Initial Problem
Start: eval_counterex1c_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: nondef.0, nondef.1
Locations: eval_counterex1c_.critedge_in, eval_counterex1c_1, eval_counterex1c_2, eval_counterex1c_5, eval_counterex1c_6, eval_counterex1c_LeafBlock8_in, eval_counterex1c_LeafBlock_in, eval_counterex1c_NewDefault_in, eval_counterex1c_NodeBlock_in, eval_counterex1c_bb0_in, eval_counterex1c_bb1_in, eval_counterex1c_bb2_in, eval_counterex1c_bb3_in, eval_counterex1c_bb4_in, eval_counterex1c_start, eval_counterex1c_stop
Transitions:
28:eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
14:eval_counterex1c_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,nondef.0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
15:eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(1,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<Arg_4
16:eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=0
22:eval_counterex1c_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,nondef.1,Arg_7,Arg_8,Arg_9,Arg_10)
23:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(0,Arg_1-1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<Arg_6 && 0<Arg_6
24:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_0,Arg_1-1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<Arg_6 && Arg_6<=0
25:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(0,Arg_1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_6<=0 && 0<Arg_6
26:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_6<=0 && Arg_6<=0
18:eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<1
19:eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<Arg_0
17:eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<=1 && 1<=Arg_0
10:eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<0
11:eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<Arg_0
9:eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<=0 && 0<=Arg_0
27:eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
8:eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_0
7:eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<1
1:eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_7,Arg_9,Arg_10,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
3:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<0
4:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_2<0
5:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_8<Arg_2
2:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8
6:eval_counterex1c_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
12:eval_counterex1c_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_1(Arg_0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
20:eval_counterex1c_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
0:eval_counterex1c_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
Preprocessing
Cut unsatisfiable transition 24: eval_counterex1c_6->eval_counterex1c_bb1_in
Cut unsatisfiable transition 25: eval_counterex1c_6->eval_counterex1c_bb1_in
Cut unsatisfiable transition 18: eval_counterex1c_LeafBlock8_in->eval_counterex1c_NewDefault_in
Cut unsatisfiable transition 11: eval_counterex1c_LeafBlock_in->eval_counterex1c_NewDefault_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location eval_counterex1c_LeafBlock8_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location eval_counterex1c_6
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location eval_counterex1c_LeafBlock_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1 for location eval_counterex1c_bb2_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location eval_counterex1c_1
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location eval_counterex1c_5
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location eval_counterex1c_bb3_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location eval_counterex1c_2
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location eval_counterex1c_bb4_in
Found invariant Arg_1<=Arg_9 for location eval_counterex1c_.critedge_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1 for location eval_counterex1c_NewDefault_in
Found invariant Arg_1<=Arg_9 for location eval_counterex1c_bb1_in
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1 for location eval_counterex1c_NodeBlock_in
Found invariant Arg_1<=Arg_9 for location eval_counterex1c_stop
Problem after Preprocessing
Start: eval_counterex1c_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: nondef.0, nondef.1
Locations: eval_counterex1c_.critedge_in, eval_counterex1c_1, eval_counterex1c_2, eval_counterex1c_5, eval_counterex1c_6, eval_counterex1c_LeafBlock8_in, eval_counterex1c_LeafBlock_in, eval_counterex1c_NewDefault_in, eval_counterex1c_NodeBlock_in, eval_counterex1c_bb0_in, eval_counterex1c_bb1_in, eval_counterex1c_bb2_in, eval_counterex1c_bb3_in, eval_counterex1c_bb4_in, eval_counterex1c_start, eval_counterex1c_stop
Transitions:
28:eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9
14:eval_counterex1c_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,nondef.0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
15:eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(1,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_4
16:eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0
22:eval_counterex1c_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,nondef.1,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0
23:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(0,Arg_1-1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<Arg_6 && 0<Arg_6
26:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_6<=0
19:eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1<Arg_0
17:eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0
10:eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<0
9:eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 0<=Arg_0
27:eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1
8:eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_LeafBlock8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1 && 1<=Arg_0
7:eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_LeafBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1 && Arg_0<1
1:eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_7,Arg_9,Arg_10,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
3:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9 && Arg_1<0
4:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9 && Arg_2<0
5:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9 && Arg_8<Arg_2
2:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8
6:eval_counterex1c_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NodeBlock_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1
12:eval_counterex1c_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_1(Arg_0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
20:eval_counterex1c_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0
0:eval_counterex1c_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
MPRF for transition 15:eval_counterex1c_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(1,Arg_1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_4 of depth 1:
new bound:
Arg_7+Arg_9+1 {O(n)}
MPRF:
eval_counterex1c_2 [Arg_1+1 ]
eval_counterex1c_6 [Arg_1 ]
eval_counterex1c_LeafBlock_in [Arg_1+1 ]
eval_counterex1c_LeafBlock8_in [Arg_1+1-Arg_0 ]
eval_counterex1c_bb1_in [Arg_1+1-Arg_0 ]
eval_counterex1c_bb2_in [Arg_1+1-Arg_0 ]
eval_counterex1c_NodeBlock_in [Arg_1+1-Arg_0 ]
eval_counterex1c_bb3_in [Arg_1+1 ]
eval_counterex1c_1 [Arg_1+1 ]
eval_counterex1c_bb4_in [Arg_1+1-Arg_0 ]
eval_counterex1c_5 [Arg_1 ]
MPRF for transition 23:eval_counterex1c_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(0,Arg_1-1,Arg_5,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<Arg_6 && 0<Arg_6 of depth 1:
