Initial Problem

Start: n_eval1
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_eval1, n_eval2___10, n_eval2___13, n_eval2___23, n_eval2___24, n_eval2___35, n_eval2___36, n_eval2___9, n_eval3___12, n_eval3___17, n_eval3___20, n_eval3___21, n_eval3___22, n_eval3___31, n_eval3___32, n_eval3___33, n_eval3___34, n_eval3___6, n_eval3___7, n_eval3___8, n_eval4___1, n_eval4___11, n_eval4___14, n_eval4___15, n_eval4___16, n_eval4___18, n_eval4___19, n_eval4___2, n_eval4___25, n_eval4___26, n_eval4___27, n_eval4___28, n_eval4___29, n_eval4___3, n_eval4___30, n_eval4___4, n_eval4___5
Transitions:
0:n_eval1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___35(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_0<=1
1:n_eval1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___36(Arg_0-1,Arg_1,Arg_2,Arg_3):|:2<=Arg_0
2:n_eval2___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1
3:n_eval2___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
4:n_eval2___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___34(Arg_0,Arg_1,Arg_0,2*Arg_0):|:2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
5:n_eval2___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___22(Arg_0,Arg_1,Arg_0,2*Arg_0):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
6:n_eval2___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___7(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_0<=1 && 2<=Arg_1
7:n_eval2___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___34(Arg_0,Arg_1,Arg_0,2*Arg_0):|:1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1
8:n_eval2___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___8(Arg_0,Arg_1,Arg_0,2*Arg_0):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
9:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
10:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
11:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
12:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
13:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
14:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
15:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
16:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
17:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
18:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
19:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
20:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
21:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
22:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
23:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
24:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
25:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
26:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
27:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
28:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
29:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
30:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
31:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
32:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
33:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
34:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
35:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
36:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
37:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
38:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
39:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
40:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
41:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
42:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
43:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
44:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
45:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
46:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
47:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
48:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
49:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
50:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
51:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
52:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___1(Arg_0,Arg_1,Arg_2,Arg_1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
53:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___2(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
54:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___3(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
55:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
56:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
57:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___6(Arg_0,Arg_1,Arg_3,2*Arg_3):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
58:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_1):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
59:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___4(Arg_0,Arg_1,Arg_2,Arg_3+1):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
60:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___5(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
61:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
62:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
63:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
64:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
65:n_eval4___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
66:n_eval4___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_0 && 2<=Arg_1
67:n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_2<=1 && 1<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
68:n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:4<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
69:n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
70:n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
71:n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=3 && 3<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
72:n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
73:n_eval4___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 3<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
74:n_eval4___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 3<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
75:n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:4<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_0 && 2<=Arg_1
76:n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:4<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
77:n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
78:n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
79:n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
80:n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
81:n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:1<=Arg_0 && 2*Arg_0<=Arg_1 && Arg_1<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
82:n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1<=Arg_0 && 2*Arg_0<=Arg_1 && Arg_1<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_0 && 2<=Arg_1
83:n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
84:n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1
85:n_eval4___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
86:n_eval4___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
87:n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
88:n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1
89:n_eval4___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
90:n_eval4___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1
91:n_eval4___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
92:n_eval4___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1

Preprocessing

Found invariant 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___17

Found invariant 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval3___33

Found invariant Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___6

Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval3___8

Found invariant Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___25

Found invariant 1<=Arg_0 for location n_eval2___36

Found invariant Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___14

Found invariant 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval3___31

Found invariant Arg_3<=5 && Arg_3<=3+Arg_2 && Arg_2+Arg_3<=7 && Arg_3<=Arg_1 && Arg_3<=4+Arg_0 && Arg_0+Arg_3<=6 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=2 && 2+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___2

Found invariant Arg_3<=5 && Arg_3<=3+Arg_2 && Arg_2+Arg_3<=7 && Arg_3<=1+Arg_1 && Arg_3<=4+Arg_0 && Arg_0+Arg_3<=6 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval2___13

Found invariant Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval2___9

Found invariant 1+Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___30

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___12

Found invariant 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___21

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_1+Arg_3<=4 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___11

Found invariant Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___26

Found invariant Arg_3<=Arg_1 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___29

Found invariant Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_1+Arg_3<=7 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=3 && Arg_1<=2+Arg_0 && Arg_0+Arg_1<=4 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval2___10

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 for location n_eval4___5

Found invariant Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=Arg_1 && Arg_1+Arg_3<=8 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=6 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=2+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=4 && Arg_1<=3+Arg_0 && Arg_0+Arg_1<=5 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___1

Found invariant Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___15

Found invariant Arg_0<=1 for location n_eval2___35

Found invariant Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___28

Found invariant 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval3___32

Found invariant Arg_3<=1+Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval2___24

Found invariant Arg_3<=3 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=4 && Arg_3<=Arg_1 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=4 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___18

Found invariant 6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___20

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 for location n_eval3___7

Found invariant Arg_3<=3 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=4 && Arg_3<=Arg_1 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=4 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 for location n_eval4___4

Found invariant 1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___16

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___19

Found invariant Arg_3<=Arg_1 && 5<=Arg_3 && 8<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 3<=Arg_2 && 8<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval2___23

Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval3___34

Found invariant 1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 for location n_eval4___27

Found invariant Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && 1+Arg_3<=Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 2+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval4___3

Found invariant Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval3___22

Cut unsatisfiable transition 66: n_eval4___1->n_eval2___23

Cut unsatisfiable transition 74: n_eval4___2->n_eval2___23

Cut unsatisfiable transition 86: n_eval4___3->n_eval2___23

Cut unsatisfiable transition 90: n_eval4___4->n_eval2___9

Cut unsatisfiable transition 92: n_eval4___5->n_eval2___9

Problem after Preprocessing

Start: n_eval1
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_eval1, n_eval2___10, n_eval2___13, n_eval2___23, n_eval2___24, n_eval2___35, n_eval2___36, n_eval2___9, n_eval3___12, n_eval3___17, n_eval3___20, n_eval3___21, n_eval3___22, n_eval3___31, n_eval3___32, n_eval3___33, n_eval3___34, n_eval3___6, n_eval3___7, n_eval3___8, n_eval4___1, n_eval4___11, n_eval4___14, n_eval4___15, n_eval4___16, n_eval4___18, n_eval4___19, n_eval4___2, n_eval4___25, n_eval4___26, n_eval4___27, n_eval4___28, n_eval4___29, n_eval4___3, n_eval4___30, n_eval4___4, n_eval4___5
Transitions:
0:n_eval1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___35(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_0<=1
1:n_eval1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___36(Arg_0-1,Arg_1,Arg_2,Arg_3):|:2<=Arg_0
2:n_eval2___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_1+Arg_3<=7 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=3 && Arg_1<=2+Arg_0 && Arg_0+Arg_1<=4 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1
3:n_eval2___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=5 && Arg_3<=3+Arg_2 && Arg_2+Arg_3<=7 && Arg_3<=1+Arg_1 && Arg_3<=4+Arg_0 && Arg_0+Arg_3<=6 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
4:n_eval2___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___34(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=Arg_1 && 5<=Arg_3 && 8<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 3<=Arg_2 && 8<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
5:n_eval2___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___22(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=1+Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
6:n_eval2___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___7(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_0<=1 && Arg_0<=1 && 2<=Arg_1
7:n_eval2___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___34(Arg_0,Arg_1,Arg_0,2*Arg_0):|:1<=Arg_0 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1
8:n_eval2___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___8(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1
9:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
10:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
11:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
12:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
13:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
14:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
15:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
16:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
17:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
18:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
19:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
20:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
21:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___17(Arg_0,Arg_1,Arg_1,2*Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
22:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
23:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
24:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
25:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
26:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
27:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
28:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
29:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
30:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
31:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
32:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
33:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
34:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
35:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
36:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
37:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
38:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
39:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
40:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
41:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
42:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
43:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
44:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
45:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
46:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
47:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
48:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
49:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
50:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
51:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
52:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___1(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
53:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___2(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
54:n_eval3___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1
55:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___31(Arg_0,Arg_1,Arg_1,2*Arg_1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
56:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
57:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___6(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
58:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1
59:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___4(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
60:n_eval3___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___5(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 2<=Arg_1 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1
61:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
62:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3
63:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
64:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1
65:n_eval4___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=Arg_1 && Arg_1+Arg_3<=8 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=6 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=2+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=4 && Arg_1<=3+Arg_0 && Arg_0+Arg_1<=5 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
67:n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_1+Arg_3<=4 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
68:n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 4<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
69:n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
70:n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
71:n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=3 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=4 && Arg_3<=Arg_1 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=4 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=3 && 3<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
72:n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
73:n_eval4___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=5 && Arg_3<=3+Arg_2 && Arg_2+Arg_3<=7 && Arg_3<=Arg_1 && Arg_3<=4+Arg_0 && Arg_0+Arg_3<=6 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=2 && 2+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=Arg_1 && 3<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
75:n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && 1<=Arg_0 && 4<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_0 && 2<=Arg_1
76:n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && 1<=Arg_0 && 4<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
77:n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_1 && 5<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
78:n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_1 && 5<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
79:n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 4<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_0 && 2<=Arg_1
80:n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 4<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
81:n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_0 && 2*Arg_0<=Arg_1 && Arg_1<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
82:n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_0 && 2*Arg_0<=Arg_1 && Arg_1<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_0 && 2<=Arg_1
83:n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
84:n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1
85:n_eval4___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && 1+Arg_3<=Arg_1 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 2+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
87:n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
88:n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1
89:n_eval4___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=3 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=4 && Arg_3<=Arg_1 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=4 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0
91:n_eval4___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && Arg_0<=Arg_2 && 2<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0

MPRF for transition 4:n_eval2___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___34(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=Arg_1 && 5<=Arg_3 && 8<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 3<=Arg_2 && 8<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1 of depth 1:

new bound:

2*Arg_0+14 {O(n)}

MPRF:

n_eval3___34 [Arg_3-2 ]
n_eval3___32 [2*Arg_0-2 ]
n_eval3___33 [2*Arg_0-2 ]
n_eval3___8 [Arg_3-2 ]
n_eval4___25 [2*Arg_0-2 ]
n_eval4___26 [2*Arg_0-2 ]
n_eval4___27 [2*Arg_0-2 ]
n_eval2___23 [2*Arg_0-1 ]
n_eval4___28 [Arg_3-2 ]
n_eval4___29 [Arg_3-3 ]
n_eval4___30 [2*Arg_2-2 ]
n_eval2___9 [2*Arg_0-2 ]

MPRF for transition 8:n_eval2___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___8(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && 1<=Arg_0 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1 of depth 1:

new bound:

2*Arg_0+12 {O(n)}

MPRF:

n_eval3___34 [2*Arg_0+3 ]
n_eval3___32 [2*Arg_0+1 ]
n_eval3___33 [2*Arg_0+1 ]
n_eval3___8 [Arg_3+1 ]
n_eval4___25 [2*Arg_0+1 ]
n_eval4___26 [2*Arg_0+1 ]
n_eval4___27 [2*Arg_0+1 ]
n_eval2___23 [2*Arg_0+3 ]
n_eval4___28 [Arg_1+3 ]
n_eval4___29 [2*Arg_2+1 ]
n_eval4___30 [2*Arg_0+1 ]
n_eval2___9 [2*Arg_0+3 ]

MPRF for transition 34:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

5*Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [2*Arg_0+Arg_2-Arg_3 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [Arg_3-Arg_0 ]
n_eval4___25 [Arg_0-1 ]
n_eval4___26 [Arg_0 ]
n_eval4___27 [Arg_0 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_2 ]
n_eval4___29 [Arg_2 ]
n_eval4___30 [Arg_2+Arg_3-2*Arg_0 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 35:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

5*Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [3*Arg_0-Arg_3 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [3*Arg_0-Arg_3 ]
n_eval4___25 [Arg_0 ]
n_eval4___26 [Arg_0-1 ]
n_eval4___27 [Arg_0 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_0 ]
n_eval4___29 [3*Arg_0-2*Arg_2 ]
n_eval4___30 [Arg_0 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 36:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [Arg_2 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [Arg_0 ]
n_eval4___25 [Arg_0 ]
n_eval4___26 [Arg_0 ]
n_eval4___27 [Arg_0-1 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_2 ]
n_eval4___29 [Arg_0 ]
n_eval4___30 [3*Arg_2-Arg_3 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 40:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [Arg_0 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [Arg_0 ]
n_eval4___25 [Arg_0-1 ]
n_eval4___26 [Arg_0 ]
n_eval4___27 [Arg_0 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_0 ]
n_eval4___29 [Arg_3-Arg_0-1 ]
n_eval4___30 [Arg_0 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 41:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [2*Arg_0 ]
n_eval3___32 [2*Arg_0 ]
n_eval3___33 [2*Arg_0 ]
n_eval3___8 [2*Arg_0 ]
n_eval4___25 [2*Arg_0 ]
n_eval4___26 [2*Arg_0-2 ]
n_eval4___27 [2*Arg_0 ]
n_eval2___23 [2*Arg_0 ]
n_eval4___28 [2*Arg_0 ]
n_eval4___29 [2*Arg_2 ]
n_eval4___30 [Arg_3 ]
n_eval2___9 [2*Arg_0 ]

