Initial Problem
Start: n_f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: G_P, NoDet0
Locations: n_f0, n_f10___12, n_f10___13, n_f18___10, n_f18___11, n_f18___5, n_f22___6, n_f22___7, n_f22___9, n_f34___3, n_f34___4, n_f34___8, n_f43___1, n_f43___2
Transitions:
0:n_f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f10___13(NoDet0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
1:n_f10___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f10___12(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
2:n_f10___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f18___10(Arg_0,Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_2 && Arg_2<=Arg_1
3:n_f10___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f10___12(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=0 && 0<=Arg_1 && 1+Arg_1<=Arg_2
4:n_f10___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f18___11(Arg_0,Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6,Arg_7):|:Arg_1<=0 && 0<=Arg_1 && Arg_2<=Arg_1
5:n_f18___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_4+1,Arg_7):|:Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && 2+Arg_4<=Arg_3
6:n_f18___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___8(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7):|:Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
7:n_f18___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___8(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7):|:Arg_3<=1+Arg_4 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
8:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_4+1,Arg_7):|:Arg_3<=Arg_6 && 2+Arg_4<=Arg_3
9:n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___4(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7):|:Arg_3<=Arg_6 && Arg_3<=1+Arg_4
10:n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P,NoDet0):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6
11:n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
12:n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
13:n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f18___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P,NoDet0):|:Arg_6<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6
14:n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_6<=Arg_3
15:n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_6<=Arg_3
16:n_f22___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1,Arg_7):|:1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
17:n_f22___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f22___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
18:n_f34___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7):|:1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3
19:n_f34___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_4<=Arg_3 && Arg_3<=1+Arg_4
20:n_f34___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f34___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7):|:Arg_4<=0 && 0<=Arg_4 && 2+Arg_4<=Arg_3
21:n_f34___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4
22:n_f34___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_f43___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4
Preprocessing
Eliminate variables {NoDet0,Arg_0,Arg_7} that do not contribute to the problem
Found invariant Arg_4<=0 && Arg_3+Arg_4<=0 && Arg_2+Arg_4<=0 && Arg_4<=Arg_1 && Arg_1+Arg_4<=0 && 0<=Arg_4 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && Arg_2<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=0 && 0<=Arg_1 for location n_f18___11
Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f18___5
Found invariant Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 for location n_f43___2
Found invariant Arg_1<=0 && 0<=Arg_1 for location n_f10___13
Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f22___7
Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f34___4
Found invariant Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f18___10
Found invariant 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_f10___12
Found invariant Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f22___6
Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f34___3
Found invariant Arg_6<=1+Arg_5 && Arg_6<=1+Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_2+Arg_6 && 3<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f22___9
Found invariant Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 for location n_f34___8
Found invariant Arg_6<=1+Arg_4 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 3<=Arg_2+Arg_4 && Arg_2<=1+Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 for location n_f43___1
Cut unsatisfiable transition 67: n_f34___4->n_f43___2
Problem after Preprocessing
Start: n_f0
Program_Vars: Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars: G_P
Locations: n_f0, n_f10___12, n_f10___13, n_f18___10, n_f18___11, n_f18___5, n_f22___6, n_f22___7, n_f22___9, n_f34___3, n_f34___4, n_f34___8, n_f43___1, n_f43___2
Transitions:
46:n_f0(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___13(0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
47:n_f10___12(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___12(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_2
48:n_f10___12(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___10(Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
49:n_f10___13(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___12(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && 1+Arg_1<=Arg_2
50:n_f10___13(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___11(Arg_1,Arg_2,Arg_2,0,Arg_5,Arg_6):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=Arg_1
51:n_f18___10(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_4+1):|:Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && 2+Arg_4<=Arg_3
52:n_f18___10(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___8(Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
53:n_f18___11(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___8(Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_4<=0 && Arg_3+Arg_4<=0 && Arg_2+Arg_4<=0 && Arg_4<=Arg_1 && Arg_1+Arg_4<=0 && 0<=Arg_4 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && Arg_2<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<=1+Arg_4 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=1+Arg_4
54:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_4+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_6 && 2+Arg_4<=Arg_3
55:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___4(Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_6 && Arg_3<=1+Arg_4
56:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6
57:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
58:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
59:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6
60:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3
61:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3