new bound:
Arg_9+1 {O(n)}
MPRF:
eval_counterex1c_2 [Arg_1+1 ]
eval_counterex1c_6 [Arg_1+1 ]
eval_counterex1c_LeafBlock_in [Arg_1+1 ]
eval_counterex1c_LeafBlock8_in [Arg_1+1 ]
eval_counterex1c_bb1_in [Arg_1+1 ]
eval_counterex1c_bb2_in [Arg_1+1 ]
eval_counterex1c_NodeBlock_in [Arg_1+1 ]
eval_counterex1c_bb3_in [Arg_1+1 ]
eval_counterex1c_1 [Arg_1+1 ]
eval_counterex1c_bb4_in [Arg_0+Arg_1 ]
eval_counterex1c_5 [Arg_1+1 ]
Analysing control-flow refined program
Cut unsatisfiable transition 260: n_eval_counterex1c_LeafBlock8_in___19->eval_counterex1c_NewDefault_in
Cut unsatisfiable transition 262: n_eval_counterex1c_LeafBlock8_in___7->eval_counterex1c_NewDefault_in
Cut unsatisfiable transition 263: n_eval_counterex1c_LeafBlock_in___13->eval_counterex1c_NewDefault_in
Cut unsatisfiable transition 264: n_eval_counterex1c_LeafBlock_in___27->eval_counterex1c_NewDefault_in
Cut unsatisfiable transition 266: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 270: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 274: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 267: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 271: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 275: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 272: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 280: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in
Cut unsatisfiable transition 281: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb4_in___6
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb4_in___34
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb1_in___31
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb3_in___12
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_1___25
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 for location n_eval_counterex1c_bb2_in___38
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && Arg_6<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=2+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb1_in___30
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb2_in___9
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_10 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_10+Arg_5 && Arg_10<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_5___33
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 for location n_eval_counterex1c_NodeBlock_in___37
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_2___10
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_NodeBlock_in___20
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb2_in___21
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_6___4
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb1_in___23
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb3_in___26
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb3_in___3
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_counterex1c_LeafBlock_in___35
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_NodeBlock_in___8
Found invariant 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb1_in___22
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb2_in___15
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_NodeBlock_in___14
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_10 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_10+Arg_3 && 1+Arg_10<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_2___1
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_LeafBlock_in___13
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_5___17
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_1___11
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_LeafBlock_in___27
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_NodeBlock_in___28
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_6___16
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_10 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_10+Arg_3 && 1+Arg_10<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_1___2
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_bb2_in___29
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_bb4_in___18
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_counterex1c_2___24
Found invariant Arg_1<=Arg_9 && Arg_7<=1+Arg_0 for location eval_counterex1c_.critedge_in
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 for location eval_counterex1c_NewDefault_in
Found invariant Arg_9<=Arg_1 && Arg_1<=Arg_9 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 for location eval_counterex1c_bb1_in
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_7<=Arg_0 && 1<=Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_counterex1c_LeafBlock8_in___36
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_LeafBlock8_in___7
Found invariant Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_10 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_10+Arg_5 && Arg_10<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_6___32
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_LeafBlock8_in___19
Found invariant Arg_1<=Arg_9 && Arg_7<=1+Arg_0 for location eval_counterex1c_stop
Found invariant 0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location n_eval_counterex1c_5___5
MPRF for transition 184:n_eval_counterex1c_1___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_2___24(0,Arg1_P,Arg2_P,Arg3_P,NoDet0,Arg_5,Arg_6,Arg_7,Arg8_P,Arg9_P,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg1_P<=Arg9_P && Arg3_P<=1+Arg8_P && 1<=Arg3_P && 0<=Arg1_P && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg2_P+1<=Arg3_P && Arg3_P<=1+Arg2_P && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2+1<=Arg3_P && Arg3_P<=1+Arg_2 && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1 ]
n_eval_counterex1c_2___24 [Arg_1 ]
n_eval_counterex1c_6___16 [Arg_1 ]
n_eval_counterex1c_6___4 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1 ]
n_eval_counterex1c_bb2_in___21 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1 ]
n_eval_counterex1c_bb3_in___12 [Arg_1 ]
n_eval_counterex1c_1___11 [Arg_1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+1 ]
n_eval_counterex1c_1___25 [Arg_1+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_1 ]
n_eval_counterex1c_5___17 [Arg_1 ]
n_eval_counterex1c_bb4_in___6 [Arg_1 ]
n_eval_counterex1c_5___5 [Arg_1 ]
MPRF for transition 188:n_eval_counterex1c_2___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___23(1,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_4 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:
new bound:
4*Arg_9+3 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+1 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_3-Arg_5 ]
n_eval_counterex1c_6___16 [Arg_1 ]
n_eval_counterex1c_6___4 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___21 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+1 ]
n_eval_counterex1c_1___11 [Arg_1+1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+1 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_3-Arg_5 ]
n_eval_counterex1c_bb4_in___18 [Arg_1 ]
n_eval_counterex1c_5___17 [Arg_1 ]
n_eval_counterex1c_bb4_in___6 [Arg_1 ]
n_eval_counterex1c_5___5 [Arg_1 ]
MPRF for transition 189:n_eval_counterex1c_2___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___22(0,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8 ]
MPRF for transition 190:n_eval_counterex1c_2___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___23(1,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_4 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8 ]
MPRF for transition 191:n_eval_counterex1c_5___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_6___16(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,NoDet0,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_1<=Arg9_P && Arg_2<=Arg8_P && 0<=Arg_2 && 0<=Arg_1 && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
