Initial Problem

Start: n_eval_ex1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: NoDet0
Locations: n_eval_ex1_0___46, n_eval_ex1_10___27, n_eval_ex1_10___9, n_eval_ex1_15___17, n_eval_ex1_15___24, n_eval_ex1_15___33, n_eval_ex1_15___6, n_eval_ex1_16___16, n_eval_ex1_16___23, n_eval_ex1_16___32, n_eval_ex1_16___5, n_eval_ex1_1___45, n_eval_ex1_2___44, n_eval_ex1_3___43, n_eval_ex1_4___42, n_eval_ex1_5___41, n_eval_ex1_6___40, n_eval_ex1_9___10, n_eval_ex1_9___28, n_eval_ex1__critedge_in___19, n_eval_ex1__critedge_in___26, n_eval_ex1__critedge_in___35, n_eval_ex1__critedge_in___8, n_eval_ex1_bb0_in___47, n_eval_ex1_bb1_in___15, n_eval_ex1_bb1_in___22, n_eval_ex1_bb1_in___31, n_eval_ex1_bb1_in___39, n_eval_ex1_bb1_in___4, n_eval_ex1_bb2_in___14, n_eval_ex1_bb2_in___21, n_eval_ex1_bb2_in___3, n_eval_ex1_bb2_in___38, n_eval_ex1_bb3_in___12, n_eval_ex1_bb3_in___2, n_eval_ex1_bb3_in___20, n_eval_ex1_bb3_in___36, n_eval_ex1_bb4_in___18, n_eval_ex1_bb4_in___34, n_eval_ex1_bb5_in___25, n_eval_ex1_bb5_in___7, n_eval_ex1_bb6_in___13, n_eval_ex1_bb6_in___30, n_eval_ex1_bb6_in___37, n_eval_ex1_start, n_eval_ex1_stop___1, n_eval_ex1_stop___11, n_eval_ex1_stop___29
Transitions:
0:n_eval_ex1_0___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_1___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
1:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_0<=0
2:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && 0<Arg_0
3:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<Arg_5 && 0<Arg_4 && Arg_0<=0
4:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0
5:n_eval_ex1_15___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<Arg_4 && Arg_5<=1+Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1
6:n_eval_ex1_15___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4
7:n_eval_ex1_15___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4
8:n_eval_ex1_15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1
9:n_eval_ex1_16___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___15(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_1 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 0<Arg_4
10:n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_4<=0
11:n_eval_ex1_16___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___31(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0
12:n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 0<Arg_4
13:n_eval_ex1_1___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_2___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
14:n_eval_ex1_2___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_3___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
15:n_eval_ex1_3___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_4___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
16:n_eval_ex1_4___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_5___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
17:n_eval_ex1_5___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_6___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
18:n_eval_ex1_6___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___39(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5)
19:n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___9(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<Arg_5 && 0<Arg_4
20:n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___27(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
21:n_eval_ex1__critedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___17(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<Arg_4 && Arg_5<=Arg_3
22:n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___24(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
23:n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___33(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
24:n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___6(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=0 && Arg_3<Arg_5 && 0<Arg_4
25:n_eval_ex1_bb0_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_0___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
26:n_eval_ex1_bb1_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_2 && Arg_2<Arg_5
27:n_eval_ex1_bb1_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb6_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_2 && Arg_5<=Arg_2
28:n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=0 && Arg_2<Arg_5
29:n_eval_ex1_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb6_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1+Arg_2 && Arg_5<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=0 && Arg_5<=Arg_2
30:n_eval_ex1_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<Arg_5
31:n_eval_ex1_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb6_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=0 && 0<=Arg_2 && Arg_5<=Arg_2
32:n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<Arg_5 && 1+Arg_2<Arg_5 && 1+Arg_2<=Arg_5 && Arg_2<Arg_5
33:n_eval_ex1_bb2_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:Arg_2<Arg_5 && Arg_5<=1+Arg_2
34:n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:Arg_4<=0 && Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2
35:n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:1+Arg_2<Arg_5
36:n_eval_ex1_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:0<Arg_5 && Arg_2<=0 && 0<=Arg_2
37:n_eval_ex1_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=Arg_3 && Arg_5<=Arg_3
38:n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=0 && Arg_3<Arg_5 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5
39:n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<Arg_4 && Arg_5<=Arg_3
40:n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<Arg_4 && Arg_3<Arg_5
41:n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=Arg_3
42:n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5
43:n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_3<Arg_5 && 0<Arg_4
44:n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
45:n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:1+Arg_2<Arg_5 && 0<Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4
46:n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0
47:n_eval_ex1_bb6_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_stop___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_2
48:n_eval_ex1_bb6_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_stop___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=0 && Arg_5<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
49:n_eval_ex1_bb6_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=0 && Arg_2<=0 && 0<=Arg_2
50:n_eval_ex1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb0_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

Preprocessing

Found invariant Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_2<=0 && 0<=Arg_2 for location n_eval_ex1_stop___1

Found invariant Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_2<=0 && 0<=Arg_2 for location n_eval_ex1_bb6_in___37

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_15___24

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_bb1_in___22

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_ex1_16___16

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 for location n_eval_ex1__critedge_in___8

Found invariant Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_eval_ex1_bb6_in___30

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_ex1_bb1_in___15

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1_bb4_in___34

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 for location n_eval_ex1_15___33

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_15___6

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1_bb4_in___18

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_16___23

Found invariant Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_eval_ex1_bb1_in___31

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_ex1_bb3_in___12

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_bb2_in___21

Found invariant 1<=0 for location n_eval_ex1_stop___11

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1__critedge_in___35

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 for location n_eval_ex1_16___32

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_16___5

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_ex1_bb2_in___14

Found invariant 1<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_2<=0 && 0<=Arg_2 for location n_eval_ex1_bb2_in___38

Found invariant 1<=0 for location n_eval_ex1_bb6_in___13

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_bb1_in___4

Found invariant Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 for location n_eval_ex1_stop___29

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1_10___9

Found invariant 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1_bb3_in___20

