Initial Problem
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16
Temp_Vars: B_P, C_P, D_P, NoDet0, O_P, P_P
Locations: n_f0, n_f11___11, n_f11___7, n_f14___10, n_f14___8, n_f14___9, n_f33___2, n_f33___6, n_f36___3, n_f36___4, n_f36___5, n_f58___1
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f11___11(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,0,Arg_15,Arg_16)
1:n_f11___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f14___10(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_0<=9 && Arg_0<=9 && Arg_14<=0 && 0<=Arg_14 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=9
2:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f14___10(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:10<=Arg_1 && Arg_0<=9
3:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f33___6(Arg_0,Arg_1,0,Arg_3,0,0,0,0,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,1000):|:10<=Arg_1 && 10<=Arg_0
4:n_f14___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f14___9(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,O_P,P_P,Arg_16):|:Arg_1<=9 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=9 && Arg_1<=9 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
5:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f11___7(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && 10<=Arg_1
6:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,O_P,P_P,Arg_16):|:Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
7:n_f14___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,O_P,P_P,Arg_16):|:Arg_1<=9 && Arg_1<=9 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
8:n_f33___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___5(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:10<=Arg_3 && Arg_2<=9
9:n_f33___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f58___1(Arg_0,Arg_1,C_P,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7,1500,NoDet0,Arg_14,Arg_15,Arg_16):|:10<=Arg_3 && 10<=C_P && Arg_2<=C_P && C_P<=Arg_2
10:n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___5(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_2<=9 && Arg_2<=9 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=0 && 0<=Arg_7 && Arg_2<=0 && 0<=Arg_2 && Arg_16<=1000 && 1000<=Arg_16 && Arg_4<=0 && 0<=Arg_4 && 10<=Arg_0 && Arg_2<=9
11:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f33___2(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10 && 10<=Arg_3
12:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
13:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
14:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
15:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
16:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
17:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16):|:Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
Preprocessing
Eliminate variables {Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13} that do not contribute to the problem
Found invariant Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=9+Arg_0 && 10<=Arg_1 && 11<=Arg_0+Arg_1 && 1<=Arg_0 for location n_f11___7
Found invariant Arg_3<=10 && Arg_3<=Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 10<=Arg_3 && 20<=Arg_2+Arg_3 && 1010<=Arg_16+Arg_3 && Arg_16<=990+Arg_3 && 20<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 20<=Arg_0+Arg_3 && 10<=Arg_2 && 1010<=Arg_16+Arg_2 && Arg_16<=990+Arg_2 && 20<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 20<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f58___1
