_perfect1_bb0_in___40, n_eval_perfect1_bb1_in___37, n_eval_perfect1_bb2_in___15, n_eval_perfect1_bb2_in___28, n_eval_perfect1_bb3_in___25, n_eval_perfect1_bb3_in___27, n_eval_perfect1_bb4_in___26, n_eval_perfect1_bb5_in___24, n_eval_perfect1_bb6_in___14, n_eval_perfect1_bb7_in___11, n_eval_perfect1_bb7_in___12, n_eval_perfect1_bb7_in___13, n_eval_perfect1_bb7_in___36, n_eval_perfect1_start, n_eval_perfect1_stop___1, n_eval_perfect1_stop___10, n_eval_perfect1_stop___8, n_eval_perfect1_stop___9
Transitions:
0:n_eval_perfect1_0___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
1:n_eval_perfect1_12___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5
2:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && 0<Arg_6
3:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<0
4:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,0,Arg_7):|:Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<=0 && 0<=Arg_6
5:n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
6:n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
7:n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5
8:n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5
9:n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
10:n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_3<=Arg_7 && Arg_7<=Arg_3
11:n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
12:n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
13:n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
14:n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
15:n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
16:n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
17:n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb1_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
18:n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1
19:n_eval_perfect1_2___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_3___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
20:n_eval_perfect1_3___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_4___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
21:n_eval_perfect1_4___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_5___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
22:n_eval_perfect1_5___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_6___31(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
23:n_eval_perfect1_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_7___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
24:n_eval_perfect1_7___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_8___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
25:n_eval_perfect1_8___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0,Arg_6,Arg_4):|:1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
26:n_eval_perfect1_bb0_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_0___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
27:n_eval_perfect1_bb1_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_2___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
28:n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && 0<Arg_5
29:n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_5<=0
30:n_eval_perfect1_bb2_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_5<=Arg_4 && 0<Arg_5 && 0<Arg_4 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_4<=Arg_7 && Arg_7<=Arg_4 && 0<Arg_5
31:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_5<=Arg_6
32:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_5 && Arg_6<Arg_5
33:n_eval_perfect1_bb3_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6 && 0<Arg_5 && 0<Arg_6 && Arg_5<=Arg_6 && Arg_5<=Arg_6
34:n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7):|:Arg_5<=Arg_6 && 0<Arg_5
35:n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_12___23(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<Arg_5 && 0<Arg_5
36:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0):|:Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_7<=0 && 0<=Arg_7
37:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<Arg_7
38:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_7<0
39:n_eval_perfect1_bb7_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
40:n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<Arg_3 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
41:n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<0 && Arg_2<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
42:n_eval_perfect1_bb7_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1
43:n_eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb0_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Preprocessing
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_6___31
Found invariant Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && 2+Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_2 && Arg_2+Arg_7<=0 && Arg_1+Arg_7<=0 && 1+Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_2+Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_1+Arg_3<=0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_bb7_in___11
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_17___5
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_14___21
Found invariant Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && 2+Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_2 && Arg_2+Arg_7<=0 && Arg_1+Arg_7<=0 && 1+Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_2+Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_1+Arg_3<=0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_stop___8
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_12___23
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_8___29
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_15___18
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_15___7
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_17___16
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_bb5_in___24
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_bb6_in___14
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_15___4
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_16___6
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_17___2
Found invariant Arg_4<=1 for location n_eval_perfect1_stop___1
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_stop___9
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_14___20
Found invariant Arg_4<=1 for location n_eval_perfect1_bb7_in___36
Found invariant 1+Arg_7<=0 && 1+Arg_7<=Arg_6 && 1+Arg_6+Arg_7<=0 && 1+Arg_7<=Arg_5 && 1+Arg_5+Arg_7<=0 && 3+Arg_7<=Arg_4 && Arg_7<=Arg_3 && 2+Arg_3+Arg_7<=0 && 1+Arg_7<=Arg_2 && 1+Arg_2+Arg_7<=0 && 2+Arg_1+Arg_7<=0 && 2+Arg_7<=Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 3+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 2+Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_1<=0 && 2+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_bb7_in___13
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_16___17
Found invariant 2<=Arg_4 for location n_eval_perfect1_5___32
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_7___30
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_16___3
Found invariant 2<=Arg_4 for location n_eval_perfect1_2___35
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_13___22
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 for location n_eval_perfect1_14___19
