Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: B_P, C_P, E_P, F_P, H_P, I_P, J_P, L_P, M_P, N_P, O_P
Locations: n_f0, n_f21___6, n_f21___7, n_f29___1, n_f29___4, n_f41___2, n_f41___3, n_f41___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f21___6(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,0,1,L_P,M_P,N_P,O_P):|:1<=L_P && 1<=I_P && L_P<=M_P && M_P<=L_P && L_P<=N_P && N_P<=L_P && L_P<=O_P && O_P<=L_P
1:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f21___7(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:I_P<=0 && I_P<=J_P && J_P<=I_P
2:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___5(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,0,1,L_P,M_P,N_P,O_P):|:L_P<=0 && 1<=I_P && L_P<=M_P && M_P<=L_P && L_P<=N_P && N_P<=L_P && L_P<=O_P && O_P<=L_P
3:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f29___1(0,B_P,C_P,Arg_3,Arg_4,Arg_5,0,H_P,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1<=Arg_11 && 1<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_10<=1 && 1<=Arg_10 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=1 && 1<=Arg_0 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 1<=Arg_0 && B_P<=H_P && H_P<=B_P && B_P<=C_P && C_P<=B_P
4:n_f21___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f29___4(0,B_P,C_P,Arg_3,Arg_4,Arg_5,0,H_P,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_8<=0 && Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && 1<=Arg_0 && B_P<=H_P && H_P<=B_P && B_P<=C_P && C_P<=B_P
5:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(1,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1<=Arg_12 && 1<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_10<=1 && 1<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_12<=Arg_13 && Arg_13<=Arg_12 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=0 && 0<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=0 && 1000+Arg_1<=C_P && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
6:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1<=Arg_12 && 1<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_10<=1 && 1<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_12<=Arg_13 && Arg_13<=Arg_12 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=0 && 0<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=0 && C_P<=999+Arg_1 && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
7:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(1,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_8<=0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_0<=0 && 1000+Arg_1<=C_P && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
8:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_8<=0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_0<=0 && C_P<=999+Arg_1 && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
9:n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=1 && 1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 1000+Arg_1<=Arg_5
10:n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=999+Arg_1 && Arg_0<=0
11:n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:1<=Arg_0 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=1 && 1<=Arg_0 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 1<=Arg_8 && Arg_11<=0

Preprocessing