Found invariant Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=9 && 0<=Arg_0 for location n_f14___10
Found invariant Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=10 && 999+Arg_3<=Arg_16 && Arg_16+Arg_3<=1001 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=8+Arg_3 && 1001<=Arg_16+Arg_3 && Arg_16<=999+Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f36___4
Found invariant Arg_3<=10 && Arg_3<=9+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 10<=Arg_3 && 11<=Arg_2+Arg_3 && 1010<=Arg_16+Arg_3 && Arg_16<=990+Arg_3 && 20<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 20<=Arg_0+Arg_3 && 1<=Arg_2 && 1001<=Arg_16+Arg_2 && Arg_16<=999+Arg_2 && 11<=Arg_1+Arg_2 && Arg_1<=9+Arg_2 && 11<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f33___2
Found invariant Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && Arg_7<=Arg_4 && Arg_4+Arg_7<=0 && Arg_7<=Arg_2 && Arg_2+Arg_7<=0 && 1000+Arg_7<=Arg_16 && Arg_16+Arg_7<=1000 && 10+Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 10+Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 1000<=Arg_16+Arg_7 && Arg_16<=1000+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=10+Arg_7 && 10<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_4 && Arg_4+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1000+Arg_6<=Arg_16 && Arg_16+Arg_6<=1000 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1000<=Arg_16+Arg_6 && Arg_16<=1000+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1000+Arg_5<=Arg_16 && Arg_16+Arg_5<=1000 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 10+Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1000<=Arg_16+Arg_5 && Arg_16<=1000+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 10<=Arg_0+Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 1000+Arg_4<=Arg_16 && Arg_16+Arg_4<=1000 && 10+Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 10+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 1000<=Arg_16+Arg_4 && Arg_16<=1000+Arg_4 && 10<=Arg_1+Arg_4 && Arg_1<=10+Arg_4 && 10<=Arg_0+Arg_4 && Arg_2<=0 && 1000+Arg_2<=Arg_16 && Arg_16+Arg_2<=1000 && 10+Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 10+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f33___6
Found invariant Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=10 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=9 && 0<=Arg_0 for location n_f14___9
Found invariant Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f36___3
Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=9 && 1000+Arg_3<=Arg_16 && Arg_16+Arg_3<=1000 && 10+Arg_3<=Arg_1 && Arg_1+Arg_3<=10 && 10+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=9+Arg_3 && 1000<=Arg_16+Arg_3 && Arg_16<=1000+Arg_3 && 10<=Arg_1+Arg_3 && Arg_1<=10+Arg_3 && 10<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 for location n_f36___5
Found invariant Arg_14<=0 && Arg_14<=Arg_0 && Arg_0+Arg_14<=0 && 0<=Arg_14 && 0<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_0<=0 && 0<=Arg_0 for location n_f11___11
Found invariant Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=10+Arg_0 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 0<=Arg_0 for location n_f14___8
Problem after Preprocessing
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_14, Arg_15, Arg_16