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_bb2_in___15
Found invariant Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 3<=Arg_0+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 4<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_bb3_in___27
Found invariant Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 3<=Arg_0+Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_bb2_in___28
Found invariant 2<=Arg_4 for location n_eval_perfect1_bb1_in___37
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_bb3_in___25
Found invariant Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_bb7_in___12
Found invariant 2<=Arg_4 for location n_eval_perfect1_4___33
Found invariant 1+Arg_7<=0 && 1+Arg_7<=Arg_6 && 1+Arg_6+Arg_7<=0 && 1+Arg_7<=Arg_5 && 1+Arg_5+Arg_7<=0 && 3+Arg_7<=Arg_4 && Arg_7<=Arg_3 && 2+Arg_3+Arg_7<=0 && 1+Arg_7<=Arg_2 && 1+Arg_2+Arg_7<=0 && 2+Arg_1+Arg_7<=0 && 2+Arg_7<=Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 3+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 2+Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_1<=0 && 2+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_perfect1_stop___10
Found invariant 2<=Arg_4 for location n_eval_perfect1_3___34
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location n_eval_perfect1_bb4_in___26
Problem after Preprocessing
Start: n_eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_eval_perfect1_0___39, n_eval_perfect1_12___23, n_eval_perfect1_13___22, n_eval_perfect1_14___19, n_eval_perfect1_14___20, n_eval_perfect1_14___21, n_eval_perfect1_15___18, n_eval_perfect1_15___4, n_eval_perfect1_15___7, n_eval_perfect1_16___17, n_eval_perfect1_16___3, n_eval_perfect1_16___6, n_eval_perfect1_17___16, n_eval_perfect1_17___2, n_eval_perfect1_17___5, n_eval_perfect1_1___38, n_eval_perfect1_2___35, n_eval_perfect1_3___34, n_eval_perfect1_4___33, n_eval_perfect1_5___32, n_eval_perfect1_6___31, n_eval_perfect1_7___30, n_eval_perfect1_8___29, n_eval_perfect1_bb0_in___40, n_eval_perfect1_bb1_in___37, n_eval_perfect1_bb2_in___15, n_eval_perfect1_bb2_in___28, n_eval_perfect1_bb3_in___25, n_eval_perfect1_bb3_in___27, n_eval_perfect1_bb4_in___26, n_eval_perfect1_bb5_in___24, n_eval_perfect1_bb6_in___14, n_eval_perfect1_bb7_in___11, n_eval_perfect1_bb7_in___12, n_eval_perfect1_bb7_in___13, n_eval_perfect1_bb7_in___36, n_eval_perfect1_start, n_eval_perfect1_stop___1, n_eval_perfect1_stop___10, n_eval_perfect1_stop___8, n_eval_perfect1_stop___9
Transitions:
0:n_eval_perfect1_0___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
1:n_eval_perfect1_12___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5
2:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && 0<Arg_6
3:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<0
4:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,0,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<=0 && 0<=Arg_6
5:n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
6:n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 && 0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
7:n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5
8:n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5
9:n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
10:n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_3<=Arg_7 && Arg_7<=Arg_3
11:n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
12:n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
13:n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
14:n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
15:n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3
16:n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2
17:n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb1_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
18:n_eval_perfect1_1___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1
19:n_eval_perfect1_2___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_3___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4 && 1<Arg_4
20:n_eval_perfect1_3___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_4___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4 && 1<Arg_4
21:n_eval_perfect1_4___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_5___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4 && 1<Arg_4
22:n_eval_perfect1_5___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_6___31(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4 && 1<Arg_4
23:n_eval_perfect1_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_7___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
24:n_eval_perfect1_7___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_8___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
25:n_eval_perfect1_8___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0,Arg_6,Arg_4):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 1<Arg_4 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
26:n_eval_perfect1_bb0_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_0___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
27:n_eval_perfect1_bb1_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_2___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4 && 1<Arg_4
28:n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && 0<Arg_5
29:n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_5<=0
30:n_eval_perfect1_bb2_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 3<=Arg_0+Arg_7 && 1+Arg_0<=Arg_7 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_4 && 0<Arg_5 && 0<Arg_4 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_4<=Arg_7 && Arg_7<=Arg_4 && 0<Arg_5
31:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 && Arg_5<=Arg_6
32:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 && Arg_6<Arg_5
33:n_eval_perfect1_bb3_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 3<=Arg_0+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 4<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<Arg_5 && 0<Arg_6 && Arg_5<=Arg_6 && Arg_5<=Arg_6
34:n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<Arg_5
35:n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_12___23(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_6<Arg_5 && 0<Arg_5
36:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_7<=0 && 0<=Arg_7
37:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<Arg_7
38:n_eval_perfect1_bb6_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_5<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_7<0
39:n_eval_perfect1_bb7_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && 2+Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_3+Arg_7<=0 && Arg_7<=Arg_2 && Arg_2+Arg_7<=0 && Arg_1+Arg_7<=0 && 1+Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_2+Arg_7 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_1+Arg_3<=0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=0 && Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_5<=0 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
40:n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_5<=0 && 0<Arg_3 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