62:n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=1+Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_2+Arg_6 && 3<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
63:n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=1+Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_2+Arg_6 && 3<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3
64:n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3
65:n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f43___1(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && Arg_3<=1+Arg_4
66:n_f34___4(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && 2+Arg_4<=Arg_3
68:n_f34___8(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f43___2(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=0 && Arg_3+Arg_4<=1 && Arg_2+Arg_4<=1 && Arg_4<=Arg_1 && Arg_1+Arg_4<=1 && 0<=Arg_4 && Arg_3<=1+Arg_4 && Arg_2<=1+Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=Arg_1 && Arg_1+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_2<=Arg_1 && Arg_1+Arg_2<=2 && Arg_1<=1 && 0<=Arg_1 && Arg_3<=1+Arg_4 && Arg_4<=0 && 0<=Arg_4 && Arg_3<=1+Arg_4
MPRF for transition 47:n_f10___12(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f10___12(Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=Arg_2 && 1+Arg_1<=Arg_2 of depth 1:
new bound:
Arg_2+2 {O(n)}
MPRF:
n_f10___12 [Arg_2+1-Arg_1 ]
MPRF for transition 54:n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_4+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_3<=Arg_6 && 2+Arg_4<=Arg_3 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_f18___5 [Arg_2+1-Arg_4 ]
n_f22___6 [Arg_3-Arg_4 ]
n_f22___9 [Arg_2-Arg_5 ]
n_f22___7 [Arg_3-Arg_4 ]
MPRF for transition 56:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
2*Arg_2+1 {O(n)}
MPRF:
n_f18___5 [Arg_2-Arg_4-1 ]
n_f22___6 [Arg_2-Arg_4-1 ]
n_f22___9 [Arg_2-Arg_6 ]
n_f22___7 [Arg_2-Arg_4-1 ]
MPRF for transition 59:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f18___5(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,G_P):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && Arg_3<=G_P && Arg_6<=G_P && G_P<=Arg_6 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_f18___5 [Arg_1-Arg_4 ]
n_f22___6 [Arg_2+Arg_3-Arg_1-Arg_4 ]
n_f22___9 [Arg_2-Arg_4 ]
n_f22___7 [Arg_1-Arg_4 ]
MPRF for transition 62:n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=1+Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_2+Arg_6 && 3<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
Arg_2+4 {O(n)}
MPRF:
n_f18___5 [Arg_1-Arg_4 ]
n_f22___6 [Arg_1-Arg_4-1 ]
n_f22___9 [Arg_1-Arg_4 ]
n_f22___7 [Arg_1-Arg_4-1 ]
MPRF for transition 63:n_f22___9(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=1+Arg_4 && 1+Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_2+Arg_6 && 3<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 2+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
2*Arg_2 {O(n)}
MPRF:
n_f18___5 [Arg_2-Arg_4 ]
n_f22___6 [Arg_1-Arg_4-1 ]
n_f22___9 [Arg_3-Arg_5 ]
n_f22___7 [Arg_2-Arg_4-1 ]
MPRF for transition 57:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
48*Arg_2*Arg_2+77*Arg_2+28 {O(n^2)}
MPRF:
n_f22___9 [2*Arg_3-Arg_2 ]
n_f18___5 [2*Arg_1-Arg_6 ]
n_f22___6 [2*Arg_3-Arg_6 ]
n_f22___7 [2*Arg_3-Arg_5-1 ]
MPRF for transition 58:n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=1+Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 3<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 3<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_5 && 1+Arg_5<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