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1_bb5_in___25

Found invariant Arg_5<=Arg_3 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1__critedge_in___19

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_bb2_in___3

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1_bb3_in___36

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1_bb5_in___7

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1_10___27

Found invariant Arg_5<=Arg_3 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_ex1_15___17

Found invariant Arg_2<=0 && 0<=Arg_2 for location n_eval_ex1_bb1_in___39

Found invariant 3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_ex1_bb3_in___2

Found invariant 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_ex1_9___10

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 for location n_eval_ex1__critedge_in___26

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_ex1_9___28

Cut unsatisfiable transition 27: n_eval_ex1_bb1_in___15->n_eval_ex1_bb6_in___13

Cut unsatisfiable transition 47: n_eval_ex1_bb6_in___13->n_eval_ex1_stop___11

Cut unreachable locations [n_eval_ex1_bb6_in___13; n_eval_ex1_stop___11] from the program graph

Problem after Preprocessing

Start: n_eval_ex1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: NoDet0
Locations: n_eval_ex1_0___46, n_eval_ex1_10___27, n_eval_ex1_10___9, n_eval_ex1_15___17, n_eval_ex1_15___24, n_eval_ex1_15___33, n_eval_ex1_15___6, n_eval_ex1_16___16, n_eval_ex1_16___23, n_eval_ex1_16___32, n_eval_ex1_16___5, n_eval_ex1_1___45, n_eval_ex1_2___44, n_eval_ex1_3___43, n_eval_ex1_4___42, n_eval_ex1_5___41, n_eval_ex1_6___40, n_eval_ex1_9___10, n_eval_ex1_9___28, n_eval_ex1__critedge_in___19, n_eval_ex1__critedge_in___26, n_eval_ex1__critedge_in___35, n_eval_ex1__critedge_in___8, n_eval_ex1_bb0_in___47, n_eval_ex1_bb1_in___15, n_eval_ex1_bb1_in___22, n_eval_ex1_bb1_in___31, n_eval_ex1_bb1_in___39, n_eval_ex1_bb1_in___4, n_eval_ex1_bb2_in___14, n_eval_ex1_bb2_in___21, n_eval_ex1_bb2_in___3, n_eval_ex1_bb2_in___38, n_eval_ex1_bb3_in___12, n_eval_ex1_bb3_in___2, n_eval_ex1_bb3_in___20, n_eval_ex1_bb3_in___36, n_eval_ex1_bb4_in___18, n_eval_ex1_bb4_in___34, n_eval_ex1_bb5_in___25, n_eval_ex1_bb5_in___7, n_eval_ex1_bb6_in___30, n_eval_ex1_bb6_in___37, n_eval_ex1_start, n_eval_ex1_stop___1, n_eval_ex1_stop___29
Transitions:
0:n_eval_ex1_0___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_1___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
1:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_0<=0
2:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && 0<Arg_0
3:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_3<Arg_5 && 0<Arg_4 && Arg_0<=0
4:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0
5:n_eval_ex1_15___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_4 && Arg_5<=1+Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1
6:n_eval_ex1_15___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4
7:n_eval_ex1_15___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_5<=1+Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4
8:n_eval_ex1_15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1
9:n_eval_ex1_16___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___15(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=1+Arg_1 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 0<Arg_4
10:n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_4<=0
11:n_eval_ex1_16___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___31(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 0<=Arg_1 && Arg_5<=1+Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0
12:n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 0<Arg_4
13:n_eval_ex1_1___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_2___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
14:n_eval_ex1_2___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_3___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
15:n_eval_ex1_3___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_4___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
16:n_eval_ex1_4___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_5___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
17:n_eval_ex1_5___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_6___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
18:n_eval_ex1_6___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___39(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5)
19:n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___9(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4
20:n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___27(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
21:n_eval_ex1__critedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___17(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_4 && Arg_5<=Arg_3
22:n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___24(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_0<=0 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
23:n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___33(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_5<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
24:n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___6(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_0<=0 && Arg_3<Arg_5 && 0<Arg_4
25:n_eval_ex1_bb0_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_0___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
26:n_eval_ex1_bb1_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=1+Arg_2 && Arg_2<Arg_5
28:n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=0 && Arg_2<Arg_5
29:n_eval_ex1_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb6_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_5<=1+Arg_2 && Arg_5<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=0 && Arg_5<=Arg_2
30:n_eval_ex1_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_2<Arg_5
31:n_eval_ex1_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb6_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=0 && 0<=Arg_2 && Arg_2<=0 && 0<=Arg_2 && Arg_5<=Arg_2
32:n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_2<Arg_5 && 1+Arg_2<Arg_5 && 1+Arg_2<=Arg_5 && Arg_2<Arg_5
33:n_eval_ex1_bb2_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_2<Arg_5 && Arg_5<=1+Arg_2
34:n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_4<=0 && Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2
35:n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_2<Arg_5
36:n_eval_ex1_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:1<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_2<=0 && 0<=Arg_2 && 0<Arg_5 && Arg_2<=0 && 0<=Arg_2
37:n_eval_ex1_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=1+Arg_2 && Arg_5<=1+Arg_1 && 2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=Arg_3 && Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=Arg_3 && Arg_5<=Arg_3
38:n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_4<=0 && Arg_3<Arg_5 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5
39:n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_4 && Arg_5<=Arg_3
40:n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_4 && Arg_3<Arg_5
41:n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_5<=Arg_3
42:n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5
43:n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4
44:n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
45:n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 1+Arg_2<Arg_5 && 0<Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4
46:n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0
48:n_eval_ex1_bb6_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_stop___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_5<=1+Arg_1 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_1 && Arg_4<=0 && Arg_5<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2
49:n_eval_ex1_bb6_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_2<=0 && 0<=Arg_2 && Arg_5<=0 && Arg_2<=0 && 0<=Arg_2
50:n_eval_ex1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb0_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