41:n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_7<=0 && 1+Arg_7<=Arg_6 && 1+Arg_6+Arg_7<=0 && 1+Arg_7<=Arg_5 && 1+Arg_5+Arg_7<=0 && 3+Arg_7<=Arg_4 && Arg_7<=Arg_3 && 2+Arg_3+Arg_7<=0 && 1+Arg_7<=Arg_2 && 1+Arg_2+Arg_7<=0 && 2+Arg_1+Arg_7<=0 && 2+Arg_7<=Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 2+Arg_6<=Arg_4 && 1+Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_1+Arg_6<=0 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_1+Arg_5<=0 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 3+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 2+Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_2<=0 && 1+Arg_1+Arg_2<=0 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_1<=0 && 2+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<0 && Arg_2<=0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2<=Arg_5 && Arg_5<=Arg_2
42:n_eval_perfect1_bb7_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1 && Arg_4<=1
43:n_eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb0_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
MPRF for transition 1:n_eval_perfect1_12___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1-1 ]
n_eval_perfect1_14___19 [Arg_7-Arg_1-1 ]
n_eval_perfect1_14___20 [Arg_3-Arg_1-1 ]
n_eval_perfect1_14___21 [Arg_7-Arg_3-1 ]
n_eval_perfect1_15___18 [Arg_7-Arg_1-1 ]
n_eval_perfect1_15___4 [Arg_3-Arg_1-1 ]
n_eval_perfect1_15___7 [Arg_3-Arg_1-1 ]
n_eval_perfect1_16___17 [Arg_7-Arg_3-1 ]
n_eval_perfect1_16___3 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_16___6 [Arg_3-Arg_1-1 ]
n_eval_perfect1_17___16 [Arg_7-Arg_1-1 ]
n_eval_perfect1_17___2 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_17___5 [Arg_7-Arg_1-1 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_7-Arg_1 ]
MPRF for transition 2:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && 0<Arg_6 of depth 1:
new bound:
3*Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_5-1 ]
n_eval_perfect1_14___19 [Arg_5-2 ]
n_eval_perfect1_14___20 [Arg_5-2 ]
n_eval_perfect1_14___21 [Arg_5-1 ]
n_eval_perfect1_15___18 [Arg_5-1 ]
n_eval_perfect1_15___4 [Arg_5-2 ]
n_eval_perfect1_15___7 [Arg_5-2 ]
n_eval_perfect1_16___17 [Arg_2 ]
n_eval_perfect1_16___3 [2*Arg_2-Arg_5 ]
n_eval_perfect1_16___6 [Arg_5-2 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [2*Arg_2-Arg_5 ]
n_eval_perfect1_17___5 [Arg_5-2 ]
n_eval_perfect1_bb2_in___15 [Arg_2-1 ]
n_eval_perfect1_bb4_in___26 [Arg_0+Arg_5-Arg_4 ]
n_eval_perfect1_bb3_in___25 [Arg_0+Arg_5-Arg_4 ]
n_eval_perfect1_bb5_in___24 [Arg_0+Arg_5-Arg_4 ]
n_eval_perfect1_12___23 [Arg_5-1 ]
MPRF for transition 3:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [Arg_3-Arg_1 ]
n_eval_perfect1_14___20 [Arg_7-Arg_1-1 ]
n_eval_perfect1_14___21 [Arg_7-Arg_3 ]
n_eval_perfect1_15___18 [Arg_7-Arg_1 ]
n_eval_perfect1_15___4 [Arg_7-Arg_1 ]
n_eval_perfect1_15___7 [Arg_7-Arg_1-1 ]
n_eval_perfect1_16___17 [Arg_2+Arg_7-Arg_3-Arg_5 ]
n_eval_perfect1_16___3 [Arg_7-Arg_1 ]
n_eval_perfect1_16___6 [Arg_2+Arg_3-Arg_1-Arg_5 ]
n_eval_perfect1_17___16 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_17___2 [Arg_2+Arg_3-Arg_1-Arg_5 ]
n_eval_perfect1_17___5 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_5 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_5 ]
MPRF for transition 4:n_eval_perfect1_13___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,0,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<Arg_7 && Arg_1+Arg_6<Arg_7 && Arg_1+Arg_5<=Arg_7 && Arg_7<=Arg_1+Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [Arg_7-Arg_1 ]
n_eval_perfect1_14___20 [Arg_3-Arg_1 ]
n_eval_perfect1_14___21 [Arg_7-Arg_1-1 ]
n_eval_perfect1_15___18 [Arg_7-Arg_1-1 ]
n_eval_perfect1_15___4 [Arg_5 ]
n_eval_perfect1_15___7 [Arg_7-Arg_1 ]
n_eval_perfect1_16___17 [Arg_7-Arg_1-1 ]
n_eval_perfect1_16___3 [Arg_2 ]
n_eval_perfect1_16___6 [Arg_7-Arg_1 ]
n_eval_perfect1_17___16 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_17___2 [Arg_2 ]
n_eval_perfect1_17___5 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_5 ]
MPRF for transition 5:n_eval_perfect1_14___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_5 ]
n_eval_perfect1_14___19 [Arg_5 ]
n_eval_perfect1_14___20 [Arg_5 ]
n_eval_perfect1_14___21 [Arg_7-Arg_3 ]
n_eval_perfect1_15___18 [Arg_7-Arg_1 ]
n_eval_perfect1_15___4 [Arg_5-1 ]
n_eval_perfect1_15___7 [Arg_5 ]
n_eval_perfect1_16___17 [Arg_7-Arg_3 ]
n_eval_perfect1_16___3 [Arg_5-1 ]
n_eval_perfect1_16___6 [Arg_5 ]
n_eval_perfect1_17___16 [2*Arg_0+Arg_7+2-Arg_1-2*Arg_4 ]
n_eval_perfect1_17___2 [Arg_5-1 ]
n_eval_perfect1_17___5 [Arg_2+Arg_4-Arg_0 ]
n_eval_perfect1_bb2_in___15 [2*Arg_0+Arg_2+2-2*Arg_4 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_5 ]
MPRF for transition 6:n_eval_perfect1_14___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_0 && 2<=Arg_0 && 0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 of depth 1:
new bound:
2*Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [2*Arg_7-2*Arg_1 ]
n_eval_perfect1_14___19 [2*Arg_3-2*Arg_1 ]
n_eval_perfect1_14___20 [2*Arg_7-2*Arg_1-1 ]
n_eval_perfect1_14___21 [2*Arg_5 ]
n_eval_perfect1_15___18 [2*Arg_5 ]
n_eval_perfect1_15___4 [2*Arg_3-2*Arg_1 ]
n_eval_perfect1_15___7 [2*Arg_7-2*Arg_1-2 ]
n_eval_perfect1_16___17 [Arg_4+2*Arg_5-Arg_0-1 ]
n_eval_perfect1_16___3 [2*Arg_2+2*Arg_3+2-2*Arg_1-2*Arg_5 ]
n_eval_perfect1_16___6 [2*Arg_7-2*Arg_1-2 ]
n_eval_perfect1_17___16 [Arg_4+2*Arg_5-Arg_0-1 ]
n_eval_perfect1_17___2 [2*Arg_2+2*Arg_3-2*Arg_1-2*Arg_5 ]
n_eval_perfect1_17___5 [2*Arg_7-2*Arg_1-2 ]
n_eval_perfect1_bb2_in___15 [2*Arg_5 ]
n_eval_perfect1_bb4_in___26 [2*Arg_5 ]
n_eval_perfect1_bb3_in___25 [2*Arg_5 ]
n_eval_perfect1_bb5_in___24 [2*Arg_5 ]
n_eval_perfect1_12___23 [2*Arg_7-2*Arg_1 ]
MPRF for transition 7:n_eval_perfect1_14___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [Arg_7-Arg_1 ]
n_eval_perfect1_14___20 [Arg_5 ]
n_eval_perfect1_14___21 [Arg_7-Arg_1 ]
n_eval_perfect1_15___18 [Arg_3+Arg_5-Arg_1-1 ]
n_eval_perfect1_15___4 [Arg_7-Arg_1 ]
n_eval_perfect1_15___7 [Arg_3-Arg_1 ]
n_eval_perfect1_16___17 [Arg_2 ]
n_eval_perfect1_16___3 [Arg_5+Arg_7-Arg_3 ]
n_eval_perfect1_16___6 [Arg_3-Arg_1 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [Arg_5 ]
n_eval_perfect1_17___5 [Arg_2+1 ]
n_eval_perfect1_bb2_in___15 [Arg_5 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_7-Arg_1 ]
MPRF for transition 8:n_eval_perfect1_15___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_5 ]
n_eval_perfect1_14___19 [Arg_5 ]
n_eval_perfect1_14___20 [Arg_1+2*Arg_5-Arg_7-1 ]
n_eval_perfect1_14___21 [Arg_0+Arg_7+1-Arg_1-Arg_4 ]
n_eval_perfect1_15___18 [Arg_7-Arg_3 ]
n_eval_perfect1_15___4 [Arg_5 ]
n_eval_perfect1_15___7 [Arg_1+2*Arg_5-Arg_3-1 ]
n_eval_perfect1_16___17 [Arg_5-1 ]
n_eval_perfect1_16___3 [Arg_5 ]
n_eval_perfect1_16___6 [Arg_1+2*Arg_5-Arg_3-1 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [Arg_5 ]
n_eval_perfect1_17___5 [Arg_1+2*Arg_5-Arg_7-1 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_5 ]
MPRF for transition 9:n_eval_perfect1_15___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 of depth 1:
new bound:
Arg_4+1 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7+1-Arg_1 ]
n_eval_perfect1_14___19 [Arg_7+1-Arg_1 ]
n_eval_perfect1_14___20 [Arg_3-Arg_1 ]
n_eval_perfect1_14___21 [Arg_7+1-Arg_1 ]
n_eval_perfect1_15___18 [Arg_7+1-Arg_1 ]
n_eval_perfect1_15___4 [Arg_3+1-Arg_1 ]
n_eval_perfect1_15___7 [Arg_3-Arg_1 ]
n_eval_perfect1_16___17 [Arg_2+Arg_7+1-Arg_1-Arg_5 ]
n_eval_perfect1_16___3 [Arg_3-Arg_1 ]
