Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_lbl72___5, n_lbl72___8, n_start0, n_start___9, n_stop___1, n_stop___2, n_stop___3, n_stop___4, n_stop___6, n_stop___7
Transitions:
0:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___5(Arg_0,Arg_1-1,Arg_2,Arg_0+Arg_2+Arg_4+1-Arg_1-Arg_3,Arg_4,Arg_3,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_2+Arg_4<=100+Arg_1+Arg_3 && 1+Arg_1<=Arg_2 && Arg_3<=Arg_1 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
1:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1<=Arg_3 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
2:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 101+Arg_1+Arg_3<=Arg_0+Arg_2+Arg_4 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
3:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___5(Arg_0,Arg_1-1,Arg_2,Arg_0+Arg_2+Arg_4+1-Arg_1-Arg_3,Arg_4,Arg_3,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_2+Arg_4<=100+Arg_1+Arg_3 && 1+Arg_1<=Arg_2 && Arg_3<=Arg_1 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
4:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && 1+Arg_1<=Arg_3 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
5:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 101+Arg_1+Arg_3<=Arg_0+Arg_2+Arg_4 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
6:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___9(Arg_0,Arg_2,Arg_2,Arg_4,Arg_4,Arg_0,Arg_7,Arg_7)
7:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___8(Arg_0,Arg_1-1,Arg_1,Arg_0+1,Arg_3,Arg_3,Arg_0,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=100 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_0,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___7(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_0,Arg_6,Arg_6):|:Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 101<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
Found invariant Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=1+Arg_1 && Arg_3<=101 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_0<=100 for location n_lbl72___8
Found invariant Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_0+Arg_5<=201 && Arg_4<=Arg_2 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_0<=100 for location n_lbl72___5
Found invariant Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_2 && Arg_6<=2+Arg_1 && Arg_1+Arg_6<=200 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_2 && Arg_0+Arg_4<=200 && Arg_3<=101 && Arg_3<=1+Arg_2 && Arg_3<=3+Arg_1 && Arg_1+Arg_3<=201 && Arg_0+Arg_3<=201 && 1+Arg_1<=Arg_3 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=100 && Arg_0+Arg_1<=200 && Arg_0<=100 for location n_stop___1
Found invariant Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_2 && Arg_6<=2+Arg_1 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_4<=Arg_2 && Arg_0+Arg_4<=200 && Arg_3<=101 && Arg_3<=1+Arg_2 && Arg_3<=3+Arg_1 && Arg_0+Arg_3<=201 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_0<=100 for location n_stop___2
Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_start___9
Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && 101<=Arg_5 && 202<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 101<=Arg_0 for location n_stop___7
Found invariant Arg_6<=100 && Arg_4+Arg_6<=201 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_2+Arg_6<=201 && Arg_1+Arg_6<=200 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_4<=1+Arg_6 && Arg_3<=1+Arg_6 && Arg_2<=1+Arg_6 && Arg_1<=Arg_6 && Arg_0<=Arg_6 && Arg_4<=101 && Arg_4<=Arg_3 && Arg_3+Arg_4<=202 && Arg_4<=Arg_2 && Arg_2+Arg_4<=202 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=201 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=201 && Arg_3<=101 && Arg_2+Arg_3<=202 && Arg_1+Arg_3<=201 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=101 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=201 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=201 && 1+Arg_1<=Arg_2 && Arg_1<=100 && Arg_1<=Arg_0 && Arg_0+Arg_1<=200 && Arg_0<=100 for location n_stop___3
Found invariant Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_0<=Arg_6 && Arg_4<=Arg_2 && Arg_4<=1+Arg_1 && Arg_3<=101 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_0<=100 for location n_stop___4
Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location n_stop___6
Start: n_start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: n_lbl72___5, n_lbl72___8, n_start0, n_start___9, n_stop___1, n_stop___2, n_stop___3, n_stop___4, n_stop___6, n_stop___7
Transitions:
0:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___5(Arg_0,Arg_1-1,Arg_2,Arg_0+Arg_2+Arg_4+1-Arg_1-Arg_3,Arg_4,Arg_3,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_7):|:Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_0+Arg_5<=201 && Arg_4<=Arg_2 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_2+Arg_4<=100+Arg_1+Arg_3 && 1+Arg_1<=Arg_2 && Arg_3<=Arg_1 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
1:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_0+Arg_5<=201 && Arg_4<=Arg_2 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1<=Arg_3 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
2:n_lbl72___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_5<=101 && 1+Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_0+Arg_5<=201 && Arg_4<=Arg_2 && 2+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_0+Arg_2+Arg_4<=1+Arg_1+Arg_5+Arg_6 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && Arg_3<=1+Arg_6 && 1+Arg_6<=Arg_3 && Arg_6<=100 && 1+Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_5<=1+Arg_1 && Arg_5<=101 && Arg_0<=100 && Arg_6<=2+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 101+Arg_1+Arg_3<=Arg_0+Arg_2+Arg_4 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
3:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___5(Arg_0,Arg_1-1,Arg_2,Arg_0+Arg_2+Arg_4+1-Arg_1-Arg_3,Arg_4,Arg_3,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_7):|:Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=1+Arg_1 && Arg_3<=101 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_2+Arg_4<=100+Arg_1+Arg_3 && 1+Arg_1<=Arg_2 && Arg_3<=Arg_1 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
4:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=1+Arg_1 && Arg_3<=101 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && 1+Arg_1<=Arg_3 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
5:n_lbl72___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0+Arg_2+Arg_4-Arg_1-Arg_3,Arg_3-1,Arg_7):|:Arg_6<=100 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=201 && Arg_6<=Arg_0 && Arg_0+Arg_6<=200 && Arg_3<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && Arg_4<=Arg_5 && Arg_4<=Arg_2 && Arg_4<=1+Arg_1 && Arg_3<=101 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=201 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1+Arg_1<=Arg_2 && Arg_0<=100 && Arg_5<=1+Arg_1 && Arg_0+2*Arg_4<=1+Arg_1+Arg_5+Arg_6 && Arg_6<=100 && Arg_0<=100 && Arg_0+Arg_4<=Arg_5+Arg_6 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_5+Arg_6+1 && 1+Arg_1+Arg_5+Arg_6<=Arg_0+Arg_2+Arg_4 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=Arg_6 && Arg_6<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_2<=1+Arg_1 && Arg_5<=1+Arg_1 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=1+2*Arg_1+Arg_3 && Arg_4<=Arg_2 && 101+Arg_1+Arg_3<=Arg_0+Arg_2+Arg_4 && 1+Arg_1<=Arg_2 && Arg_3<=101 && Arg_0<=100 && Arg_0+Arg_2+Arg_4<=Arg_1+Arg_3+Arg_5 && Arg_1+Arg_3+Arg_5<=Arg_0+Arg_2+Arg_4 && Arg_3<=Arg_6+1 && 1+Arg_6<=Arg_3
6:n_start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_start___9(Arg_0,Arg_2,Arg_2,Arg_4,Arg_4,Arg_0,Arg_7,Arg_7)
7:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___8(Arg_0,Arg_1-1,Arg_1,Arg_0+1,Arg_3,Arg_3,Arg_0,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_3<=Arg_1 && Arg_0<=100 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___6(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_0,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:n_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_stop___7(Arg_0,Arg_1,Arg_1,Arg_3,Arg_3,Arg_0,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_0 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_4 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 101<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_0<=Arg_5 && Arg_5<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
new bound:
Arg_0+Arg_2+Arg_4+103 {O(n)}
MPRF:
n_lbl72___5 [Arg_1+101-Arg_0-Arg_4 ]
Overall timebound:Arg_0+Arg_2+Arg_4+112 {O(n)}
0: n_lbl72___5->n_lbl72___5: Arg_0+Arg_2+Arg_4+103 {O(n)}
1: n_lbl72___5->n_stop___1: 1 {O(1)}
2: n_lbl72___5->n_stop___2: 1 {O(1)}
3: n_lbl72___8->n_lbl72___5: 1 {O(1)}
4: n_lbl72___8->n_stop___3: 1 {O(1)}
5: n_lbl72___8->n_stop___4: 1 {O(1)}
6: n_start0->n_start___9: 1 {O(1)}
7: n_start___9->n_lbl72___8: 1 {O(1)}
8: n_start___9->n_stop___6: 1 {O(1)}
9: n_start___9->n_stop___7: 1 {O(1)}
Overall costbound: Arg_0+Arg_2+Arg_4+112 {O(n)}
0: n_lbl72___5->n_lbl72___5: Arg_0+Arg_2+Arg_4+103 {O(n)}
1: n_lbl72___5->n_stop___1: 1 {O(1)}
2: n_lbl72___5->n_stop___2: 1 {O(1)}
3: n_lbl72___8->n_lbl72___5: 1 {O(1)}
4: n_lbl72___8->n_stop___3: 1 {O(1)}
5: n_lbl72___8->n_stop___4: 1 {O(1)}
6: n_start0->n_start___9: 1 {O(1)}
7: n_start___9->n_lbl72___8: 1 {O(1)}
8: n_start___9->n_stop___6: 1 {O(1)}
9: n_start___9->n_stop___7: 1 {O(1)}