Temp_Vars: B_P, C_P, D_P, NoDet0, O_P, P_P
Locations: n_f0, n_f11___11, n_f11___7, n_f14___10, n_f14___8, n_f14___9, n_f33___2, n_f33___6, n_f36___3, n_f36___4, n_f36___5, n_f58___1
Transitions:
36:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f11___11(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,0,Arg_15,Arg_16)
37:n_f11___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___10(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_14<=0 && Arg_14<=Arg_0 && Arg_0+Arg_14<=0 && 0<=Arg_14 && 0<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=9 && Arg_0<=9 && Arg_14<=0 && 0<=Arg_14 && Arg_0<=0 && 0<=Arg_0 && Arg_0<=9
38:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___10(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=9+Arg_0 && 10<=Arg_1 && 11<=Arg_0+Arg_1 && 1<=Arg_0 && 10<=Arg_1 && Arg_0<=9
39:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f33___6(Arg_0,Arg_1,0,Arg_3,0,0,0,0,Arg_14,Arg_15,1000):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=9+Arg_0 && 10<=Arg_1 && 11<=Arg_0+Arg_1 && 1<=Arg_0 && 10<=Arg_1 && 10<=Arg_0
40:n_f14___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___9(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=9 && 0<=Arg_0 && Arg_1<=9 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=9 && Arg_1<=9 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
41:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f11___7(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=10+Arg_0 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && 10<=Arg_1
42:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=10+Arg_0 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
43:n_f14___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=10 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=9 && 0<=Arg_0 && Arg_1<=9 && Arg_1<=9 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1
44:n_f33___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___5(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=9+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 10<=Arg_3 && 11<=Arg_2+Arg_3 && 1010<=Arg_16+Arg_3 && Arg_16<=990+Arg_3 && 20<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 20<=Arg_0+Arg_3 && 1<=Arg_2 && 1001<=Arg_16+Arg_2 && Arg_16<=999+Arg_2 && 11<=Arg_1+Arg_2 && Arg_1<=9+Arg_2 && 11<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && 10<=Arg_3 && Arg_2<=9
45:n_f33___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f58___1(Arg_0,Arg_1,C_P,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=9+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 10<=Arg_3 && 11<=Arg_2+Arg_3 && 1010<=Arg_16+Arg_3 && Arg_16<=990+Arg_3 && 20<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 20<=Arg_0+Arg_3 && 1<=Arg_2 && 1001<=Arg_16+Arg_2 && Arg_16<=999+Arg_2 && 11<=Arg_1+Arg_2 && Arg_1<=9+Arg_2 && 11<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && 10<=Arg_3 && 10<=C_P && Arg_2<=C_P && C_P<=Arg_2