MPRF for transition 1:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_0<=0 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3-1 ]
n_eval_ex1_16___5 [Arg_5-Arg_1 ]
n_eval_ex1_10___9 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_3-1 ]
n_eval_ex1_15___24 [Arg_5-Arg_3-1 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_2 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3 ]
n_eval_ex1_9___28 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5-Arg_3 ]

MPRF for transition 2:n_eval_ex1_10___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && 0<Arg_0 of depth 1:

new bound:

Arg_5 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3 ]
n_eval_ex1_16___5 [Arg_5-Arg_1 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-1 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5+1-Arg_3 ]
n_eval_ex1_15___24 [Arg_5-Arg_3 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-1 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_2 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-1 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___34 [Arg_3+Arg_5-2*Arg_2-1 ]
n_eval_ex1_9___28 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-1 ]

MPRF for transition 3:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_3<Arg_5 && 0<Arg_4 && Arg_0<=0 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1-2 ]
n_eval_ex1_16___5 [Arg_5-Arg_2-3 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___27 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-3 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-3 ]
n_eval_ex1_bb1_in___22 [2*Arg_3+Arg_5-Arg_1-2*Arg_2-2 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb2_in___21 [Arg_1+Arg_5-2*Arg_2 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3-1 ]
n_eval_ex1_9___28 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-2 ]

MPRF for transition 4:n_eval_ex1_10___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0 of depth 1:

new bound:

Arg_5+3 {O(n)}

MPRF:

n_eval_ex1_16___23 [2*Arg_1+Arg_5+1-2*Arg_2-Arg_3 ]
n_eval_ex1_16___5 [Arg_5+1-Arg_1 ]
n_eval_ex1_10___9 [Arg_5+2-Arg_3 ]
n_eval_ex1_10___27 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1_15___24 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_5+2-Arg_3 ]
n_eval_ex1_15___6 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_3+Arg_5+1-2*Arg_2 ]
n_eval_ex1_bb1_in___4 [Arg_5+1-Arg_1 ]
n_eval_ex1_bb2_in___21 [Arg_3+Arg_5-Arg_1-Arg_2 ]
n_eval_ex1_bb2_in___3 [Arg_5+1-Arg_1 ]
n_eval_ex1_bb3_in___2 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb4_in___18 [Arg_5+2-Arg_3 ]
n_eval_ex1_9___10 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5+2-Arg_3 ]
n_eval_ex1_9___28 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5+2-Arg_3 ]

MPRF for transition 6:n_eval_ex1_15___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1-2 ]
n_eval_ex1_16___5 [Arg_5-Arg_3 ]
n_eval_ex1_10___9 [Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2-1 ]
n_eval_ex1__critedge_in___26 [Arg_3+Arg_5-2*Arg_2-2 ]
n_eval_ex1_15___24 [Arg_5-Arg_1-1 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb1_in___4 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb2_in___3 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3 ]
n_eval_ex1_9___28 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_3 ]

MPRF for transition 8:n_eval_ex1_15___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 of depth 1:

new bound:

3*Arg_5+9 {O(n)}

MPRF:

n_eval_ex1_16___23 [3*Arg_5-3*Arg_1 ]
n_eval_ex1_16___5 [3*Arg_5-2*Arg_1-Arg_2-1 ]
n_eval_ex1_10___9 [3*Arg_5+2-Arg_2-2*Arg_3 ]
n_eval_ex1_10___27 [3*Arg_5-3*Arg_2 ]
n_eval_ex1__critedge_in___26 [3*Arg_5-3*Arg_2 ]
n_eval_ex1_15___24 [3*Arg_5-3*Arg_2 ]
n_eval_ex1__critedge_in___8 [3*Arg_5+2-Arg_2-2*Arg_3 ]
n_eval_ex1_15___6 [3*Arg_5-2*Arg_1-Arg_2 ]
n_eval_ex1_bb1_in___22 [3*Arg_5+3-3*Arg_3 ]
n_eval_ex1_bb1_in___4 [3*Arg_5-3*Arg_1 ]
n_eval_ex1_bb2_in___21 [3*Arg_5+3-3*Arg_2 ]
n_eval_ex1_bb2_in___3 [3*Arg_5-3*Arg_2 ]
n_eval_ex1_bb3_in___2 [3*Arg_5-3*Arg_2 ]
n_eval_ex1_bb3_in___36 [3*Arg_5+6-3*Arg_3 ]
n_eval_ex1_bb4_in___18 [3*Arg_5+2-Arg_2-2*Arg_3 ]
n_eval_ex1_9___10 [3*Arg_5+2-Arg_2-2*Arg_3 ]
n_eval_ex1_bb4_in___34 [3*Arg_5+3-3*Arg_3 ]
n_eval_ex1_9___28 [3*Arg_5-3*Arg_2 ]
n_eval_ex1_bb5_in___25 [3*Arg_5+1-2*Arg_2-Arg_3 ]
n_eval_ex1_bb5_in___7 [3*Arg_5-Arg_2-2*Arg_3 ]
n_eval_ex1_bb3_in___20 [3*Arg_5+2-Arg_2-2*Arg_3 ]

MPRF for transition 10:n_eval_ex1_16___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && Arg_4<=0 && 0<=Arg_4 && Arg_4<=0 of depth 1:

new bound:

Arg_5 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1 ]
n_eval_ex1_16___5 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___9 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb1_in___4 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb2_in___3 [Arg_1+Arg_4+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2 ]
n_eval_ex1_9___28 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5-Arg_3 ]

MPRF for transition 12:n_eval_ex1_16___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 1+Arg_1<Arg_5 && 0<Arg_4 && Arg_1+1<=Arg_3 && Arg_3<=1+Arg_1 && 0<Arg_4 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1-2 ]
n_eval_ex1_16___5 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___27 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3-1 ]
n_eval_ex1_9___28 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-2 ]

MPRF for transition 19:n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___9(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4 of depth 1:

new bound:

Arg_5 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1 ]
n_eval_ex1_16___5 [Arg_5-Arg_1 ]
n_eval_ex1_10___9 [Arg_5+1-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_5+1-Arg_3 ]
n_eval_ex1_15___6 [Arg_5-Arg_1 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_2 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_5+2-Arg_3 ]
n_eval_ex1_9___10 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5+1-Arg_3 ]
n_eval_ex1_9___28 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___7 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5+2-Arg_3 ]

