Initial Problem

Start: n_f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26
Temp_Vars:
Locations: n_f17___14, n_f17___6, n_f1___1, n_f1___11, n_f1___3, n_f1___9, n_f2, n_f27___12, n_f27___4, n_f31___10, n_f31___2, n_f5___15, n_f5___8, n_f8___13, n_f8___5, n_f8___7
Transitions:
0:n_f17___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2
1:n_f17___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f27___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2
2:n_f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f5___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26)
3:n_f27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 51<=Arg_5
4:n_f27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f31___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_5<=50
5:n_f27___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f1___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 51<=Arg_5
6:n_f27___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f31___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_5<=50
7:n_f31___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f1___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=50 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6
8:n_f31___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f1___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=50 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6
9:n_f5___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f17___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_2
10:n_f5___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_2<=Arg_0
11:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f17___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_2
12:n_f5___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0
13:n_f8___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f5___8(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_2<=Arg_0 && 1+Arg_0<=Arg_3
14:n_f8___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_2<=Arg_0 && Arg_3<=Arg_0
15:n_f8___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f5___8(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3
16:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f5___8(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_2<=Arg_0 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
17:n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> n_f8___7(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_2<=Arg_0 && Arg_3<=1+Arg_0 && Arg_3<=Arg_0

Preprocessing

Eliminate variables {Arg_1,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26} that do not contribute to the problem

Found invariant Arg_3<=1+Arg_0 && Arg_2<=Arg_0 for location n_f8___7

Found invariant Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && 1+Arg_0<=Arg_2 for location n_f31___10

Found invariant Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 for location n_f31___2

Found invariant 51<=Arg_5 && 1+Arg_0<=Arg_2 for location n_f1___11

Found invariant 51<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 for location n_f1___3

Found invariant Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && 1+Arg_0<=Arg_2 for location n_f1___9

Found invariant 1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 for location n_f8___5

Found invariant 1+Arg_0<=Arg_2 for location n_f27___12

Found invariant Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 for location n_f27___4

Found invariant 1+Arg_0<=Arg_2 for location n_f17___14

Found invariant Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 for location n_f17___6

Found invariant Arg_2<=Arg_0 for location n_f8___13

Found invariant Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 for location n_f1___1

Found invariant Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 for location n_f5___8

Problem after Preprocessing

Start: n_f2
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_5, Arg_6
Temp_Vars:
Locations: n_f17___14, n_f17___6, n_f1___1, n_f1___11, n_f1___3, n_f1___9, n_f2, n_f27___12, n_f27___4, n_f31___10, n_f31___2, n_f5___15, n_f5___8, n_f8___13, n_f8___5, n_f8___7
Transitions:
37:n_f17___14(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f27___12(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2
38:n_f17___6(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f27___4(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2
39:n_f2(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f5___15(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6)
40:n_f27___12(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f1___11(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:1+Arg_0<=Arg_2 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 51<=Arg_5
41:n_f27___12(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f31___10(Arg_0,Arg_2,Arg_3,Arg_5,0):|:1+Arg_0<=Arg_2 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_5<=50
42:n_f27___4(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f1___3(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 51<=Arg_5
43:n_f27___4(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f31___2(Arg_0,Arg_2,Arg_3,Arg_5,0):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_5<=50
44:n_f31___10(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f1___9(Arg_0,Arg_2,Arg_3,Arg_5,0):|:Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && 1+Arg_0<=Arg_2 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=50 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6
45:n_f31___2(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f1___1(Arg_0,Arg_2,Arg_3,Arg_5,0):|:Arg_6<=0 && Arg_5+Arg_6<=50 && 0<=Arg_6 && Arg_5<=50+Arg_6 && Arg_5<=50 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_0<=Arg_2 && 1+Arg_0<=Arg_2 && 1+Arg_0<=Arg_3 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=50 && Arg_0<=Arg_2 && Arg_6<=0 && 0<=Arg_6
46:n_f5___15(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f17___14(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:1+Arg_0<=Arg_2
47:n_f5___15(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___13(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_0
48:n_f5___8(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f17___6(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_2
49:n_f5___8(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___5(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0
50:n_f8___13(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f5___8(Arg_0,Arg_2+1,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_0 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3
51:n_f8___13(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___7(Arg_0,Arg_2,Arg_3+1,Arg_5,Arg_6):|:Arg_2<=Arg_0 && Arg_2<=Arg_0 && Arg_3<=Arg_0
52:n_f8___5(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f5___8(Arg_0,Arg_2+1,Arg_3,Arg_5,Arg_6):|:1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3
53:n_f8___7(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f5___8(Arg_0,Arg_2+1,Arg_3,Arg_5,Arg_6):|:Arg_3<=1+Arg_0 && Arg_2<=Arg_0 && Arg_2<=Arg_0 && Arg_3<=1+Arg_0 && 1+Arg_0<=Arg_3
54:n_f8___7(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___7(Arg_0,Arg_2,Arg_3+1,Arg_5,Arg_6):|:Arg_3<=1+Arg_0 && Arg_2<=Arg_0 && Arg_2<=Arg_0 && Arg_3<=1+Arg_0 && Arg_3<=Arg_0