n_eval_perfect1_16___6 [Arg_2+Arg_3+1-Arg_1-Arg_5 ]
n_eval_perfect1_17___16 [Arg_2+Arg_7+1-Arg_3-Arg_5 ]
n_eval_perfect1_17___2 [Arg_5 ]
n_eval_perfect1_17___5 [Arg_2+Arg_7+1-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_5+1 ]
n_eval_perfect1_bb4_in___26 [Arg_5+1 ]
n_eval_perfect1_bb3_in___25 [Arg_5+1 ]
n_eval_perfect1_bb5_in___24 [Arg_4+Arg_5-Arg_0 ]
n_eval_perfect1_12___23 [Arg_4+Arg_7-Arg_0-Arg_1 ]
MPRF for transition 10:n_eval_perfect1_15___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_3<=Arg_7 && Arg_7<=Arg_3 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [Arg_3-Arg_1 ]
n_eval_perfect1_14___20 [Arg_0+Arg_7+1-Arg_1-Arg_4 ]
n_eval_perfect1_14___21 [Arg_7-Arg_1 ]
n_eval_perfect1_15___18 [Arg_7-Arg_3 ]
n_eval_perfect1_15___4 [Arg_7-Arg_1 ]
n_eval_perfect1_15___7 [Arg_7-Arg_1 ]
n_eval_perfect1_16___17 [Arg_2+Arg_7+1-Arg_1-Arg_5 ]
n_eval_perfect1_16___3 [Arg_2+Arg_3+1-Arg_1-Arg_5 ]
n_eval_perfect1_16___6 [Arg_3-Arg_1-1 ]
n_eval_perfect1_17___16 [Arg_2+Arg_7+1-Arg_1-Arg_5 ]
n_eval_perfect1_17___2 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_17___5 [Arg_2+Arg_3-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_5 ]
MPRF for transition 11:n_eval_perfect1_16___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 of depth 1:
new bound:
5*Arg_4+2 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [Arg_7-Arg_1 ]
n_eval_perfect1_14___20 [Arg_5 ]
n_eval_perfect1_14___21 [Arg_1+Arg_4+Arg_7-Arg_0-2*Arg_3-1 ]
n_eval_perfect1_15___18 [Arg_1+Arg_4+Arg_5-Arg_0-Arg_3-1 ]
n_eval_perfect1_15___4 [Arg_7-Arg_1 ]
n_eval_perfect1_15___7 [Arg_3-Arg_1 ]
n_eval_perfect1_16___17 [Arg_2+1 ]
n_eval_perfect1_16___3 [Arg_7-Arg_1 ]
n_eval_perfect1_16___6 [Arg_3-Arg_1 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [Arg_5 ]
n_eval_perfect1_17___5 [Arg_3-Arg_1 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [2*Arg_0+Arg_5+2-2*Arg_4 ]
n_eval_perfect1_bb3_in___25 [2*Arg_0+Arg_5+2-2*Arg_4 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_7-Arg_1 ]
MPRF for transition 12:n_eval_perfect1_16___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 of depth 1:
new bound:
2*Arg_4+1 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_0+Arg_5 ]
n_eval_perfect1_14___19 [Arg_0+Arg_5 ]
n_eval_perfect1_14___20 [Arg_4+Arg_5-1 ]
n_eval_perfect1_14___21 [Arg_4+Arg_5-2 ]
n_eval_perfect1_15___18 [Arg_0+Arg_5-1 ]
n_eval_perfect1_15___4 [Arg_4+Arg_5-1 ]
n_eval_perfect1_15___7 [Arg_4+Arg_5-1 ]
n_eval_perfect1_16___17 [Arg_0+Arg_5-1 ]
n_eval_perfect1_16___3 [Arg_2+Arg_4 ]
n_eval_perfect1_16___6 [Arg_4+Arg_5-1 ]
n_eval_perfect1_17___16 [Arg_0+Arg_5-1 ]
n_eval_perfect1_17___2 [Arg_2+Arg_4-1 ]
n_eval_perfect1_17___5 [Arg_2+Arg_4 ]
n_eval_perfect1_bb2_in___15 [Arg_0+Arg_5 ]
n_eval_perfect1_bb4_in___26 [Arg_4+Arg_5-1 ]
n_eval_perfect1_bb3_in___25 [Arg_4+Arg_5-1 ]
n_eval_perfect1_bb5_in___24 [Arg_0+Arg_5 ]
n_eval_perfect1_12___23 [Arg_0+Arg_5 ]
MPRF for transition 13:n_eval_perfect1_16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 0<Arg_5 && Arg_6<0 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 of depth 1:
new bound:
3*Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_5+1 ]
n_eval_perfect1_14___19 [Arg_5 ]
n_eval_perfect1_14___20 [Arg_0+Arg_5+2-Arg_4 ]
n_eval_perfect1_14___21 [Arg_5 ]
n_eval_perfect1_15___18 [Arg_5 ]
n_eval_perfect1_15___4 [Arg_5 ]
n_eval_perfect1_15___7 [Arg_0+Arg_5+2-Arg_4 ]
n_eval_perfect1_16___17 [Arg_4+Arg_5-Arg_0-1 ]
n_eval_perfect1_16___3 [Arg_5 ]
n_eval_perfect1_16___6 [Arg_2+2 ]
n_eval_perfect1_17___16 [Arg_4+Arg_5-Arg_0-1 ]
n_eval_perfect1_17___2 [Arg_2+1 ]
n_eval_perfect1_17___5 [Arg_1+Arg_2+Arg_5+1-Arg_7 ]
n_eval_perfect1_bb2_in___15 [Arg_4+Arg_5-Arg_0 ]
n_eval_perfect1_bb4_in___26 [Arg_4+Arg_5-Arg_0 ]
n_eval_perfect1_bb3_in___25 [Arg_4+Arg_5-Arg_0 ]
n_eval_perfect1_bb5_in___24 [Arg_4+Arg_5-Arg_0 ]
n_eval_perfect1_12___23 [Arg_5+1 ]
MPRF for transition 14:n_eval_perfect1_17___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_1 && Arg_3<=Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_5 && Arg_3<=Arg_1 && Arg_1<=Arg_3 && Arg_3+Arg_5<=Arg_7 && Arg_7<=Arg_3+Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 of depth 1:
new bound:
2*Arg_4+1 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_4+Arg_5-2 ]
n_eval_perfect1_14___19 [Arg_4+Arg_5-2 ]
n_eval_perfect1_14___20 [Arg_4+Arg_5-2 ]
n_eval_perfect1_14___21 [Arg_0+Arg_5-1 ]
n_eval_perfect1_15___18 [Arg_0+Arg_5-1 ]
n_eval_perfect1_15___4 [Arg_4+Arg_5-2 ]
n_eval_perfect1_15___7 [Arg_4+Arg_5-2 ]
n_eval_perfect1_16___17 [Arg_0+Arg_5-1 ]
n_eval_perfect1_16___3 [Arg_4+Arg_5-2 ]
n_eval_perfect1_16___6 [Arg_2+Arg_3+Arg_4-Arg_7-1 ]
n_eval_perfect1_17___16 [Arg_4+Arg_5-2 ]
n_eval_perfect1_17___2 [Arg_4+Arg_5-2 ]
n_eval_perfect1_17___5 [Arg_2+Arg_3+Arg_4-Arg_7-1 ]
n_eval_perfect1_bb2_in___15 [Arg_4+Arg_5-2 ]
n_eval_perfect1_bb4_in___26 [Arg_0+Arg_5-1 ]
n_eval_perfect1_bb3_in___25 [Arg_0+Arg_5-1 ]
n_eval_perfect1_bb5_in___24 [Arg_0+Arg_5-1 ]
n_eval_perfect1_12___23 [Arg_4+Arg_5-2 ]
MPRF for transition 15:n_eval_perfect1_17___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 4<=Arg_4+Arg_6 && 2<=Arg_2+Arg_6 && 3<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<Arg_5 && 0<Arg_6 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_4+Arg_5-Arg_0-1 ]
n_eval_perfect1_14___19 [Arg_4+Arg_5-Arg_0-1 ]
n_eval_perfect1_14___20 [Arg_4+Arg_5+Arg_7-Arg_0-Arg_3-1 ]
n_eval_perfect1_14___21 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_15___18 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_15___4 [Arg_5 ]
n_eval_perfect1_15___7 [Arg_4+Arg_5+Arg_7-Arg_0-Arg_3-1 ]
n_eval_perfect1_16___17 [Arg_5-1 ]
n_eval_perfect1_16___3 [Arg_5 ]
n_eval_perfect1_16___6 [Arg_2+Arg_4+Arg_7-Arg_0-Arg_3 ]
n_eval_perfect1_17___16 [Arg_5-1 ]
n_eval_perfect1_17___2 [Arg_2+1 ]
n_eval_perfect1_17___5 [Arg_2+Arg_7-Arg_3 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_4+Arg_5-Arg_0-1 ]
MPRF for transition 16:n_eval_perfect1_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1+Arg_6<=0 && 3+Arg_6<=Arg_5 && 4+Arg_6<=Arg_4 && 2+Arg_6<=Arg_2 && 3+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 2<=Arg_5 && 5<=Arg_4+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 3<=Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 2+Arg_1<=Arg_4 && 5<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && 2+Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_6<0 && 0<Arg_5 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && Arg_3<=Arg_1+Arg_5 && Arg_1+Arg_5<=Arg_3 && Arg_2+1<=Arg_5 && Arg_5<=1+Arg_2 of depth 1:
new bound:
Arg_4+1 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_7-Arg_1-1 ]
n_eval_perfect1_14___19 [Arg_7-Arg_1-1 ]
n_eval_perfect1_14___20 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_14___21 [Arg_7-Arg_3-1 ]
n_eval_perfect1_15___18 [Arg_7-Arg_1-1 ]
n_eval_perfect1_15___4 [Arg_5-1 ]
n_eval_perfect1_15___7 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_16___17 [Arg_7-Arg_3-1 ]
n_eval_perfect1_16___3 [Arg_1+2*Arg_5-Arg_7-1 ]
n_eval_perfect1_16___6 [Arg_2+Arg_4-Arg_0-1 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [Arg_1+Arg_2+Arg_5-Arg_7 ]
n_eval_perfect1_17___5 [Arg_2 ]
n_eval_perfect1_bb2_in___15 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_bb4_in___26 [Arg_5-1 ]
n_eval_perfect1_bb3_in___25 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_bb5_in___24 [Arg_4+Arg_5-Arg_0-2 ]