MPRF for transition 20:n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_10___27(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5+1-Arg_3 ]
n_eval_ex1_16___5 [Arg_5-Arg_2 ]
n_eval_ex1_10___9 [Arg_5-Arg_2 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5+1-Arg_3 ]
n_eval_ex1_15___24 [Arg_5+1-Arg_3 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2 ]
n_eval_ex1_bb1_in___22 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb1_in___4 [Arg_5+1-Arg_1 ]
n_eval_ex1_bb2_in___21 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb3_in___2 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___34 [Arg_5+1-Arg_2 ]
n_eval_ex1_9___28 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2 ]

MPRF for transition 22:n_eval_ex1__critedge_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___24(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_0<=0 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:

new bound:

Arg_5 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3 ]
n_eval_ex1_16___5 [Arg_4+Arg_5-Arg_1-1 ]
n_eval_ex1_10___9 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2-1 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_4+Arg_5-Arg_1-1 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___4 [Arg_4+Arg_5-Arg_2-1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2 ]
n_eval_ex1_9___28 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5-Arg_3 ]

MPRF for transition 24:n_eval_ex1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_15___6(Arg_0,Arg_3-1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 2+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_0<=0 && Arg_3<Arg_5 && 0<Arg_4 of depth 1:

new bound:

Arg_5+2 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1-3 ]
n_eval_ex1_16___5 [Arg_5-Arg_2-3 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___27 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_15___24 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-3 ]
n_eval_ex1_bb1_in___22 [3*Arg_2+Arg_5-Arg_1-3*Arg_3-3 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb2_in___21 [2*Arg_1+Arg_5-3*Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3-1 ]
n_eval_ex1_9___28 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-2 ]

MPRF for transition 28:n_eval_ex1_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_4<=0 && Arg_2<Arg_5 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5+1-Arg_2 ]
n_eval_ex1_16___5 [Arg_5+1-Arg_1 ]
n_eval_ex1_10___9 [Arg_5-Arg_2 ]
n_eval_ex1_10___27 [Arg_5+1-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1_15___24 [Arg_5+1-Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2 ]
n_eval_ex1_bb1_in___22 [Arg_5+1-Arg_1 ]
n_eval_ex1_bb1_in___4 [Arg_5+1-Arg_1 ]
n_eval_ex1_bb2_in___21 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb3_in___2 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1_bb3_in___36 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2 ]
n_eval_ex1_bb4_in___34 [Arg_3+Arg_5-2*Arg_2 ]
n_eval_ex1_9___28 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2 ]

MPRF for transition 32:n_eval_ex1_bb1_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_2<Arg_5 && 1+Arg_2<Arg_5 && 1+Arg_2<=Arg_5 && Arg_2<Arg_5 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_2-2 ]
n_eval_ex1_16___5 [Arg_5-Arg_1-1 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___27 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb2_in___21 [Arg_3+Arg_5-Arg_1-Arg_2-2 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___28 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___25 [Arg_3+Arg_5-2*Arg_2-3 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-2 ]

MPRF for transition 34:n_eval_ex1_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 2+Arg_0<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_4<=0 && Arg_2<Arg_5 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3 ]
n_eval_ex1_16___5 [Arg_5-Arg_1-1 ]
n_eval_ex1_10___9 [Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_3 ]
n_eval_ex1_15___24 [Arg_5-Arg_3 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3 ]
n_eval_ex1_9___28 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_3 ]

MPRF for transition 35:n_eval_ex1_bb2_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_2+1,0,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_2<Arg_5 of depth 1:

new bound:

Arg_5+2 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_1+Arg_5-2*Arg_3 ]
n_eval_ex1_16___5 [Arg_1+Arg_5-Arg_2-Arg_3-1 ]
n_eval_ex1_10___9 [Arg_5-Arg_2-2 ]
n_eval_ex1_10___27 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_15___24 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_2-2 ]
n_eval_ex1_15___6 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb1_in___22 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb1_in___4 [Arg_2+Arg_5+1-2*Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1-1 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___10 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___28 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_2-2 ]

MPRF for transition 38:n_eval_ex1_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 3<=Arg_4+Arg_5 && 3+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 4<=Arg_1+Arg_5 && 2+Arg_1<=Arg_5 && 3+Arg_0<=Arg_5 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_0+Arg_4<=0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_1 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_4<=0 && Arg_3<Arg_5 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5 of depth 1:

new bound:

Arg_5+3 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_2 ]
n_eval_ex1_16___5 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_10___9 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_15___6 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1 ]
n_eval_ex1_bb1_in___4 [Arg_1+Arg_4+Arg_5-2*Arg_2 ]
n_eval_ex1_bb2_in___21 [Arg_3+Arg_5-Arg_1-Arg_2 ]
n_eval_ex1_bb2_in___3 [Arg_1+Arg_4+Arg_5-2*Arg_2 ]
n_eval_ex1_bb3_in___2 [Arg_1+Arg_5+2-Arg_2-Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5+2-Arg_3 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_9___10 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5+1-Arg_3 ]
n_eval_ex1_9___28 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5+1-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5+1-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5+1-Arg_3 ]

MPRF for transition 40:n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_4 && Arg_3<Arg_5 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3-1 ]
n_eval_ex1_16___5 [Arg_5-Arg_3 ]
n_eval_ex1_10___9 [Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2-1 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_3-1 ]
n_eval_ex1_15___24 [Arg_5-Arg_3-1 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_3 ]
n_eval_ex1_9___28 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5+1-Arg_3 ]

MPRF for transition 42:n_eval_ex1_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_4<=0 && 1+Arg_2<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 && Arg_3<Arg_5 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_1 ]
n_eval_ex1_16___5 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___9 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_2 ]
n_eval_ex1_15___24 [Arg_5-Arg_2 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_1 ]
n_eval_ex1_bb1_in___4 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_1 ]
n_eval_ex1_bb2_in___3 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_1 ]
n_eval_ex1_bb3_in___36 [Arg_5+1-Arg_2 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2 ]
n_eval_ex1_9___28 [Arg_5-Arg_2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5-Arg_3 ]