36*Arg_2*Arg_2+64*Arg_2+32 {O(n^2)}
MPRF:
n_f22___9 [Arg_1-Arg_2 ]
n_f18___5 [Arg_6-Arg_2 ]
n_f22___6 [Arg_3+1-Arg_6 ]
n_f22___7 [Arg_3-Arg_5-2 ]
MPRF for transition 60:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___6(Arg_1,Arg_2,Arg_3,Arg_4,Arg_6,Arg_6+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
36*Arg_2*Arg_2+71*Arg_2+28 {O(n^2)}
MPRF:
n_f22___9 [0 ]
n_f18___5 [0 ]
n_f22___6 [Arg_3-Arg_6 ]
n_f22___7 [Arg_3+1-Arg_6 ]
MPRF for transition 61:n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f22___7(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 2<=Arg_5+Arg_6 && 2+Arg_5<=Arg_6 && 2<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && 4<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_3 of depth 1:
new bound:
48*Arg_2*Arg_2+85*Arg_2+28 {O(n^2)}
MPRF:
n_f22___9 [Arg_2 ]
n_f18___5 [Arg_2 ]
n_f22___6 [2*Arg_3-Arg_6 ]
n_f22___7 [2*Arg_3-Arg_6 ]
MPRF for transition 64:n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> n_f34___3(Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 2<=Arg_6 && 1+Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 3<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=Arg_1 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 2<=Arg_2 && 4<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_1 && 1+Arg_4<=Arg_3 && 2+Arg_4<=Arg_3 of depth 1:
new bound:
672*Arg_2*Arg_2+1332*Arg_2+591 {O(n^2)}
MPRF:
n_f34___3 [Arg_6-Arg_4 ]
All Bounds
Timebounds
Overall timebound:840*Arg_2*Arg_2+1639*Arg_2+725 {O(n^2)}
46: n_f0->n_f10___13: 1 {O(1)}
47: n_f10___12->n_f10___12: Arg_2+2 {O(n)}
48: n_f10___12->n_f18___10: 1 {O(1)}
49: n_f10___13->n_f10___12: 1 {O(1)}
50: n_f10___13->n_f18___11: 1 {O(1)}
51: n_f18___10->n_f22___9: 1 {O(1)}
52: n_f18___10->n_f34___8: 1 {O(1)}
53: n_f18___11->n_f34___8: 1 {O(1)}
54: n_f18___5->n_f22___9: 2*Arg_2 {O(n)}
55: n_f18___5->n_f34___4: 1 {O(1)}
56: n_f22___6->n_f18___5: 2*Arg_2+1 {O(n)}
57: n_f22___6->n_f22___6: 48*Arg_2*Arg_2+77*Arg_2+28 {O(n^2)}
58: n_f22___6->n_f22___7: 36*Arg_2*Arg_2+64*Arg_2+32 {O(n^2)}
59: n_f22___7->n_f18___5: 2*Arg_2 {O(n)}
60: n_f22___7->n_f22___6: 36*Arg_2*Arg_2+71*Arg_2+28 {O(n^2)}
61: n_f22___7->n_f22___7: 48*Arg_2*Arg_2+85*Arg_2+28 {O(n^2)}
62: n_f22___9->n_f22___6: Arg_2+4 {O(n)}
63: n_f22___9->n_f22___7: 2*Arg_2 {O(n)}
64: n_f34___3->n_f34___3: 672*Arg_2*Arg_2+1332*Arg_2+591 {O(n^2)}
65: n_f34___3->n_f43___1: 1 {O(1)}
66: n_f34___4->n_f34___3: 1 {O(1)}
68: n_f34___8->n_f43___2: 1 {O(1)}
Costbounds
Overall costbound: 840*Arg_2*Arg_2+1639*Arg_2+725 {O(n^2)}
46: n_f0->n_f10___13: 1 {O(1)}
47: n_f10___12->n_f10___12: Arg_2+2 {O(n)}
48: n_f10___12->n_f18___10: 1 {O(1)}
49: n_f10___13->n_f10___12: 1 {O(1)}
50: n_f10___13->n_f18___11: 1 {O(1)}
51: n_f18___10->n_f22___9: 1 {O(1)}
52: n_f18___10->n_f34___8: 1 {O(1)}
53: n_f18___11->n_f34___8: 1 {O(1)}
54: n_f18___5->n_f22___9: 2*Arg_2 {O(n)}
55: n_f18___5->n_f34___4: 1 {O(1)}
56: n_f22___6->n_f18___5: 2*Arg_2+1 {O(n)}
57: n_f22___6->n_f22___6: 48*Arg_2*Arg_2+77*Arg_2+28 {O(n^2)}
58: n_f22___6->n_f22___7: 36*Arg_2*Arg_2+64*Arg_2+32 {O(n^2)}
59: n_f22___7->n_f18___5: 2*Arg_2 {O(n)}
60: n_f22___7->n_f22___6: 36*Arg_2*Arg_2+71*Arg_2+28 {O(n^2)}
61: n_f22___7->n_f22___7: 48*Arg_2*Arg_2+85*Arg_2+28 {O(n^2)}
62: n_f22___9->n_f22___6: Arg_2+4 {O(n)}
63: n_f22___9->n_f22___7: 2*Arg_2 {O(n)}
64: n_f34___3->n_f34___3: 672*Arg_2*Arg_2+1332*Arg_2+591 {O(n^2)}
65: n_f34___3->n_f43___1: 1 {O(1)}