4*Arg_9+4 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+1 ]
n_eval_counterex1c_2___24 [Arg_1+1 ]
n_eval_counterex1c_6___16 [Arg_1 ]
n_eval_counterex1c_6___4 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_0+Arg_1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+Arg_1 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+1 ]
n_eval_counterex1c_1___11 [Arg_1+1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+1 ]
n_eval_counterex1c_1___25 [Arg_1+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+Arg_1 ]
n_eval_counterex1c_5___17 [Arg_1+1 ]
n_eval_counterex1c_bb4_in___6 [Arg_1 ]
n_eval_counterex1c_5___5 [Arg_1 ]
MPRF for transition 194:n_eval_counterex1c_6___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___30(1,Arg_1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8+1-Arg_0 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8-1 ]
MPRF for transition 195:n_eval_counterex1c_6___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___31(0,Arg_1-1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_6 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 of depth 1:
new bound:
4*Arg_8+4*Arg_9+1 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8+1-Arg_0 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8 ]
MPRF for transition 199:n_eval_counterex1c_6___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___31(0,Arg_1-1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_6 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 of depth 1:
new bound:
4*Arg_9+5 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+1 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_3-Arg_5 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_3-Arg_5 ]
n_eval_counterex1c_6___4 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_0+Arg_1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+Arg_1 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_0+Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_0+Arg_1 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+1 ]
n_eval_counterex1c_1___11 [Arg_1+1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+1 ]
n_eval_counterex1c_1___25 [Arg_1+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+Arg_1 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_3+1-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [Arg_0+Arg_1 ]
n_eval_counterex1c_5___5 [Arg_1+1 ]
MPRF for transition 200:n_eval_counterex1c_LeafBlock8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb4_in___18(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_5+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8-1 ]
MPRF for transition 204:n_eval_counterex1c_LeafBlock_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb3_in___26(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8 ]
MPRF for transition 207:n_eval_counterex1c_NodeBlock_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
8*Arg_9+8 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [2*Arg_1+2 ]
n_eval_counterex1c_2___24 [2*Arg_1+2 ]
n_eval_counterex1c_6___16 [2*Arg_1+Arg_3-Arg_0-Arg_5 ]
n_eval_counterex1c_6___4 [2*Arg_1 ]
n_eval_counterex1c_LeafBlock_in___13 [2*Arg_1+2 ]
n_eval_counterex1c_LeafBlock8_in___19 [2*Arg_1+1 ]
n_eval_counterex1c_LeafBlock_in___27 [2*Arg_1+2 ]
n_eval_counterex1c_LeafBlock8_in___7 [2*Arg_1 ]
n_eval_counterex1c_bb1_in___22 [2*Arg_1+2 ]
n_eval_counterex1c_bb1_in___23 [2*Arg_1+2 ]
n_eval_counterex1c_bb1_in___30 [2*Arg_1 ]
n_eval_counterex1c_bb1_in___31 [2*Arg_1+2 ]
n_eval_counterex1c_bb2_in___15 [2*Arg_1+2 ]
n_eval_counterex1c_NodeBlock_in___14 [2*Arg_1+2 ]
n_eval_counterex1c_bb2_in___21 [2*Arg_0+2*Arg_1 ]
n_eval_counterex1c_NodeBlock_in___20 [2*Arg_1+2 ]
n_eval_counterex1c_bb2_in___29 [2*Arg_1+2 ]
n_eval_counterex1c_NodeBlock_in___28 [2*Arg_1+2 ]
n_eval_counterex1c_bb2_in___9 [2*Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [2*Arg_1 ]
n_eval_counterex1c_bb3_in___12 [2*Arg_1+2 ]
n_eval_counterex1c_1___11 [2*Arg_1+2 ]
n_eval_counterex1c_bb3_in___26 [2*Arg_1+2*Arg_2+2-2*Arg_5 ]
n_eval_counterex1c_1___25 [2*Arg_1+2*Arg_3-2*Arg_5 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+2*Arg_1 ]
n_eval_counterex1c_5___17 [2*Arg_1+Arg_3-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [2*Arg_1 ]
n_eval_counterex1c_5___5 [2*Arg_1 ]
MPRF for transition 208:n_eval_counterex1c_NodeBlock_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<1 of depth 1:
new bound:
8*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_9 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_9 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_9 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_9 ]
MPRF for transition 213:n_eval_counterex1c_bb1_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
8*Arg_9+4 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_3+Arg_9-Arg_5 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_5+Arg_9+1-Arg_2 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_3+Arg_9-Arg_2 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_9 ]
MPRF for transition 215:n_eval_counterex1c_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && Arg_0<1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
8*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_9 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_9 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_9 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_9 ]
MPRF for transition 218:n_eval_counterex1c_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
4*Arg_8+4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8-1 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8-Arg_0 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8-1 ]
MPRF for transition 219:n_eval_counterex1c_bb2_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
4*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1 ]
n_eval_counterex1c_2___24 [Arg_1 ]
n_eval_counterex1c_6___16 [Arg_1 ]
n_eval_counterex1c_6___4 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1 ]
n_eval_counterex1c_bb1_in___22 [Arg_1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+1-Arg_0 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1 ]
n_eval_counterex1c_bb3_in___12 [Arg_1 ]
n_eval_counterex1c_1___11 [Arg_1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1 ]
n_eval_counterex1c_1___25 [Arg_1 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+Arg_1-1 ]
n_eval_counterex1c_5___17 [Arg_1 ]
n_eval_counterex1c_bb4_in___6 [Arg_1 ]
n_eval_counterex1c_5___5 [Arg_1 ]
MPRF for transition 223:n_eval_counterex1c_bb3_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_1___25(0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
8*Arg_9+2 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_9 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_9 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___21 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_9 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_9 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_9+1 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_9 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_9 ]
MPRF for transition 225:n_eval_counterex1c_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_5___17(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
4*Arg_8+4*Arg_9+4 {O(n)}
MPRF:
n_eval_counterex1c_2___10 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_2___24 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_6___16 [Arg_1+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_1+Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb1_in___23 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb1_in___30 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___29 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb2_in___9 [Arg_1+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_1___11 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb3_in___26 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_1___25 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_1+Arg_8+1 ]