Found invariant Arg_9<=0 && 1+Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && 1+Arg_9<=Arg_14 && 1+Arg_9<=Arg_13 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_14+Arg_9 && 1<=Arg_13+Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && 1<=Arg_6+Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_14+Arg_8 && 2<=Arg_13+Arg_8 && 2<=Arg_12+Arg_8 && 2<=Arg_11+Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_14 && 1+Arg_6<=Arg_13 && 1+Arg_6<=Arg_12 && 1+Arg_6<=Arg_11 && 1+Arg_6<=Arg_10 && Arg_10+Arg_6<=1 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 1<=Arg_14+Arg_6 && 1<=Arg_13+Arg_6 && 1<=Arg_12+Arg_6 && 1<=Arg_11+Arg_6 && 1<=Arg_10+Arg_6 && Arg_10<=1+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_11 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && Arg_12<=Arg_13 && 2<=Arg_11+Arg_13 && Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 2<=Arg_10+Arg_12 && Arg_10<=Arg_12 && 1<=Arg_0+Arg_12 && 1+Arg_0<=Arg_12 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && Arg_10<=Arg_11 && 1<=Arg_0+Arg_11 && 1+Arg_0<=Arg_11 && Arg_10<=1 && Arg_10<=1+Arg_0 && Arg_0+Arg_10<=1 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 for location n_f29___1

Found invariant Arg_9<=0 && 1+Arg_9<=Arg_8 && 1+Arg_9<=Arg_14 && 1+Arg_9<=Arg_13 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && 1<=Arg_14+Arg_9 && 1<=Arg_13+Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && 2<=Arg_14+Arg_8 && 2<=Arg_13+Arg_8 && 2<=Arg_12+Arg_8 && 2<=Arg_11+Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 2<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_11 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && Arg_12<=Arg_13 && 2<=Arg_11+Arg_13 && Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 2<=Arg_10+Arg_12 && Arg_10<=Arg_12 && 2<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && Arg_10<=Arg_11 && 2<=Arg_0+Arg_11 && Arg_0<=Arg_11 && Arg_10<=1 && Arg_10<=Arg_0 && Arg_0+Arg_10<=2 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 for location n_f21___6

Found invariant Arg_9<=0 && Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 1000+Arg_7<=Arg_5 && 1000+Arg_7<=Arg_4 && 1000+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_2<=Arg_5 && 1000+Arg_1<=Arg_5 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1000+Arg_1<=Arg_4 && Arg_3<=0 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=1 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1000+Arg_1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 for location n_f41___2

Found invariant Arg_9<=0 && 1+Arg_9<=Arg_8 && Arg_14+Arg_9<=0 && Arg_13+Arg_9<=0 && Arg_12+Arg_9<=0 && Arg_11+Arg_9<=0 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_14<=Arg_9 && Arg_13<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && 1+Arg_14<=Arg_8 && 1+Arg_13<=Arg_8 && 1+Arg_12<=Arg_8 && 1+Arg_11<=Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_14<=0 && Arg_14<=Arg_13 && Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && Arg_11+Arg_14<=0 && 1+Arg_14<=Arg_10 && Arg_10+Arg_14<=1 && 1+Arg_14<=Arg_0 && Arg_0+Arg_14<=1 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_12+Arg_13<=0 && Arg_13<=Arg_11 && Arg_11+Arg_13<=0 && 1+Arg_13<=Arg_10 && Arg_10+Arg_13<=1 && 1+Arg_13<=Arg_0 && Arg_0+Arg_13<=1 && Arg_12<=Arg_13 && Arg_11<=Arg_13 && Arg_12<=0 && Arg_12<=Arg_11 && Arg_11+Arg_12<=0 && 1+Arg_12<=Arg_10 && Arg_10+Arg_12<=1 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_11<=Arg_12 && Arg_11<=0 && 1+Arg_11<=Arg_10 && Arg_10+Arg_11<=1 && 1+Arg_11<=Arg_0 && Arg_0+Arg_11<=1 && Arg_10<=1 && Arg_10<=Arg_0 && Arg_0+Arg_10<=2 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 for location n_f41___5