46:n_f33___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___5(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && Arg_7<=Arg_4 && Arg_4+Arg_7<=0 && Arg_7<=Arg_2 && Arg_2+Arg_7<=0 && 1000+Arg_7<=Arg_16 && Arg_16+Arg_7<=1000 && 10+Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 10+Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 1000<=Arg_16+Arg_7 && Arg_16<=1000+Arg_7 && 10<=Arg_1+Arg_7 && Arg_1<=10+Arg_7 && 10<=Arg_0+Arg_7 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_4 && Arg_4+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1000+Arg_6<=Arg_16 && Arg_16+Arg_6<=1000 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1000<=Arg_16+Arg_6 && Arg_16<=1000+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_5<=0 && Arg_5<=Arg_4 && Arg_4+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1000+Arg_5<=Arg_16 && Arg_16+Arg_5<=1000 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 10+Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1000<=Arg_16+Arg_5 && Arg_16<=1000+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 10<=Arg_0+Arg_5 && Arg_4<=0 && Arg_4<=Arg_2 && Arg_2+Arg_4<=0 && 1000+Arg_4<=Arg_16 && Arg_16+Arg_4<=1000 && 10+Arg_4<=Arg_1 && Arg_1+Arg_4<=10 && 10+Arg_4<=Arg_0 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 1000<=Arg_16+Arg_4 && Arg_16<=1000+Arg_4 && 10<=Arg_1+Arg_4 && Arg_1<=10+Arg_4 && 10<=Arg_0+Arg_4 && Arg_2<=0 && 1000+Arg_2<=Arg_16 && Arg_16+Arg_2<=1000 && 10+Arg_2<=Arg_1 && Arg_1+Arg_2<=10 && 10+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_2<=9 && Arg_2<=9 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_7<=0 && 0<=Arg_7 && Arg_2<=0 && 0<=Arg_2 && Arg_16<=1000 && 1000<=Arg_16 && Arg_4<=0 && 0<=Arg_4 && 10<=Arg_0 && Arg_2<=9
47:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f33___2(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && 10<=Arg_3
48:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
49:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
50:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=10 && 999+Arg_3<=Arg_16 && Arg_16+Arg_3<=1001 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=8+Arg_3 && 1001<=Arg_16+Arg_3 && Arg_16<=999+Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
51:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=10 && 999+Arg_3<=Arg_16 && Arg_16+Arg_3<=1001 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=8+Arg_3 && 1001<=Arg_16+Arg_3 && Arg_16<=999+Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
52:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=9 && 1000+Arg_3<=Arg_16 && Arg_16+Arg_3<=1000 && 10+Arg_3<=Arg_1 && Arg_1+Arg_3<=10 && 10+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=9+Arg_3 && 1000<=Arg_16+Arg_3 && Arg_16<=1000+Arg_3 && 10<=Arg_1+Arg_3 && Arg_1<=10+Arg_3 && 10<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
53:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=9 && 1000+Arg_3<=Arg_16 && Arg_16+Arg_3<=1000 && 10+Arg_3<=Arg_1 && Arg_1+Arg_3<=10 && 10+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=9+Arg_3 && 1000<=Arg_16+Arg_3 && Arg_16<=1000+Arg_3 && 10<=Arg_1+Arg_3 && Arg_1<=10+Arg_3 && 10<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3
MPRF for transition 38:n_f11___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___10(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=9+Arg_0 && 10<=Arg_1 && 11<=Arg_0+Arg_1 && 1<=Arg_0 && 10<=Arg_1 && Arg_0<=9 of depth 1:
new bound:
9 {O(1)}
MPRF:
n_f14___10 [9-Arg_0 ]
n_f11___7 [10-Arg_0 ]
n_f14___9 [9-Arg_0 ]
n_f14___8 [9-Arg_0 ]
MPRF for transition 40:n_f14___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___9(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=9 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=9 && 0<=Arg_0 && Arg_1<=9 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=9 && Arg_1<=9 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f14___10 [10-Arg_0 ]