n_eval_counterex1c_5___17 [Arg_1+Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_1+Arg_8 ]
n_eval_counterex1c_5___5 [Arg_1+Arg_8 ]
MPRF for transition 182:n_eval_counterex1c_1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_2___10(0,Arg1_P,Arg2_P,Arg3_P,NoDet0,Arg_5,Arg_6,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg1_P<=Arg9_P && Arg3_P<=1+Arg8_P && 1<=Arg3_P && 0<=Arg1_P && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg2_P+1<=Arg3_P && Arg3_P<=1+Arg2_P && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2+1<=Arg3_P && Arg3_P<=1+Arg_2 && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
16*Arg_8*Arg_8+16*Arg_8*Arg_9+2*Arg_10+24*Arg_8+4*Arg_9+10 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_2___24 [Arg_8-Arg_2 ]
n_eval_counterex1c_5___17 [Arg_0+Arg_8 ]
n_eval_counterex1c_6___16 [2*Arg_0+Arg_5+Arg_8-Arg_3 ]
n_eval_counterex1c_6___4 [Arg_5+Arg_8+2-Arg_2 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+Arg_8-Arg_2-1 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8+1-Arg_5 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_0+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___23 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [Arg_8+1 ]
n_eval_counterex1c_bb1_in___31 [Arg_8+1 ]
n_eval_counterex1c_bb2_in___15 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb2_in___21 [Arg_8-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8-Arg_3 ]
n_eval_counterex1c_bb2_in___29 [Arg_8+1-Arg_5 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8+1-Arg_5 ]
n_eval_counterex1c_bb2_in___9 [Arg_0+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_8+1 ]
n_eval_counterex1c_bb3_in___12 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_1___11 [Arg_8+2-Arg_3 ]
n_eval_counterex1c_bb3_in___26 [Arg_8-Arg_2 ]
n_eval_counterex1c_1___25 [Arg_8-Arg_5 ]
n_eval_counterex1c_bb4_in___6 [Arg_8+1 ]
n_eval_counterex1c_5___5 [Arg_8+1 ]
MPRF for transition 187:n_eval_counterex1c_2___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___22(0,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 of depth 1:
new bound:
112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+104*Arg_9+4*Arg_10+84*Arg_8+40 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_2___24 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_5___17 [Arg_0+2*Arg_1+3*Arg_8+2*Arg_9-3 ]
n_eval_counterex1c_6___16 [2*Arg_1+Arg_2+3*Arg_8+2*Arg_9-2*Arg_5-3 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8+2*Arg_9-Arg_0 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___13 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock8_in___19 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___27 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+Arg_8+2*Arg_9 ]
n_eval_counterex1c_bb1_in___22 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___23 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [Arg_2+Arg_8+2*Arg_9 ]
n_eval_counterex1c_bb1_in___31 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_bb2_in___15 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___14 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+2*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___29 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_NodeBlock_in___28 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb2_in___9 [Arg_2+Arg_8+2*Arg_9 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_2+Arg_8+2*Arg_9 ]
n_eval_counterex1c_bb3_in___12 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_1___11 [2*Arg_1+Arg_8+2-Arg_3 ]
n_eval_counterex1c_bb3_in___26 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_1___25 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [Arg_2+Arg_8+2*Arg_9 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8+2*Arg_9-Arg_0 ]
MPRF for transition 193:n_eval_counterex1c_5___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_6___4(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,NoDet0,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_1<=Arg9_P && Arg_2<=Arg8_P && 0<=Arg_2 && 0<=Arg_1 && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [0 ]
n_eval_counterex1c_2___24 [0 ]
n_eval_counterex1c_5___17 [Arg_8 ]
n_eval_counterex1c_6___16 [Arg_2 ]
n_eval_counterex1c_6___4 [Arg_2 ]
n_eval_counterex1c_bb4_in___18 [2*Arg_2-2*Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [0 ]
n_eval_counterex1c_LeafBlock8_in___19 [0 ]
n_eval_counterex1c_LeafBlock_in___27 [0 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+1 ]
n_eval_counterex1c_bb1_in___22 [0 ]
n_eval_counterex1c_bb1_in___23 [0 ]
n_eval_counterex1c_bb1_in___30 [Arg_2+1 ]
n_eval_counterex1c_bb1_in___31 [0 ]
n_eval_counterex1c_bb2_in___15 [0 ]
n_eval_counterex1c_NodeBlock_in___14 [0 ]
n_eval_counterex1c_bb2_in___21 [0 ]
n_eval_counterex1c_NodeBlock_in___20 [0 ]
n_eval_counterex1c_bb2_in___29 [0 ]
n_eval_counterex1c_NodeBlock_in___28 [0 ]
n_eval_counterex1c_bb2_in___9 [Arg_0+Arg_2 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_5+1 ]
n_eval_counterex1c_bb3_in___12 [0 ]
n_eval_counterex1c_1___11 [0 ]
n_eval_counterex1c_bb3_in___26 [0 ]
n_eval_counterex1c_1___25 [0 ]
n_eval_counterex1c_bb4_in___6 [Arg_5+1 ]
n_eval_counterex1c_5___5 [Arg_2+1 ]
MPRF for transition 198:n_eval_counterex1c_6___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___30(1,Arg_1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 of depth 1:
new bound:
32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8 ]
n_eval_counterex1c_2___24 [Arg_8 ]
n_eval_counterex1c_5___17 [2*Arg_8 ]
n_eval_counterex1c_6___16 [Arg_0+Arg_5+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8+1 ]
n_eval_counterex1c_bb4_in___18 [Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_0+2*Arg_5+Arg_8-Arg_2 ]
n_eval_counterex1c_bb1_in___22 [Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_0+Arg_5+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_0+Arg_2+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [2*Arg_5+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb3_in___12 [Arg_8 ]
n_eval_counterex1c_1___11 [Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_8 ]
n_eval_counterex1c_1___25 [Arg_8 ]
n_eval_counterex1c_bb4_in___6 [Arg_0+2*Arg_5+Arg_8-Arg_2 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8+1 ]
MPRF for transition 202:n_eval_counterex1c_LeafBlock8_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb4_in___6(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
32*Arg_8*Arg_8+32*Arg_8*Arg_9+44*Arg_8+8*Arg_9+Arg_10+12 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8-Arg_7 ]
n_eval_counterex1c_2___24 [Arg_8-Arg_7 ]
n_eval_counterex1c_5___17 [2*Arg_8-Arg_7 ]
n_eval_counterex1c_6___16 [Arg_3+Arg_8-Arg_7 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8-Arg_7 ]
n_eval_counterex1c_bb4_in___18 [Arg_8-Arg_7 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8-Arg_7 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8-Arg_7 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8-Arg_7 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_5+Arg_8+1-Arg_7 ]
n_eval_counterex1c_bb1_in___22 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb1_in___23 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb1_in___30 [Arg_2+Arg_8+1-Arg_7 ]
n_eval_counterex1c_bb1_in___31 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb2_in___15 [Arg_8-Arg_7 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb2_in___21 [Arg_8-Arg_7 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb2_in___29 [Arg_8-Arg_7 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb2_in___9 [Arg_5+Arg_8+1-Arg_7 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_2+Arg_8+1-Arg_7 ]