Found invariant Arg_9<=0 && Arg_9<=Arg_8 && Arg_8+Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && Arg_8<=Arg_9 && Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_8<=Arg_0 && Arg_0+Arg_8<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_0<=0 && 0<=Arg_0 for location n_f29___4

Found invariant Arg_9<=0 && Arg_9<=Arg_8 && Arg_8+Arg_9<=0 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && Arg_8<=Arg_9 && Arg_8<=0 && 1+Arg_8<=Arg_0 && Arg_0+Arg_8<=1 && Arg_0<=1 && 1<=Arg_0 for location n_f21___7

Found invariant Arg_9<=0 && Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && Arg_7<=Arg_1 && Arg_5<=999+Arg_7 && Arg_4<=999+Arg_7 && Arg_2<=999+Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=999+Arg_1 && Arg_4<=Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=999+Arg_1 && Arg_2<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=999+Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_f41___3

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14
Temp_Vars: B_P, C_P, E_P, F_P, H_P, I_P, J_P, L_P, M_P, N_P, O_P
Locations: n_f0, n_f21___6, n_f21___7, n_f29___1, n_f29___4, n_f41___2, n_f41___3, n_f41___5
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f21___6(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,0,1,L_P,M_P,N_P,O_P):|:1<=L_P && 1<=I_P && L_P<=M_P && M_P<=L_P && L_P<=N_P && N_P<=L_P && L_P<=O_P && O_P<=L_P
1:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f21___7(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,J_P,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:I_P<=0 && I_P<=J_P && J_P<=I_P
2:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___5(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,I_P,0,1,L_P,M_P,N_P,O_P):|:L_P<=0 && 1<=I_P && L_P<=M_P && M_P<=L_P && L_P<=N_P && N_P<=L_P && L_P<=O_P && O_P<=L_P
3:n_f21___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f29___1(0,B_P,C_P,Arg_3,Arg_4,Arg_5,0,H_P,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && 1+Arg_9<=Arg_8 && 1+Arg_9<=Arg_14 && 1+Arg_9<=Arg_13 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && 1<=Arg_14+Arg_9 && 1<=Arg_13+Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && 2<=Arg_14+Arg_8 && 2<=Arg_13+Arg_8 && 2<=Arg_12+Arg_8 && 2<=Arg_11+Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 2<=Arg_0+Arg_14 && Arg_0<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_11 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && Arg_12<=Arg_13 && 2<=Arg_11+Arg_13 && Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && 2<=Arg_0+Arg_13 && Arg_0<=Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 2<=Arg_10+Arg_12 && Arg_10<=Arg_12 && 2<=Arg_0+Arg_12 && Arg_0<=Arg_12 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && Arg_10<=Arg_11 && 2<=Arg_0+Arg_11 && Arg_0<=Arg_11 && Arg_10<=1 && Arg_10<=Arg_0 && Arg_0+Arg_10<=2 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_11 && 1<=Arg_8 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_10<=1 && 1<=Arg_10 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=1 && 1<=Arg_0 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 1<=Arg_0 && B_P<=H_P && H_P<=B_P && B_P<=C_P && C_P<=B_P