n_f11___7 [10-Arg_0 ]
n_f14___9 [9-Arg_0 ]
n_f14___8 [9-Arg_0 ]
MPRF for transition 43:n_f14___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=10 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=9 && 0<=Arg_0 && Arg_1<=9 && Arg_1<=9 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f14___10 [10-Arg_0 ]
n_f11___7 [10-Arg_0 ]
n_f14___9 [10-Arg_0 ]
n_f14___8 [9-Arg_0 ]
MPRF for transition 41:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f11___7(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=10+Arg_0 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && 10<=Arg_1 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f14___10 [0 ]
n_f14___9 [0 ]
n_f11___7 [0 ]
n_f14___8 [1 ]
MPRF for transition 42:n_f14___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f14___8(Arg_0,B_P,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,O_P,P_P,Arg_16):|:Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=10+Arg_0 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_14<=Arg_15 && Arg_15<=Arg_14 && Arg_1<=10 && B_P<=10 && O_P<=P_P && P_P<=O_P && Arg_1+1<=B_P && B_P<=1+Arg_1 of depth 1:
new bound:
219 {O(1)}
MPRF:
n_f14___10 [9 ]
n_f14___9 [9 ]
n_f11___7 [9 ]
n_f14___8 [19-Arg_1 ]
MPRF for transition 44:n_f33___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___5(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=9+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 10<=Arg_3 && 11<=Arg_2+Arg_3 && 1010<=Arg_16+Arg_3 && Arg_16<=990+Arg_3 && 20<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 20<=Arg_0+Arg_3 && 1<=Arg_2 && 1001<=Arg_16+Arg_2 && Arg_16<=999+Arg_2 && 11<=Arg_1+Arg_2 && Arg_1<=9+Arg_2 && 11<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && 10<=Arg_3 && Arg_2<=9 of depth 1:
new bound:
9 {O(1)}
MPRF:
n_f33___2 [10-Arg_2 ]
n_f36___3 [9-Arg_2 ]
n_f36___5 [9-Arg_2 ]
n_f36___4 [9-Arg_2 ]
MPRF for transition 50:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=10 && 999+Arg_3<=Arg_16 && Arg_16+Arg_3<=1001 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=8+Arg_3 && 1001<=Arg_16+Arg_3 && Arg_16<=999+Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f33___2 [Arg_3-Arg_2 ]
n_f36___3 [9-Arg_2 ]
n_f36___5 [10-Arg_2 ]
n_f36___4 [10-Arg_2 ]
MPRF for transition 51:n_f36___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=10 && 999+Arg_3<=Arg_16 && Arg_16+Arg_3<=1001 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=8+Arg_3 && 1001<=Arg_16+Arg_3 && Arg_16<=999+Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f33___2 [Arg_1-Arg_2 ]
n_f36___3 [9-Arg_2 ]
n_f36___5 [Arg_1-Arg_2 ]
n_f36___4 [10-Arg_2 ]
MPRF for transition 52:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=9 && 1000+Arg_3<=Arg_16 && Arg_16+Arg_3<=1000 && 10+Arg_3<=Arg_1 && Arg_1+Arg_3<=10 && 10+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=9+Arg_3 && 1000<=Arg_16+Arg_3 && Arg_16<=1000+Arg_3 && 10<=Arg_1+Arg_3 && Arg_1<=10+Arg_3 && 10<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f33___2 [10-Arg_2 ]
n_f36___3 [9-Arg_2 ]
n_f36___5 [10-Arg_2 ]
n_f36___4 [9-Arg_2 ]