n_eval_perfect1_12___23 [Arg_4+Arg_7-Arg_0-Arg_1-2 ]
MPRF for transition 28:n_eval_perfect1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 0<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 2+Arg_5<=Arg_4 && Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_3<=Arg_7 && Arg_7<=Arg_3 && 0<Arg_5 of depth 1:
new bound:
2*Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_4+Arg_5-1 ]
n_eval_perfect1_14___19 [Arg_0+Arg_5 ]
n_eval_perfect1_14___20 [Arg_4+Arg_5-1 ]
n_eval_perfect1_14___21 [Arg_0+Arg_5 ]
n_eval_perfect1_15___18 [Arg_0+Arg_5 ]
n_eval_perfect1_15___4 [Arg_0+Arg_5 ]
n_eval_perfect1_15___7 [Arg_0+Arg_5 ]
n_eval_perfect1_16___17 [Arg_0+Arg_5 ]
n_eval_perfect1_16___3 [Arg_0+Arg_5 ]
n_eval_perfect1_16___6 [Arg_0+Arg_5 ]
n_eval_perfect1_17___16 [Arg_0+Arg_5 ]
n_eval_perfect1_17___2 [Arg_0+2*Arg_2+2-Arg_5 ]
n_eval_perfect1_17___5 [Arg_0+Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_4+Arg_5 ]
n_eval_perfect1_bb4_in___26 [Arg_0+Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_0+Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_4+Arg_5-1 ]
n_eval_perfect1_12___23 [Arg_4+Arg_5-1 ]
MPRF for transition 32:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 && Arg_6<Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_5-1 ]
n_eval_perfect1_14___19 [Arg_5-1 ]
n_eval_perfect1_14___20 [Arg_5-1 ]
n_eval_perfect1_14___21 [Arg_5-1 ]
n_eval_perfect1_15___18 [Arg_5-1 ]
n_eval_perfect1_15___4 [Arg_5-1 ]
n_eval_perfect1_15___7 [Arg_5-1 ]
n_eval_perfect1_16___17 [Arg_2 ]
n_eval_perfect1_16___3 [Arg_2 ]
n_eval_perfect1_16___6 [Arg_5-1 ]
n_eval_perfect1_17___16 [Arg_5-1 ]
n_eval_perfect1_17___2 [Arg_2 ]
n_eval_perfect1_17___5 [Arg_5-1 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5-1 ]
n_eval_perfect1_12___23 [Arg_5-1 ]
MPRF for transition 35:n_eval_perfect1_bb5_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_12___23(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_6<Arg_5 && 0<Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_perfect1_13___22 [Arg_0+Arg_7-Arg_1-Arg_4 ]
n_eval_perfect1_14___19 [Arg_0+Arg_3-Arg_1-Arg_4 ]
n_eval_perfect1_14___20 [Arg_3-Arg_1-1 ]
n_eval_perfect1_14___21 [Arg_7-Arg_1-1 ]
n_eval_perfect1_15___18 [Arg_7-Arg_3-1 ]
n_eval_perfect1_15___4 [Arg_0+Arg_7-Arg_1-Arg_4 ]
n_eval_perfect1_15___7 [Arg_7-Arg_1-1 ]
n_eval_perfect1_16___17 [Arg_2 ]
n_eval_perfect1_16___3 [Arg_0+Arg_3-Arg_1-Arg_4 ]
n_eval_perfect1_16___6 [Arg_3-Arg_1-1 ]
n_eval_perfect1_17___16 [Arg_2 ]
n_eval_perfect1_17___2 [Arg_2+Arg_3-Arg_1-Arg_5 ]
n_eval_perfect1_17___5 [Arg_2+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [Arg_2 ]
n_eval_perfect1_bb4_in___26 [Arg_5 ]
n_eval_perfect1_bb3_in___25 [Arg_5 ]
n_eval_perfect1_bb5_in___24 [Arg_5 ]
n_eval_perfect1_12___23 [Arg_7-Arg_1-1 ]
MPRF for transition 31:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 && Arg_5<=Arg_6 of depth 1:
new bound:
2*Arg_4*Arg_4*Arg_4+7*Arg_4*Arg_4+4*Arg_4+3 {O(n^3)}
MPRF:
n_eval_perfect1_12___23 [3*Arg_4+Arg_7-Arg_1 ]
n_eval_perfect1_13___22 [3*Arg_4+Arg_7-Arg_1 ]
n_eval_perfect1_14___19 [2*Arg_0+Arg_3+Arg_4-Arg_1 ]
n_eval_perfect1_14___20 [Arg_3+3*Arg_4-Arg_1 ]
n_eval_perfect1_14___21 [2*Arg_0+Arg_4+Arg_7-Arg_3 ]
n_eval_perfect1_15___18 [2*Arg_0+Arg_4+Arg_7-Arg_3 ]
n_eval_perfect1_15___4 [2*Arg_0+Arg_4+Arg_5 ]
n_eval_perfect1_15___7 [2*Arg_0+Arg_4+Arg_7-Arg_1 ]
n_eval_perfect1_16___17 [2*Arg_0+Arg_4+Arg_7-Arg_3 ]
n_eval_perfect1_16___3 [2*Arg_0+Arg_2+Arg_4 ]
n_eval_perfect1_16___6 [2*Arg_0+Arg_4+Arg_7-Arg_1 ]
n_eval_perfect1_17___16 [2*Arg_0+Arg_2+Arg_4+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_17___2 [2*Arg_0+Arg_2+Arg_4 ]
n_eval_perfect1_17___5 [2*Arg_0+Arg_2+Arg_4+Arg_7-Arg_1-Arg_5 ]
n_eval_perfect1_bb2_in___15 [2*Arg_0+Arg_2+Arg_4 ]
n_eval_perfect1_bb5_in___24 [2*Arg_4+Arg_6-Arg_5-2 ]
n_eval_perfect1_bb4_in___26 [2*Arg_4+Arg_6-Arg_5-3 ]
n_eval_perfect1_bb3_in___25 [2*Arg_4+Arg_6-Arg_5-2 ]
MPRF for transition 34:n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<Arg_5 of depth 1:
new bound:
5*Arg_4*Arg_4+2*Arg_4+1 {O(n^2)}
MPRF:
n_eval_perfect1_12___23 [2*Arg_4+3*Arg_5 ]
n_eval_perfect1_13___22 [2*Arg_4+3*Arg_5 ]
n_eval_perfect1_14___19 [Arg_0+Arg_4+Arg_5 ]
n_eval_perfect1_14___20 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_14___21 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_15___18 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_15___4 [Arg_0+Arg_4+Arg_5 ]
n_eval_perfect1_15___7 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_16___17 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_16___3 [Arg_0+Arg_4+Arg_5 ]
n_eval_perfect1_16___6 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_17___16 [Arg_0+Arg_4+2*Arg_5 ]
n_eval_perfect1_17___2 [Arg_0+Arg_4+Arg_5 ]
n_eval_perfect1_17___5 [Arg_0+2*Arg_2+Arg_4 ]
n_eval_perfect1_bb2_in___15 [Arg_0+Arg_4+2 ]
n_eval_perfect1_bb5_in___24 [Arg_4+Arg_6 ]
n_eval_perfect1_bb4_in___26 [Arg_0+Arg_6+1 ]
n_eval_perfect1_bb3_in___25 [Arg_0+Arg_6+1 ]
knowledge_propagation leads to new time bound 5*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)} for transition 31:n_eval_perfect1_bb3_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfect1_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 && Arg_5<=Arg_6
All Bounds
Timebounds
Overall timebound:10*Arg_4*Arg_4+37*Arg_4+31 {O(n^2)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38: 1 {O(1)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22: Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19: 3*Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20: Arg_4 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21: Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4: Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7: 2*Arg_4 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3: Arg_4+1 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16: 5*Arg_4+2 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2: 2*Arg_4+1 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5: 3*Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15: 2*Arg_4+1 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15: Arg_4+1 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37: 1 {O(1)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36: 1 {O(1)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34: 1 {O(1)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33: 1 {O(1)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32: 1 {O(1)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31: 1 {O(1)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30: 1 {O(1)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29: 1 {O(1)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28: 1 {O(1)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39: 1 {O(1)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35: 1 {O(1)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25: 2*Arg_4 {O(n)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14: 1 {O(1)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27: 1 {O(1)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26: 5*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26: 1 {O(1)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25: 5*Arg_4*Arg_4+2*Arg_4+1 {O(n^2)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23: Arg_4 {O(n)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11: 1 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12: 1 {O(1)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13: 1 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8: 1 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9: 1 {O(1)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10: 1 {O(1)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1: 1 {O(1)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40: 1 {O(1)}