4:n_f21___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f29___4(0,B_P,C_P,Arg_3,Arg_4,Arg_5,0,H_P,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && Arg_9<=Arg_8 && Arg_8+Arg_9<=0 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && Arg_8<=Arg_9 && Arg_8<=0 && 1+Arg_8<=Arg_0 && Arg_0+Arg_8<=1 && Arg_0<=1 && 1<=Arg_0 && Arg_8<=0 && Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && 1<=Arg_0 && B_P<=H_P && H_P<=B_P && B_P<=C_P && C_P<=B_P
5:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(1,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && 1+Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && 1+Arg_9<=Arg_14 && 1+Arg_9<=Arg_13 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_14+Arg_9 && 1<=Arg_13+Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && 1<=Arg_6+Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_14+Arg_8 && 2<=Arg_13+Arg_8 && 2<=Arg_12+Arg_8 && 2<=Arg_11+Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_14 && 1+Arg_6<=Arg_13 && 1+Arg_6<=Arg_12 && 1+Arg_6<=Arg_11 && 1+Arg_6<=Arg_10 && Arg_10+Arg_6<=1 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 1<=Arg_14+Arg_6 && 1<=Arg_13+Arg_6 && 1<=Arg_12+Arg_6 && 1<=Arg_11+Arg_6 && 1<=Arg_10+Arg_6 && Arg_10<=1+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_11 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && Arg_12<=Arg_13 && 2<=Arg_11+Arg_13 && Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 2<=Arg_10+Arg_12 && Arg_10<=Arg_12 && 1<=Arg_0+Arg_12 && 1+Arg_0<=Arg_12 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && Arg_10<=Arg_11 && 1<=Arg_0+Arg_11 && 1+Arg_0<=Arg_11 && Arg_10<=1 && Arg_10<=1+Arg_0 && Arg_0+Arg_10<=1 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 && 1<=Arg_12 && 1<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_10<=1 && 1<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_12<=Arg_13 && Arg_13<=Arg_12 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=0 && 0<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=0 && 1000+Arg_1<=C_P && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
6:n_f29___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && 1+Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && 1+Arg_9<=Arg_14 && 1+Arg_9<=Arg_13 && 1+Arg_9<=Arg_12 && 1+Arg_9<=Arg_11 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_14+Arg_9 && 1<=Arg_13+Arg_9 && 1<=Arg_12+Arg_9 && 1<=Arg_11+Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && 1<=Arg_6+Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_14+Arg_8 && 2<=Arg_13+Arg_8 && 2<=Arg_12+Arg_8 && 2<=Arg_11+Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && 1+Arg_6<=Arg_14 && 1+Arg_6<=Arg_13 && 1+Arg_6<=Arg_12 && 1+Arg_6<=Arg_11 && 1+Arg_6<=Arg_10 && Arg_10+Arg_6<=1 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 1<=Arg_14+Arg_6 && 1<=Arg_13+Arg_6 && 1<=Arg_12+Arg_6 && 1<=Arg_11+Arg_6 && 1<=Arg_10+Arg_6 && Arg_10<=1+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_14<=Arg_13 && Arg_14<=Arg_12 && Arg_14<=Arg_11 && 1<=Arg_14 && 2<=Arg_13+Arg_14 && Arg_13<=Arg_14 && 2<=Arg_12+Arg_14 && Arg_12<=Arg_14 && 