n_eval_counterex1c_bb3_in___12 [Arg_8-Arg_7 ]
n_eval_counterex1c_1___11 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb3_in___26 [Arg_8-Arg_7 ]
n_eval_counterex1c_1___25 [Arg_8-Arg_7 ]
n_eval_counterex1c_bb4_in___6 [Arg_2+Arg_8-Arg_7 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8-Arg_7 ]
MPRF for transition 203:n_eval_counterex1c_LeafBlock_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb3_in___12(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
48*Arg_8*Arg_8+48*Arg_8*Arg_9+4*Arg_10+4*Arg_9+56*Arg_8+12 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_2___24 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_5___17 [Arg_0+3*Arg_8 ]
n_eval_counterex1c_6___16 [Arg_0+3*Arg_8-Arg_2 ]
n_eval_counterex1c_6___4 [2*Arg_2+Arg_8-Arg_5 ]
n_eval_counterex1c_bb4_in___18 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+Arg_8+1 ]
n_eval_counterex1c_bb1_in___22 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___23 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___30 [Arg_2+Arg_8+2 ]
n_eval_counterex1c_bb1_in___31 [Arg_8-Arg_2 ]
n_eval_counterex1c_bb2_in___15 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+Arg_8-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___29 [Arg_8-Arg_5 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8-Arg_2 ]
n_eval_counterex1c_bb2_in___9 [2*Arg_0+Arg_5+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_5+Arg_8+1 ]
n_eval_counterex1c_bb3_in___12 [Arg_8-Arg_2 ]
n_eval_counterex1c_1___11 [Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb3_in___26 [Arg_8-Arg_2 ]
n_eval_counterex1c_1___25 [Arg_8-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [Arg_5+Arg_8+1 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8+1 ]
MPRF for transition 206:n_eval_counterex1c_NodeBlock_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<1 of depth 1:
new bound:
16*Arg_8*Arg_8+48*Arg_9*Arg_9+64*Arg_8*Arg_9+3*Arg_10+48*Arg_8+88*Arg_9+38 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_2___24 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_5___17 [Arg_0+3*Arg_1+Arg_8 ]
n_eval_counterex1c_6___16 [3*Arg_1+Arg_8 ]
n_eval_counterex1c_6___4 [3*Arg_1+Arg_8-2 ]
n_eval_counterex1c_bb4_in___18 [3*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___19 [3*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___27 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___7 [3*Arg_1+Arg_8-2 ]
n_eval_counterex1c_bb1_in___22 [3*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___23 [3*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [3*Arg_1+Arg_8-2 ]
n_eval_counterex1c_bb1_in___31 [3*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_bb2_in___15 [3*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___14 [3*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+3*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_0+3*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_bb2_in___29 [3*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_NodeBlock_in___28 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb2_in___9 [3*Arg_1+Arg_8-2*Arg_0 ]
n_eval_counterex1c_NodeBlock_in___8 [3*Arg_1+Arg_8-2*Arg_0 ]
n_eval_counterex1c_bb3_in___12 [3*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_1___11 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb3_in___26 [3*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_1___25 [3*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [3*Arg_1+Arg_8-2*Arg_0 ]
n_eval_counterex1c_5___5 [3*Arg_1+Arg_8-2 ]
MPRF for transition 211:n_eval_counterex1c_NodeBlock_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock8_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8-Arg_9 ]
n_eval_counterex1c_2___24 [Arg_8-Arg_9 ]
n_eval_counterex1c_5___17 [2*Arg_8 ]
n_eval_counterex1c_6___16 [Arg_5+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8-1 ]
n_eval_counterex1c_bb4_in___18 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+Arg_8-1 ]
n_eval_counterex1c_bb1_in___22 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb1_in___23 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb1_in___30 [Arg_5+Arg_8 ]
n_eval_counterex1c_bb1_in___31 [Arg_8-1 ]
n_eval_counterex1c_bb2_in___15 [Arg_8-Arg_9 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb2_in___21 [Arg_8-Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8-1 ]
n_eval_counterex1c_bb2_in___9 [Arg_0+Arg_2+Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_5+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_8-Arg_9 ]
n_eval_counterex1c_1___11 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb3_in___26 [Arg_8-Arg_9 ]
n_eval_counterex1c_1___25 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_5+Arg_8-1 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8-1 ]
MPRF for transition 212:n_eval_counterex1c_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_1 && 1<=Arg_3 && Arg_3<=1+Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
32*Arg_8*Arg_8+48*Arg_9*Arg_9+80*Arg_8*Arg_9+3*Arg_10+68*Arg_8+92*Arg_9+40 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [2*Arg_1+Arg_8+Arg_9+1-Arg_3 ]
n_eval_counterex1c_2___24 [2*Arg_1+Arg_8+Arg_9-Arg_5 ]
n_eval_counterex1c_5___17 [2*Arg_1+2*Arg_8+Arg_9-2*Arg_7 ]
n_eval_counterex1c_6___16 [2*Arg_1+2*Arg_8+Arg_9-Arg_3-Arg_7 ]
n_eval_counterex1c_6___4 [2*Arg_1+Arg_8+Arg_9-Arg_7 ]
n_eval_counterex1c_bb4_in___18 [Arg_0+2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___13 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_0+2*Arg_1+Arg_2+Arg_8+Arg_9-2*Arg_3 ]
n_eval_counterex1c_LeafBlock_in___27 [2*Arg_1+Arg_8+Arg_9-Arg_5 ]
n_eval_counterex1c_LeafBlock8_in___7 [2*Arg_1+Arg_5+Arg_8+Arg_9-Arg_2-Arg_7 ]
n_eval_counterex1c_bb1_in___22 [2*Arg_1+Arg_8+Arg_9+1-Arg_3 ]
n_eval_counterex1c_bb1_in___23 [2*Arg_1+Arg_8+Arg_9+1-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [2*Arg_1+Arg_8+Arg_9-Arg_7 ]
n_eval_counterex1c_bb1_in___31 [2*Arg_1+Arg_8+Arg_9-Arg_5 ]
n_eval_counterex1c_bb2_in___15 [2*Arg_1+Arg_8+Arg_9-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___14 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_bb2_in___21 [2*Arg_1+Arg_2+Arg_8+Arg_9+1-2*Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [2*Arg_1+Arg_2+Arg_8+Arg_9+1-2*Arg_3 ]
n_eval_counterex1c_bb2_in___29 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___28 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_bb2_in___9 [2*Arg_1+Arg_8+Arg_9-Arg_7 ]
n_eval_counterex1c_NodeBlock_in___8 [2*Arg_1+Arg_5+Arg_8+Arg_9-Arg_2-Arg_7 ]
n_eval_counterex1c_bb3_in___12 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_1___11 [2*Arg_1+Arg_8+Arg_9+1-Arg_3 ]
n_eval_counterex1c_bb3_in___26 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_1___25 [2*Arg_1+Arg_8+Arg_9-Arg_2 ]
n_eval_counterex1c_bb4_in___6 [2*Arg_1+Arg_8+Arg_9-Arg_7 ]
n_eval_counterex1c_5___5 [2*Arg_1+Arg_8+Arg_9-Arg_7 ]
MPRF for transition 214:n_eval_counterex1c_bb1_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && Arg_6<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=2+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_1 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_1 && 0<=1+Arg_2 && 1+Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8 ]
n_eval_counterex1c_2___24 [Arg_8 ]
n_eval_counterex1c_5___17 [2*Arg_8 ]
n_eval_counterex1c_6___16 [Arg_2+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [Arg_8 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_8 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+Arg_8 ]
n_eval_counterex1c_bb1_in___22 [Arg_8 ]
n_eval_counterex1c_bb1_in___23 [Arg_8 ]
n_eval_counterex1c_bb1_in___30 [Arg_2+Arg_8+1 ]
n_eval_counterex1c_bb1_in___31 [Arg_8 ]
n_eval_counterex1c_bb2_in___15 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8 ]