MPRF for transition 43:n_eval_ex1_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4 of depth 1:

new bound:

Arg_5+2 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_2+Arg_5-2*Arg_3-1 ]
n_eval_ex1_16___5 [Arg_5-Arg_1-2 ]
n_eval_ex1_10___9 [Arg_5-Arg_3-1 ]
n_eval_ex1_10___27 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_2+Arg_5-2*Arg_3-1 ]
n_eval_ex1_15___24 [Arg_2+Arg_5-2*Arg_3-1 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_3-1 ]
n_eval_ex1_15___6 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb1_in___22 [2*Arg_1+Arg_5-3*Arg_3 ]
n_eval_ex1_bb1_in___4 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb2_in___21 [2*Arg_1+Arg_5-3*Arg_2 ]
n_eval_ex1_bb2_in___3 [Arg_5-Arg_1-2 ]
n_eval_ex1_bb3_in___2 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2-2 ]
n_eval_ex1_9___28 [Arg_2+Arg_5-2*Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_3 ]

MPRF for transition 44:n_eval_ex1_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_9___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && 1+Arg_2<Arg_5 && Arg_4<=0 && 0<=Arg_4 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3-1 ]
n_eval_ex1_16___5 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_10___9 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_10___27 [Arg_5-Arg_2-2 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_3-1 ]
n_eval_ex1_15___24 [Arg_5-Arg_3-1 ]
n_eval_ex1__critedge_in___8 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_15___6 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb1_in___4 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb2_in___3 [Arg_2+Arg_4+Arg_5-2*Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_1+Arg_5-2*Arg_2-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___18 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_9___10 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2-1 ]
n_eval_ex1_9___28 [Arg_5-Arg_2-2 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_3-1 ]
n_eval_ex1_bb5_in___7 [Arg_4+Arg_5-Arg_3-1 ]
n_eval_ex1_bb3_in___20 [Arg_4+Arg_5-Arg_3-1 ]

MPRF for transition 45:n_eval_ex1_bb5_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_2+Arg_5 && 2+Arg_2<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_4<=0 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 1+Arg_2<Arg_5 && 0<Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_4<=0 && 0<=Arg_4 of depth 1:

new bound:

Arg_5+1 {O(n)}

MPRF:

n_eval_ex1_16___23 [Arg_5-Arg_3-1 ]
n_eval_ex1_16___5 [Arg_5-Arg_3 ]
n_eval_ex1_10___9 [Arg_5-Arg_3 ]
n_eval_ex1_10___27 [Arg_5-Arg_3 ]
n_eval_ex1__critedge_in___26 [Arg_5-Arg_3 ]
n_eval_ex1_15___24 [Arg_5-Arg_3-1 ]
n_eval_ex1__critedge_in___8 [Arg_5-Arg_3 ]
n_eval_ex1_15___6 [Arg_5-Arg_3 ]
n_eval_ex1_bb1_in___22 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb1_in___4 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb2_in___21 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb2_in___3 [Arg_1+Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb3_in___2 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb3_in___36 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb4_in___18 [Arg_5-Arg_3 ]
n_eval_ex1_9___10 [Arg_5-Arg_3 ]
n_eval_ex1_bb4_in___34 [Arg_5-Arg_2-1 ]
n_eval_ex1_9___28 [Arg_5-Arg_3 ]
n_eval_ex1_bb5_in___25 [Arg_5-Arg_2-1 ]
n_eval_ex1_bb5_in___7 [Arg_5-Arg_3 ]
n_eval_ex1_bb3_in___20 [Arg_5-Arg_3 ]

MPRF for transition 46:n_eval_ex1_bb5_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_ex1_bb3_in___20(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4+1,Arg_5):|:3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 3+Arg_2<=Arg_5 && 4<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 2+Arg_2<=Arg_3 && 3<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<Arg_5 && 0<Arg_4 && 0<Arg_0 of depth 1:

new bound:

2*Arg_5 {O(n)}

MPRF:

n_eval_ex1_16___23 [2*Arg_1+2*Arg_5-2*Arg_2-2*Arg_3 ]
n_eval_ex1_16___5 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_10___9 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_10___27 [2*Arg_5-2*Arg_2 ]
n_eval_ex1__critedge_in___26 [2*Arg_5-2*Arg_2 ]
n_eval_ex1_15___24 [2*Arg_5-2*Arg_2 ]
n_eval_ex1__critedge_in___8 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_15___6 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb1_in___22 [2*Arg_5-2*Arg_3 ]
n_eval_ex1_bb1_in___4 [2*Arg_5+1-Arg_1-Arg_3 ]
n_eval_ex1_bb2_in___21 [2*Arg_5-2*Arg_3 ]
n_eval_ex1_bb2_in___3 [Arg_2+2*Arg_5+1-2*Arg_1-Arg_3 ]
n_eval_ex1_bb3_in___2 [2*Arg_5-2*Arg_1 ]
n_eval_ex1_bb3_in___36 [2*Arg_5-2*Arg_2 ]
n_eval_ex1_bb4_in___18 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_9___10 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb4_in___34 [2*Arg_5+2-2*Arg_3 ]
n_eval_ex1_9___28 [2*Arg_5+2-2*Arg_3 ]
n_eval_ex1_bb5_in___25 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb5_in___7 [2*Arg_5-Arg_2-Arg_3 ]
n_eval_ex1_bb3_in___20 [2*Arg_5-Arg_2-Arg_3 ]