Costbounds
Overall costbound: 10*Arg_4*Arg_4+37*Arg_4+31 {O(n^2)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38: 1 {O(1)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22: Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19: 3*Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20: Arg_4 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21: Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4: Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7: 2*Arg_4 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3: Arg_4+1 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16: 5*Arg_4+2 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2: 2*Arg_4+1 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5: 3*Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15: 2*Arg_4+1 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15: Arg_4+1 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37: 1 {O(1)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36: 1 {O(1)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34: 1 {O(1)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33: 1 {O(1)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32: 1 {O(1)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31: 1 {O(1)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30: 1 {O(1)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29: 1 {O(1)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28: 1 {O(1)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39: 1 {O(1)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35: 1 {O(1)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25: 2*Arg_4 {O(n)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14: 1 {O(1)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27: 1 {O(1)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26: 5*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26: 1 {O(1)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25: 5*Arg_4*Arg_4+2*Arg_4+1 {O(n^2)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23: Arg_4 {O(n)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11: 1 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12: 1 {O(1)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13: 1 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8: 1 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9: 1 {O(1)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10: 1 {O(1)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1: 1 {O(1)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40: 1 {O(1)}
Sizebounds
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_0: Arg_0 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_1: Arg_1 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_2: Arg_2 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_3: Arg_3 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_4: Arg_4 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_5: Arg_5 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_6: Arg_6 {O(n)}
0: n_eval_perfect1_0___39->n_eval_perfect1_1___38, Arg_7: Arg_7 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_0: Arg_4 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_2: 3*Arg_4+Arg_2 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_4: Arg_4 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_5: Arg_4 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_6: 4*Arg_4 {O(n)}
1: n_eval_perfect1_12___23->n_eval_perfect1_13___22, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_0: Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_2: 3*Arg_4+Arg_2 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_4: Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_5: Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_6: 4*Arg_4 {O(n)}
2: n_eval_perfect1_13___22->n_eval_perfect1_14___19, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_0: Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_2: 3*Arg_4+Arg_2 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_4: Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_5: Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_6: 4*Arg_4 {O(n)}
3: n_eval_perfect1_13___22->n_eval_perfect1_14___20, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_0: Arg_4 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_2: 3*Arg_4+Arg_2 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_4: Arg_4 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_5: Arg_4 {O(n)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_6: 0 {O(1)}
4: n_eval_perfect1_13___22->n_eval_perfect1_14___21, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_0: Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_2: 3*Arg_4+Arg_2 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_4: Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_5: Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_6: 4*Arg_4 {O(n)}
5: n_eval_perfect1_14___19->n_eval_perfect1_15___4, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_0: Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_2: 3*Arg_4+Arg_2 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_4: Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_5: Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_6: 4*Arg_4 {O(n)}
6: n_eval_perfect1_14___20->n_eval_perfect1_15___7, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_0: Arg_4 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_2: 3*Arg_4+Arg_2 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_4: Arg_4 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_5: Arg_4 {O(n)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_6: 0 {O(1)}
7: n_eval_perfect1_14___21->n_eval_perfect1_15___18, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_0: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_2: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_4: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_5: Arg_4 {O(n)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_6: 0 {O(1)}
8: n_eval_perfect1_15___18->n_eval_perfect1_16___17, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_0: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_2: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_4: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_5: Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_6: 4*Arg_4 {O(n)}
9: n_eval_perfect1_15___4->n_eval_perfect1_16___3, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_0: Arg_4 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_2: Arg_4 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_4: Arg_4 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_5: Arg_4 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_6: 4*Arg_4 {O(n)}
