Initial Problem

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: NoDet0, NoDet1
Locations: n_f0, n_f11___3, n_f38___4, n_f54___1, n_f54___2
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f38___4(1,2,Arg_2,1,10,Arg_5,Arg_6,Arg_7,10,2,NoDet0)
1:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f54___1(Arg_0,Arg_1,Arg_1-Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5<=1 && 1<=Arg_5 && Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_9<=2 && 2<=Arg_9 && Arg_1<=2 && 2<=Arg_1 && Arg_8<=10 && 10<=Arg_8 && Arg_6<=1 && 1<=Arg_6 && 1+Arg_0<=Arg_1
2:n_f11___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f54___2(Arg_0,Arg_1,Arg_0+Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5<=1 && 1<=Arg_5 && Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_9<=2 && 2<=Arg_9 && Arg_1<=2 && 2<=Arg_1 && Arg_8<=10 && 10<=Arg_8 && Arg_6<=1 && 1<=Arg_6 && Arg_1<=Arg_0
3:n_f38___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_f11___3(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_3,NoDet1,Arg_8,Arg_9,Arg_10):|:Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_8<=10 && 10<=Arg_8 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_9<=2 && 2<=Arg_9 && Arg_3<=Arg_4

Preprocessing

Eliminate variables {NoDet1,Arg_2,Arg_7,Arg_10} that do not contribute to the problem

Found invariant Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && Arg_0+Arg_9<=3 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 3<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1+Arg_0<=Arg_9 && Arg_8<=10 && Arg_8<=9+Arg_6 && Arg_6+Arg_8<=11 && Arg_8<=9+Arg_5 && Arg_5+Arg_8<=11 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && Arg_0+Arg_8<=11 && 10<=Arg_8 && 11<=Arg_6+Arg_8 && 9+Arg_6<=Arg_8 && 11<=Arg_5+Arg_8 && 9+Arg_5<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && 9+Arg_0<=Arg_8 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=3 && Arg_0+Arg_6<=2 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 3<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 1+Arg_5<=Arg_1 && Arg_1+Arg_5<=3 && Arg_0+Arg_5<=2 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=9+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && Arg_0<=Arg_5 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && Arg_0+Arg_4<=11 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && 9+Arg_0<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && Arg_0+Arg_3<=2 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_0<=Arg_3 && Arg_1<=2 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 for location n_f54___1

Found invariant Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && Arg_9<=Arg_0 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 3<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 4<=Arg_0+Arg_9 && Arg_8<=10 && Arg_8<=9+Arg_6 && Arg_6+Arg_8<=11 && Arg_8<=9+Arg_5 && Arg_5+Arg_8<=11 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && Arg_8<=8+Arg_0 && 10<=Arg_8 && 11<=Arg_6+Arg_8 && 9+Arg_6<=Arg_8 && 11<=Arg_5+Arg_8 && 9+Arg_5<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && 12<=Arg_0+Arg_8 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=3 && 1+Arg_6<=Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 3<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 1+Arg_5<=Arg_1 && Arg_1+Arg_5<=3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=9+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && Arg_4<=8+Arg_0 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && 12<=Arg_0+Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=2 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 for location n_f54___2

Found invariant Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && Arg_9<=1+Arg_0 && Arg_0+Arg_9<=3 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_8<=10 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && Arg_8<=9+Arg_0 && Arg_0+Arg_8<=11 && 10<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && 11<=Arg_0+Arg_8 && 9+Arg_0<=Arg_8 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && Arg_4<=9+Arg_0 && Arg_0+Arg_4<=11 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && 11<=Arg_0+Arg_4 && 9+Arg_0<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && Arg_3<=Arg_0 && Arg_0+Arg_3<=2 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_f38___4

Found invariant Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 3<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_8<=10 && Arg_8<=9+Arg_6 && Arg_6+Arg_8<=11 && Arg_8<=9+Arg_5 && Arg_5+Arg_8<=11 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && 10<=Arg_8 && 11<=Arg_6+Arg_8 && 9+Arg_6<=Arg_8 && 11<=Arg_5+Arg_8 && 9+Arg_5<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=3 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 3<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 1+Arg_5<=Arg_1 && Arg_1+Arg_5<=3 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=9+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_1<=2 && 2<=Arg_1 for location n_f11___3