0: n_lbl72___5->n_lbl72___5, Arg_0: Arg_0 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_1: 2*Arg_2+Arg_0+Arg_4+105 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_2: Arg_2 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_3: 2*Arg_0+2*Arg_4+202 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_4: Arg_4 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_5: 2*Arg_0+3*Arg_4+203 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_6: 2*Arg_0+2*Arg_4+200 {O(n)}
0: n_lbl72___5->n_lbl72___5, Arg_7: Arg_7 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_0: 2*Arg_0 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_1: 3*Arg_2+Arg_0+Arg_4+107 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_2: 2*Arg_2 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_3: 2*Arg_0+3*Arg_4+203 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_4: 2*Arg_4 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_5: 3*Arg_0+3*Arg_4+204 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_6: 2*Arg_0+3*Arg_4+205 {O(n)}
1: n_lbl72___5->n_stop___1, Arg_7: 2*Arg_7 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_0: 2*Arg_0 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_1: 3*Arg_2+Arg_0+Arg_4+107 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_2: 2*Arg_2 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_3: 2*Arg_0+3*Arg_4+203 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_4: 2*Arg_4 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_5: 101 {O(1)}
2: n_lbl72___5->n_stop___2, Arg_6: 2*Arg_0+3*Arg_4+205 {O(n)}
2: n_lbl72___5->n_stop___2, Arg_7: 2*Arg_7 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_0: Arg_0 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_1: Arg_2+2 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_2: Arg_2 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_3: Arg_4+1 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_4: Arg_4 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_5: Arg_0+1 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_6: Arg_4 {O(n)}
3: n_lbl72___8->n_lbl72___5, Arg_7: Arg_7 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_0: Arg_0 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_1: Arg_2+1 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_2: Arg_2 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_3: Arg_0+1 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_4: Arg_4 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_5: Arg_4 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_6: Arg_0+2 {O(n)}
4: n_lbl72___8->n_stop___3, Arg_7: Arg_7 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_0: Arg_0 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_1: Arg_2+1 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_2: Arg_2 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_3: Arg_0+1 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_4: Arg_4 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_5: Arg_2+2 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_6: Arg_0+2 {O(n)}
5: n_lbl72___8->n_stop___4, Arg_7: Arg_7 {O(n)}
6: n_start0->n_start___9, Arg_0: Arg_0 {O(n)}
6: n_start0->n_start___9, Arg_1: Arg_2 {O(n)}
6: n_start0->n_start___9, Arg_2: Arg_2 {O(n)}
6: n_start0->n_start___9, Arg_3: Arg_4 {O(n)}
6: n_start0->n_start___9, Arg_4: Arg_4 {O(n)}
6: n_start0->n_start___9, Arg_5: Arg_0 {O(n)}
6: n_start0->n_start___9, Arg_6: Arg_7 {O(n)}
6: n_start0->n_start___9, Arg_7: Arg_7 {O(n)}
7: n_start___9->n_lbl72___8, Arg_0: Arg_0 {O(n)}
7: n_start___9->n_lbl72___8, Arg_1: Arg_2+1 {O(n)}
7: n_start___9->n_lbl72___8, Arg_2: Arg_2 {O(n)}
7: n_start___9->n_lbl72___8, Arg_3: Arg_0+1 {O(n)}
7: n_start___9->n_lbl72___8, Arg_4: Arg_4 {O(n)}
7: n_start___9->n_lbl72___8, Arg_5: Arg_4 {O(n)}
7: n_start___9->n_lbl72___8, Arg_6: Arg_0 {O(n)}
7: n_start___9->n_lbl72___8, Arg_7: Arg_7 {O(n)}
8: n_start___9->n_stop___6, Arg_0: Arg_0 {O(n)}
8: n_start___9->n_stop___6, Arg_1: Arg_2 {O(n)}
8: n_start___9->n_stop___6, Arg_2: Arg_2 {O(n)}
8: n_start___9->n_stop___6, Arg_3: Arg_4 {O(n)}
8: n_start___9->n_stop___6, Arg_4: Arg_4 {O(n)}
8: n_start___9->n_stop___6, Arg_5: Arg_0 {O(n)}
8: n_start___9->n_stop___6, Arg_6: Arg_7 {O(n)}
8: n_start___9->n_stop___6, Arg_7: Arg_7 {O(n)}
9: n_start___9->n_stop___7, Arg_0: Arg_0 {O(n)}
9: n_start___9->n_stop___7, Arg_1: Arg_2 {O(n)}
9: n_start___9->n_stop___7, Arg_2: Arg_2 {O(n)}
9: n_start___9->n_stop___7, Arg_3: Arg_4 {O(n)}
9: n_start___9->n_stop___7, Arg_4: Arg_4 {O(n)}
9: n_start___9->n_stop___7, Arg_5: Arg_0 {O(n)}
9: n_start___9->n_stop___7, Arg_6: Arg_7 {O(n)}
9: n_start___9->n_stop___7, Arg_7: Arg_7 {O(n)}