n_eval_counterex1c_bb2_in___21 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_8 ]
n_eval_counterex1c_bb2_in___29 [Arg_8 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8 ]
n_eval_counterex1c_bb2_in___9 [Arg_2+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_5+Arg_8 ]
n_eval_counterex1c_bb3_in___12 [Arg_8 ]
n_eval_counterex1c_1___11 [Arg_8 ]
n_eval_counterex1c_bb3_in___26 [Arg_8 ]
n_eval_counterex1c_1___25 [Arg_8 ]
n_eval_counterex1c_bb4_in___6 [2*Arg_5+Arg_8-Arg_2 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8 ]
MPRF for transition 217:n_eval_counterex1c_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
112*Arg_8*Arg_8+144*Arg_8*Arg_9+32*Arg_9*Arg_9+152*Arg_8+6*Arg_10+72*Arg_9+44 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_2___24 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_5___17 [Arg_0+2*Arg_1+7*Arg_8-3 ]
n_eval_counterex1c_6___16 [Arg_0+2*Arg_1+7*Arg_8-3*Arg_2 ]
n_eval_counterex1c_6___4 [2*Arg_1+Arg_2+3*Arg_8+1 ]
n_eval_counterex1c_bb4_in___18 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___19 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___27 [2*Arg_1+3*Arg_8-3*Arg_2 ]
n_eval_counterex1c_LeafBlock8_in___7 [2*Arg_1+Arg_2+3*Arg_8+2 ]
n_eval_counterex1c_bb1_in___22 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb1_in___23 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [2*Arg_1+Arg_5+3*Arg_8+2 ]
n_eval_counterex1c_bb1_in___31 [2*Arg_1+3*Arg_8-3*Arg_5 ]
n_eval_counterex1c_bb2_in___15 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___14 [2*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_bb2_in___21 [Arg_0+2*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_0+2*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_bb2_in___29 [2*Arg_1+3*Arg_8-3*Arg_2 ]
n_eval_counterex1c_NodeBlock_in___28 [2*Arg_1+3*Arg_8-3*Arg_5 ]
n_eval_counterex1c_bb2_in___9 [2*Arg_0+2*Arg_1+Arg_2+3*Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [2*Arg_0+2*Arg_1+Arg_2+3*Arg_8 ]
n_eval_counterex1c_bb3_in___12 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_1___11 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb3_in___26 [2*Arg_1+3*Arg_8-3*Arg_2 ]
n_eval_counterex1c_1___25 [2*Arg_1+3*Arg_8-3*Arg_2 ]
n_eval_counterex1c_bb4_in___6 [2*Arg_1+Arg_2+3*Arg_8+1 ]
n_eval_counterex1c_5___5 [2*Arg_1+Arg_2+3*Arg_8+1 ]
MPRF for transition 221:n_eval_counterex1c_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 of depth 1:
new bound:
32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+4 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [Arg_8-Arg_9 ]
n_eval_counterex1c_2___24 [Arg_8-Arg_9 ]
n_eval_counterex1c_5___17 [2*Arg_8 ]
n_eval_counterex1c_6___16 [Arg_5+Arg_8 ]
n_eval_counterex1c_6___4 [Arg_2+Arg_8-Arg_0 ]
n_eval_counterex1c_bb4_in___18 [Arg_2+Arg_8-Arg_3-Arg_9 ]
n_eval_counterex1c_LeafBlock_in___13 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_2+Arg_8-Arg_3-Arg_9 ]
n_eval_counterex1c_LeafBlock_in___27 [Arg_8-Arg_9 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_5+Arg_8-Arg_0 ]
n_eval_counterex1c_bb1_in___22 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb1_in___23 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb1_in___30 [Arg_0+Arg_2+Arg_8-1 ]
n_eval_counterex1c_bb1_in___31 [Arg_8-1 ]
n_eval_counterex1c_bb2_in___15 [Arg_8-Arg_9 ]
n_eval_counterex1c_NodeBlock_in___14 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb2_in___21 [Arg_8-Arg_9 ]
n_eval_counterex1c_NodeBlock_in___20 [Arg_2+Arg_8-Arg_3-Arg_9 ]
n_eval_counterex1c_bb2_in___29 [Arg_8-1 ]
n_eval_counterex1c_NodeBlock_in___28 [Arg_8-1 ]
n_eval_counterex1c_bb2_in___9 [Arg_5+Arg_8+1-Arg_0 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_2+Arg_8-1 ]
n_eval_counterex1c_bb3_in___12 [Arg_8-Arg_9 ]
n_eval_counterex1c_1___11 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb3_in___26 [Arg_8-Arg_9 ]
n_eval_counterex1c_1___25 [Arg_8-Arg_9 ]
n_eval_counterex1c_bb4_in___6 [Arg_2+Arg_8-1 ]
n_eval_counterex1c_5___5 [Arg_2+Arg_8-Arg_0 ]
MPRF for transition 222:n_eval_counterex1c_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_1___11(0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
32*Arg_9*Arg_9+64*Arg_8*Arg_8+96*Arg_8*Arg_9+6*Arg_10+60*Arg_9+88*Arg_8+32 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_2___24 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_5___17 [2*Arg_1+4*Arg_8-Arg_0 ]
n_eval_counterex1c_6___16 [2*Arg_1+4*Arg_8-Arg_0 ]
n_eval_counterex1c_6___4 [2*Arg_1+2*Arg_2+Arg_5+Arg_8 ]
n_eval_counterex1c_bb4_in___18 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_LeafBlock8_in___19 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_LeafBlock_in___27 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_LeafBlock8_in___7 [2*Arg_1+3*Arg_5+Arg_8+2 ]
n_eval_counterex1c_bb1_in___22 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_bb1_in___23 [Arg_0+2*Arg_1+Arg_8-Arg_3 ]
n_eval_counterex1c_bb1_in___30 [2*Arg_1+3*Arg_5+Arg_8+2 ]
n_eval_counterex1c_bb1_in___31 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_bb2_in___15 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___14 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___21 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_NodeBlock_in___20 [2*Arg_1+Arg_8+1-Arg_2 ]
n_eval_counterex1c_bb2_in___29 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_NodeBlock_in___28 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb2_in___9 [2*Arg_0+2*Arg_1+3*Arg_5+Arg_8 ]
n_eval_counterex1c_NodeBlock_in___8 [2*Arg_1+3*Arg_5+Arg_8+2 ]
n_eval_counterex1c_bb3_in___12 [2*Arg_1+Arg_8+1-Arg_3 ]
n_eval_counterex1c_1___11 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_bb3_in___26 [2*Arg_1+Arg_8-Arg_2 ]
n_eval_counterex1c_1___25 [2*Arg_1+Arg_8-Arg_5 ]
n_eval_counterex1c_bb4_in___6 [2*Arg_0+2*Arg_1+3*Arg_2+Arg_8 ]
n_eval_counterex1c_5___5 [2*Arg_1+3*Arg_2+Arg_8-Arg_0 ]
MPRF for transition 227:n_eval_counterex1c_bb4_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_5___5(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
MPRF:
n_eval_counterex1c_2___10 [0 ]
n_eval_counterex1c_2___24 [0 ]
n_eval_counterex1c_5___17 [Arg_8 ]
n_eval_counterex1c_6___16 [Arg_2 ]
n_eval_counterex1c_6___4 [Arg_2 ]
n_eval_counterex1c_bb4_in___18 [Arg_2-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___13 [0 ]
n_eval_counterex1c_LeafBlock8_in___19 [Arg_2-Arg_3 ]
n_eval_counterex1c_LeafBlock_in___27 [0 ]
n_eval_counterex1c_LeafBlock8_in___7 [Arg_2+1 ]
n_eval_counterex1c_bb1_in___22 [0 ]
n_eval_counterex1c_bb1_in___23 [0 ]
n_eval_counterex1c_bb1_in___30 [Arg_5+1 ]
n_eval_counterex1c_bb1_in___31 [0 ]
n_eval_counterex1c_bb2_in___15 [0 ]
n_eval_counterex1c_NodeBlock_in___14 [0 ]
n_eval_counterex1c_bb2_in___21 [0 ]
n_eval_counterex1c_NodeBlock_in___20 [0 ]
n_eval_counterex1c_bb2_in___29 [0 ]
n_eval_counterex1c_NodeBlock_in___28 [0 ]
n_eval_counterex1c_bb2_in___9 [Arg_2+1 ]
n_eval_counterex1c_NodeBlock_in___8 [Arg_5+1 ]
n_eval_counterex1c_bb3_in___12 [0 ]
n_eval_counterex1c_1___11 [0 ]
n_eval_counterex1c_bb3_in___26 [0 ]
n_eval_counterex1c_1___25 [0 ]
n_eval_counterex1c_bb4_in___6 [Arg_5+1 ]
n_eval_counterex1c_5___5 [Arg_2 ]
CFR: Improvement to new bound with the following program:
new bound:
224*Arg_9*Arg_9+528*Arg_8*Arg_8+752*Arg_8*Arg_9+35*Arg_10+528*Arg_9+772*Arg_8+293 {O(n^2)}
cfr-program:
Start: eval_counterex1c_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: Arg1_P, Arg2_P, Arg3_P, Arg8_P, Arg9_P, NoDet0