MPRF for transition 42:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [Arg_0 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [Arg_3-Arg_0 ]
n_eval4___25 [Arg_0 ]
n_eval4___26 [Arg_0 ]
n_eval4___27 [Arg_0-1 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_0 ]
n_eval4___29 [Arg_0 ]
n_eval4___30 [Arg_0 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 44:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

2*Arg_0+12 {O(n)}

MPRF:

n_eval3___34 [2*Arg_2 ]
n_eval3___32 [2*Arg_0-2 ]
n_eval3___33 [2*Arg_0-2 ]
n_eval3___8 [Arg_3 ]
n_eval4___25 [2*Arg_0-2 ]
n_eval4___26 [2*Arg_0-2 ]
n_eval4___27 [2*Arg_0-2 ]
n_eval2___23 [2*Arg_0 ]
n_eval4___28 [Arg_1 ]
n_eval4___29 [2*Arg_0 ]
n_eval4___30 [Arg_3 ]
n_eval2___9 [2*Arg_0 ]

MPRF for transition 45:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

3*Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [Arg_3-Arg_0 ]
n_eval3___32 [Arg_0-1 ]
n_eval3___33 [Arg_0-1 ]
n_eval3___8 [3*Arg_2-Arg_3 ]
n_eval4___25 [Arg_0-1 ]
n_eval4___26 [Arg_0-1 ]
n_eval4___27 [Arg_0-1 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_0 ]
n_eval4___29 [Arg_3-Arg_2-1 ]
n_eval4___30 [Arg_3-Arg_0 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 46:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+24 {O(n)}

MPRF:

n_eval3___34 [2*Arg_0+6 ]
n_eval3___32 [2*Arg_0+4 ]
n_eval3___33 [2*Arg_0+4 ]
n_eval3___8 [Arg_3+4 ]
n_eval4___25 [2*Arg_0+4 ]
n_eval4___26 [2*Arg_0+4 ]
n_eval4___27 [2*Arg_0+4 ]
n_eval2___23 [2*Arg_0+6 ]
n_eval4___28 [2*Arg_2+2 ]
n_eval4___29 [2*Arg_2+2 ]
n_eval4___30 [2*Arg_2+2 ]
n_eval2___9 [2*Arg_2+2 ]

MPRF for transition 47:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+12 {O(n)}

MPRF:

n_eval3___34 [Arg_3+3 ]
n_eval3___32 [2*Arg_0+1 ]
n_eval3___33 [2*Arg_0+1 ]
n_eval3___8 [Arg_3+1 ]
n_eval4___25 [2*Arg_0+1 ]
n_eval4___26 [2*Arg_0+1 ]
n_eval4___27 [2*Arg_0+1 ]
n_eval2___23 [2*Arg_0+3 ]
n_eval4___28 [Arg_1+3 ]
n_eval4___29 [2*Arg_0-1 ]
n_eval4___30 [Arg_3 ]
n_eval2___9 [2*Arg_0+1 ]

MPRF for transition 48:n_eval3___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+16 {O(n)}

MPRF:

n_eval3___34 [2*Arg_2+4 ]
n_eval3___32 [2*Arg_0+2 ]
n_eval3___33 [2*Arg_0+2 ]
n_eval3___8 [Arg_3+2 ]
n_eval4___25 [2*Arg_0+2 ]
n_eval4___26 [2*Arg_0+2 ]
n_eval4___27 [2*Arg_0+2 ]
n_eval2___23 [2*Arg_0+4 ]
n_eval4___28 [2*Arg_2+4 ]
n_eval4___29 [Arg_3+1 ]
n_eval4___30 [2*Arg_2 ]
n_eval2___9 [2*Arg_0+2 ]

MPRF for transition 61:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [Arg_0 ]
n_eval3___32 [Arg_0-1 ]
n_eval3___33 [Arg_0-1 ]
n_eval3___8 [3*Arg_0-Arg_3 ]
n_eval4___25 [Arg_0-1 ]
n_eval4___26 [Arg_0-1 ]
n_eval4___27 [Arg_0-1 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_0 ]
n_eval4___29 [Arg_0 ]
n_eval4___30 [3*Arg_0-Arg_3 ]
n_eval2___9 [Arg_2-1 ]

MPRF for transition 62:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

2*Arg_0+12 {O(n)}

MPRF:

n_eval3___34 [Arg_3 ]
n_eval3___32 [2*Arg_0-2 ]
n_eval3___33 [2*Arg_0-2 ]
n_eval3___8 [2*Arg_2 ]
n_eval4___25 [2*Arg_0-2 ]
n_eval4___26 [2*Arg_0-2 ]
n_eval4___27 [2*Arg_0-2 ]
n_eval2___23 [2*Arg_0 ]
n_eval4___28 [2*Arg_2 ]
n_eval4___29 [2*Arg_0 ]
n_eval4___30 [2*Arg_0 ]
n_eval2___9 [2*Arg_0 ]

MPRF for transition 63:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3+1):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+10 {O(n)}

MPRF:

n_eval3___34 [2*Arg_2+1 ]
n_eval3___32 [2*Arg_0-1 ]
n_eval3___33 [2*Arg_0-1 ]
n_eval3___8 [Arg_3-1 ]
n_eval4___25 [2*Arg_0-1 ]
n_eval4___26 [2*Arg_0-1 ]
n_eval4___27 [2*Arg_0-1 ]
n_eval2___23 [2*Arg_0+1 ]
n_eval4___28 [2*Arg_2+1 ]
n_eval4___29 [2*Arg_0-3 ]
n_eval4___30 [2*Arg_0-1 ]
n_eval2___9 [2*Arg_0-1 ]

MPRF for transition 64:n_eval3___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 5<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

2*Arg_0+4*Arg_1+15 {O(n)}

MPRF:

n_eval3___34 [Arg_1+Arg_3 ]
n_eval3___32 [2*Arg_0+Arg_1-2 ]
n_eval3___33 [2*Arg_0+Arg_1-2 ]
n_eval3___8 [Arg_1+2*Arg_2-2 ]
n_eval4___25 [2*Arg_0+2*Arg_2-2 ]
n_eval4___26 [2*Arg_0+Arg_1-2 ]
n_eval4___27 [2*Arg_0+Arg_1-2 ]
n_eval2___23 [2*Arg_0+Arg_1 ]
n_eval4___28 [2*Arg_3 ]
n_eval4___29 [2*Arg_0+Arg_1-2 ]
n_eval4___30 [Arg_1+2*Arg_2-4 ]
n_eval2___9 [Arg_1+2*Arg_2-4 ]

MPRF for transition 75:n_eval4___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && 1<=Arg_0 && 4<=Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

2*Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [2*Arg_2 ]
n_eval3___32 [2*Arg_0 ]
n_eval3___33 [2*Arg_0 ]
n_eval3___8 [2*Arg_0 ]
n_eval4___25 [2*Arg_0 ]
n_eval4___26 [2*Arg_0 ]
n_eval4___27 [2*Arg_0 ]
n_eval2___23 [2*Arg_0 ]
n_eval4___28 [2*Arg_2 ]
n_eval4___29 [2*Arg_2 ]
n_eval4___30 [2*Arg_0+2*Arg_2-Arg_3 ]
n_eval2___9 [2*Arg_0 ]

MPRF for transition 77:n_eval4___26(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_1 && 5<=Arg_3 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

4*Arg_1+Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [Arg_1+Arg_2 ]
n_eval3___32 [Arg_0+Arg_1 ]
n_eval3___33 [Arg_0+Arg_1 ]
n_eval3___8 [Arg_0+Arg_1 ]
n_eval4___25 [Arg_0+Arg_3 ]
n_eval4___26 [Arg_0+Arg_1 ]
n_eval4___27 [Arg_0+Arg_1 ]
n_eval2___23 [Arg_0+Arg_1 ]
n_eval4___28 [7*Arg_0-Arg_1-Arg_3 ]
n_eval4___29 [Arg_1+Arg_2 ]
n_eval4___30 [Arg_1+Arg_3-Arg_0 ]
n_eval2___9 [Arg_0+Arg_1 ]

MPRF for transition 79:n_eval4___27(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___23(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 4<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

4*Arg_1+Arg_0+6 {O(n)}

MPRF:

n_eval3___34 [Arg_0+Arg_1 ]
n_eval3___32 [Arg_0+Arg_1 ]
n_eval3___33 [Arg_0+Arg_1 ]
n_eval3___8 [Arg_0+Arg_1 ]
n_eval4___25 [Arg_0+Arg_3 ]
n_eval4___26 [Arg_0+Arg_1 ]
n_eval4___27 [Arg_0+Arg_1 ]
n_eval2___23 [Arg_0+Arg_1 ]
n_eval4___28 [Arg_0+Arg_3 ]
n_eval4___29 [Arg_0+Arg_1 ]
n_eval4___30 [Arg_0+Arg_1 ]
n_eval2___9 [Arg_0+Arg_1 ]

MPRF for transition 82:n_eval4___28(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_0 && 2*Arg_0<=Arg_1 && Arg_1<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

2*Arg_0+10 {O(n)}

MPRF:

n_eval3___34 [2*Arg_0-1 ]
n_eval3___32 [2*Arg_0-1 ]
n_eval3___33 [2*Arg_0-1 ]
n_eval3___8 [Arg_3 ]
n_eval4___25 [2*Arg_0-1 ]
n_eval4___26 [2*Arg_0-1 ]
n_eval4___27 [2*Arg_0-1 ]
n_eval2___23 [2*Arg_0-1 ]
n_eval4___28 [Arg_1+2*Arg_2-Arg_3-1 ]
n_eval4___29 [2*Arg_0-1 ]
n_eval4___30 [2*Arg_0-1 ]
n_eval2___9 [2*Arg_0 ]

MPRF for transition 84:n_eval4___29(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0+1<=Arg_3 && Arg_3<=1+2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

2*Arg_0+7 {O(n)}

MPRF:

n_eval3___34 [Arg_3+1 ]
n_eval3___32 [2*Arg_0 ]
n_eval3___33 [2*Arg_0 ]
n_eval3___8 [2*Arg_0 ]
n_eval4___25 [2*Arg_0 ]
n_eval4___26 [2*Arg_0 ]
n_eval4___27 [2*Arg_0 ]
n_eval2___23 [2*Arg_0+1 ]
n_eval4___28 [Arg_1 ]
n_eval4___29 [2*Arg_2 ]
n_eval4___30 [2*Arg_2 ]
n_eval2___9 [2*Arg_2-2 ]

MPRF for transition 88:n_eval4___30(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___9(Arg_0-1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 1<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2<=Arg_0 && 2<=Arg_1 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_eval3___34 [Arg_2 ]
n_eval3___32 [Arg_0 ]
n_eval3___33 [Arg_0 ]
n_eval3___8 [Arg_0+2*Arg_2-Arg_3 ]
n_eval4___25 [Arg_0 ]
n_eval4___26 [Arg_0 ]
n_eval4___27 [Arg_0 ]
n_eval2___23 [Arg_0 ]
n_eval4___28 [Arg_2 ]
n_eval4___29 [3*Arg_2-2*Arg_0 ]
n_eval4___30 [Arg_0+2*Arg_2-Arg_3 ]
n_eval2___9 [Arg_0 ]

MPRF for transition 32:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115 {O(n^2)}

MPRF:

n_eval2___23 [4*Arg_1 ]
n_eval4___25 [Arg_2-2 ]
n_eval4___26 [Arg_1-Arg_2-2 ]
n_eval4___27 [1-Arg_3 ]
n_eval3___34 [4*Arg_1 ]
n_eval3___32 [Arg_1+Arg_2+1-Arg_3 ]
n_eval3___33 [Arg_1-Arg_2-2 ]
n_eval3___8 [4*Arg_1-13 ]
n_eval4___28 [6*Arg_0+4*Arg_3-6*Arg_2 ]
n_eval4___29 [4*Arg_1-13 ]
n_eval4___30 [4*Arg_1+Arg_3-2*Arg_0-13 ]
n_eval2___9 [6*Arg_0+4*Arg_1-6*Arg_2-7 ]

MPRF for transition 33:n_eval3___32(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814 {O(n^2)}