MPRF for transition 53:n_f36___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___4(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=9 && 1000+Arg_3<=Arg_16 && Arg_16+Arg_3<=1000 && 10+Arg_3<=Arg_1 && Arg_1+Arg_3<=10 && 10+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=9+Arg_3 && 1000<=Arg_16+Arg_3 && Arg_16<=1000+Arg_3 && 10<=Arg_1+Arg_3 && Arg_1<=10+Arg_3 && 10<=Arg_0+Arg_3 && Arg_2<=9 && 991+Arg_2<=Arg_16 && Arg_16+Arg_2<=1009 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=19 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=9 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=9 && Arg_3<=9 && Arg_3<=10 && Arg_3<=9 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
10 {O(1)}
MPRF:
n_f33___2 [10-Arg_2 ]
n_f36___3 [9-Arg_2 ]
n_f36___5 [10-Arg_2 ]
n_f36___4 [9-Arg_2 ]
MPRF for transition 47:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f33___2(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && 10<=Arg_3 of depth 1:
new bound:
20 {O(1)}
MPRF:
n_f36___5 [2-2*Arg_2 ]
n_f33___2 [0 ]
n_f36___4 [1 ]
n_f36___3 [1 ]
MPRF for transition 48:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,NoDet0,Arg_5+1,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
220000 {O(1)}
MPRF:
n_f36___5 [Arg_16 ]
n_f33___2 [Arg_16 ]
n_f36___4 [10*Arg_16-1000*Arg_3 ]
n_f36___3 [1000*Arg_1+1000-1000*Arg_3 ]
MPRF for transition 49:n_f36___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_14,Arg_15,Arg_16) -> n_f36___3(Arg_0,Arg_1,Arg_2,D_P,Arg_4,Arg_5,NoDet0,Arg_7+1,Arg_14,Arg_15,Arg_16):|:Arg_3<=10 && Arg_3<=10+Arg_2 && 990+Arg_3<=Arg_16 && Arg_16+Arg_3<=1010 && Arg_3<=Arg_1 && Arg_1+Arg_3<=20 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1002<=Arg_16+Arg_3 && Arg_16<=998+Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && 0<=Arg_2 && 1000<=Arg_16+Arg_2 && Arg_16<=1000+Arg_2 && 10<=Arg_1+Arg_2 && Arg_1<=10+Arg_2 && 10<=Arg_0+Arg_2 && Arg_16<=1000 && Arg_16<=990+Arg_1 && Arg_1+Arg_16<=1010 && Arg_16<=990+Arg_0 && 1000<=Arg_16 && 1010<=Arg_1+Arg_16 && 990+Arg_1<=Arg_16 && 1010<=Arg_0+Arg_16 && Arg_15<=Arg_14 && Arg_14<=Arg_15 && Arg_1<=10 && Arg_1<=Arg_0 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && 10<=Arg_0 && Arg_3<=10 && Arg_3<=10 && D_P<=10 && Arg_3+1<=D_P && D_P<=1+Arg_3 of depth 1:
new bound:
39820 {O(1)}
MPRF:
n_f36___5 [Arg_1-9*Arg_2 ]
n_f33___2 [10-9*Arg_2 ]
n_f36___4 [Arg_16-Arg_3-990 ]
n_f36___3 [Arg_1+1-Arg_3 ]
All Bounds
Timebounds
Overall timebound:260152 {O(1)}
36: n_f0->n_f11___11: 1 {O(1)}
37: n_f11___11->n_f14___10: 1 {O(1)}
38: n_f11___7->n_f14___10: 9 {O(1)}
39: n_f11___7->n_f33___6: 1 {O(1)}
40: n_f14___10->n_f14___9: 10 {O(1)}
41: n_f14___8->n_f11___7: 10 {O(1)}
42: n_f14___8->n_f14___8: 219 {O(1)}
43: n_f14___9->n_f14___8: 10 {O(1)}
44: n_f33___2->n_f36___5: 9 {O(1)}
45: n_f33___2->n_f58___1: 1 {O(1)}
46: n_f33___6->n_f36___5: 1 {O(1)}
47: n_f36___3->n_f33___2: 20 {O(1)}
48: n_f36___3->n_f36___3: 220000 {O(1)}
49: n_f36___3->n_f36___3: 39820 {O(1)}
50: n_f36___4->n_f36___3: 10 {O(1)}
51: n_f36___4->n_f36___3: 10 {O(1)}
52: n_f36___5->n_f36___4: 10 {O(1)}
53: n_f36___5->n_f36___4: 10 {O(1)}
Costbounds
Overall costbound: 260152 {O(1)}
36: n_f0->n_f11___11: 1 {O(1)}
37: n_f11___11->n_f14___10: 1 {O(1)}
38: n_f11___7->n_f14___10: 9 {O(1)}
39: n_f11___7->n_f33___6: 1 {O(1)}
40: n_f14___10->n_f14___9: 10 {O(1)}
41: n_f14___8->n_f11___7: 10 {O(1)}
42: n_f14___8->n_f14___8: 219 {O(1)}
43: n_f14___9->n_f14___8: 10 {O(1)}
44: n_f33___2->n_f36___5: 9 {O(1)}
45: n_f33___2->n_f58___1: 1 {O(1)}
46: n_f33___6->n_f36___5: 1 {O(1)}
47: n_f36___3->n_f33___2: 20 {O(1)}
48: n_f36___3->n_f36___3: 220000 {O(1)}
49: n_f36___3->n_f36___3: 39820 {O(1)}
50: n_f36___4->n_f36___3: 10 {O(1)}