66: n_f34___4->n_f34___3: 1 {O(1)}
68: n_f34___8->n_f43___2: 1 {O(1)}
Sizebounds
46: n_f0->n_f10___13, Arg_1: 0 {O(1)}
46: n_f0->n_f10___13, Arg_2: Arg_2 {O(n)}
46: n_f0->n_f10___13, Arg_3: Arg_3 {O(n)}
46: n_f0->n_f10___13, Arg_4: Arg_4 {O(n)}
46: n_f0->n_f10___13, Arg_5: Arg_5 {O(n)}
46: n_f0->n_f10___13, Arg_6: Arg_6 {O(n)}
47: n_f10___12->n_f10___12, Arg_1: Arg_2+3 {O(n)}
47: n_f10___12->n_f10___12, Arg_2: Arg_2 {O(n)}
47: n_f10___12->n_f10___12, Arg_3: Arg_3 {O(n)}
47: n_f10___12->n_f10___12, Arg_4: Arg_4 {O(n)}
47: n_f10___12->n_f10___12, Arg_5: Arg_5 {O(n)}
47: n_f10___12->n_f10___12, Arg_6: Arg_6 {O(n)}
48: n_f10___12->n_f18___10, Arg_1: Arg_2+4 {O(n)}
48: n_f10___12->n_f18___10, Arg_2: 2*Arg_2 {O(n)}
48: n_f10___12->n_f18___10, Arg_3: 2*Arg_2 {O(n)}
48: n_f10___12->n_f18___10, Arg_4: 0 {O(1)}
48: n_f10___12->n_f18___10, Arg_5: 2*Arg_5 {O(n)}
48: n_f10___12->n_f18___10, Arg_6: 2*Arg_6 {O(n)}
49: n_f10___13->n_f10___12, Arg_1: 1 {O(1)}
49: n_f10___13->n_f10___12, Arg_2: Arg_2 {O(n)}
49: n_f10___13->n_f10___12, Arg_3: Arg_3 {O(n)}
49: n_f10___13->n_f10___12, Arg_4: Arg_4 {O(n)}
49: n_f10___13->n_f10___12, Arg_5: Arg_5 {O(n)}
49: n_f10___13->n_f10___12, Arg_6: Arg_6 {O(n)}
50: n_f10___13->n_f18___11, Arg_1: 0 {O(1)}
50: n_f10___13->n_f18___11, Arg_2: Arg_2 {O(n)}
50: n_f10___13->n_f18___11, Arg_3: Arg_2 {O(n)}
50: n_f10___13->n_f18___11, Arg_4: 0 {O(1)}
50: n_f10___13->n_f18___11, Arg_5: Arg_5 {O(n)}
50: n_f10___13->n_f18___11, Arg_6: Arg_6 {O(n)}
51: n_f18___10->n_f22___9, Arg_1: Arg_2+4 {O(n)}
51: n_f18___10->n_f22___9, Arg_2: 2*Arg_2 {O(n)}
51: n_f18___10->n_f22___9, Arg_3: 2*Arg_2 {O(n)}
51: n_f18___10->n_f22___9, Arg_4: 0 {O(1)}
51: n_f18___10->n_f22___9, Arg_5: 0 {O(1)}
51: n_f18___10->n_f22___9, Arg_6: 1 {O(1)}
52: n_f18___10->n_f34___8, Arg_1: 1 {O(1)}
52: n_f18___10->n_f34___8, Arg_2: 1 {O(1)}
52: n_f18___10->n_f34___8, Arg_3: 1 {O(1)}
52: n_f18___10->n_f34___8, Arg_4: 0 {O(1)}
52: n_f18___10->n_f34___8, Arg_5: 2*Arg_5 {O(n)}
52: n_f18___10->n_f34___8, Arg_6: 2*Arg_6 {O(n)}
53: n_f18___11->n_f34___8, Arg_1: 0 {O(1)}
53: n_f18___11->n_f34___8, Arg_2: Arg_2 {O(n)}
53: n_f18___11->n_f34___8, Arg_3: Arg_2 {O(n)}
53: n_f18___11->n_f34___8, Arg_4: 0 {O(1)}
53: n_f18___11->n_f34___8, Arg_5: Arg_5 {O(n)}
53: n_f18___11->n_f34___8, Arg_6: Arg_6 {O(n)}
54: n_f18___5->n_f22___9, Arg_1: 2*Arg_2+8 {O(n)}
54: n_f18___5->n_f22___9, Arg_2: 4*Arg_2 {O(n)}
54: n_f18___5->n_f22___9, Arg_3: 4*Arg_2 {O(n)}
54: n_f18___5->n_f22___9, Arg_4: 4*Arg_2+1 {O(n)}
54: n_f18___5->n_f22___9, Arg_5: 8*Arg_2+2 {O(n)}
54: n_f18___5->n_f22___9, Arg_6: 8*Arg_2+4 {O(n)}
55: n_f18___5->n_f34___4, Arg_1: 4*Arg_2+16 {O(n)}
55: n_f18___5->n_f34___4, Arg_2: 8*Arg_2 {O(n)}
55: n_f18___5->n_f34___4, Arg_3: 8*Arg_2 {O(n)}
55: n_f18___5->n_f34___4, Arg_4: 0 {O(1)}
55: n_f18___5->n_f34___4, Arg_5: 2160*Arg_2*Arg_2+4291*Arg_2+1882 {O(n^2)}
55: n_f18___5->n_f34___4, Arg_6: 672*Arg_2*Arg_2+1332*Arg_2+590 {O(n^2)}
56: n_f22___6->n_f18___5, Arg_1: 2*Arg_2+8 {O(n)}
56: n_f22___6->n_f18___5, Arg_2: 4*Arg_2 {O(n)}
56: n_f22___6->n_f18___5, Arg_3: 4*Arg_2 {O(n)}
56: n_f22___6->n_f18___5, Arg_4: 4*Arg_2+1 {O(n)}
56: n_f22___6->n_f18___5, Arg_5: 720*Arg_2*Arg_2+1425*Arg_2+626 {O(n^2)}
56: n_f22___6->n_f18___5, Arg_6: 336*Arg_2*Arg_2+666*Arg_2+295 {O(n^2)}
57: n_f22___6->n_f22___6, Arg_1: 2*Arg_2+8 {O(n)}
57: n_f22___6->n_f22___6, Arg_2: 4*Arg_2 {O(n)}
57: n_f22___6->n_f22___6, Arg_3: 4*Arg_2 {O(n)}
57: n_f22___6->n_f22___6, Arg_4: 4*Arg_2+1 {O(n)}