MPRF:

n_eval2___23 [6*Arg_1-4*Arg_0-1 ]
n_eval4___25 [Arg_0+3*Arg_1-4*Arg_2-1 ]
n_eval4___26 [4*Arg_0+2*Arg_1+2-4*Arg_2 ]
n_eval4___27 [6*Arg_0+2*Arg_1+2*Arg_3+4-10*Arg_2 ]
n_eval3___34 [2*Arg_0+6*Arg_1-3*Arg_3-1 ]
n_eval3___32 [Arg_0+2*Arg_1+2*Arg_3-5*Arg_2-1 ]
n_eval3___33 [4*Arg_0+2*Arg_1+1-Arg_3 ]
n_eval3___8 [2*Arg_1+Arg_3+3 ]
n_eval4___28 [2*Arg_0+3*Arg_1-1 ]
n_eval4___29 [2*Arg_1+Arg_3+2 ]
n_eval4___30 [2*Arg_1+Arg_3+3 ]
n_eval2___9 [2*Arg_1+2*Arg_2+1 ]

MPRF for transition 38:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___32(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217 {O(n^2)}

MPRF:

n_eval2___23 [4*Arg_1 ]
n_eval4___25 [3*Arg_1-2*Arg_2-7 ]
n_eval4___26 [4*Arg_1-2*Arg_2-Arg_3-6 ]
n_eval4___27 [3*Arg_1+Arg_3-4*Arg_2-6 ]
n_eval3___34 [4*Arg_1 ]
n_eval3___32 [4*Arg_1+2*Arg_3-8*Arg_2-7 ]
n_eval3___33 [4*Arg_1-2*Arg_2-7 ]
n_eval3___8 [4*Arg_1 ]
n_eval4___28 [4*Arg_1 ]
n_eval4___29 [4*Arg_1 ]
n_eval4___30 [4*Arg_1 ]
n_eval2___9 [4*Arg_1 ]

MPRF for transition 39:n_eval3___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___33(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617 {O(n^2)}

MPRF:

n_eval2___23 [2*Arg_1 ]
n_eval4___25 [1-Arg_1-3*Arg_3 ]
n_eval4___26 [2*Arg_1+6*Arg_2-5*Arg_3 ]
n_eval4___27 [Arg_1+Arg_3-4*Arg_2-7 ]
n_eval3___34 [2*Arg_1 ]
n_eval3___32 [2*Arg_1-Arg_2-Arg_3-7 ]
n_eval3___33 [2*Arg_1+Arg_3+1-6*Arg_2 ]
n_eval3___8 [2*Arg_1 ]
n_eval4___28 [2*Arg_3 ]
n_eval4___29 [2*Arg_1 ]
n_eval4___30 [2*Arg_1 ]
n_eval2___9 [2*Arg_1 ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition 2:n_eval2___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=4 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=6 && Arg_3<=1+Arg_1 && Arg_1+Arg_3<=7 && Arg_3<=3+Arg_0 && Arg_0+Arg_3<=5 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && Arg_2<=Arg_1 && Arg_1+Arg_2<=5 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=3 && Arg_1<=2+Arg_0 && Arg_0+Arg_1<=4 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1

MPRF for transition 3:n_eval2___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___12(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=5 && Arg_3<=3+Arg_2 && Arg_2+Arg_3<=7 && Arg_3<=1+Arg_1 && Arg_3<=4+Arg_0 && Arg_0+Arg_3<=6 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=2 && 1+Arg_2<=Arg_1 && Arg_2<=1+Arg_0 && Arg_0+Arg_2<=3 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1 of depth 1:

new bound:

204*Arg_1+167 {O(n)}

MPRF:

n_eval3___12 [Arg_1-2 ]
n_eval3___20 [Arg_1-2*Arg_0 ]
n_eval3___21 [Arg_1-2 ]
n_eval3___22 [Arg_1-1 ]
n_eval4___11 [0 ]
n_eval2___10 [Arg_1-1 ]
n_eval4___14 [2*Arg_2-2 ]
n_eval4___15 [Arg_1-2 ]
n_eval4___16 [Arg_1-2 ]
n_eval2___24 [Arg_1-1 ]
n_eval4___18 [Arg_1-2*Arg_2 ]
n_eval4___19 [Arg_1-Arg_3 ]
n_eval2___13 [Arg_1-1 ]

MPRF for transition 5:n_eval2___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___22(Arg_0,Arg_1,Arg_0,2*Arg_0):|:Arg_3<=1+Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_0<=Arg_1 && 2<=Arg_1 && 1<=2*Arg_0 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_0 && Arg_0<=1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1 && 2<=Arg_1 && 1<=Arg_0 && 2<=Arg_1 && 2<=Arg_1 of depth 1:

new bound:

408*Arg_1+388 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1+3*Arg_3-4 ]
n_eval3___20 [2*Arg_1 ]
n_eval3___21 [2*Arg_1 ]
n_eval3___22 [2*Arg_1 ]
n_eval4___11 [5*Arg_1-4 ]
n_eval2___10 [6*Arg_0+2*Arg_1-2 ]
n_eval4___14 [4*Arg_2 ]
n_eval4___15 [2*Arg_1 ]
n_eval4___16 [2*Arg_1 ]
n_eval2___24 [2*Arg_1+2 ]
n_eval4___18 [2*Arg_1 ]
n_eval4___19 [2*Arg_1 ]
n_eval2___13 [6*Arg_0+2*Arg_1-4 ]

MPRF for transition 10:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

204*Arg_1+197 {O(n)}

MPRF:

n_eval3___12 [Arg_1+1-Arg_3 ]
n_eval3___20 [Arg_1-2 ]
n_eval3___21 [Arg_1-2 ]
n_eval3___22 [Arg_1-1 ]
n_eval4___11 [0 ]
n_eval2___10 [Arg_1+1-2*Arg_0 ]
n_eval4___14 [Arg_3-2*Arg_0 ]
n_eval4___15 [Arg_1-2*Arg_0 ]
n_eval4___16 [Arg_1-2*Arg_0 ]
n_eval2___24 [Arg_1-Arg_0 ]
n_eval4___18 [Arg_1-Arg_2 ]
n_eval4___19 [Arg_1-Arg_2 ]
n_eval2___13 [Arg_1+2*Arg_2-3 ]

MPRF for transition 11:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

204*Arg_1+166 {O(n)}

MPRF:

n_eval3___12 [Arg_1-1 ]
n_eval3___20 [Arg_1-2 ]
n_eval3___21 [Arg_1-2 ]
n_eval3___22 [Arg_1+1-Arg_3 ]
n_eval4___11 [Arg_1-1 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [Arg_3-2*Arg_0 ]
n_eval4___15 [Arg_1-2 ]
n_eval4___16 [Arg_1-2 ]
n_eval2___24 [Arg_1-1 ]
n_eval4___18 [Arg_1+2*Arg_2-Arg_3 ]
n_eval4___19 [Arg_1-1 ]
n_eval2___13 [Arg_1-1 ]

MPRF for transition 12:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

23 {O(1)}

MPRF:

n_eval3___12 [2 ]
n_eval3___20 [2 ]
n_eval3___21 [2*Arg_0 ]
n_eval3___22 [2 ]
n_eval4___11 [Arg_3+1-2*Arg_2 ]
n_eval2___10 [Arg_3-1 ]
n_eval4___14 [2 ]
n_eval4___15 [2 ]
n_eval4___16 [2 ]
n_eval2___24 [2*Arg_0 ]
n_eval4___18 [2*Arg_0 ]
n_eval4___19 [2*Arg_0 ]
n_eval2___13 [2 ]

MPRF for transition 13:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

204*Arg_1+157 {O(n)}

MPRF:

n_eval3___12 [Arg_1 ]
n_eval3___20 [Arg_1 ]
n_eval3___21 [Arg_1 ]
n_eval3___22 [Arg_1 ]
n_eval4___11 [Arg_3 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [Arg_3 ]
n_eval4___15 [Arg_1 ]
n_eval4___16 [Arg_1 ]
n_eval2___24 [Arg_1 ]
n_eval4___18 [Arg_1-1 ]
n_eval4___19 [Arg_1 ]
n_eval2___13 [Arg_1 ]

MPRF for transition 14:n_eval3___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

204*Arg_1+205 {O(n)}

MPRF:

n_eval3___12 [Arg_1+4-2*Arg_0 ]
n_eval3___20 [Arg_1+1 ]
n_eval3___21 [Arg_1+1 ]
n_eval3___22 [Arg_1+Arg_3 ]
n_eval4___11 [Arg_3+3-2*Arg_0 ]
n_eval2___10 [Arg_1+4-2*Arg_0 ]
n_eval4___14 [Arg_0+2*Arg_2 ]
n_eval4___15 [Arg_1+1 ]
n_eval4___16 [Arg_0+Arg_1 ]
n_eval2___24 [Arg_1+2 ]
n_eval4___18 [Arg_1+2*Arg_2 ]
n_eval4___19 [Arg_1+3-2*Arg_2 ]
n_eval2___13 [Arg_1+4-2*Arg_0 ]

MPRF for transition 18:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

204*Arg_1+169 {O(n)}

MPRF:

n_eval3___12 [Arg_1+Arg_2 ]
n_eval3___20 [Arg_1+1 ]
n_eval3___21 [Arg_0+Arg_1 ]
n_eval3___22 [Arg_0+Arg_1 ]
n_eval4___11 [Arg_2+Arg_3 ]
n_eval2___10 [Arg_0+Arg_1+Arg_2 ]
n_eval4___14 [2*Arg_2 ]
n_eval4___15 [Arg_1 ]
n_eval4___16 [Arg_0+Arg_1 ]
n_eval2___24 [Arg_0+Arg_1 ]
n_eval4___18 [2*Arg_0+Arg_1+Arg_2-2 ]
n_eval4___19 [Arg_1+Arg_2 ]
n_eval2___13 [Arg_0+Arg_1 ]

MPRF for transition 19:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

408*Arg_1+364 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1-5*Arg_0 ]
n_eval3___20 [2*Arg_1-5 ]
n_eval3___21 [2*Arg_1-5*Arg_0 ]
n_eval3___22 [2*Arg_1+Arg_3-7*Arg_2 ]
n_eval4___11 [2*Arg_1-5*Arg_0 ]
n_eval2___10 [2*Arg_1-5*Arg_0 ]
n_eval4___14 [4*Arg_2-5*Arg_0 ]
n_eval4___15 [2*Arg_1-7 ]
n_eval4___16 [Arg_0+2*Arg_1-6 ]
n_eval2___24 [2*Arg_1-5*Arg_0 ]
n_eval4___18 [2*Arg_1-5*Arg_0 ]
n_eval4___19 [2*Arg_1-5*Arg_0-Arg_2 ]
n_eval2___13 [2*Arg_1-5*Arg_0 ]

MPRF for transition 20:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

408*Arg_1+314 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1 ]
n_eval3___20 [2*Arg_1 ]
n_eval3___21 [2*Arg_1 ]
n_eval3___22 [2*Arg_1 ]
n_eval4___11 [2*Arg_1 ]
n_eval2___10 [2*Arg_1 ]
n_eval4___14 [2*Arg_0+4*Arg_2-2 ]
n_eval4___15 [2*Arg_1+2-2*Arg_0 ]
n_eval4___16 [2*Arg_1-2 ]
n_eval2___24 [2*Arg_1 ]
n_eval4___18 [2*Arg_1 ]
n_eval4___19 [2*Arg_1-2 ]
n_eval2___13 [2*Arg_1 ]

MPRF for transition 24:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && Arg_1<=Arg_3 && Arg_3<=Arg_1 of depth 1:

new bound:

204*Arg_1+181 {O(n)}

MPRF:

n_eval3___12 [Arg_1 ]
n_eval3___20 [Arg_1 ]
n_eval3___21 [Arg_1 ]
n_eval3___22 [Arg_1+4-4*Arg_2 ]
n_eval4___11 [Arg_1 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [2*Arg_3-2*Arg_2-1 ]
n_eval4___15 [Arg_1 ]
n_eval4___16 [Arg_1 ]
n_eval2___24 [Arg_1+4-4*Arg_0 ]
n_eval4___18 [Arg_1 ]
n_eval4___19 [Arg_1 ]
n_eval2___13 [Arg_1 ]

MPRF for transition 25:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3+1):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

11016*Arg_1+9126 {O(n)}

MPRF:

n_eval3___12 [54*Arg_1-54 ]
n_eval3___20 [54*Arg_1-108 ]
n_eval3___21 [54*Arg_1-108 ]
n_eval3___22 [54*Arg_1-54*Arg_3 ]
n_eval4___11 [54*Arg_3-54 ]
n_eval2___10 [54*Arg_1 ]
n_eval4___14 [4*Arg_0+54*Arg_3-112 ]
n_eval4___15 [54*Arg_1-162 ]
n_eval4___16 [54*Arg_1-108 ]
n_eval2___24 [54*Arg_1-108*Arg_0 ]
n_eval4___18 [54*Arg_1-108*Arg_2 ]
n_eval4___19 [54*Arg_1-108*Arg_0 ]
n_eval2___13 [54*Arg_1-54*Arg_0 ]