Problem after Preprocessing

Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_3, Arg_4, Arg_5, Arg_6, Arg_8, Arg_9
Temp_Vars: NoDet0
Locations: n_f0, n_f11___3, n_f38___4, n_f54___1, n_f54___2
Transitions:
8:n_f0(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9) -> n_f38___4(1,2,1,10,Arg_5,Arg_6,10,2)
9:n_f11___3(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9) -> n_f54___1(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9):|:Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 3<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_8<=10 && Arg_8<=9+Arg_6 && Arg_6+Arg_8<=11 && Arg_8<=9+Arg_5 && Arg_5+Arg_8<=11 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && 10<=Arg_8 && 11<=Arg_6+Arg_8 && 9+Arg_6<=Arg_8 && 11<=Arg_5+Arg_8 && 9+Arg_5<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=3 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 3<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 1+Arg_5<=Arg_1 && Arg_1+Arg_5<=3 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=9+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_1<=2 && 2<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_9<=2 && 2<=Arg_9 && Arg_1<=2 && 2<=Arg_1 && Arg_8<=10 && 10<=Arg_8 && Arg_6<=1 && 1<=Arg_6 && 1+Arg_0<=Arg_1
10:n_f11___3(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9) -> n_f54___2(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9):|:Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 3<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_8<=10 && Arg_8<=9+Arg_6 && Arg_6+Arg_8<=11 && Arg_8<=9+Arg_5 && Arg_5+Arg_8<=11 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && 10<=Arg_8 && 11<=Arg_6+Arg_8 && 9+Arg_6<=Arg_8 && 11<=Arg_5+Arg_8 && 9+Arg_5<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=11 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=3 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 3<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=11 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 1+Arg_5<=Arg_1 && Arg_1+Arg_5<=3 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=9+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_1<=2 && 2<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_9<=2 && 2<=Arg_9 && Arg_1<=2 && 2<=Arg_1 && Arg_8<=10 && 10<=Arg_8 && Arg_6<=1 && 1<=Arg_6 && Arg_1<=Arg_0
11:n_f38___4(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_9) -> n_f11___3(NoDet0,Arg_1,Arg_3,Arg_4,Arg_3,Arg_3,Arg_8,Arg_9):|:Arg_9<=2 && 8+Arg_9<=Arg_8 && Arg_8+Arg_9<=12 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=12 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && Arg_9<=Arg_1 && Arg_1+Arg_9<=4 && Arg_9<=1+Arg_0 && Arg_0+Arg_9<=3 && 2<=Arg_9 && 12<=Arg_8+Arg_9 && Arg_8<=8+Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=8+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 4<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_8<=10 && Arg_8<=Arg_4 && Arg_4+Arg_8<=20 && Arg_8<=9+Arg_3 && Arg_3+Arg_8<=11 && Arg_8<=8+Arg_1 && Arg_1+Arg_8<=12 && Arg_8<=9+Arg_0 && Arg_0+Arg_8<=11 && 10<=Arg_8 && 20<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 11<=Arg_3+Arg_8 && 9+Arg_3<=Arg_8 && 12<=Arg_1+Arg_8 && 8+Arg_1<=Arg_8 && 11<=Arg_0+Arg_8 && 9+Arg_0<=Arg_8 && Arg_4<=10 && Arg_4<=9+Arg_3 && Arg_3+Arg_4<=11 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=12 && Arg_4<=9+Arg_0 && Arg_0+Arg_4<=11 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 12<=Arg_1+Arg_4 && 8+Arg_1<=Arg_4 && 11<=Arg_0+Arg_4 && 9+Arg_0<=Arg_4 && Arg_3<=1 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=3 && Arg_3<=Arg_0 && Arg_0+Arg_3<=2 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_4<=10 && 10<=Arg_4 && Arg_3<=1 && 1<=Arg_3 && Arg_8<=10 && 10<=Arg_8 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_9<=2 && 2<=Arg_9 && Arg_3<=Arg_4

All Bounds

Timebounds

Overall timebound:4 {O(1)}
8: n_f0->n_f38___4: 1 {O(1)}
9: n_f11___3->n_f54___1: 1 {O(1)}
10: n_f11___3->n_f54___2: 1 {O(1)}
11: n_f38___4->n_f11___3: 1 {O(1)}

Costbounds

Overall costbound: 4 {O(1)}
8: n_f0->n_f38___4: 1 {O(1)}
9: n_f11___3->n_f54___1: 1 {O(1)}
10: n_f11___3->n_f54___2: 1 {O(1)}
11: n_f38___4->n_f11___3: 1 {O(1)}

Sizebounds