57: n_f22___6->n_f22___6, Arg_5: 384*Arg_2*Arg_2+751*Arg_2+327 {O(n^2)}
57: n_f22___6->n_f22___6, Arg_6: 168*Arg_2*Arg_2+329*Arg_2+144 {O(n^2)}
58: n_f22___6->n_f22___7, Arg_1: 2*Arg_2+8 {O(n)}
58: n_f22___6->n_f22___7, Arg_2: 4*Arg_2 {O(n)}
58: n_f22___6->n_f22___7, Arg_3: 4*Arg_2 {O(n)}
58: n_f22___6->n_f22___7, Arg_4: 4*Arg_2+1 {O(n)}
58: n_f22___6->n_f22___7, Arg_5: 720*Arg_2*Arg_2+1425*Arg_2+626 {O(n^2)}
58: n_f22___6->n_f22___7, Arg_6: 168*Arg_2*Arg_2+329*Arg_2+144 {O(n^2)}
59: n_f22___7->n_f18___5, Arg_1: 2*Arg_2+8 {O(n)}
59: n_f22___7->n_f18___5, Arg_2: 4*Arg_2 {O(n)}
59: n_f22___7->n_f18___5, Arg_3: 4*Arg_2 {O(n)}
59: n_f22___7->n_f18___5, Arg_4: 4*Arg_2+1 {O(n)}
59: n_f22___7->n_f18___5, Arg_5: 1440*Arg_2*Arg_2+2866*Arg_2+1256 {O(n^2)}
59: n_f22___7->n_f18___5, Arg_6: 336*Arg_2*Arg_2+666*Arg_2+295 {O(n^2)}
60: n_f22___7->n_f22___6, Arg_1: 2*Arg_2+8 {O(n)}
60: n_f22___7->n_f22___6, Arg_2: 4*Arg_2 {O(n)}
60: n_f22___7->n_f22___6, Arg_3: 4*Arg_2 {O(n)}
60: n_f22___7->n_f22___6, Arg_4: 4*Arg_2+1 {O(n)}
60: n_f22___7->n_f22___6, Arg_5: 336*Arg_2*Arg_2+666*Arg_2+295 {O(n^2)}
60: n_f22___7->n_f22___6, Arg_6: 168*Arg_2*Arg_2+329*Arg_2+144 {O(n^2)}
61: n_f22___7->n_f22___7, Arg_1: 2*Arg_2+8 {O(n)}
61: n_f22___7->n_f22___7, Arg_2: 4*Arg_2 {O(n)}
61: n_f22___7->n_f22___7, Arg_3: 4*Arg_2 {O(n)}
61: n_f22___7->n_f22___7, Arg_4: 4*Arg_2+1 {O(n)}
61: n_f22___7->n_f22___7, Arg_5: 720*Arg_2*Arg_2+1433*Arg_2+628 {O(n^2)}
61: n_f22___7->n_f22___7, Arg_6: 168*Arg_2*Arg_2+329*Arg_2+144 {O(n^2)}
62: n_f22___9->n_f22___6, Arg_1: 2*Arg_2+8 {O(n)}
62: n_f22___9->n_f22___6, Arg_2: 4*Arg_2 {O(n)}
62: n_f22___9->n_f22___6, Arg_3: 4*Arg_2 {O(n)}
62: n_f22___9->n_f22___6, Arg_4: 4*Arg_2+1 {O(n)}
62: n_f22___9->n_f22___6, Arg_5: 8*Arg_2+4 {O(n)}
62: n_f22___9->n_f22___6, Arg_6: 8*Arg_2+7 {O(n)}
63: n_f22___9->n_f22___7, Arg_1: 2*Arg_2+8 {O(n)}
63: n_f22___9->n_f22___7, Arg_2: 4*Arg_2 {O(n)}
63: n_f22___9->n_f22___7, Arg_3: 4*Arg_2 {O(n)}
63: n_f22___9->n_f22___7, Arg_4: 4*Arg_2+1 {O(n)}
63: n_f22___9->n_f22___7, Arg_5: 8*Arg_2+2 {O(n)}
63: n_f22___9->n_f22___7, Arg_6: 8*Arg_2+7 {O(n)}
64: n_f34___3->n_f34___3, Arg_1: 4*Arg_2+16 {O(n)}
64: n_f34___3->n_f34___3, Arg_2: 8*Arg_2 {O(n)}
64: n_f34___3->n_f34___3, Arg_3: 8*Arg_2 {O(n)}
64: n_f34___3->n_f34___3, Arg_4: 672*Arg_2*Arg_2+1332*Arg_2+592 {O(n^2)}
64: n_f34___3->n_f34___3, Arg_5: 2160*Arg_2*Arg_2+4291*Arg_2+1882 {O(n^2)}
64: n_f34___3->n_f34___3, Arg_6: 672*Arg_2*Arg_2+1332*Arg_2+590 {O(n^2)}
65: n_f34___3->n_f43___1, Arg_1: 8*Arg_2+32 {O(n)}
65: n_f34___3->n_f43___1, Arg_2: 16*Arg_2 {O(n)}
65: n_f34___3->n_f43___1, Arg_3: 16*Arg_2 {O(n)}
65: n_f34___3->n_f43___1, Arg_4: 672*Arg_2*Arg_2+1332*Arg_2+593 {O(n^2)}
65: n_f34___3->n_f43___1, Arg_5: 4320*Arg_2*Arg_2+8582*Arg_2+3764 {O(n^2)}
65: n_f34___3->n_f43___1, Arg_6: 1344*Arg_2*Arg_2+2664*Arg_2+1180 {O(n^2)}
66: n_f34___4->n_f34___3, Arg_1: 4*Arg_2+16 {O(n)}
66: n_f34___4->n_f34___3, Arg_2: 8*Arg_2 {O(n)}
66: n_f34___4->n_f34___3, Arg_3: 8*Arg_2 {O(n)}
66: n_f34___4->n_f34___3, Arg_4: 1 {O(1)}
66: n_f34___4->n_f34___3, Arg_5: 2160*Arg_2*Arg_2+4291*Arg_2+1882 {O(n^2)}
66: n_f34___4->n_f34___3, Arg_6: 672*Arg_2*Arg_2+1332*Arg_2+590 {O(n^2)}
68: n_f34___8->n_f43___2, Arg_1: 1 {O(1)}
68: n_f34___8->n_f43___2, Arg_2: Arg_2+1 {O(n)}
68: n_f34___8->n_f43___2, Arg_3: Arg_2+1 {O(n)}
68: n_f34___8->n_f43___2, Arg_4: 0 {O(1)}
68: n_f34___8->n_f43___2, Arg_5: 3*Arg_5 {O(n)}
68: n_f34___8->n_f43___2, Arg_6: 3*Arg_6 {O(n)}