MPRF for transition 26:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

204*Arg_1+157 {O(n)}

MPRF:

n_eval3___12 [Arg_1 ]
n_eval3___20 [Arg_1 ]
n_eval3___21 [Arg_1 ]
n_eval3___22 [Arg_1 ]
n_eval4___11 [Arg_1 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [Arg_1 ]
n_eval4___15 [Arg_1 ]
n_eval4___16 [Arg_1-1 ]
n_eval2___24 [Arg_1 ]
n_eval4___18 [Arg_1 ]
n_eval4___19 [Arg_1 ]
n_eval2___13 [Arg_1 ]

MPRF for transition 27:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

204*Arg_1+174 {O(n)}

MPRF:

n_eval3___12 [Arg_1-2 ]
n_eval3___20 [Arg_1-2 ]
n_eval3___21 [Arg_1-2 ]
n_eval3___22 [Arg_1-1 ]
n_eval4___11 [Arg_1-2 ]
n_eval2___10 [Arg_1-Arg_2 ]
n_eval4___14 [Arg_3-2 ]
n_eval4___15 [Arg_1-2 ]
n_eval4___16 [Arg_1-2 ]
n_eval2___24 [Arg_1-1 ]
n_eval4___18 [Arg_1-2*Arg_0 ]
n_eval4___19 [Arg_1-2*Arg_2 ]
n_eval2___13 [Arg_1-2 ]

MPRF for transition 28:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

408*Arg_1+320 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1 ]
n_eval3___20 [2*Arg_1-4*Arg_0 ]
n_eval3___21 [2*Arg_1-4 ]
n_eval3___22 [2*Arg_1-2 ]
n_eval4___11 [2*Arg_3 ]
n_eval2___10 [2*Arg_1 ]
n_eval4___14 [2*Arg_3-4 ]
n_eval4___15 [2*Arg_1-4 ]
n_eval4___16 [2*Arg_1-4*Arg_0 ]
n_eval2___24 [2*Arg_1-2 ]
n_eval4___18 [2*Arg_1-2*Arg_2 ]
n_eval4___19 [2*Arg_1-Arg_3 ]
n_eval2___13 [2*Arg_1 ]

MPRF for transition 29:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3+1):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

408*Arg_1+320 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1 ]
n_eval3___20 [2*Arg_1 ]
n_eval3___21 [2*Arg_1 ]
n_eval3___22 [2*Arg_1+2 ]
n_eval4___11 [2*Arg_1-2*Arg_2 ]
n_eval2___10 [2*Arg_1 ]
n_eval4___14 [4*Arg_2 ]
n_eval4___15 [2*Arg_1 ]
n_eval4___16 [2*Arg_1 ]
n_eval2___24 [2*Arg_1+2 ]
n_eval4___18 [2*Arg_1 ]
n_eval4___19 [Arg_0+2*Arg_1-1 ]
n_eval2___13 [2*Arg_1 ]

MPRF for transition 30:n_eval3___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && Arg_0<=Arg_2 && Arg_2<=Arg_0 && 2*Arg_0<=Arg_3 && Arg_3<=2*Arg_0 && 2<=Arg_1 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 1<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 of depth 1:

new bound:

408*Arg_1+364 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1-2*Arg_3 ]
n_eval3___20 [2*Arg_1-4 ]
n_eval3___21 [2*Arg_1-4*Arg_0 ]
n_eval3___22 [2*Arg_1-2 ]
n_eval4___11 [2*Arg_2-2*Arg_0 ]
n_eval2___10 [2*Arg_1+2*Arg_2+4-4*Arg_0-2*Arg_3 ]
n_eval4___14 [2*Arg_0+4*Arg_2-6 ]
n_eval4___15 [2*Arg_1-4 ]
n_eval4___16 [2*Arg_1+2-6*Arg_0 ]
n_eval2___24 [2*Arg_1-2 ]
n_eval4___18 [2*Arg_1-4*Arg_0 ]
n_eval4___19 [2*Arg_1-6 ]
n_eval2___13 [2*Arg_1-4*Arg_0 ]

MPRF for transition 67:n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_1+Arg_3<=4 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

204*Arg_1+159 {O(n)}

MPRF:

n_eval3___12 [Arg_1 ]
n_eval3___20 [Arg_1 ]
n_eval3___21 [Arg_1 ]
n_eval3___22 [Arg_1 ]
n_eval4___11 [2 ]
n_eval2___10 [Arg_3-1 ]
n_eval4___14 [Arg_1 ]
n_eval4___15 [Arg_1 ]
n_eval4___16 [Arg_1 ]
n_eval2___24 [Arg_1 ]
n_eval4___18 [Arg_1 ]
n_eval4___19 [Arg_1 ]
n_eval2___13 [Arg_1 ]

MPRF for transition 68:n_eval4___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 8<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 2<=Arg_2 && 6<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 4<=Arg_1 && 5<=Arg_0+Arg_1 && 3+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 4<=Arg_1 && Arg_1<=2*Arg_2 && 2*Arg_2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_3 && Arg_3<=Arg_1 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

204*Arg_1+160 {O(n)}

MPRF:

n_eval3___12 [Arg_1 ]
n_eval3___20 [Arg_1-1 ]
n_eval3___21 [Arg_1+1-2*Arg_0 ]
n_eval3___22 [Arg_1-1 ]
n_eval4___11 [Arg_1 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [Arg_3-1 ]
n_eval4___15 [Arg_1-1 ]
n_eval4___16 [Arg_1-1 ]
n_eval2___24 [Arg_1-1 ]
n_eval4___18 [Arg_0+Arg_1-2*Arg_2 ]
n_eval4___19 [Arg_1+1-2*Arg_2 ]
n_eval2___13 [Arg_1 ]

MPRF for transition 69:n_eval4___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 5<=Arg_3 && 7<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 10<=Arg_1+Arg_3 && 6<=Arg_0+Arg_3 && 4+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2+1<=Arg_3 && Arg_3<=1+2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

204*Arg_1+196 {O(n)}

MPRF:

n_eval3___12 [Arg_1-4 ]
n_eval3___20 [Arg_1-4 ]
n_eval3___21 [10*Arg_0+Arg_1-14 ]
n_eval3___22 [14*Arg_0+Arg_1+14*Arg_2-14*Arg_3-4 ]
n_eval4___11 [Arg_3-4 ]
n_eval2___10 [2*Arg_1-Arg_3-2 ]
n_eval4___14 [Arg_1-4 ]
n_eval4___15 [Arg_1-4 ]
n_eval4___16 [Arg_1-4 ]
n_eval2___24 [Arg_1-4 ]
n_eval4___18 [Arg_1-4 ]
n_eval4___19 [Arg_1+10-14*Arg_0 ]
n_eval2___13 [Arg_1-3 ]

MPRF for transition 70:n_eval4___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___24(1,Arg_1-1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 3+Arg_2<=Arg_1 && 2<=Arg_2 && 7<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 5<=Arg_1 && 6<=Arg_0+Arg_1 && 4+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1+2*Arg_2<=Arg_1 && 2<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

1224*Arg_1+966 {O(n)}

MPRF:

n_eval3___12 [6*Arg_1+2 ]
n_eval3___20 [6*Arg_1+2 ]
n_eval3___21 [2*Arg_0+6*Arg_1 ]
n_eval3___22 [6*Arg_1+2 ]
n_eval4___11 [6*Arg_1 ]
n_eval2___10 [8*Arg_1 ]
n_eval4___14 [6*Arg_1 ]
n_eval4___15 [2*Arg_0+6*Arg_1 ]
n_eval4___16 [6*Arg_1+2 ]
n_eval2___24 [6*Arg_1+2 ]
n_eval4___18 [6*Arg_1 ]
n_eval4___19 [6*Arg_1 ]
n_eval2___13 [6*Arg_1+2 ]

MPRF for transition 71:n_eval4___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=3 && Arg_3<=2+Arg_2 && Arg_2+Arg_3<=4 && Arg_3<=Arg_1 && Arg_3<=2+Arg_0 && Arg_0+Arg_3<=4 && 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 6<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=3 && 3<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

408*Arg_1+314 {O(n)}

MPRF:

n_eval3___12 [2*Arg_1 ]
n_eval3___20 [2*Arg_1 ]
n_eval3___21 [2*Arg_1 ]
n_eval3___22 [2*Arg_1 ]
n_eval4___11 [2*Arg_1 ]
n_eval2___10 [2*Arg_1 ]
n_eval4___14 [2*Arg_3 ]
n_eval4___15 [2*Arg_1 ]
n_eval4___16 [2*Arg_1 ]
n_eval2___24 [2*Arg_1 ]
n_eval4___18 [2*Arg_1 ]
n_eval4___19 [2*Arg_1 ]
n_eval2___13 [2*Arg_1 ]

MPRF for transition 72:n_eval4___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___13(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && 1+Arg_3<=Arg_1 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 2+Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 3<=Arg_1 && Arg_2<=1 && 1<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:

new bound:

204*Arg_1+163 {O(n)}

MPRF:

n_eval3___12 [Arg_1-1 ]
n_eval3___20 [Arg_1-1 ]
n_eval3___21 [Arg_1-1 ]
n_eval3___22 [Arg_1 ]
n_eval4___11 [Arg_1-1 ]
n_eval2___10 [Arg_1 ]
n_eval4___14 [Arg_1-1 ]
n_eval4___15 [Arg_1-1 ]
n_eval4___16 [Arg_1-1 ]
n_eval2___24 [Arg_1 ]
n_eval4___18 [Arg_1-1 ]
n_eval4___19 [Arg_1-1 ]
n_eval2___13 [Arg_1-1 ]

knowledge_propagation leads to new time bound 23 {O(1)} for transition 67:n_eval4___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval2___10(1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=2 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=3 && Arg_3<=Arg_1 && Arg_1+Arg_3<=4 && Arg_3<=1+Arg_0 && Arg_0+Arg_3<=3 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=3 && Arg_2<=Arg_0 && Arg_0+Arg_2<=2 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_1<=2 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=3 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=1 && 1<=Arg_2 && Arg_1<=2 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=2 && 2<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0

MPRF for transition 16:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

1331712*Arg_1*Arg_1+2163216*Arg_1+878460 {O(n^2)}

MPRF:

n_eval2___24 [4*Arg_1 ]
n_eval3___12 [4*Arg_1 ]
n_eval4___14 [Arg_2+3*Arg_3-8*Arg_0 ]
n_eval4___15 [8*Arg_0+Arg_2-Arg_1-Arg_3 ]
n_eval4___16 [4*Arg_1+Arg_3-8*Arg_0-3*Arg_2 ]
n_eval3___20 [4*Arg_1+2*Arg_3-5*Arg_2-8 ]
n_eval3___21 [4*Arg_1+Arg_2-5*Arg_0-Arg_3 ]
n_eval3___22 [4*Arg_1 ]
n_eval4___11 [4*Arg_3 ]
n_eval2___10 [4*Arg_1+4*Arg_3-4*Arg_2 ]
n_eval4___18 [4*Arg_1 ]
n_eval4___19 [4*Arg_1 ]
n_eval2___13 [4*Arg_1 ]

MPRF for transition 17:n_eval3___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:6<=Arg_3 && 9<=Arg_2+Arg_3 && 3+Arg_2<=Arg_3 && 9<=Arg_1+Arg_3 && 7<=Arg_0+Arg_3 && 5+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && 4<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

665856*Arg_1*Arg_1+1097928*Arg_1+452468 {O(n^2)}

MPRF:

n_eval2___24 [10*Arg_0+2*Arg_1 ]
n_eval3___12 [2*Arg_1 ]
n_eval4___14 [2*Arg_2-3 ]
n_eval4___15 [19*Arg_0+2*Arg_1-2*Arg_2-22 ]
n_eval4___16 [19*Arg_0+2*Arg_1+2*Arg_2-2*Arg_3-22 ]
n_eval3___20 [2*Arg_1+Arg_3+1-4*Arg_2 ]
n_eval3___21 [2*Arg_1+2*Arg_2-2*Arg_0-2*Arg_3-1 ]
n_eval3___22 [2*Arg_1+14*Arg_2-2*Arg_3 ]
n_eval4___11 [2*Arg_3 ]
n_eval2___10 [2*Arg_1 ]
n_eval4___18 [2*Arg_1+14*Arg_2-14*Arg_0 ]
n_eval4___19 [2*Arg_1+14*Arg_2-2*Arg_3-10 ]
n_eval2___13 [2*Arg_1 ]

MPRF for transition 22:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___20(Arg_0,Arg_1,Arg_3+1,2*Arg_3+2):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