MPRF for transition 54:n_f8___7(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___7(Arg_0,Arg_2,Arg_3+1,Arg_5,Arg_6):|:Arg_3<=1+Arg_0 && Arg_2<=Arg_0 && Arg_2<=Arg_0 && Arg_3<=1+Arg_0 && Arg_3<=Arg_0 of depth 1:

new bound:

Arg_0+Arg_3+2 {O(n)}

MPRF:

n_f8___7 [Arg_0+1-Arg_3 ]

MPRF for transition 49:n_f5___8(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f8___5(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6):|:Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 of depth 1:

new bound:

3*Arg_0+3*Arg_2+5 {O(n)}

MPRF:

n_f8___5 [Arg_0-Arg_2 ]
n_f5___8 [Arg_0+1-Arg_2 ]

MPRF for transition 52:n_f8___5(Arg_0,Arg_2,Arg_3,Arg_5,Arg_6) -> n_f5___8(Arg_0,Arg_2+1,Arg_3,Arg_5,Arg_6):|:1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_3 && 1+Arg_0<=Arg_3 of depth 1:

new bound:

3*Arg_0+3*Arg_2+5 {O(n)}

MPRF:

n_f8___5 [Arg_0+1-Arg_2 ]
n_f5___8 [Arg_0+1-Arg_2 ]

All Bounds

Timebounds

Overall timebound:6*Arg_2+7*Arg_0+Arg_3+27 {O(n)}
37: n_f17___14->n_f27___12: 1 {O(1)}
38: n_f17___6->n_f27___4: 1 {O(1)}
39: n_f2->n_f5___15: 1 {O(1)}
40: n_f27___12->n_f1___11: 1 {O(1)}
41: n_f27___12->n_f31___10: 1 {O(1)}
42: n_f27___4->n_f1___3: 1 {O(1)}
43: n_f27___4->n_f31___2: 1 {O(1)}
44: n_f31___10->n_f1___9: 1 {O(1)}
45: n_f31___2->n_f1___1: 1 {O(1)}
46: n_f5___15->n_f17___14: 1 {O(1)}
47: n_f5___15->n_f8___13: 1 {O(1)}
48: n_f5___8->n_f17___6: 1 {O(1)}
49: n_f5___8->n_f8___5: 3*Arg_0+3*Arg_2+5 {O(n)}
50: n_f8___13->n_f5___8: 1 {O(1)}
51: n_f8___13->n_f8___7: 1 {O(1)}
52: n_f8___5->n_f5___8: 3*Arg_0+3*Arg_2+5 {O(n)}
53: n_f8___7->n_f5___8: 1 {O(1)}
54: n_f8___7->n_f8___7: Arg_0+Arg_3+2 {O(n)}

Costbounds

Overall costbound: 6*Arg_2+7*Arg_0+Arg_3+27 {O(n)}
37: n_f17___14->n_f27___12: 1 {O(1)}
38: n_f17___6->n_f27___4: 1 {O(1)}
39: n_f2->n_f5___15: 1 {O(1)}
40: n_f27___12->n_f1___11: 1 {O(1)}
41: n_f27___12->n_f31___10: 1 {O(1)}
42: n_f27___4->n_f1___3: 1 {O(1)}
43: n_f27___4->n_f31___2: 1 {O(1)}
44: n_f31___10->n_f1___9: 1 {O(1)}
45: n_f31___2->n_f1___1: 1 {O(1)}
46: n_f5___15->n_f17___14: 1 {O(1)}
47: n_f5___15->n_f8___13: 1 {O(1)}
48: n_f5___8->n_f17___6: 1 {O(1)}
49: n_f5___8->n_f8___5: 3*Arg_0+3*Arg_2+5 {O(n)}
50: n_f8___13->n_f5___8: 1 {O(1)}
51: n_f8___13->n_f8___7: 1 {O(1)}
52: n_f8___5->n_f5___8: 3*Arg_0+3*Arg_2+5 {O(n)}
53: n_f8___7->n_f5___8: 1 {O(1)}
54: n_f8___7->n_f8___7: Arg_0+Arg_3+2 {O(n)}