2<=Arg_11+Arg_14 && Arg_11<=Arg_14 && 2<=Arg_10+Arg_14 && Arg_10<=Arg_14 && 1<=Arg_0+Arg_14 && 1+Arg_0<=Arg_14 && Arg_13<=Arg_12 && Arg_13<=Arg_11 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && Arg_12<=Arg_13 && 2<=Arg_11+Arg_13 && Arg_11<=Arg_13 && 2<=Arg_10+Arg_13 && Arg_10<=Arg_13 && 1<=Arg_0+Arg_13 && 1+Arg_0<=Arg_13 && Arg_12<=Arg_11 && 1<=Arg_12 && 2<=Arg_11+Arg_12 && Arg_11<=Arg_12 && 2<=Arg_10+Arg_12 && Arg_10<=Arg_12 && 1<=Arg_0+Arg_12 && 1+Arg_0<=Arg_12 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && Arg_10<=Arg_11 && 1<=Arg_0+Arg_11 && 1+Arg_0<=Arg_11 && Arg_10<=1 && Arg_10<=1+Arg_0 && Arg_0+Arg_10<=1 && 1<=Arg_10 && 1<=Arg_0+Arg_10 && 1+Arg_0<=Arg_10 && Arg_0<=0 && 0<=Arg_0 && 1<=Arg_12 && 1<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_10<=1 && 1<=Arg_10 && Arg_12<=Arg_14 && Arg_14<=Arg_12 && Arg_12<=Arg_13 && Arg_13<=Arg_12 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=0 && 0<=Arg_0 && Arg_9<=0 && 0<=Arg_9 && Arg_0<=0 && C_P<=999+Arg_1 && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
7:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(1,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && Arg_9<=Arg_8 && Arg_8+Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && Arg_8<=Arg_9 && Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_8<=Arg_0 && Arg_0+Arg_8<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_0<=0 && 1000+Arg_1<=C_P && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
8:n_f29___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,C_P,0,E_P,F_P,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && Arg_9<=Arg_8 && Arg_8+Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && Arg_8<=Arg_9 && Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_8<=Arg_0 && Arg_0+Arg_8<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_2<=Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_8<=Arg_9 && Arg_9<=Arg_8 && Arg_0<=0 && C_P<=999+Arg_1 && C_P<=F_P && F_P<=C_P && C_P<=E_P && E_P<=C_P
9:n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 1000+Arg_7<=Arg_5 && 1000+Arg_7<=Arg_4 && 1000+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_0<=1+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_4<=Arg_5 && Arg_2<=Arg_5 && 1000+Arg_1<=Arg_5 && Arg_4<=Arg_2 && Arg_2<=Arg_4 && 1000+Arg_1<=Arg_4 && Arg_3<=0 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=1 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1000+Arg_1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=1 && 1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 1000+Arg_1<=Arg_5
10:n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && Arg_9<=Arg_8 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_0 && Arg_0+Arg_9<=0 && Arg_7<=Arg_1 && Arg_5<=999+Arg_7 && Arg_4<=999+Arg_7 && Arg_2<=999+Arg_7 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_0 && Arg_0+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=999+Arg_1 && Arg_4<=Arg_5 && Arg_2<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=999+Arg_1 && Arg_2<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_0 && Arg_0+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=999+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=999+Arg_1 && Arg_0<=0