1331712*Arg_1*Arg_1+2182800*Arg_1+894392 {O(n^2)}

MPRF:

n_eval2___24 [4*Arg_1-12*Arg_0 ]
n_eval3___12 [4*Arg_1-8 ]
n_eval4___14 [1 ]
n_eval4___15 [Arg_1+4*Arg_3-10*Arg_2-3 ]
n_eval4___16 [2*Arg_0+1-Arg_1 ]
n_eval3___20 [Arg_1+4*Arg_3+3-10*Arg_2 ]
n_eval3___21 [Arg_1+1-Arg_3 ]
n_eval3___22 [4*Arg_1-2*Arg_3-8 ]
n_eval4___11 [0 ]
n_eval2___10 [4*Arg_1-4*Arg_2 ]
n_eval4___18 [4*Arg_1-4*Arg_0-8*Arg_2 ]
n_eval4___19 [4*Arg_1-4*Arg_2-8 ]
n_eval2___13 [4*Arg_1-8*Arg_0 ]

MPRF for transition 23:n_eval3___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval3___21(Arg_0,Arg_1,Arg_3,2*Arg_3):|:4<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 7<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 2<=Arg_2 && 5<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 3<=Arg_1 && 4<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_3 && 2<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 2<=Arg_3 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 2<=Arg_3 && 2+Arg_3<=2*Arg_1 && 2*Arg_2<=Arg_3 && Arg_3<=2*Arg_2 && 4<=Arg_3 && Arg_3<=2*Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:

new bound:

1331712*Arg_1*Arg_1+2169744*Arg_1+883736 {O(n^2)}

MPRF:

n_eval2___24 [4*Arg_1-4*Arg_0 ]
n_eval3___12 [4*Arg_1 ]
n_eval4___14 [4*Arg_3-2*Arg_2-5 ]
n_eval4___15 [4*Arg_1+Arg_3-4*Arg_2-6 ]
n_eval4___16 [4*Arg_1+Arg_3-Arg_0-4*Arg_2-4 ]
n_eval3___20 [4*Arg_1+Arg_3-Arg_0-4*Arg_2 ]
n_eval3___21 [4*Arg_1-Arg_3-5 ]
n_eval3___22 [4*Arg_1-2*Arg_3 ]
n_eval4___11 [4*Arg_1 ]
n_eval2___10 [4*Arg_1 ]
n_eval4___18 [4*Arg_1-4*Arg_0 ]
n_eval4___19 [4*Arg_1+4-4*Arg_0-4*Arg_2 ]
n_eval2___13 [4*Arg_1 ]

All Bounds

Timebounds

Overall timebound:1440*Arg_0*Arg_1+4663552*Arg_1*Arg_1+80*Arg_0*Arg_0+1618*Arg_0+7639455*Arg_1+3129665 {O(n^2)}
0: n_eval1->n_eval2___35: 1 {O(1)}
1: n_eval1->n_eval2___36: 1 {O(1)}
2: n_eval2___10->n_eval3___12: 1 {O(1)}
3: n_eval2___13->n_eval3___12: 204*Arg_1+167 {O(n)}
4: n_eval2___23->n_eval3___34: 2*Arg_0+14 {O(n)}
5: n_eval2___24->n_eval3___22: 408*Arg_1+388 {O(n)}
6: n_eval2___35->n_eval3___7: 1 {O(1)}
7: n_eval2___36->n_eval3___34: 1 {O(1)}
8: n_eval2___9->n_eval3___8: 2*Arg_0+12 {O(n)}
9: n_eval3___12->n_eval3___17: 1 {O(1)}
10: n_eval3___12->n_eval3___20: 204*Arg_1+197 {O(n)}
11: n_eval3___12->n_eval3___21: 204*Arg_1+166 {O(n)}
12: n_eval3___12->n_eval4___11: 23 {O(1)}
13: n_eval3___12->n_eval4___18: 204*Arg_1+157 {O(n)}
14: n_eval3___12->n_eval4___19: 204*Arg_1+205 {O(n)}
15: n_eval3___20->n_eval3___17: 1 {O(1)}
16: n_eval3___20->n_eval3___20: 1331712*Arg_1*Arg_1+2163216*Arg_1+878460 {O(n^2)}
17: n_eval3___20->n_eval3___21: 665856*Arg_1*Arg_1+1097928*Arg_1+452468 {O(n^2)}
18: n_eval3___20->n_eval4___14: 204*Arg_1+169 {O(n)}
19: n_eval3___20->n_eval4___15: 408*Arg_1+364 {O(n)}
20: n_eval3___20->n_eval4___16: 408*Arg_1+314 {O(n)}
21: n_eval3___21->n_eval3___17: 1 {O(1)}
22: n_eval3___21->n_eval3___20: 1331712*Arg_1*Arg_1+2182800*Arg_1+894392 {O(n^2)}
23: n_eval3___21->n_eval3___21: 1331712*Arg_1*Arg_1+2169744*Arg_1+883736 {O(n^2)}
24: n_eval3___21->n_eval4___14: 204*Arg_1+181 {O(n)}
25: n_eval3___21->n_eval4___15: 11016*Arg_1+9126 {O(n)}
26: n_eval3___21->n_eval4___16: 204*Arg_1+157 {O(n)}
27: n_eval3___22->n_eval3___20: 204*Arg_1+174 {O(n)}
28: n_eval3___22->n_eval3___21: 408*Arg_1+320 {O(n)}
29: n_eval3___22->n_eval4___18: 408*Arg_1+320 {O(n)}
30: n_eval3___22->n_eval4___19: 408*Arg_1+364 {O(n)}
31: n_eval3___32->n_eval3___31: 1 {O(1)}
32: n_eval3___32->n_eval3___32: 320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115 {O(n^2)}
33: n_eval3___32->n_eval3___33: 640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814 {O(n^2)}
34: n_eval3___32->n_eval4___25: 5*Arg_0+3 {O(n)}
35: n_eval3___32->n_eval4___26: 5*Arg_0+3 {O(n)}
36: n_eval3___32->n_eval4___27: Arg_0+3 {O(n)}
37: n_eval3___33->n_eval3___31: 1 {O(1)}
38: n_eval3___33->n_eval3___32: 320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217 {O(n^2)}
39: n_eval3___33->n_eval3___33: 160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617 {O(n^2)}
40: n_eval3___33->n_eval4___25: Arg_0+3 {O(n)}
41: n_eval3___33->n_eval4___26: 2*Arg_0+6 {O(n)}
42: n_eval3___33->n_eval4___27: Arg_0+3 {O(n)}
43: n_eval3___34->n_eval3___31: 1 {O(1)}
44: n_eval3___34->n_eval3___32: 2*Arg_0+12 {O(n)}
45: n_eval3___34->n_eval3___33: 3*Arg_0+6 {O(n)}
46: n_eval3___34->n_eval4___28: 2*Arg_0+24 {O(n)}
47: n_eval3___34->n_eval4___29: 2*Arg_0+12 {O(n)}
48: n_eval3___34->n_eval4___30: 2*Arg_0+16 {O(n)}
49: n_eval3___6->n_eval3___31: 1 {O(1)}
50: n_eval3___6->n_eval3___32: 1 {O(1)}
51: n_eval3___6->n_eval3___33: 1 {O(1)}
52: n_eval3___6->n_eval4___1: 1 {O(1)}
53: n_eval3___6->n_eval4___2: 1 {O(1)}
54: n_eval3___6->n_eval4___3: 1 {O(1)}
55: n_eval3___7->n_eval3___31: 1 {O(1)}
56: n_eval3___7->n_eval3___32: 1 {O(1)}
57: n_eval3___7->n_eval3___6: 1 {O(1)}
58: n_eval3___7->n_eval4___28: 1 {O(1)}
59: n_eval3___7->n_eval4___4: 1 {O(1)}
60: n_eval3___7->n_eval4___5: 1 {O(1)}
61: n_eval3___8->n_eval3___32: Arg_0+6 {O(n)}
62: n_eval3___8->n_eval3___33: 2*Arg_0+12 {O(n)}
63: n_eval3___8->n_eval4___29: 2*Arg_0+10 {O(n)}
64: n_eval3___8->n_eval4___30: 2*Arg_0+4*Arg_1+15 {O(n)}
65: n_eval4___1->n_eval2___10: 1 {O(1)}
67: n_eval4___11->n_eval2___10: 23 {O(1)}
68: n_eval4___14->n_eval2___24: 204*Arg_1+160 {O(n)}
69: n_eval4___15->n_eval2___24: 204*Arg_1+196 {O(n)}
70: n_eval4___16->n_eval2___24: 1224*Arg_1+966 {O(n)}
71: n_eval4___18->n_eval2___13: 408*Arg_1+314 {O(n)}
72: n_eval4___19->n_eval2___13: 204*Arg_1+163 {O(n)}
73: n_eval4___2->n_eval2___13: 1 {O(1)}
75: n_eval4___25->n_eval2___23: 2*Arg_0+6 {O(n)}
76: n_eval4___25->n_eval2___24: 1 {O(1)}
77: n_eval4___26->n_eval2___23: 4*Arg_1+Arg_0+6 {O(n)}
78: n_eval4___26->n_eval2___24: 1 {O(1)}
79: n_eval4___27->n_eval2___23: 4*Arg_1+Arg_0+6 {O(n)}
80: n_eval4___27->n_eval2___24: 1 {O(1)}
81: n_eval4___28->n_eval2___10: 1 {O(1)}
82: n_eval4___28->n_eval2___9: 2*Arg_0+10 {O(n)}
83: n_eval4___29->n_eval2___13: 1 {O(1)}
84: n_eval4___29->n_eval2___9: 2*Arg_0+7 {O(n)}
85: n_eval4___3->n_eval2___13: 1 {O(1)}
87: n_eval4___30->n_eval2___13: 1 {O(1)}
88: n_eval4___30->n_eval2___9: Arg_0+3 {O(n)}
89: n_eval4___4->n_eval2___13: 1 {O(1)}
91: n_eval4___5->n_eval2___13: 1 {O(1)}