10: n_eval_perfect1_15___7->n_eval_perfect1_16___6, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_0: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_2: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_4: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_5: Arg_4 {O(n)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_6: 0 {O(1)}
11: n_eval_perfect1_16___17->n_eval_perfect1_17___16, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_0: Arg_4 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_2: Arg_4 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_4: Arg_4 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_5: Arg_4 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_6: 4*Arg_4 {O(n)}
12: n_eval_perfect1_16___3->n_eval_perfect1_17___2, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_0: Arg_4 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_2: Arg_4 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_4: Arg_4 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_5: Arg_4 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_6: 4*Arg_4 {O(n)}
13: n_eval_perfect1_16___6->n_eval_perfect1_17___5, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_0: Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_2: Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_4: Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_5: Arg_4 {O(n)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_6: 0 {O(1)}
14: n_eval_perfect1_17___16->n_eval_perfect1_bb2_in___15, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_0: Arg_4 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_2: Arg_4 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_4: Arg_4 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_5: Arg_4 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_6: 4*Arg_4 {O(n)}
15: n_eval_perfect1_17___2->n_eval_perfect1_bb2_in___15, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_0: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_2: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_4: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_5: Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_6: 4*Arg_4 {O(n)}
16: n_eval_perfect1_17___5->n_eval_perfect1_bb2_in___15, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_0: Arg_0 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_1: Arg_1 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_2: Arg_2 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_3: Arg_3 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_4: Arg_4 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_5: Arg_5 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_6: Arg_6 {O(n)}
17: n_eval_perfect1_1___38->n_eval_perfect1_bb1_in___37, Arg_7: Arg_7 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_0: Arg_0 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_1: Arg_1 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_2: Arg_2 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_3: Arg_3 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_4: Arg_4 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_5: Arg_5 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_6: Arg_6 {O(n)}
18: n_eval_perfect1_1___38->n_eval_perfect1_bb7_in___36, Arg_7: Arg_7 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_0: Arg_0 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_1: Arg_1 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_2: Arg_2 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_3: Arg_3 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_4: Arg_4 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_5: Arg_5 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_6: Arg_6 {O(n)}
19: n_eval_perfect1_2___35->n_eval_perfect1_3___34, Arg_7: Arg_7 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_0: Arg_0 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_1: Arg_1 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_2: Arg_2 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_3: Arg_3 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_4: Arg_4 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_5: Arg_5 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_6: Arg_6 {O(n)}
20: n_eval_perfect1_3___34->n_eval_perfect1_4___33, Arg_7: Arg_7 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_0: Arg_0 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_1: Arg_1 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_2: Arg_2 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_3: Arg_3 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_4: Arg_4 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_5: Arg_5 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_6: Arg_6 {O(n)}
21: n_eval_perfect1_4___33->n_eval_perfect1_5___32, Arg_7: Arg_7 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_0: Arg_4 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_1: Arg_1 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_2: Arg_2 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_3: Arg_3 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_4: Arg_4 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_5: Arg_5 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_6: Arg_6 {O(n)}
22: n_eval_perfect1_5___32->n_eval_perfect1_6___31, Arg_7: Arg_7 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_0: Arg_4 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_1: Arg_1 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_2: Arg_2 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_3: Arg_3 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_4: Arg_4 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_5: Arg_5 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_6: Arg_6 {O(n)}
23: n_eval_perfect1_6___31->n_eval_perfect1_7___30, Arg_7: Arg_7 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_0: Arg_4 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_1: Arg_1 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_2: Arg_2 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_3: Arg_3 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_4: Arg_4 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_5: Arg_5 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_6: Arg_6 {O(n)}
24: n_eval_perfect1_7___30->n_eval_perfect1_8___29, Arg_7: Arg_7 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_0: Arg_4 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_1: Arg_1 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_2: Arg_2 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_3: Arg_3 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_4: Arg_4 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_5: Arg_4 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_6: Arg_6 {O(n)}
25: n_eval_perfect1_8___29->n_eval_perfect1_bb2_in___28, Arg_7: Arg_4 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_0: Arg_0 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_1: Arg_1 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_2: Arg_2 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_3: Arg_3 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_4: Arg_4 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_5: Arg_5 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_6: Arg_6 {O(n)}