11:n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14) -> n_f41___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14):|:Arg_9<=0 && 1+Arg_9<=Arg_8 && Arg_14+Arg_9<=0 && Arg_13+Arg_9<=0 && Arg_12+Arg_9<=0 && Arg_11+Arg_9<=0 && 1+Arg_9<=Arg_10 && Arg_10+Arg_9<=1 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=1 && 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_14<=Arg_9 && Arg_13<=Arg_9 && Arg_12<=Arg_9 && Arg_11<=Arg_9 && 1<=Arg_10+Arg_9 && Arg_10<=1+Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && 1+Arg_14<=Arg_8 && 1+Arg_13<=Arg_8 && 1+Arg_12<=Arg_8 && 1+Arg_11<=Arg_8 && 2<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_14<=0 && Arg_14<=Arg_13 && Arg_13+Arg_14<=0 && Arg_14<=Arg_12 && Arg_12+Arg_14<=0 && Arg_14<=Arg_11 && Arg_11+Arg_14<=0 && 1+Arg_14<=Arg_10 && Arg_10+Arg_14<=1 && 1+Arg_14<=Arg_0 && Arg_0+Arg_14<=1 && Arg_13<=Arg_14 && Arg_12<=Arg_14 && Arg_11<=Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_12+Arg_13<=0 && Arg_13<=Arg_11 && Arg_11+Arg_13<=0 && 1+Arg_13<=Arg_10 && Arg_10+Arg_13<=1 && 1+Arg_13<=Arg_0 && Arg_0+Arg_13<=1 && Arg_12<=Arg_13 && Arg_11<=Arg_13 && Arg_12<=0 && Arg_12<=Arg_11 && Arg_11+Arg_12<=0 && 1+Arg_12<=Arg_10 && Arg_10+Arg_12<=1 && 1+Arg_12<=Arg_0 && Arg_0+Arg_12<=1 && Arg_11<=Arg_12 && Arg_11<=0 && 1+Arg_11<=Arg_10 && Arg_10+Arg_11<=1 && 1+Arg_11<=Arg_0 && Arg_0+Arg_11<=1 && Arg_10<=1 && Arg_10<=Arg_0 && Arg_0+Arg_10<=2 && 1<=Arg_10 && 2<=Arg_0+Arg_10 && Arg_0<=Arg_10 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_11<=Arg_12 && Arg_12<=Arg_11 && Arg_0<=1 && 1<=Arg_0 && Arg_11<=Arg_13 && Arg_13<=Arg_11 && Arg_9<=0 && 0<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_11<=Arg_14 && Arg_14<=Arg_11 && 1<=Arg_8 && Arg_11<=0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
0: n_f0->n_f21___6: 1 {O(1)}
1: n_f0->n_f21___7: 1 {O(1)}
2: n_f0->n_f41___5: 1 {O(1)}
3: n_f21___6->n_f29___1: 1 {O(1)}
4: n_f21___7->n_f29___4: 1 {O(1)}
5: n_f29___1->n_f41___2: 1 {O(1)}
6: n_f29___1->n_f41___3: 1 {O(1)}
7: n_f29___4->n_f41___2: 1 {O(1)}
8: n_f29___4->n_f41___3: 1 {O(1)}
9: n_f41___2->n_f41___2: inf {Infinity}
10: n_f41___3->n_f41___3: inf {Infinity}
11: n_f41___5->n_f41___5: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
0: n_f0->n_f21___6: 1 {O(1)}
1: n_f0->n_f21___7: 1 {O(1)}
2: n_f0->n_f41___5: 1 {O(1)}
3: n_f21___6->n_f29___1: 1 {O(1)}
4: n_f21___7->n_f29___4: 1 {O(1)}
5: n_f29___1->n_f41___2: 1 {O(1)}
6: n_f29___1->n_f41___3: 1 {O(1)}
7: n_f29___4->n_f41___2: 1 {O(1)}
8: n_f29___4->n_f41___3: 1 {O(1)}
9: n_f41___2->n_f41___2: inf {Infinity}
10: n_f41___3->n_f41___3: inf {Infinity}
11: n_f41___5->n_f41___5: inf {Infinity}

Sizebounds

0: n_f0->n_f21___6, Arg_0: 1 {O(1)}
0: n_f0->n_f21___6, Arg_1: Arg_1 {O(n)}
0: n_f0->n_f21___6, Arg_2: Arg_2 {O(n)}
0: n_f0->n_f21___6, Arg_3: Arg_3 {O(n)}
0: n_f0->n_f21___6, Arg_4: Arg_4 {O(n)}
0: n_f0->n_f21___6, Arg_5: Arg_5 {O(n)}
0: n_f0->n_f21___6, Arg_6: Arg_6 {O(n)}
0: n_f0->n_f21___6, Arg_7: Arg_7 {O(n)}
0: n_f0->n_f21___6, Arg_9: 0 {O(1)}
0: n_f0->n_f21___6, Arg_10: 1 {O(1)}
1: n_f0->n_f21___7, Arg_0: 1 {O(1)}
1: n_f0->n_f21___7, Arg_1: Arg_1 {O(n)}
1: n_f0->n_f21___7, Arg_2: Arg_2 {O(n)}
1: n_f0->n_f21___7, Arg_3: Arg_3 {O(n)}
1: n_f0->n_f21___7, Arg_4: Arg_4 {O(n)}
1: n_f0->n_f21___7, Arg_5: Arg_5 {O(n)}
1: n_f0->n_f21___7, Arg_6: Arg_6 {O(n)}
1: n_f0->n_f21___7, Arg_7: Arg_7 {O(n)}