Costbounds

Overall costbound: 1440*Arg_0*Arg_1+4663552*Arg_1*Arg_1+80*Arg_0*Arg_0+1618*Arg_0+7639455*Arg_1+3129665 {O(n^2)}
0: n_eval1->n_eval2___35: 1 {O(1)}
1: n_eval1->n_eval2___36: 1 {O(1)}
2: n_eval2___10->n_eval3___12: 1 {O(1)}
3: n_eval2___13->n_eval3___12: 204*Arg_1+167 {O(n)}
4: n_eval2___23->n_eval3___34: 2*Arg_0+14 {O(n)}
5: n_eval2___24->n_eval3___22: 408*Arg_1+388 {O(n)}
6: n_eval2___35->n_eval3___7: 1 {O(1)}
7: n_eval2___36->n_eval3___34: 1 {O(1)}
8: n_eval2___9->n_eval3___8: 2*Arg_0+12 {O(n)}
9: n_eval3___12->n_eval3___17: 1 {O(1)}
10: n_eval3___12->n_eval3___20: 204*Arg_1+197 {O(n)}
11: n_eval3___12->n_eval3___21: 204*Arg_1+166 {O(n)}
12: n_eval3___12->n_eval4___11: 23 {O(1)}
13: n_eval3___12->n_eval4___18: 204*Arg_1+157 {O(n)}
14: n_eval3___12->n_eval4___19: 204*Arg_1+205 {O(n)}
15: n_eval3___20->n_eval3___17: 1 {O(1)}
16: n_eval3___20->n_eval3___20: 1331712*Arg_1*Arg_1+2163216*Arg_1+878460 {O(n^2)}
17: n_eval3___20->n_eval3___21: 665856*Arg_1*Arg_1+1097928*Arg_1+452468 {O(n^2)}
18: n_eval3___20->n_eval4___14: 204*Arg_1+169 {O(n)}
19: n_eval3___20->n_eval4___15: 408*Arg_1+364 {O(n)}
20: n_eval3___20->n_eval4___16: 408*Arg_1+314 {O(n)}
21: n_eval3___21->n_eval3___17: 1 {O(1)}
22: n_eval3___21->n_eval3___20: 1331712*Arg_1*Arg_1+2182800*Arg_1+894392 {O(n^2)}
23: n_eval3___21->n_eval3___21: 1331712*Arg_1*Arg_1+2169744*Arg_1+883736 {O(n^2)}
24: n_eval3___21->n_eval4___14: 204*Arg_1+181 {O(n)}
25: n_eval3___21->n_eval4___15: 11016*Arg_1+9126 {O(n)}
26: n_eval3___21->n_eval4___16: 204*Arg_1+157 {O(n)}
27: n_eval3___22->n_eval3___20: 204*Arg_1+174 {O(n)}
28: n_eval3___22->n_eval3___21: 408*Arg_1+320 {O(n)}
29: n_eval3___22->n_eval4___18: 408*Arg_1+320 {O(n)}
30: n_eval3___22->n_eval4___19: 408*Arg_1+364 {O(n)}
31: n_eval3___32->n_eval3___31: 1 {O(1)}
32: n_eval3___32->n_eval3___32: 320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115 {O(n^2)}
33: n_eval3___32->n_eval3___33: 640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814 {O(n^2)}
34: n_eval3___32->n_eval4___25: 5*Arg_0+3 {O(n)}
35: n_eval3___32->n_eval4___26: 5*Arg_0+3 {O(n)}
36: n_eval3___32->n_eval4___27: Arg_0+3 {O(n)}
37: n_eval3___33->n_eval3___31: 1 {O(1)}
38: n_eval3___33->n_eval3___32: 320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217 {O(n^2)}
39: n_eval3___33->n_eval3___33: 160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617 {O(n^2)}
40: n_eval3___33->n_eval4___25: Arg_0+3 {O(n)}
41: n_eval3___33->n_eval4___26: 2*Arg_0+6 {O(n)}
42: n_eval3___33->n_eval4___27: Arg_0+3 {O(n)}
43: n_eval3___34->n_eval3___31: 1 {O(1)}
44: n_eval3___34->n_eval3___32: 2*Arg_0+12 {O(n)}
45: n_eval3___34->n_eval3___33: 3*Arg_0+6 {O(n)}
46: n_eval3___34->n_eval4___28: 2*Arg_0+24 {O(n)}
47: n_eval3___34->n_eval4___29: 2*Arg_0+12 {O(n)}
48: n_eval3___34->n_eval4___30: 2*Arg_0+16 {O(n)}
49: n_eval3___6->n_eval3___31: 1 {O(1)}
50: n_eval3___6->n_eval3___32: 1 {O(1)}
51: n_eval3___6->n_eval3___33: 1 {O(1)}
52: n_eval3___6->n_eval4___1: 1 {O(1)}
53: n_eval3___6->n_eval4___2: 1 {O(1)}
54: n_eval3___6->n_eval4___3: 1 {O(1)}
55: n_eval3___7->n_eval3___31: 1 {O(1)}
56: n_eval3___7->n_eval3___32: 1 {O(1)}
57: n_eval3___7->n_eval3___6: 1 {O(1)}
58: n_eval3___7->n_eval4___28: 1 {O(1)}
59: n_eval3___7->n_eval4___4: 1 {O(1)}
60: n_eval3___7->n_eval4___5: 1 {O(1)}
61: n_eval3___8->n_eval3___32: Arg_0+6 {O(n)}
62: n_eval3___8->n_eval3___33: 2*Arg_0+12 {O(n)}
63: n_eval3___8->n_eval4___29: 2*Arg_0+10 {O(n)}
64: n_eval3___8->n_eval4___30: 2*Arg_0+4*Arg_1+15 {O(n)}
65: n_eval4___1->n_eval2___10: 1 {O(1)}
67: n_eval4___11->n_eval2___10: 23 {O(1)}
68: n_eval4___14->n_eval2___24: 204*Arg_1+160 {O(n)}
69: n_eval4___15->n_eval2___24: 204*Arg_1+196 {O(n)}
70: n_eval4___16->n_eval2___24: 1224*Arg_1+966 {O(n)}
71: n_eval4___18->n_eval2___13: 408*Arg_1+314 {O(n)}
72: n_eval4___19->n_eval2___13: 204*Arg_1+163 {O(n)}
73: n_eval4___2->n_eval2___13: 1 {O(1)}
75: n_eval4___25->n_eval2___23: 2*Arg_0+6 {O(n)}
76: n_eval4___25->n_eval2___24: 1 {O(1)}
77: n_eval4___26->n_eval2___23: 4*Arg_1+Arg_0+6 {O(n)}
78: n_eval4___26->n_eval2___24: 1 {O(1)}
79: n_eval4___27->n_eval2___23: 4*Arg_1+Arg_0+6 {O(n)}
80: n_eval4___27->n_eval2___24: 1 {O(1)}
81: n_eval4___28->n_eval2___10: 1 {O(1)}
82: n_eval4___28->n_eval2___9: 2*Arg_0+10 {O(n)}
83: n_eval4___29->n_eval2___13: 1 {O(1)}
84: n_eval4___29->n_eval2___9: 2*Arg_0+7 {O(n)}
85: n_eval4___3->n_eval2___13: 1 {O(1)}
87: n_eval4___30->n_eval2___13: 1 {O(1)}
88: n_eval4___30->n_eval2___9: Arg_0+3 {O(n)}
89: n_eval4___4->n_eval2___13: 1 {O(1)}
91: n_eval4___5->n_eval2___13: 1 {O(1)}