Sizebounds

37: n_f17___14->n_f27___12, Arg_0: Arg_0 {O(n)}
37: n_f17___14->n_f27___12, Arg_2: Arg_2 {O(n)}
37: n_f17___14->n_f27___12, Arg_3: Arg_3 {O(n)}
37: n_f17___14->n_f27___12, Arg_5: Arg_5 {O(n)}
37: n_f17___14->n_f27___12, Arg_6: Arg_6 {O(n)}
38: n_f17___6->n_f27___4, Arg_0: 6*Arg_0 {O(n)}
38: n_f17___6->n_f27___4, Arg_2: 3*Arg_0+9*Arg_2+11 {O(n)}
38: n_f17___6->n_f27___4, Arg_3: 2*Arg_0+8*Arg_3+8 {O(n)}
38: n_f17___6->n_f27___4, Arg_5: 6*Arg_5 {O(n)}
38: n_f17___6->n_f27___4, Arg_6: 6*Arg_6 {O(n)}
39: n_f2->n_f5___15, Arg_0: Arg_0 {O(n)}
39: n_f2->n_f5___15, Arg_2: Arg_2 {O(n)}
39: n_f2->n_f5___15, Arg_3: Arg_3 {O(n)}
39: n_f2->n_f5___15, Arg_5: Arg_5 {O(n)}
39: n_f2->n_f5___15, Arg_6: Arg_6 {O(n)}
40: n_f27___12->n_f1___11, Arg_0: Arg_0 {O(n)}
40: n_f27___12->n_f1___11, Arg_2: Arg_2 {O(n)}
40: n_f27___12->n_f1___11, Arg_3: Arg_3 {O(n)}
40: n_f27___12->n_f1___11, Arg_5: Arg_5 {O(n)}
40: n_f27___12->n_f1___11, Arg_6: Arg_6 {O(n)}
41: n_f27___12->n_f31___10, Arg_0: Arg_0 {O(n)}
41: n_f27___12->n_f31___10, Arg_2: Arg_2 {O(n)}
41: n_f27___12->n_f31___10, Arg_3: Arg_3 {O(n)}
41: n_f27___12->n_f31___10, Arg_5: Arg_5 {O(n)}
41: n_f27___12->n_f31___10, Arg_6: 0 {O(1)}
42: n_f27___4->n_f1___3, Arg_0: 6*Arg_0 {O(n)}
42: n_f27___4->n_f1___3, Arg_2: 3*Arg_0+9*Arg_2+11 {O(n)}
42: n_f27___4->n_f1___3, Arg_3: 2*Arg_0+8*Arg_3+8 {O(n)}
42: n_f27___4->n_f1___3, Arg_5: 6*Arg_5 {O(n)}
42: n_f27___4->n_f1___3, Arg_6: 6*Arg_6 {O(n)}
43: n_f27___4->n_f31___2, Arg_0: 6*Arg_0 {O(n)}
43: n_f27___4->n_f31___2, Arg_2: 3*Arg_0+9*Arg_2+11 {O(n)}
43: n_f27___4->n_f31___2, Arg_3: 2*Arg_0+8*Arg_3+8 {O(n)}
43: n_f27___4->n_f31___2, Arg_5: 6*Arg_5 {O(n)}
43: n_f27___4->n_f31___2, Arg_6: 0 {O(1)}
44: n_f31___10->n_f1___9, Arg_0: Arg_0 {O(n)}
44: n_f31___10->n_f1___9, Arg_2: Arg_2 {O(n)}
44: n_f31___10->n_f1___9, Arg_3: Arg_3 {O(n)}
44: n_f31___10->n_f1___9, Arg_5: Arg_5 {O(n)}
44: n_f31___10->n_f1___9, Arg_6: 0 {O(1)}
45: n_f31___2->n_f1___1, Arg_0: 6*Arg_0 {O(n)}
45: n_f31___2->n_f1___1, Arg_2: 3*Arg_0+9*Arg_2+11 {O(n)}
45: n_f31___2->n_f1___1, Arg_3: 2*Arg_0+8*Arg_3+8 {O(n)}
45: n_f31___2->n_f1___1, Arg_5: 6*Arg_5 {O(n)}
45: n_f31___2->n_f1___1, Arg_6: 0 {O(1)}