51: n_f36___4->n_f36___3: 10 {O(1)}
52: n_f36___5->n_f36___4: 10 {O(1)}
53: n_f36___5->n_f36___4: 10 {O(1)}
Sizebounds
36: n_f0->n_f11___11, Arg_0: 0 {O(1)}
36: n_f0->n_f11___11, Arg_1: Arg_1 {O(n)}
36: n_f0->n_f11___11, Arg_2: Arg_2 {O(n)}
36: n_f0->n_f11___11, Arg_3: Arg_3 {O(n)}
36: n_f0->n_f11___11, Arg_4: Arg_4 {O(n)}
36: n_f0->n_f11___11, Arg_5: Arg_5 {O(n)}
36: n_f0->n_f11___11, Arg_6: Arg_6 {O(n)}
36: n_f0->n_f11___11, Arg_7: Arg_7 {O(n)}
36: n_f0->n_f11___11, Arg_14: 0 {O(1)}
36: n_f0->n_f11___11, Arg_15: Arg_15 {O(n)}
36: n_f0->n_f11___11, Arg_16: Arg_16 {O(n)}
37: n_f11___11->n_f14___10, Arg_0: 0 {O(1)}
37: n_f11___11->n_f14___10, Arg_1: 0 {O(1)}
37: n_f11___11->n_f14___10, Arg_2: Arg_2 {O(n)}
37: n_f11___11->n_f14___10, Arg_3: Arg_3 {O(n)}
37: n_f11___11->n_f14___10, Arg_4: Arg_4 {O(n)}
37: n_f11___11->n_f14___10, Arg_5: Arg_5 {O(n)}
37: n_f11___11->n_f14___10, Arg_6: Arg_6 {O(n)}
37: n_f11___11->n_f14___10, Arg_7: Arg_7 {O(n)}
37: n_f11___11->n_f14___10, Arg_14: 0 {O(1)}
37: n_f11___11->n_f14___10, Arg_15: Arg_15 {O(n)}
37: n_f11___11->n_f14___10, Arg_16: Arg_16 {O(n)}
38: n_f11___7->n_f14___10, Arg_0: 9 {O(1)}
38: n_f11___7->n_f14___10, Arg_1: 0 {O(1)}
38: n_f11___7->n_f14___10, Arg_2: Arg_2 {O(n)}
38: n_f11___7->n_f14___10, Arg_3: Arg_3 {O(n)}
38: n_f11___7->n_f14___10, Arg_4: Arg_4 {O(n)}
38: n_f11___7->n_f14___10, Arg_5: Arg_5 {O(n)}
38: n_f11___7->n_f14___10, Arg_6: Arg_6 {O(n)}
38: n_f11___7->n_f14___10, Arg_7: Arg_7 {O(n)}
38: n_f11___7->n_f14___10, Arg_16: Arg_16 {O(n)}
39: n_f11___7->n_f33___6, Arg_0: 10 {O(1)}
39: n_f11___7->n_f33___6, Arg_1: 10 {O(1)}
39: n_f11___7->n_f33___6, Arg_2: 0 {O(1)}
39: n_f11___7->n_f33___6, Arg_3: Arg_3 {O(n)}
39: n_f11___7->n_f33___6, Arg_4: 0 {O(1)}
39: n_f11___7->n_f33___6, Arg_5: 0 {O(1)}
39: n_f11___7->n_f33___6, Arg_6: 0 {O(1)}
39: n_f11___7->n_f33___6, Arg_7: 0 {O(1)}
39: n_f11___7->n_f33___6, Arg_16: 1000 {O(1)}
40: n_f14___10->n_f14___9, Arg_0: 9 {O(1)}
40: n_f14___10->n_f14___9, Arg_1: 1 {O(1)}
40: n_f14___10->n_f14___9, Arg_2: Arg_2 {O(n)}
40: n_f14___10->n_f14___9, Arg_3: Arg_3 {O(n)}
40: n_f14___10->n_f14___9, Arg_4: Arg_4 {O(n)}
40: n_f14___10->n_f14___9, Arg_5: Arg_5 {O(n)}
40: n_f14___10->n_f14___9, Arg_6: Arg_6 {O(n)}
40: n_f14___10->n_f14___9, Arg_7: Arg_7 {O(n)}
40: n_f14___10->n_f14___9, Arg_16: Arg_16 {O(n)}
41: n_f14___8->n_f11___7, Arg_0: 10 {O(1)}
41: n_f14___8->n_f11___7, Arg_1: 10 {O(1)}
41: n_f14___8->n_f11___7, Arg_2: Arg_2 {O(n)}
41: n_f14___8->n_f11___7, Arg_3: Arg_3 {O(n)}
41: n_f14___8->n_f11___7, Arg_4: Arg_4 {O(n)}
41: n_f14___8->n_f11___7, Arg_5: Arg_5 {O(n)}
41: n_f14___8->n_f11___7, Arg_6: Arg_6 {O(n)}
41: n_f14___8->n_f11___7, Arg_7: Arg_7 {O(n)}
41: n_f14___8->n_f11___7, Arg_16: Arg_16 {O(n)}
42: n_f14___8->n_f14___8, Arg_0: 9 {O(1)}
42: n_f14___8->n_f14___8, Arg_1: 10 {O(1)}
42: n_f14___8->n_f14___8, Arg_2: Arg_2 {O(n)}
42: n_f14___8->n_f14___8, Arg_3: Arg_3 {O(n)}
42: n_f14___8->n_f14___8, Arg_4: Arg_4 {O(n)}
42: n_f14___8->n_f14___8, Arg_5: Arg_5 {O(n)}
42: n_f14___8->n_f14___8, Arg_6: Arg_6 {O(n)}
42: n_f14___8->n_f14___8, Arg_7: Arg_7 {O(n)}
42: n_f14___8->n_f14___8, Arg_16: Arg_16 {O(n)}
43: n_f14___9->n_f14___8, Arg_0: 9 {O(1)}
43: n_f14___9->n_f14___8, Arg_1: 2 {O(1)}
43: n_f14___9->n_f14___8, Arg_2: Arg_2 {O(n)}
43: n_f14___9->n_f14___8, Arg_3: Arg_3 {O(n)}
43: n_f14___9->n_f14___8, Arg_4: Arg_4 {O(n)}
43: n_f14___9->n_f14___8, Arg_5: Arg_5 {O(n)}