Sizebounds

0: n_eval1->n_eval2___35, Arg_0: Arg_0 {O(n)}
0: n_eval1->n_eval2___35, Arg_1: Arg_1+1 {O(n)}
0: n_eval1->n_eval2___35, Arg_2: Arg_2 {O(n)}
0: n_eval1->n_eval2___35, Arg_3: Arg_3 {O(n)}
1: n_eval1->n_eval2___36, Arg_0: Arg_0 {O(n)}
1: n_eval1->n_eval2___36, Arg_1: Arg_1 {O(n)}
1: n_eval1->n_eval2___36, Arg_2: Arg_2 {O(n)}
1: n_eval1->n_eval2___36, Arg_3: Arg_3 {O(n)}
2: n_eval2___10->n_eval3___12, Arg_0: 1 {O(1)}
2: n_eval2___10->n_eval3___12, Arg_1: 3 {O(1)}
2: n_eval2___10->n_eval3___12, Arg_2: 1 {O(1)}
2: n_eval2___10->n_eval3___12, Arg_3: 2 {O(1)}
3: n_eval2___13->n_eval3___12, Arg_0: 1 {O(1)}
3: n_eval2___13->n_eval3___12, Arg_1: 204*Arg_1+166 {O(n)}
3: n_eval2___13->n_eval3___12, Arg_2: 1 {O(1)}
3: n_eval2___13->n_eval3___12, Arg_3: 2 {O(1)}
4: n_eval2___23->n_eval3___34, Arg_0: 5*Arg_0+15 {O(n)}
4: n_eval2___23->n_eval3___34, Arg_1: 20*Arg_1+15 {O(n)}
4: n_eval2___23->n_eval3___34, Arg_2: 15*Arg_0+45 {O(n)}
4: n_eval2___23->n_eval3___34, Arg_3: 30*Arg_0+90 {O(n)}
5: n_eval2___24->n_eval3___22, Arg_0: 1 {O(1)}
5: n_eval2___24->n_eval3___22, Arg_1: 204*Arg_1+166 {O(n)}
5: n_eval2___24->n_eval3___22, Arg_2: 1 {O(1)}
5: n_eval2___24->n_eval3___22, Arg_3: 2 {O(1)}
6: n_eval2___35->n_eval3___7, Arg_0: Arg_0 {O(n)}
6: n_eval2___35->n_eval3___7, Arg_1: Arg_1+1 {O(n)}
6: n_eval2___35->n_eval3___7, Arg_2: Arg_0 {O(n)}
6: n_eval2___35->n_eval3___7, Arg_3: 2*Arg_0 {O(n)}
7: n_eval2___36->n_eval3___34, Arg_0: Arg_0 {O(n)}
7: n_eval2___36->n_eval3___34, Arg_1: Arg_1 {O(n)}
7: n_eval2___36->n_eval3___34, Arg_2: Arg_0 {O(n)}
7: n_eval2___36->n_eval3___34, Arg_3: 2*Arg_0 {O(n)}
8: n_eval2___9->n_eval3___8, Arg_0: 5*Arg_0+15 {O(n)}
8: n_eval2___9->n_eval3___8, Arg_1: 20*Arg_1+15 {O(n)}
8: n_eval2___9->n_eval3___8, Arg_2: 15*Arg_0+45 {O(n)}
8: n_eval2___9->n_eval3___8, Arg_3: 30*Arg_0+90 {O(n)}
9: n_eval3___12->n_eval3___17, Arg_0: 1 {O(1)}
9: n_eval3___12->n_eval3___17, Arg_1: 2 {O(1)}
9: n_eval3___12->n_eval3___17, Arg_2: 2 {O(1)}
9: n_eval3___12->n_eval3___17, Arg_3: 4 {O(1)}
10: n_eval3___12->n_eval3___20, Arg_0: 1 {O(1)}
10: n_eval3___12->n_eval3___20, Arg_1: 204*Arg_1+166 {O(n)}
10: n_eval3___12->n_eval3___20, Arg_2: 3 {O(1)}
10: n_eval3___12->n_eval3___20, Arg_3: 6 {O(1)}
11: n_eval3___12->n_eval3___21, Arg_0: 1 {O(1)}
11: n_eval3___12->n_eval3___21, Arg_1: 204*Arg_1+166 {O(n)}
11: n_eval3___12->n_eval3___21, Arg_2: 2 {O(1)}
11: n_eval3___12->n_eval3___21, Arg_3: 4 {O(1)}
12: n_eval3___12->n_eval4___11, Arg_0: 1 {O(1)}
12: n_eval3___12->n_eval4___11, Arg_1: 2 {O(1)}
12: n_eval3___12->n_eval4___11, Arg_2: 1 {O(1)}
12: n_eval3___12->n_eval4___11, Arg_3: 2 {O(1)}
13: n_eval3___12->n_eval4___18, Arg_0: 1 {O(1)}
13: n_eval3___12->n_eval4___18, Arg_1: 204*Arg_1+166 {O(n)}
13: n_eval3___12->n_eval4___18, Arg_2: 1 {O(1)}
13: n_eval3___12->n_eval4___18, Arg_3: 3 {O(1)}
14: n_eval3___12->n_eval4___19, Arg_0: 1 {O(1)}
14: n_eval3___12->n_eval4___19, Arg_1: 204*Arg_1+166 {O(n)}
14: n_eval3___12->n_eval4___19, Arg_2: 1 {O(1)}
14: n_eval3___12->n_eval4___19, Arg_3: 2 {O(1)}
15: n_eval3___20->n_eval3___17, Arg_0: 1 {O(1)}
15: n_eval3___20->n_eval3___17, Arg_1: 816*Arg_1+664 {O(n)}
15: n_eval3___20->n_eval3___17, Arg_2: 816*Arg_1+664 {O(n)}
15: n_eval3___20->n_eval3___17, Arg_3: 1632*Arg_1+1328 {O(n)}
16: n_eval3___20->n_eval3___20, Arg_0: 1 {O(1)}
16: n_eval3___20->n_eval3___20, Arg_1: 204*Arg_1+166 {O(n)}
16: n_eval3___20->n_eval3___20, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522 {O(EXP)}
16: n_eval3___20->n_eval3___20, Arg_3: 1772892*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+2663424*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*4346016*Arg_1 {O(EXP)}
17: n_eval3___20->n_eval3___21, Arg_0: 1 {O(1)}
17: n_eval3___20->n_eval3___21, Arg_1: 204*Arg_1+166 {O(n)}
17: n_eval3___20->n_eval3___21, Arg_2: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+12 {O(EXP)}
17: n_eval3___20->n_eval3___21, Arg_3: 1772892*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+2663424*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*4346016*Arg_1 {O(EXP)}
18: n_eval3___20->n_eval4___14, Arg_0: 1 {O(1)}
18: n_eval3___20->n_eval4___14, Arg_1: 204*Arg_1+166 {O(n)}
18: n_eval3___20->n_eval4___14, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+62 {O(EXP)}
18: n_eval3___20->n_eval4___14, Arg_3: 816*Arg_1+664 {O(n)}
19: n_eval3___20->n_eval4___15, Arg_0: 1 {O(1)}
19: n_eval3___20->n_eval4___15, Arg_1: 204*Arg_1+166 {O(n)}
19: n_eval3___20->n_eval4___15, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+62 {O(EXP)}
19: n_eval3___20->n_eval4___15, Arg_3: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+16 {O(EXP)}
20: n_eval3___20->n_eval4___16, Arg_0: 1 {O(1)}
20: n_eval3___20->n_eval4___16, Arg_1: 204*Arg_1+166 {O(n)}
20: n_eval3___20->n_eval4___16, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+62 {O(EXP)}
20: n_eval3___20->n_eval4___16, Arg_3: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+12 {O(EXP)}
21: n_eval3___21->n_eval3___17, Arg_0: 1 {O(1)}
21: n_eval3___21->n_eval3___17, Arg_1: 816*Arg_1+664 {O(n)}
21: n_eval3___21->n_eval3___17, Arg_2: 816*Arg_1+664 {O(n)}
21: n_eval3___21->n_eval3___17, Arg_3: 1632*Arg_1+1328 {O(n)}
22: n_eval3___21->n_eval3___20, Arg_0: 1 {O(1)}
22: n_eval3___21->n_eval3___20, Arg_1: 204*Arg_1+166 {O(n)}
22: n_eval3___21->n_eval3___20, Arg_2: 14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+56 {O(EXP)}
22: n_eval3___21->n_eval3___20, Arg_3: 1772892*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+2663424*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*4346016*Arg_1 {O(EXP)}
23: n_eval3___21->n_eval3___21, Arg_0: 1 {O(1)}
23: n_eval3___21->n_eval3___21, Arg_1: 204*Arg_1+166 {O(n)}
23: n_eval3___21->n_eval3___21, Arg_2: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+8 {O(EXP)}
23: n_eval3___21->n_eval3___21, Arg_3: 1772892*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+2663424*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*4346016*Arg_1 {O(EXP)}
24: n_eval3___21->n_eval4___14, Arg_0: 1 {O(1)}
24: n_eval3___21->n_eval4___14, Arg_1: 204*Arg_1+166 {O(n)}
24: n_eval3___21->n_eval4___14, Arg_2: 10653696*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+24 {O(EXP)}
24: n_eval3___21->n_eval4___14, Arg_3: 816*Arg_1+664 {O(n)}
25: n_eval3___21->n_eval4___15, Arg_0: 1 {O(1)}
25: n_eval3___21->n_eval4___15, Arg_1: 204*Arg_1+166 {O(n)}
25: n_eval3___21->n_eval4___15, Arg_2: 10653696*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+24 {O(EXP)}
25: n_eval3___21->n_eval4___15, Arg_3: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+12 {O(EXP)}
26: n_eval3___21->n_eval4___16, Arg_0: 1 {O(1)}
26: n_eval3___21->n_eval4___16, Arg_1: 204*Arg_1+166 {O(n)}
26: n_eval3___21->n_eval4___16, Arg_2: 10653696*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+24 {O(EXP)}
26: n_eval3___21->n_eval4___16, Arg_3: 2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*3545784+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*5326848*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*8692032*Arg_1+8 {O(EXP)}
27: n_eval3___22->n_eval3___20, Arg_0: 1 {O(1)}
27: n_eval3___22->n_eval3___20, Arg_1: 204*Arg_1+166 {O(n)}
27: n_eval3___22->n_eval3___20, Arg_2: 3 {O(1)}
27: n_eval3___22->n_eval3___20, Arg_3: 6 {O(1)}
28: n_eval3___22->n_eval3___21, Arg_0: 1 {O(1)}
28: n_eval3___22->n_eval3___21, Arg_1: 204*Arg_1+166 {O(n)}
28: n_eval3___22->n_eval3___21, Arg_2: 2 {O(1)}
28: n_eval3___22->n_eval3___21, Arg_3: 4 {O(1)}
29: n_eval3___22->n_eval4___18, Arg_0: 1 {O(1)}
29: n_eval3___22->n_eval4___18, Arg_1: 204*Arg_1+166 {O(n)}
29: n_eval3___22->n_eval4___18, Arg_2: 1 {O(1)}
29: n_eval3___22->n_eval4___18, Arg_3: 3 {O(1)}
30: n_eval3___22->n_eval4___19, Arg_0: 1 {O(1)}
30: n_eval3___22->n_eval4___19, Arg_1: 204*Arg_1+166 {O(n)}
30: n_eval3___22->n_eval4___19, Arg_2: 1 {O(1)}
30: n_eval3___22->n_eval4___19, Arg_3: 2 {O(1)}
31: n_eval3___32->n_eval3___31, Arg_0: 20*Arg_0+62 {O(n)}
31: n_eval3___32->n_eval3___31, Arg_1: 82*Arg_1+62 {O(n)}
31: n_eval3___32->n_eval3___31, Arg_2: 82*Arg_1+62 {O(n)}
31: n_eval3___32->n_eval3___31, Arg_3: 164*Arg_1+124 {O(n)}
32: n_eval3___32->n_eval3___32, Arg_0: 5*Arg_0+15 {O(n)}
32: n_eval3___32->n_eval3___32, Arg_1: 20*Arg_1+15 {O(n)}
32: n_eval3___32->n_eval3___32, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0 {O(EXP)}
32: n_eval3___32->n_eval3___32, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3832+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3863*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*640*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*976*Arg_0 {O(EXP)}
33: n_eval3___32->n_eval3___33, Arg_0: 5*Arg_0+15 {O(n)}
33: n_eval3___32->n_eval3___33, Arg_1: 20*Arg_1+15 {O(n)}
33: n_eval3___32->n_eval3___33, Arg_2: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+382 {O(EXP)}
33: n_eval3___32->n_eval3___33, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3832+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3863*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*640*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*976*Arg_0 {O(EXP)}
34: n_eval3___32->n_eval4___25, Arg_0: 5*Arg_0+15 {O(n)}
34: n_eval3___32->n_eval4___25, Arg_1: 20*Arg_1+15 {O(n)}
34: n_eval3___32->n_eval4___25, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+682*Arg_0+2072 {O(EXP)}
34: n_eval3___32->n_eval4___25, Arg_3: 82*Arg_1+62 {O(n)}
35: n_eval3___32->n_eval4___26, Arg_0: 5*Arg_0+15 {O(n)}
35: n_eval3___32->n_eval4___26, Arg_1: 20*Arg_1+15 {O(n)}
35: n_eval3___32->n_eval4___26, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+682*Arg_0+2072 {O(EXP)}
35: n_eval3___32->n_eval4___26, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+388 {O(EXP)}
36: n_eval3___32->n_eval4___27, Arg_0: 5*Arg_0+15 {O(n)}
36: n_eval3___32->n_eval4___27, Arg_1: 20*Arg_1+15 {O(n)}
36: n_eval3___32->n_eval4___27, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+682*Arg_0+2072 {O(EXP)}
36: n_eval3___32->n_eval4___27, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+382 {O(EXP)}
37: n_eval3___33->n_eval3___31, Arg_0: 20*Arg_0+61 {O(n)}
37: n_eval3___33->n_eval3___31, Arg_1: 81*Arg_1+61 {O(n)}
37: n_eval3___33->n_eval3___31, Arg_2: 81*Arg_1+61 {O(n)}
37: n_eval3___33->n_eval3___31, Arg_3: 162*Arg_1+122 {O(n)}
38: n_eval3___33->n_eval3___32, Arg_0: 5*Arg_0+15 {O(n)}
38: n_eval3___33->n_eval3___32, Arg_1: 20*Arg_1+15 {O(n)}
38: n_eval3___33->n_eval3___32, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+620*Arg_0+1878 {O(EXP)}
38: n_eval3___33->n_eval3___32, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3832+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3863*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*640*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*976*Arg_0 {O(EXP)}
39: n_eval3___33->n_eval3___33, Arg_0: 5*Arg_0+15 {O(n)}
39: n_eval3___33->n_eval3___33, Arg_1: 20*Arg_1+15 {O(n)}
39: n_eval3___33->n_eval3___33, Arg_2: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+368 {O(EXP)}
39: n_eval3___33->n_eval3___33, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3832+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3863*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*640*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*976*Arg_0 {O(EXP)}
40: n_eval3___33->n_eval4___25, Arg_0: 5*Arg_0+15 {O(n)}
40: n_eval3___33->n_eval4___25, Arg_1: 20*Arg_1+15 {O(n)}
40: n_eval3___33->n_eval4___25, Arg_2: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+310*Arg_0+934 {O(EXP)}
40: n_eval3___33->n_eval4___25, Arg_3: 81*Arg_1+61 {O(n)}
41: n_eval3___33->n_eval4___26, Arg_0: 5*Arg_0+15 {O(n)}
41: n_eval3___33->n_eval4___26, Arg_1: 20*Arg_1+15 {O(n)}
41: n_eval3___33->n_eval4___26, Arg_2: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+310*Arg_0+934 {O(EXP)}
41: n_eval3___33->n_eval4___26, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+373 {O(EXP)}
42: n_eval3___33->n_eval4___27, Arg_0: 5*Arg_0+15 {O(n)}
42: n_eval3___33->n_eval4___27, Arg_1: 20*Arg_1+15 {O(n)}
42: n_eval3___33->n_eval4___27, Arg_2: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+310*Arg_0+934 {O(EXP)}