46: n_f5___15->n_f17___14, Arg_0: Arg_0 {O(n)}
46: n_f5___15->n_f17___14, Arg_2: Arg_2 {O(n)}
46: n_f5___15->n_f17___14, Arg_3: Arg_3 {O(n)}
46: n_f5___15->n_f17___14, Arg_5: Arg_5 {O(n)}
46: n_f5___15->n_f17___14, Arg_6: Arg_6 {O(n)}
47: n_f5___15->n_f8___13, Arg_0: Arg_0 {O(n)}
47: n_f5___15->n_f8___13, Arg_2: Arg_2 {O(n)}
47: n_f5___15->n_f8___13, Arg_3: Arg_3 {O(n)}
47: n_f5___15->n_f8___13, Arg_5: Arg_5 {O(n)}
47: n_f5___15->n_f8___13, Arg_6: Arg_6 {O(n)}
48: n_f5___8->n_f17___6, Arg_0: 6*Arg_0 {O(n)}
48: n_f5___8->n_f17___6, Arg_2: 3*Arg_0+9*Arg_2+11 {O(n)}
48: n_f5___8->n_f17___6, Arg_3: 2*Arg_0+8*Arg_3+8 {O(n)}
48: n_f5___8->n_f17___6, Arg_5: 6*Arg_5 {O(n)}
48: n_f5___8->n_f17___6, Arg_6: 6*Arg_6 {O(n)}
49: n_f5___8->n_f8___5, Arg_0: 3*Arg_0 {O(n)}
49: n_f5___8->n_f8___5, Arg_2: 3*Arg_0+6*Arg_2+8 {O(n)}
49: n_f5___8->n_f8___5, Arg_3: 4*Arg_3+Arg_0+4 {O(n)}
49: n_f5___8->n_f8___5, Arg_5: 3*Arg_5 {O(n)}
49: n_f5___8->n_f8___5, Arg_6: 3*Arg_6 {O(n)}
50: n_f8___13->n_f5___8, Arg_0: Arg_0 {O(n)}
50: n_f8___13->n_f5___8, Arg_2: Arg_2+1 {O(n)}
50: n_f8___13->n_f5___8, Arg_3: Arg_3 {O(n)}
50: n_f8___13->n_f5___8, Arg_5: Arg_5 {O(n)}
50: n_f8___13->n_f5___8, Arg_6: Arg_6 {O(n)}
51: n_f8___13->n_f8___7, Arg_0: Arg_0 {O(n)}
51: n_f8___13->n_f8___7, Arg_2: Arg_2 {O(n)}
51: n_f8___13->n_f8___7, Arg_3: Arg_3+1 {O(n)}
51: n_f8___13->n_f8___7, Arg_5: Arg_5 {O(n)}
51: n_f8___13->n_f8___7, Arg_6: Arg_6 {O(n)}
52: n_f8___5->n_f5___8, Arg_0: 3*Arg_0 {O(n)}
52: n_f8___5->n_f5___8, Arg_2: 3*Arg_0+6*Arg_2+8 {O(n)}
52: n_f8___5->n_f5___8, Arg_3: 4*Arg_3+Arg_0+4 {O(n)}
52: n_f8___5->n_f5___8, Arg_5: 3*Arg_5 {O(n)}
52: n_f8___5->n_f5___8, Arg_6: 3*Arg_6 {O(n)}
53: n_f8___7->n_f5___8, Arg_0: 2*Arg_0 {O(n)}
53: n_f8___7->n_f5___8, Arg_2: 2*Arg_2+2 {O(n)}
53: n_f8___7->n_f5___8, Arg_3: 3*Arg_3+Arg_0+4 {O(n)}
53: n_f8___7->n_f5___8, Arg_5: 2*Arg_5 {O(n)}
53: n_f8___7->n_f5___8, Arg_6: 2*Arg_6 {O(n)}
54: n_f8___7->n_f8___7, Arg_0: Arg_0 {O(n)}
54: n_f8___7->n_f8___7, Arg_2: Arg_2 {O(n)}
54: n_f8___7->n_f8___7, Arg_3: 2*Arg_3+Arg_0+3 {O(n)}
54: n_f8___7->n_f8___7, Arg_5: Arg_5 {O(n)}
54: n_f8___7->n_f8___7, Arg_6: Arg_6 {O(n)}