26: n_eval_perfect1_bb0_in___40->n_eval_perfect1_0___39, Arg_7: Arg_7 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_0: Arg_0 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_1: Arg_1 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_2: Arg_2 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_3: Arg_3 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_4: Arg_4 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_5: Arg_5 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_6: Arg_6 {O(n)}
27: n_eval_perfect1_bb1_in___37->n_eval_perfect1_2___35, Arg_7: Arg_7 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_0: Arg_4 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_2: 3*Arg_4 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_3: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_4: Arg_4 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_5: Arg_4 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_6: 3*Arg_4 {O(n)}
28: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb3_in___25, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_0: Arg_4 {O(n)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_2: 0 {O(1)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_4: Arg_4 {O(n)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_5: 0 {O(1)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_6: 0 {O(1)}
29: n_eval_perfect1_bb2_in___15->n_eval_perfect1_bb6_in___14, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_0: Arg_4 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_1: Arg_1 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_2: Arg_2 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_3: Arg_3 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_4: Arg_4 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_5: Arg_4 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_6: Arg_4 {O(n)}
30: n_eval_perfect1_bb2_in___28->n_eval_perfect1_bb3_in___27, Arg_7: Arg_4 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_0: Arg_4 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_2: 3*Arg_4+Arg_2 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_4: Arg_4 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_5: Arg_4 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_6: 4*Arg_4 {O(n)}
31: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb4_in___26, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_0: Arg_4 {O(n)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_2: 3*Arg_4+Arg_2 {O(n)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_4: Arg_4 {O(n)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_5: Arg_4 {O(n)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_6: 4*Arg_4 {O(n)}
32: n_eval_perfect1_bb3_in___25->n_eval_perfect1_bb5_in___24, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_0: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_1: Arg_1 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_2: Arg_2 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_3: Arg_3 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_4: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_5: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_6: Arg_4 {O(n)}
33: n_eval_perfect1_bb3_in___27->n_eval_perfect1_bb4_in___26, Arg_7: Arg_4 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_0: Arg_4 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_2: 3*Arg_4+Arg_2 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_4: Arg_4 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_5: Arg_4 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_6: 4*Arg_4 {O(n)}
34: n_eval_perfect1_bb4_in___26->n_eval_perfect1_bb3_in___25, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_0: Arg_4 {O(n)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_2: 3*Arg_4+Arg_2 {O(n)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_4: Arg_4 {O(n)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_5: Arg_4 {O(n)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_6: 4*Arg_4 {O(n)}
35: n_eval_perfect1_bb5_in___24->n_eval_perfect1_12___23, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_0: Arg_4 {O(n)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_2: 0 {O(1)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_3: 0 {O(1)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_4: Arg_4 {O(n)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_5: 0 {O(1)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_6: 0 {O(1)}
36: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___11, Arg_7: 0 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_0: Arg_4 {O(n)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_2: 0 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_4: Arg_4 {O(n)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_5: 0 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_6: 0 {O(1)}
37: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___12, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_0: Arg_4 {O(n)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_2: 0 {O(1)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_4: Arg_4 {O(n)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_5: 0 {O(1)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_6: 0 {O(1)}
38: n_eval_perfect1_bb6_in___14->n_eval_perfect1_bb7_in___13, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_0: Arg_4 {O(n)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_2: 0 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_3: 0 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_4: Arg_4 {O(n)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_5: 0 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_6: 0 {O(1)}
39: n_eval_perfect1_bb7_in___11->n_eval_perfect1_stop___8, Arg_7: 0 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_0: Arg_4 {O(n)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_2: 0 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_4: Arg_4 {O(n)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_5: 0 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_6: 0 {O(1)}
40: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_0: Arg_4 {O(n)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_2: 0 {O(1)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_4: Arg_4 {O(n)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_5: 0 {O(1)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_6: 0 {O(1)}
41: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_0: Arg_0 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_1: Arg_1 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_2: Arg_2 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_3: Arg_3 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_4: Arg_4 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_5: Arg_5 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_6: Arg_6 {O(n)}
42: n_eval_perfect1_bb7_in___36->n_eval_perfect1_stop___1, Arg_7: Arg_7 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_0: Arg_0 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_1: Arg_1 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_2: Arg_2 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_3: Arg_3 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_4: Arg_4 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_5: Arg_5 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_6: Arg_6 {O(n)}
43: n_eval_perfect1_start->n_eval_perfect1_bb0_in___40, Arg_7: Arg_7 {O(n)}