1: n_f0->n_f21___7, Arg_10: Arg_10 {O(n)}
1: n_f0->n_f21___7, Arg_11: Arg_11 {O(n)}
1: n_f0->n_f21___7, Arg_12: Arg_12 {O(n)}
1: n_f0->n_f21___7, Arg_13: Arg_13 {O(n)}
1: n_f0->n_f21___7, Arg_14: Arg_14 {O(n)}
2: n_f0->n_f41___5, Arg_0: 1 {O(1)}
2: n_f0->n_f41___5, Arg_1: Arg_1 {O(n)}
2: n_f0->n_f41___5, Arg_2: Arg_2 {O(n)}
2: n_f0->n_f41___5, Arg_3: Arg_3 {O(n)}
2: n_f0->n_f41___5, Arg_4: Arg_4 {O(n)}
2: n_f0->n_f41___5, Arg_5: Arg_5 {O(n)}
2: n_f0->n_f41___5, Arg_6: Arg_6 {O(n)}
2: n_f0->n_f41___5, Arg_7: Arg_7 {O(n)}
2: n_f0->n_f41___5, Arg_9: 0 {O(1)}
2: n_f0->n_f41___5, Arg_10: 1 {O(1)}
3: n_f21___6->n_f29___1, Arg_0: 0 {O(1)}
3: n_f21___6->n_f29___1, Arg_3: Arg_3 {O(n)}
3: n_f21___6->n_f29___1, Arg_4: Arg_4 {O(n)}
3: n_f21___6->n_f29___1, Arg_5: Arg_5 {O(n)}
3: n_f21___6->n_f29___1, Arg_6: 0 {O(1)}
3: n_f21___6->n_f29___1, Arg_9: 0 {O(1)}
3: n_f21___6->n_f29___1, Arg_10: 1 {O(1)}
4: n_f21___7->n_f29___4, Arg_0: 0 {O(1)}
4: n_f21___7->n_f29___4, Arg_3: Arg_3 {O(n)}
4: n_f21___7->n_f29___4, Arg_4: Arg_4 {O(n)}
4: n_f21___7->n_f29___4, Arg_5: Arg_5 {O(n)}
4: n_f21___7->n_f29___4, Arg_6: 0 {O(1)}
4: n_f21___7->n_f29___4, Arg_10: Arg_10 {O(n)}
4: n_f21___7->n_f29___4, Arg_11: Arg_11 {O(n)}
4: n_f21___7->n_f29___4, Arg_12: Arg_12 {O(n)}
4: n_f21___7->n_f29___4, Arg_13: Arg_13 {O(n)}
4: n_f21___7->n_f29___4, Arg_14: Arg_14 {O(n)}
5: n_f29___1->n_f41___2, Arg_0: 1 {O(1)}
5: n_f29___1->n_f41___2, Arg_3: 0 {O(1)}
5: n_f29___1->n_f41___2, Arg_6: 0 {O(1)}
5: n_f29___1->n_f41___2, Arg_9: 0 {O(1)}
5: n_f29___1->n_f41___2, Arg_10: 1 {O(1)}
6: n_f29___1->n_f41___3, Arg_0: 0 {O(1)}
6: n_f29___1->n_f41___3, Arg_3: 0 {O(1)}
6: n_f29___1->n_f41___3, Arg_6: 0 {O(1)}
6: n_f29___1->n_f41___3, Arg_9: 0 {O(1)}
6: n_f29___1->n_f41___3, Arg_10: 1 {O(1)}
7: n_f29___4->n_f41___2, Arg_0: 1 {O(1)}
7: n_f29___4->n_f41___2, Arg_3: 0 {O(1)}
7: n_f29___4->n_f41___2, Arg_6: 0 {O(1)}
7: n_f29___4->n_f41___2, Arg_10: Arg_10 {O(n)}
7: n_f29___4->n_f41___2, Arg_11: Arg_11 {O(n)}
7: n_f29___4->n_f41___2, Arg_12: Arg_12 {O(n)}
7: n_f29___4->n_f41___2, Arg_13: Arg_13 {O(n)}
7: n_f29___4->n_f41___2, Arg_14: Arg_14 {O(n)}
8: n_f29___4->n_f41___3, Arg_0: 0 {O(1)}
8: n_f29___4->n_f41___3, Arg_3: 0 {O(1)}
8: n_f29___4->n_f41___3, Arg_6: 0 {O(1)}
8: n_f29___4->n_f41___3, Arg_10: Arg_10 {O(n)}
8: n_f29___4->n_f41___3, Arg_11: Arg_11 {O(n)}
8: n_f29___4->n_f41___3, Arg_12: Arg_12 {O(n)}
8: n_f29___4->n_f41___3, Arg_13: Arg_13 {O(n)}
8: n_f29___4->n_f41___3, Arg_14: Arg_14 {O(n)}
9: n_f41___2->n_f41___2, Arg_0: 1 {O(1)}
9: n_f41___2->n_f41___2, Arg_3: 0 {O(1)}
9: n_f41___2->n_f41___2, Arg_6: 0 {O(1)}
9: n_f41___2->n_f41___2, Arg_10: Arg_10+1 {O(n)}
10: n_f41___3->n_f41___3, Arg_0: 0 {O(1)}
10: n_f41___3->n_f41___3, Arg_3: 0 {O(1)}
10: n_f41___3->n_f41___3, Arg_6: 0 {O(1)}
10: n_f41___3->n_f41___3, Arg_10: Arg_10+1 {O(n)}
11: n_f41___5->n_f41___5, Arg_0: 1 {O(1)}
11: n_f41___5->n_f41___5, Arg_1: Arg_1 {O(n)}
11: n_f41___5->n_f41___5, Arg_2: Arg_2 {O(n)}
11: n_f41___5->n_f41___5, Arg_3: Arg_3 {O(n)}
11: n_f41___5->n_f41___5, Arg_4: Arg_4 {O(n)}
11: n_f41___5->n_f41___5, Arg_5: Arg_5 {O(n)}
11: n_f41___5->n_f41___5, Arg_6: Arg_6 {O(n)}
11: n_f41___5->n_f41___5, Arg_7: Arg_7 {O(n)}
11: n_f41___5->n_f41___5, Arg_9: 0 {O(1)}
11: n_f41___5->n_f41___5, Arg_10: 1 {O(1)}