43: n_f14___9->n_f14___8, Arg_6: Arg_6 {O(n)}
43: n_f14___9->n_f14___8, Arg_7: Arg_7 {O(n)}
43: n_f14___9->n_f14___8, Arg_16: Arg_16 {O(n)}
44: n_f33___2->n_f36___5, Arg_0: 20 {O(1)}
44: n_f33___2->n_f36___5, Arg_1: 10 {O(1)}
44: n_f33___2->n_f36___5, Arg_2: 9 {O(1)}
44: n_f33___2->n_f36___5, Arg_3: 0 {O(1)}
44: n_f33___2->n_f36___5, Arg_5: 220020 {O(1)}
44: n_f33___2->n_f36___5, Arg_7: 39840 {O(1)}
44: n_f33___2->n_f36___5, Arg_16: 1000 {O(1)}
45: n_f33___2->n_f58___1, Arg_0: 20 {O(1)}
45: n_f33___2->n_f58___1, Arg_1: 10 {O(1)}
45: n_f33___2->n_f58___1, Arg_2: 74 {O(1)}
45: n_f33___2->n_f58___1, Arg_3: 10 {O(1)}
45: n_f33___2->n_f58___1, Arg_5: 220020 {O(1)}
45: n_f33___2->n_f58___1, Arg_7: 39840 {O(1)}
45: n_f33___2->n_f58___1, Arg_16: 1000 {O(1)}
46: n_f33___6->n_f36___5, Arg_0: 10 {O(1)}
46: n_f33___6->n_f36___5, Arg_1: 10 {O(1)}
46: n_f33___6->n_f36___5, Arg_2: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_3: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_4: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_5: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_6: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_7: 0 {O(1)}
46: n_f33___6->n_f36___5, Arg_16: 1000 {O(1)}
47: n_f36___3->n_f33___2, Arg_0: 20 {O(1)}
47: n_f36___3->n_f33___2, Arg_1: 10 {O(1)}
47: n_f36___3->n_f33___2, Arg_2: 74 {O(1)}
47: n_f36___3->n_f33___2, Arg_3: 10 {O(1)}
47: n_f36___3->n_f33___2, Arg_5: 220020 {O(1)}
47: n_f36___3->n_f33___2, Arg_7: 39840 {O(1)}
47: n_f36___3->n_f33___2, Arg_16: 1000 {O(1)}
48: n_f36___3->n_f36___3, Arg_0: 20 {O(1)}
48: n_f36___3->n_f36___3, Arg_1: 10 {O(1)}
48: n_f36___3->n_f36___3, Arg_2: 36 {O(1)}
48: n_f36___3->n_f36___3, Arg_3: 10 {O(1)}
48: n_f36___3->n_f36___3, Arg_5: 220020 {O(1)}
48: n_f36___3->n_f36___3, Arg_7: 39840 {O(1)}
48: n_f36___3->n_f36___3, Arg_16: 1000 {O(1)}
49: n_f36___3->n_f36___3, Arg_0: 20 {O(1)}
49: n_f36___3->n_f36___3, Arg_1: 10 {O(1)}
49: n_f36___3->n_f36___3, Arg_2: 36 {O(1)}
49: n_f36___3->n_f36___3, Arg_3: 10 {O(1)}
49: n_f36___3->n_f36___3, Arg_5: 220020 {O(1)}
49: n_f36___3->n_f36___3, Arg_7: 39840 {O(1)}
49: n_f36___3->n_f36___3, Arg_16: 1000 {O(1)}
50: n_f36___4->n_f36___3, Arg_0: 20 {O(1)}
50: n_f36___4->n_f36___3, Arg_1: 10 {O(1)}
50: n_f36___4->n_f36___3, Arg_2: 9 {O(1)}
50: n_f36___4->n_f36___3, Arg_3: 2 {O(1)}
50: n_f36___4->n_f36___3, Arg_5: 220020 {O(1)}
50: n_f36___4->n_f36___3, Arg_7: 39840 {O(1)}
50: n_f36___4->n_f36___3, Arg_16: 1000 {O(1)}
51: n_f36___4->n_f36___3, Arg_0: 20 {O(1)}
51: n_f36___4->n_f36___3, Arg_1: 10 {O(1)}
51: n_f36___4->n_f36___3, Arg_2: 9 {O(1)}
51: n_f36___4->n_f36___3, Arg_3: 2 {O(1)}
51: n_f36___4->n_f36___3, Arg_5: 220020 {O(1)}
51: n_f36___4->n_f36___3, Arg_7: 39840 {O(1)}
51: n_f36___4->n_f36___3, Arg_16: 1000 {O(1)}
52: n_f36___5->n_f36___4, Arg_0: 20 {O(1)}
52: n_f36___5->n_f36___4, Arg_1: 10 {O(1)}
52: n_f36___5->n_f36___4, Arg_2: 9 {O(1)}
52: n_f36___5->n_f36___4, Arg_3: 1 {O(1)}
52: n_f36___5->n_f36___4, Arg_5: 220020 {O(1)}
52: n_f36___5->n_f36___4, Arg_7: 39840 {O(1)}
52: n_f36___5->n_f36___4, Arg_16: 1000 {O(1)}
53: n_f36___5->n_f36___4, Arg_0: 20 {O(1)}
53: n_f36___5->n_f36___4, Arg_1: 10 {O(1)}
53: n_f36___5->n_f36___4, Arg_2: 9 {O(1)}
53: n_f36___5->n_f36___4, Arg_3: 1 {O(1)}
53: n_f36___5->n_f36___4, Arg_5: 220020 {O(1)}
53: n_f36___5->n_f36___4, Arg_7: 39840 {O(1)}
53: n_f36___5->n_f36___4, Arg_16: 1000 {O(1)}