Locations: eval_counterex1c_.critedge_in, eval_counterex1c_NewDefault_in, eval_counterex1c_bb0_in, eval_counterex1c_bb1_in, eval_counterex1c_start, eval_counterex1c_stop, n_eval_counterex1c_1___11, n_eval_counterex1c_1___2, n_eval_counterex1c_1___25, n_eval_counterex1c_2___1, n_eval_counterex1c_2___10, n_eval_counterex1c_2___24, n_eval_counterex1c_5___17, n_eval_counterex1c_5___33, n_eval_counterex1c_5___5, n_eval_counterex1c_6___16, n_eval_counterex1c_6___32, n_eval_counterex1c_6___4, n_eval_counterex1c_LeafBlock8_in___19, n_eval_counterex1c_LeafBlock8_in___36, n_eval_counterex1c_LeafBlock8_in___7, n_eval_counterex1c_LeafBlock_in___13, n_eval_counterex1c_LeafBlock_in___27, n_eval_counterex1c_LeafBlock_in___35, n_eval_counterex1c_NodeBlock_in___14, n_eval_counterex1c_NodeBlock_in___20, n_eval_counterex1c_NodeBlock_in___28, n_eval_counterex1c_NodeBlock_in___37, n_eval_counterex1c_NodeBlock_in___8, n_eval_counterex1c_bb1_in___22, n_eval_counterex1c_bb1_in___23, n_eval_counterex1c_bb1_in___30, n_eval_counterex1c_bb1_in___31, n_eval_counterex1c_bb2_in___15, n_eval_counterex1c_bb2_in___21, n_eval_counterex1c_bb2_in___29, n_eval_counterex1c_bb2_in___38, n_eval_counterex1c_bb2_in___9, n_eval_counterex1c_bb3_in___12, n_eval_counterex1c_bb3_in___26, n_eval_counterex1c_bb3_in___3, n_eval_counterex1c_bb4_in___18, n_eval_counterex1c_bb4_in___34, n_eval_counterex1c_bb4_in___6
Transitions:
28:eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_9 && Arg_7<=1+Arg_0 && Arg_1<=Arg_9
27:eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_1
1:eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb1_in(Arg_7,Arg_9,Arg_10,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
3:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && Arg_1<=Arg_9 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_1<0
4:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && Arg_1<=Arg_9 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_2<0
5:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && Arg_1<=Arg_9 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_8<Arg_2
216:eval_counterex1c_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && Arg_1<=Arg_9 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9
0:eval_counterex1c_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
182:n_eval_counterex1c_1___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_2___10(0,Arg1_P,Arg2_P,Arg3_P,NoDet0,Arg_5,Arg_6,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg1_P<=Arg9_P && Arg3_P<=1+Arg8_P && 1<=Arg3_P && 0<=Arg1_P && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg2_P+1<=Arg3_P && Arg3_P<=1+Arg2_P && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2+1<=Arg3_P && Arg3_P<=1+Arg_2 && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_0<=0 && 0<=Arg_0
183:n_eval_counterex1c_1___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_2___1(0,Arg1_P,Arg2_P,Arg3_P,NoDet0,Arg_5,Arg_6,Arg_7,Arg8_P,Arg9_P,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_10 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_10+Arg_3 && 1+Arg_10<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg1_P<=Arg9_P && Arg3_P<=1+Arg8_P && 1<=Arg3_P && 0<=Arg1_P && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg2_P+1<=Arg3_P && Arg3_P<=1+Arg2_P && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2+1<=Arg3_P && Arg3_P<=1+Arg_2 && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_0<=0 && 0<=Arg_0
184:n_eval_counterex1c_1___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_2___24(0,Arg1_P,Arg2_P,Arg3_P,NoDet0,Arg_5,Arg_6,Arg_7,Arg8_P,Arg9_P,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg1_P<=Arg9_P && Arg3_P<=1+Arg8_P && 1<=Arg3_P && 0<=Arg1_P && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg2_P+1<=Arg3_P && Arg3_P<=1+Arg2_P && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2+1<=Arg3_P && Arg3_P<=1+Arg_2 && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_0<=0 && 0<=Arg_0
185:n_eval_counterex1c_2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___22(0,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_10 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_10+Arg_3 && 1+Arg_10<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
186:n_eval_counterex1c_2___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___23(1,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_3+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 1<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=1+Arg_2 && Arg_3<=1+Arg_10 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_10+Arg_3 && 1+Arg_10<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_4 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
187:n_eval_counterex1c_2___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___22(0,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
188:n_eval_counterex1c_2___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___23(1,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && 1+Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_3<=1+Arg_2 && 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_4 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
189:n_eval_counterex1c_2___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___22(0,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
190:n_eval_counterex1c_2___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___23(1,Arg_1,Arg_2+1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 2<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_3 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 2<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_3<=1+Arg_2 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_3<=1+Arg_8 && 1<=Arg_3 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_4 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_3<=1+Arg_2
191:n_eval_counterex1c_5___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_6___16(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,NoDet0,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_1<=Arg9_P && Arg_2<=Arg8_P && 0<=Arg_2 && 0<=Arg_1 && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0
192:n_eval_counterex1c_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_6___32(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,NoDet0,Arg_7,Arg8_P,Arg9_P,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_10 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_10+Arg_5 && Arg_10<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_1<=Arg9_P && Arg_2<=Arg8_P && 0<=Arg_2 && 0<=Arg_1 && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0
193:n_eval_counterex1c_5___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_6___4(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,NoDet0,Arg_7,Arg8_P,Arg9_P,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_1<=Arg9_P && Arg_2<=Arg8_P && 0<=Arg_2 && 0<=Arg_1 && Arg_9<=Arg9_P && Arg9_P<=Arg_9 && Arg_8<=Arg8_P && Arg8_P<=Arg_8 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0
194:n_eval_counterex1c_6___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___30(1,Arg_1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
195:n_eval_counterex1c_6___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___31(0,Arg_1-1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_5+Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_6 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
196:n_eval_counterex1c_6___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___30(1,Arg_1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_10 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_10+Arg_5 && Arg_10<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
197:n_eval_counterex1c_6___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___31(0,Arg_1-1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 1+Arg_5<=Arg_10 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_10+Arg_5 && Arg_10<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_6 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
198:n_eval_counterex1c_6___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___30(1,Arg_1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