All Bounds

Timebounds

Overall timebound:26*Arg_5+59 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45: 1 {O(1)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26: Arg_5+1 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25: Arg_5 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8: Arg_5+1 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7: Arg_5+3 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16: 1 {O(1)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23: Arg_5+1 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32: 1 {O(1)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5: 3*Arg_5+9 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15: 1 {O(1)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22: Arg_5 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31: 1 {O(1)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4: Arg_5+1 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44: 1 {O(1)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43: 1 {O(1)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42: 1 {O(1)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41: 1 {O(1)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40: 1 {O(1)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39: 1 {O(1)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9: Arg_5 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27: Arg_5+1 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17: 1 {O(1)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24: Arg_5 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33: 1 {O(1)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6: Arg_5+2 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46: 1 {O(1)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14: 1 {O(1)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21: Arg_5+1 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30: 1 {O(1)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38: 1 {O(1)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37: 1 {O(1)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3: Arg_5+1 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12: 1 {O(1)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36: Arg_5+1 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2: Arg_5+2 {O(n)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36: 1 {O(1)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35: 1 {O(1)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34: Arg_5+3 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19: 1 {O(1)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18: Arg_5+1 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35: 1 {O(1)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34: Arg_5+1 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10: Arg_5+2 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28: Arg_5+1 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20: Arg_5+1 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20: 2*Arg_5 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29: 1 {O(1)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1: 1 {O(1)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47: 1 {O(1)}

Costbounds

Overall costbound: 26*Arg_5+59 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45: 1 {O(1)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26: Arg_5+1 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25: Arg_5 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8: Arg_5+1 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7: Arg_5+3 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16: 1 {O(1)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23: Arg_5+1 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32: 1 {O(1)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5: 3*Arg_5+9 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15: 1 {O(1)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22: Arg_5 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31: 1 {O(1)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4: Arg_5+1 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44: 1 {O(1)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43: 1 {O(1)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42: 1 {O(1)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41: 1 {O(1)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40: 1 {O(1)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39: 1 {O(1)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9: Arg_5 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27: Arg_5+1 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17: 1 {O(1)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24: Arg_5 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33: 1 {O(1)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6: Arg_5+2 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46: 1 {O(1)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14: 1 {O(1)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21: Arg_5+1 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30: 1 {O(1)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38: 1 {O(1)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37: 1 {O(1)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3: Arg_5+1 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12: 1 {O(1)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36: Arg_5+1 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2: Arg_5+2 {O(n)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36: 1 {O(1)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35: 1 {O(1)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34: Arg_5+3 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19: 1 {O(1)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18: Arg_5+1 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35: 1 {O(1)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34: Arg_5+1 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10: Arg_5+2 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28: Arg_5+1 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20: Arg_5+1 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20: 2*Arg_5 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29: 1 {O(1)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1: 1 {O(1)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47: 1 {O(1)}