42: n_eval3___33->n_eval4___27, Arg_3: 1280*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+1952*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7664+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7726*Arg_1+124*Arg_0+368 {O(EXP)}
43: n_eval3___34->n_eval3___31, Arg_0: 6*Arg_0+15 {O(n)}
43: n_eval3___34->n_eval3___31, Arg_1: 21*Arg_1+15 {O(n)}
43: n_eval3___34->n_eval3___31, Arg_2: 21*Arg_1+15 {O(n)}
43: n_eval3___34->n_eval3___31, Arg_3: 42*Arg_1+30 {O(n)}
44: n_eval3___34->n_eval3___32, Arg_0: 5*Arg_0+15 {O(n)}
44: n_eval3___34->n_eval3___32, Arg_1: 20*Arg_1+15 {O(n)}
44: n_eval3___34->n_eval3___32, Arg_2: 32*Arg_0+94 {O(n)}
44: n_eval3___34->n_eval3___32, Arg_3: 64*Arg_0+184 {O(n)}
45: n_eval3___34->n_eval3___33, Arg_0: 5*Arg_0+15 {O(n)}
45: n_eval3___34->n_eval3___33, Arg_1: 20*Arg_1+15 {O(n)}
45: n_eval3___34->n_eval3___33, Arg_2: 32*Arg_0+90 {O(n)}
45: n_eval3___34->n_eval3___33, Arg_3: 64*Arg_0+180 {O(n)}
46: n_eval3___34->n_eval4___28, Arg_0: 5*Arg_0+15 {O(n)}
46: n_eval3___34->n_eval4___28, Arg_1: 20*Arg_1+15 {O(n)}
46: n_eval3___34->n_eval4___28, Arg_2: 16*Arg_0+45 {O(n)}
46: n_eval3___34->n_eval4___28, Arg_3: 21*Arg_1+15 {O(n)}
47: n_eval3___34->n_eval4___29, Arg_0: 5*Arg_0+15 {O(n)}
47: n_eval3___34->n_eval4___29, Arg_1: 20*Arg_1+15 {O(n)}
47: n_eval3___34->n_eval4___29, Arg_2: 16*Arg_0+45 {O(n)}
47: n_eval3___34->n_eval4___29, Arg_3: 32*Arg_0+92 {O(n)}
48: n_eval3___34->n_eval4___30, Arg_0: 5*Arg_0+15 {O(n)}
48: n_eval3___34->n_eval4___30, Arg_1: 20*Arg_1+15 {O(n)}
48: n_eval3___34->n_eval4___30, Arg_2: 16*Arg_0+45 {O(n)}
48: n_eval3___34->n_eval4___30, Arg_3: 32*Arg_0+90 {O(n)}
49: n_eval3___6->n_eval3___31, Arg_0: 1 {O(1)}
49: n_eval3___6->n_eval3___31, Arg_1: 4 {O(1)}
49: n_eval3___6->n_eval3___31, Arg_2: 4 {O(1)}
49: n_eval3___6->n_eval3___31, Arg_3: 8 {O(1)}
50: n_eval3___6->n_eval3___32, Arg_0: 1 {O(1)}
50: n_eval3___6->n_eval3___32, Arg_1: Arg_1+1 {O(n)}
50: n_eval3___6->n_eval3___32, Arg_2: 5 {O(1)}
50: n_eval3___6->n_eval3___32, Arg_3: 10 {O(1)}
51: n_eval3___6->n_eval3___33, Arg_0: 1 {O(1)}
51: n_eval3___6->n_eval3___33, Arg_1: Arg_1+1 {O(n)}
51: n_eval3___6->n_eval3___33, Arg_2: 4 {O(1)}
51: n_eval3___6->n_eval3___33, Arg_3: 8 {O(1)}
52: n_eval3___6->n_eval4___1, Arg_0: 1 {O(1)}
52: n_eval3___6->n_eval4___1, Arg_1: 4 {O(1)}
52: n_eval3___6->n_eval4___1, Arg_2: 2 {O(1)}
52: n_eval3___6->n_eval4___1, Arg_3: 4 {O(1)}
53: n_eval3___6->n_eval4___2, Arg_0: 1 {O(1)}
53: n_eval3___6->n_eval4___2, Arg_1: Arg_1+1 {O(n)}
53: n_eval3___6->n_eval4___2, Arg_2: 2 {O(1)}
53: n_eval3___6->n_eval4___2, Arg_3: 5 {O(1)}
54: n_eval3___6->n_eval4___3, Arg_0: 1 {O(1)}
54: n_eval3___6->n_eval4___3, Arg_1: Arg_1+1 {O(n)}
54: n_eval3___6->n_eval4___3, Arg_2: 2 {O(1)}
54: n_eval3___6->n_eval4___3, Arg_3: 4 {O(1)}
55: n_eval3___7->n_eval3___31, Arg_0: 1 {O(1)}
55: n_eval3___7->n_eval3___31, Arg_1: 2 {O(1)}
55: n_eval3___7->n_eval3___31, Arg_2: 2 {O(1)}
55: n_eval3___7->n_eval3___31, Arg_3: 4 {O(1)}
56: n_eval3___7->n_eval3___32, Arg_0: 1 {O(1)}
56: n_eval3___7->n_eval3___32, Arg_1: Arg_1+1 {O(n)}
56: n_eval3___7->n_eval3___32, Arg_2: 3 {O(1)}
56: n_eval3___7->n_eval3___32, Arg_3: 6 {O(1)}
57: n_eval3___7->n_eval3___6, Arg_0: 1 {O(1)}
57: n_eval3___7->n_eval3___6, Arg_1: Arg_1+1 {O(n)}
57: n_eval3___7->n_eval3___6, Arg_2: 2 {O(1)}
57: n_eval3___7->n_eval3___6, Arg_3: 4 {O(1)}
58: n_eval3___7->n_eval4___28, Arg_0: 1 {O(1)}
58: n_eval3___7->n_eval4___28, Arg_1: 2 {O(1)}
58: n_eval3___7->n_eval4___28, Arg_2: 1 {O(1)}
58: n_eval3___7->n_eval4___28, Arg_3: 2 {O(1)}
59: n_eval3___7->n_eval4___4, Arg_0: Arg_0 {O(n)}
59: n_eval3___7->n_eval4___4, Arg_1: Arg_1+1 {O(n)}
59: n_eval3___7->n_eval4___4, Arg_2: Arg_0 {O(n)}
59: n_eval3___7->n_eval4___4, Arg_3: 2*Arg_0+1 {O(n)}
60: n_eval3___7->n_eval4___5, Arg_0: Arg_0 {O(n)}
60: n_eval3___7->n_eval4___5, Arg_1: Arg_1+1 {O(n)}
60: n_eval3___7->n_eval4___5, Arg_2: Arg_0 {O(n)}
60: n_eval3___7->n_eval4___5, Arg_3: 2*Arg_0 {O(n)}
61: n_eval3___8->n_eval3___32, Arg_0: 5*Arg_0+15 {O(n)}
61: n_eval3___8->n_eval3___32, Arg_1: 20*Arg_1+15 {O(n)}
61: n_eval3___8->n_eval3___32, Arg_2: 30*Arg_0+92 {O(n)}
61: n_eval3___8->n_eval3___32, Arg_3: 60*Arg_0+182 {O(n)}
62: n_eval3___8->n_eval3___33, Arg_0: 5*Arg_0+15 {O(n)}
62: n_eval3___8->n_eval3___33, Arg_1: 20*Arg_1+15 {O(n)}
62: n_eval3___8->n_eval3___33, Arg_2: 30*Arg_0+90 {O(n)}
62: n_eval3___8->n_eval3___33, Arg_3: 60*Arg_0+180 {O(n)}
63: n_eval3___8->n_eval4___29, Arg_0: 5*Arg_0+15 {O(n)}
63: n_eval3___8->n_eval4___29, Arg_1: 20*Arg_1+15 {O(n)}
63: n_eval3___8->n_eval4___29, Arg_2: 15*Arg_0+45 {O(n)}
63: n_eval3___8->n_eval4___29, Arg_3: 30*Arg_0+91 {O(n)}
64: n_eval3___8->n_eval4___30, Arg_0: 5*Arg_0+15 {O(n)}
64: n_eval3___8->n_eval4___30, Arg_1: 20*Arg_1+15 {O(n)}
64: n_eval3___8->n_eval4___30, Arg_2: 15*Arg_0+45 {O(n)}
64: n_eval3___8->n_eval4___30, Arg_3: 30*Arg_0+90 {O(n)}
65: n_eval4___1->n_eval2___10, Arg_0: 1 {O(1)}
65: n_eval4___1->n_eval2___10, Arg_1: 3 {O(1)}
65: n_eval4___1->n_eval2___10, Arg_2: 2 {O(1)}
65: n_eval4___1->n_eval2___10, Arg_3: 4 {O(1)}
67: n_eval4___11->n_eval2___10, Arg_0: 1 {O(1)}
67: n_eval4___11->n_eval2___10, Arg_1: 1 {O(1)}
67: n_eval4___11->n_eval2___10, Arg_2: 1 {O(1)}
67: n_eval4___11->n_eval2___10, Arg_3: 2 {O(1)}
68: n_eval4___14->n_eval2___24, Arg_0: 1 {O(1)}
68: n_eval4___14->n_eval2___24, Arg_1: 204*Arg_1+166 {O(n)}
68: n_eval4___14->n_eval2___24, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*31961088*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+86 {O(EXP)}
68: n_eval4___14->n_eval2___24, Arg_3: 1632*Arg_1+1328 {O(n)}
69: n_eval4___15->n_eval2___24, Arg_0: 1 {O(1)}
69: n_eval4___15->n_eval2___24, Arg_1: 204*Arg_1+166 {O(n)}
69: n_eval4___15->n_eval2___24, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*31961088*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+86 {O(EXP)}
69: n_eval4___15->n_eval2___24, Arg_3: 10653696*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+28 {O(EXP)}
70: n_eval4___16->n_eval2___24, Arg_0: 1 {O(1)}
70: n_eval4___16->n_eval2___24, Arg_1: 204*Arg_1+166 {O(n)}
70: n_eval4___16->n_eval2___24, Arg_2: 1331712*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1*Arg_1+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+14183136*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+21307392*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+2163216*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*31961088*Arg_1*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*34768128*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*878522+86 {O(EXP)}
70: n_eval4___16->n_eval2___24, Arg_3: 10653696*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1*Arg_1+17384064*2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*Arg_1+2^(1331712*Arg_1*Arg_1+2163216*Arg_1+878460)*2^(1331712*Arg_1*Arg_1+2169744*Arg_1+883736)*2^(1331712*Arg_1*Arg_1+2182800*Arg_1+894392)*2^(665856*Arg_1*Arg_1+1097928*Arg_1+452468)*7091568+20 {O(EXP)}
71: n_eval4___18->n_eval2___13, Arg_0: 1 {O(1)}
71: n_eval4___18->n_eval2___13, Arg_1: 204*Arg_1+166 {O(n)}
71: n_eval4___18->n_eval2___13, Arg_2: 1 {O(1)}
71: n_eval4___18->n_eval2___13, Arg_3: 3 {O(1)}
72: n_eval4___19->n_eval2___13, Arg_0: 1 {O(1)}
72: n_eval4___19->n_eval2___13, Arg_1: 204*Arg_1+166 {O(n)}
72: n_eval4___19->n_eval2___13, Arg_2: 1 {O(1)}
72: n_eval4___19->n_eval2___13, Arg_3: 2 {O(1)}
73: n_eval4___2->n_eval2___13, Arg_0: 1 {O(1)}
73: n_eval4___2->n_eval2___13, Arg_1: Arg_1+1 {O(n)}
73: n_eval4___2->n_eval2___13, Arg_2: 2 {O(1)}
73: n_eval4___2->n_eval2___13, Arg_3: 5 {O(1)}
75: n_eval4___25->n_eval2___23, Arg_0: 5*Arg_0+15 {O(n)}
75: n_eval4___25->n_eval2___23, Arg_1: 20*Arg_1+15 {O(n)}
75: n_eval4___25->n_eval2___23, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
75: n_eval4___25->n_eval2___23, Arg_3: 163*Arg_1+123 {O(n)}
76: n_eval4___25->n_eval2___24, Arg_0: 1 {O(1)}
76: n_eval4___25->n_eval2___24, Arg_1: 40*Arg_1+30 {O(n)}
76: n_eval4___25->n_eval2___24, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
76: n_eval4___25->n_eval2___24, Arg_3: 163*Arg_1+123 {O(n)}
77: n_eval4___26->n_eval2___23, Arg_0: 5*Arg_0+15 {O(n)}
77: n_eval4___26->n_eval2___23, Arg_1: 20*Arg_1+15 {O(n)}
77: n_eval4___26->n_eval2___23, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
77: n_eval4___26->n_eval2___23, Arg_3: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+248*Arg_0+761 {O(EXP)}
78: n_eval4___26->n_eval2___24, Arg_0: 1 {O(1)}
78: n_eval4___26->n_eval2___24, Arg_1: 40*Arg_1+30 {O(n)}
78: n_eval4___26->n_eval2___24, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
78: n_eval4___26->n_eval2___24, Arg_3: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+248*Arg_0+761 {O(EXP)}
79: n_eval4___27->n_eval2___23, Arg_0: 5*Arg_0+15 {O(n)}
79: n_eval4___27->n_eval2___23, Arg_1: 20*Arg_1+15 {O(n)}
79: n_eval4___27->n_eval2___23, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
79: n_eval4___27->n_eval2___23, Arg_3: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+248*Arg_0+750 {O(EXP)}
80: n_eval4___27->n_eval2___24, Arg_0: 1 {O(1)}
80: n_eval4___27->n_eval2___24, Arg_1: 40*Arg_1+30 {O(n)}
80: n_eval4___27->n_eval2___24, Arg_2: 10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+10240*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1*Arg_1+15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+1927*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30656+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*30904*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*7808*Arg_0+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*3187+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*320*Arg_0*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*640*Arg_1*Arg_1+2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*922*Arg_0+992*Arg_0+3006 {O(EXP)}
80: n_eval4___27->n_eval2___24, Arg_3: 15328*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)+15452*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_1+2560*2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*Arg_0*Arg_1+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*3904*Arg_0+2^(160*Arg_0*Arg_1+320*Arg_1*Arg_1+120*Arg_0+968*Arg_1+617)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1927*Arg_1+240*Arg_0+1115)*2^(320*Arg_0*Arg_1+640*Arg_1*Arg_1+1936*Arg_1+240*Arg_0+1217)*2^(640*Arg_0*Arg_1+80*Arg_0*Arg_0+960*Arg_1*Arg_1+3380*Arg_1+972*Arg_0+2814)*5120*Arg_1*Arg_1+248*Arg_0+750 {O(EXP)}
81: n_eval4___28->n_eval2___10, Arg_0: 1 {O(1)}
81: n_eval4___28->n_eval2___10, Arg_1: 1 {O(1)}
81: n_eval4___28->n_eval2___10, Arg_2: 1 {O(1)}
81: n_eval4___28->n_eval2___10, Arg_3: 2 {O(1)}
82: n_eval4___28->n_eval2___9, Arg_0: 5*Arg_0+15 {O(n)}
82: n_eval4___28->n_eval2___9, Arg_1: 20*Arg_1+15 {O(n)}
82: n_eval4___28->n_eval2___9, Arg_2: 16*Arg_0+45 {O(n)}
82: n_eval4___28->n_eval2___9, Arg_3: 21*Arg_1+15 {O(n)}
83: n_eval4___29->n_eval2___13, Arg_0: 1 {O(1)}
83: n_eval4___29->n_eval2___13, Arg_1: 40*Arg_1+30 {O(n)}
83: n_eval4___29->n_eval2___13, Arg_2: 1 {O(1)}
83: n_eval4___29->n_eval2___13, Arg_3: 3 {O(1)}
84: n_eval4___29->n_eval2___9, Arg_0: 5*Arg_0+15 {O(n)}
84: n_eval4___29->n_eval2___9, Arg_1: 20*Arg_1+15 {O(n)}
84: n_eval4___29->n_eval2___9, Arg_2: 31*Arg_0+90 {O(n)}
84: n_eval4___29->n_eval2___9, Arg_3: 62*Arg_0+183 {O(n)}
85: n_eval4___3->n_eval2___13, Arg_0: 1 {O(1)}
85: n_eval4___3->n_eval2___13, Arg_1: Arg_1+1 {O(n)}
85: n_eval4___3->n_eval2___13, Arg_2: 2 {O(1)}
85: n_eval4___3->n_eval2___13, Arg_3: 4 {O(1)}
87: n_eval4___30->n_eval2___13, Arg_0: 1 {O(1)}
87: n_eval4___30->n_eval2___13, Arg_1: 40*Arg_1+30 {O(n)}
87: n_eval4___30->n_eval2___13, Arg_2: 1 {O(1)}
87: n_eval4___30->n_eval2___13, Arg_3: 2 {O(1)}
88: n_eval4___30->n_eval2___9, Arg_0: 5*Arg_0+15 {O(n)}
88: n_eval4___30->n_eval2___9, Arg_1: 20*Arg_1+15 {O(n)}
88: n_eval4___30->n_eval2___9, Arg_2: 31*Arg_0+90 {O(n)}
88: n_eval4___30->n_eval2___9, Arg_3: 62*Arg_0+180 {O(n)}
89: n_eval4___4->n_eval2___13, Arg_0: 1 {O(1)}
89: n_eval4___4->n_eval2___13, Arg_1: Arg_1+1 {O(n)}
89: n_eval4___4->n_eval2___13, Arg_2: 1 {O(1)}
89: n_eval4___4->n_eval2___13, Arg_3: 3 {O(1)}
91: n_eval4___5->n_eval2___13, Arg_0: 1 {O(1)}
91: n_eval4___5->n_eval2___13, Arg_1: Arg_1+1 {O(n)}
91: n_eval4___5->n_eval2___13, Arg_2: 1 {O(1)}
91: n_eval4___5->n_eval2___13, Arg_3: 2 {O(1)}