Sizebounds

0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_0: Arg_0 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_1: Arg_1 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_2: Arg_2 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_3: Arg_3 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_4: Arg_4 {O(n)}
0: n_eval_ex1_0___46->n_eval_ex1_1___45, Arg_5: Arg_5 {O(n)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26, Arg_2: 6*Arg_5+5 {O(n)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26, Arg_3: 6*Arg_5+5 {O(n)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26, Arg_4: 0 {O(1)}
1: n_eval_ex1_10___27->n_eval_ex1__critedge_in___26, Arg_5: Arg_5 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25, Arg_2: 6*Arg_5+5 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25, Arg_3: 6*Arg_5+5 {O(n)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25, Arg_4: 0 {O(1)}
2: n_eval_ex1_10___27->n_eval_ex1_bb5_in___25, Arg_5: Arg_5 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8, Arg_2: 6*Arg_5+5 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8, Arg_3: 6*Arg_5+5 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8, Arg_4: 2*Arg_5+1 {O(n)}
3: n_eval_ex1_10___9->n_eval_ex1__critedge_in___8, Arg_5: Arg_5 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7, Arg_2: 6*Arg_5+5 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7, Arg_3: 6*Arg_5+5 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7, Arg_4: 2*Arg_5+1 {O(n)}
4: n_eval_ex1_10___9->n_eval_ex1_bb5_in___7, Arg_5: Arg_5 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16, Arg_1: 12*Arg_5+10 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16, Arg_2: 12*Arg_5+10 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16, Arg_3: 12*Arg_5+10 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16, Arg_4: 2*Arg_5+2 {O(n)}
5: n_eval_ex1_15___17->n_eval_ex1_16___16, Arg_5: 2*Arg_5 {O(n)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23, Arg_1: 6*Arg_5+5 {O(n)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23, Arg_2: 6*Arg_5+5 {O(n)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23, Arg_3: 6*Arg_5+5 {O(n)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23, Arg_4: 0 {O(1)}
6: n_eval_ex1_15___24->n_eval_ex1_16___23, Arg_5: Arg_5 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32, Arg_1: 18*Arg_5+17 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32, Arg_2: 18*Arg_5+15 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32, Arg_3: 18*Arg_5+17 {O(n)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32, Arg_4: 0 {O(1)}
7: n_eval_ex1_15___33->n_eval_ex1_16___32, Arg_5: 4*Arg_5 {O(n)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5, Arg_1: 6*Arg_5+5 {O(n)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5, Arg_2: 6*Arg_5+5 {O(n)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5, Arg_3: 6*Arg_5+5 {O(n)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5, Arg_4: 2*Arg_5+1 {O(n)}
8: n_eval_ex1_15___6->n_eval_ex1_16___5, Arg_5: Arg_5 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15, Arg_1: 12*Arg_5+10 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15, Arg_2: 12*Arg_5+10 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15, Arg_3: 12*Arg_5+10 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15, Arg_4: 2*Arg_5+2 {O(n)}
9: n_eval_ex1_16___16->n_eval_ex1_bb1_in___15, Arg_5: 2*Arg_5 {O(n)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22, Arg_1: 6*Arg_5+5 {O(n)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22, Arg_2: 6*Arg_5+5 {O(n)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22, Arg_3: 6*Arg_5+5 {O(n)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22, Arg_4: 0 {O(1)}
10: n_eval_ex1_16___23->n_eval_ex1_bb1_in___22, Arg_5: Arg_5 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31, Arg_1: 18*Arg_5+17 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31, Arg_2: 18*Arg_5+16 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31, Arg_3: 18*Arg_5+17 {O(n)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31, Arg_4: 0 {O(1)}
11: n_eval_ex1_16___32->n_eval_ex1_bb1_in___31, Arg_5: 4*Arg_5 {O(n)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4, Arg_1: 6*Arg_5+5 {O(n)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4, Arg_2: 6*Arg_5+5 {O(n)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4, Arg_3: 6*Arg_5+5 {O(n)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4, Arg_4: 2*Arg_5+1 {O(n)}
12: n_eval_ex1_16___5->n_eval_ex1_bb1_in___4, Arg_5: Arg_5 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_0: Arg_0 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_1: Arg_1 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_2: Arg_2 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_3: Arg_3 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_4: Arg_4 {O(n)}
13: n_eval_ex1_1___45->n_eval_ex1_2___44, Arg_5: Arg_5 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_0: Arg_0 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_1: Arg_1 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_2: Arg_2 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_3: Arg_3 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_4: Arg_4 {O(n)}
14: n_eval_ex1_2___44->n_eval_ex1_3___43, Arg_5: Arg_5 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_0: Arg_0 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_1: Arg_1 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_2: Arg_2 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_3: Arg_3 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_4: Arg_4 {O(n)}
15: n_eval_ex1_3___43->n_eval_ex1_4___42, Arg_5: Arg_5 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_0: Arg_0 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_1: Arg_1 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_2: Arg_2 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_3: Arg_3 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_4: Arg_4 {O(n)}
16: n_eval_ex1_4___42->n_eval_ex1_5___41, Arg_5: Arg_5 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_0: Arg_0 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_1: Arg_1 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_2: Arg_2 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_3: Arg_3 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_4: Arg_4 {O(n)}
17: n_eval_ex1_5___41->n_eval_ex1_6___40, Arg_5: Arg_5 {O(n)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_0: Arg_0 {O(n)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_1: Arg_1 {O(n)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_2: 0 {O(1)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_3: Arg_3 {O(n)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_4: Arg_4 {O(n)}
18: n_eval_ex1_6___40->n_eval_ex1_bb1_in___39, Arg_5: Arg_5 {O(n)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9, Arg_2: 6*Arg_5+5 {O(n)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9, Arg_3: 6*Arg_5+5 {O(n)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9, Arg_4: 2*Arg_5+1 {O(n)}
19: n_eval_ex1_9___10->n_eval_ex1_10___9, Arg_5: Arg_5 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27, Arg_2: 6*Arg_5+5 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27, Arg_3: 6*Arg_5+5 {O(n)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27, Arg_4: 0 {O(1)}
20: n_eval_ex1_9___28->n_eval_ex1_10___27, Arg_5: Arg_5 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17, Arg_1: 12*Arg_5+10 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17, Arg_2: 12*Arg_5+10 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17, Arg_3: 12*Arg_5+10 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17, Arg_4: 2*Arg_5+2 {O(n)}
21: n_eval_ex1__critedge_in___19->n_eval_ex1_15___17, Arg_5: 2*Arg_5 {O(n)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24, Arg_1: 6*Arg_5+5 {O(n)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24, Arg_2: 6*Arg_5+5 {O(n)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24, Arg_3: 6*Arg_5+5 {O(n)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24, Arg_4: 0 {O(1)}
22: n_eval_ex1__critedge_in___26->n_eval_ex1_15___24, Arg_5: Arg_5 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33, Arg_1: 18*Arg_5+17 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33, Arg_2: 18*Arg_5+15 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33, Arg_3: 18*Arg_5+17 {O(n)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33, Arg_4: 0 {O(1)}
23: n_eval_ex1__critedge_in___35->n_eval_ex1_15___33, Arg_5: 4*Arg_5 {O(n)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6, Arg_1: 6*Arg_5+5 {O(n)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6, Arg_2: 6*Arg_5+5 {O(n)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6, Arg_3: 6*Arg_5+5 {O(n)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6, Arg_4: 2*Arg_5+1 {O(n)}
24: n_eval_ex1__critedge_in___8->n_eval_ex1_15___6, Arg_5: Arg_5 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_0: Arg_0 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_1: Arg_1 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_2: Arg_2 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_3: Arg_3 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_4: Arg_4 {O(n)}
25: n_eval_ex1_bb0_in___47->n_eval_ex1_0___46, Arg_5: Arg_5 {O(n)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14, Arg_1: 12*Arg_5+10 {O(n)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14, Arg_2: 12*Arg_5+10 {O(n)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14, Arg_3: 12*Arg_5+10 {O(n)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14, Arg_4: 2*Arg_5+2 {O(n)}
26: n_eval_ex1_bb1_in___15->n_eval_ex1_bb2_in___14, Arg_5: 2*Arg_5 {O(n)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21, Arg_1: 6*Arg_5+5 {O(n)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21, Arg_2: 6*Arg_5+5 {O(n)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21, Arg_3: 6*Arg_5+5 {O(n)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21, Arg_4: 0 {O(1)}
28: n_eval_ex1_bb1_in___22->n_eval_ex1_bb2_in___21, Arg_5: Arg_5 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30, Arg_1: 18*Arg_5+17 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30, Arg_2: 18*Arg_5+16 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30, Arg_3: 18*Arg_5+17 {O(n)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30, Arg_4: 0 {O(1)}
29: n_eval_ex1_bb1_in___31->n_eval_ex1_bb6_in___30, Arg_5: 4*Arg_5 {O(n)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_0: Arg_0 {O(n)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_1: Arg_1 {O(n)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_2: 0 {O(1)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_3: Arg_3 {O(n)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_4: Arg_4 {O(n)}
30: n_eval_ex1_bb1_in___39->n_eval_ex1_bb2_in___38, Arg_5: Arg_5 {O(n)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_0: Arg_0 {O(n)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_1: Arg_1 {O(n)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_2: 0 {O(1)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_3: Arg_3 {O(n)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_4: Arg_4 {O(n)}
31: n_eval_ex1_bb1_in___39->n_eval_ex1_bb6_in___37, Arg_5: Arg_5 {O(n)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3, Arg_1: 6*Arg_5+5 {O(n)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3, Arg_2: 6*Arg_5+5 {O(n)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3, Arg_3: 6*Arg_5+5 {O(n)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3, Arg_4: 2*Arg_5+1 {O(n)}
32: n_eval_ex1_bb1_in___4->n_eval_ex1_bb2_in___3, Arg_5: Arg_5 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12, Arg_1: 12*Arg_5+10 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12, Arg_2: 12*Arg_5+10 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12, Arg_3: 12*Arg_5+11 {O(n)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12, Arg_4: 0 {O(1)}
33: n_eval_ex1_bb2_in___14->n_eval_ex1_bb3_in___12, Arg_5: 2*Arg_5 {O(n)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36, Arg_1: 6*Arg_5+5 {O(n)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36, Arg_2: 6*Arg_5+5 {O(n)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36, Arg_3: 6*Arg_5+5 {O(n)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36, Arg_4: 0 {O(1)}
34: n_eval_ex1_bb2_in___21->n_eval_ex1_bb3_in___36, Arg_5: Arg_5 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2, Arg_1: 6*Arg_5+5 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2, Arg_2: 6*Arg_5+5 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2, Arg_3: 6*Arg_5+5 {O(n)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2, Arg_4: 0 {O(1)}
35: n_eval_ex1_bb2_in___3->n_eval_ex1_bb3_in___2, Arg_5: Arg_5 {O(n)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_0: Arg_0 {O(n)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_1: Arg_1 {O(n)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_2: 0 {O(1)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_3: 1 {O(1)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_4: 0 {O(1)}
36: n_eval_ex1_bb2_in___38->n_eval_ex1_bb3_in___36, Arg_5: Arg_5 {O(n)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35, Arg_1: 12*Arg_5+10 {O(n)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35, Arg_2: 12*Arg_5+10 {O(n)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35, Arg_3: 12*Arg_5+11 {O(n)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35, Arg_4: 0 {O(1)}
37: n_eval_ex1_bb3_in___12->n_eval_ex1__critedge_in___35, Arg_5: 2*Arg_5 {O(n)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34, Arg_1: 6*Arg_5+5 {O(n)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34, Arg_2: 6*Arg_5+5 {O(n)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34, Arg_3: 6*Arg_5+5 {O(n)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34, Arg_4: 0 {O(1)}
38: n_eval_ex1_bb3_in___2->n_eval_ex1_bb4_in___34, Arg_5: Arg_5 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19, Arg_1: 2*Arg_1+24*Arg_5+20 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19, Arg_2: 12*Arg_5+10 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19, Arg_3: 12*Arg_5+10 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19, Arg_4: 2*Arg_5+2 {O(n)}
39: n_eval_ex1_bb3_in___20->n_eval_ex1__critedge_in___19, Arg_5: 2*Arg_5 {O(n)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18, Arg_2: 6*Arg_5+5 {O(n)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18, Arg_3: 6*Arg_5+5 {O(n)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18, Arg_4: 2*Arg_5+1 {O(n)}
40: n_eval_ex1_bb3_in___20->n_eval_ex1_bb4_in___18, Arg_5: Arg_5 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35, Arg_1: 6*Arg_5+Arg_1+5 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35, Arg_2: 6*Arg_5+5 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35, Arg_3: 6*Arg_5+6 {O(n)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35, Arg_4: 0 {O(1)}
41: n_eval_ex1_bb3_in___36->n_eval_ex1__critedge_in___35, Arg_5: 2*Arg_5 {O(n)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34, Arg_1: 6*Arg_5+Arg_1+5 {O(n)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34, Arg_2: 6*Arg_5+5 {O(n)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34, Arg_3: 6*Arg_5+5 {O(n)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34, Arg_4: 0 {O(1)}
42: n_eval_ex1_bb3_in___36->n_eval_ex1_bb4_in___34, Arg_5: Arg_5 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10, Arg_2: 6*Arg_5+5 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10, Arg_3: 6*Arg_5+5 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10, Arg_4: 2*Arg_5+1 {O(n)}
43: n_eval_ex1_bb4_in___18->n_eval_ex1_9___10, Arg_5: Arg_5 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28, Arg_2: 6*Arg_5+5 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28, Arg_3: 6*Arg_5+5 {O(n)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28, Arg_4: 0 {O(1)}
44: n_eval_ex1_bb4_in___34->n_eval_ex1_9___28, Arg_5: Arg_5 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20, Arg_2: 6*Arg_5+5 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20, Arg_3: 6*Arg_5+5 {O(n)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20, Arg_4: 1 {O(1)}
45: n_eval_ex1_bb5_in___25->n_eval_ex1_bb3_in___20, Arg_5: Arg_5 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20, Arg_1: 12*Arg_5+Arg_1+10 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20, Arg_2: 6*Arg_5+5 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20, Arg_3: 6*Arg_5+5 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20, Arg_4: 2*Arg_5+1 {O(n)}
46: n_eval_ex1_bb5_in___7->n_eval_ex1_bb3_in___20, Arg_5: Arg_5 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29, Arg_1: 18*Arg_5+17 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29, Arg_2: 18*Arg_5+16 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29, Arg_3: 18*Arg_5+17 {O(n)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29, Arg_4: 0 {O(1)}
48: n_eval_ex1_bb6_in___30->n_eval_ex1_stop___29, Arg_5: 4*Arg_5 {O(n)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_0: Arg_0 {O(n)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_1: Arg_1 {O(n)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_2: 0 {O(1)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_3: Arg_3 {O(n)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_4: Arg_4 {O(n)}
49: n_eval_ex1_bb6_in___37->n_eval_ex1_stop___1, Arg_5: Arg_5 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_0: Arg_0 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_1: Arg_1 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_2: Arg_2 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_3: Arg_3 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_4: Arg_4 {O(n)}
50: n_eval_ex1_start->n_eval_ex1_bb0_in___47, Arg_5: Arg_5 {O(n)}