199:n_eval_counterex1c_6___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb1_in___31(0,Arg_1-1,Arg_2-1,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<Arg_6 && 0<=Arg_1 && 0<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5+1 && 1+Arg_5<=Arg_2
200:n_eval_counterex1c_LeafBlock8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb4_in___18(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<=1 && 1<=Arg_0
261:n_eval_counterex1c_LeafBlock8_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_7<=Arg_0 && 1<=Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 1<Arg_0
201:n_eval_counterex1c_LeafBlock8_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb4_in___34(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_7<=Arg_0 && 1<=Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<=1 && 1<=Arg_0
202:n_eval_counterex1c_LeafBlock8_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb4_in___6(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<=1 && 1<=Arg_0
203:n_eval_counterex1c_LeafBlock_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb3_in___12(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
204:n_eval_counterex1c_LeafBlock_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb3_in___26(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
265:n_eval_counterex1c_LeafBlock_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_NewDefault_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<0
205:n_eval_counterex1c_LeafBlock_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb3_in___3(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<1 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
206:n_eval_counterex1c_NodeBlock_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<1
207:n_eval_counterex1c_NodeBlock_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock8_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9
208:n_eval_counterex1c_NodeBlock_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<1
209:n_eval_counterex1c_NodeBlock_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock8_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 && Arg_10<=Arg_8 && 0<=Arg_10 && 0<=Arg_9 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9
210:n_eval_counterex1c_NodeBlock_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 && Arg_10<=Arg_8 && 0<=Arg_10 && 0<=Arg_9 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_0<1
211:n_eval_counterex1c_NodeBlock_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_LeafBlock8_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9
278:n_eval_counterex1c_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_8<Arg_2
212:n_eval_counterex1c_bb1_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_1 && 1<=Arg_3 && Arg_3<=1+Arg_8 && Arg_1<=Arg_9 && Arg_4<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9
279:n_eval_counterex1c_bb1_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_8<Arg_2
213:n_eval_counterex1c_bb1_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=Arg_8 && 1<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 1<=Arg_2+Arg_8 && Arg_2<=1+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9
268:n_eval_counterex1c_bb1_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && Arg_6<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=2+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<0
276:n_eval_counterex1c_bb1_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && Arg_6<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=2+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<0
214:n_eval_counterex1c_bb1_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && Arg_6<=Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=1+Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=2+Arg_5 && 0<=1+Arg_2 && 0<=1+Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=2+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_1 && 1<=Arg_0 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_1 && 0<=1+Arg_2 && 1+Arg_2<=Arg_8 && Arg_1<=Arg_9 && Arg_6<=0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9
269:n_eval_counterex1c_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<0
273:n_eval_counterex1c_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_1<0
277:n_eval_counterex1c_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> eval_counterex1c_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<0
215:n_eval_counterex1c_bb1_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_bb2_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 0<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && 1<=Arg_6+Arg_9 && 0<=1+Arg_5+Arg_9 && 0<=1+Arg_2+Arg_9 && 0<=1+Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && Arg_7<=1+Arg_8 && 1<=Arg_6+Arg_8 && 0<=1+Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 0<=1+Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 0<=1+Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=2+Arg_5 && Arg_7<=2+Arg_2 && Arg_7<=2+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=2+Arg_1+Arg_5 && 0<=1+Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=1+Arg_2 && 0<=2+Arg_1+Arg_2 && 0<=1+Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && Arg_0<1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_1 && 0<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9
217:n_eval_counterex1c_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9
218:n_eval_counterex1c_bb2_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9
219:n_eval_counterex1c_bb2_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9
220:n_eval_counterex1c_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && Arg_7<=Arg_0 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_1 && Arg_10<=Arg_8 && 0<=Arg_10 && 0<=Arg_9 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9
221:n_eval_counterex1c_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_NodeBlock_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && 0<=Arg_2 && 0<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9
222:n_eval_counterex1c_bb3_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_1___11(0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && Arg_4<=Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_4<=Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_4+Arg_7<=1 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && Arg_4<=0 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 && Arg_4<=Arg_0 && Arg_0+Arg_4<=0 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 1<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
223:n_eval_counterex1c_bb3_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_1___25(0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 2<=Arg_6+Arg_9 && 1<=Arg_5+Arg_9 && 1<=Arg_2+Arg_9 && 1<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && 1+Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=1+Arg_0 && Arg_0+Arg_7<=1 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
224:n_eval_counterex1c_bb3_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_1___2(0,Arg_1,Arg_2,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 0<=Arg_7+Arg_9 && Arg_7<=Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 0<=Arg_0+Arg_9 && Arg_0<=Arg_9 && 0<=Arg_8 && 0<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_2 && Arg_7<=Arg_10 && Arg_7<=Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_10+Arg_7 && 0<=Arg_1+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 0<=Arg_0+Arg_10 && Arg_0<=Arg_10 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=0 && 0<=Arg_0 && Arg_7<=0 && 0<=Arg_7 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
225:n_eval_counterex1c_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_5___17(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=Arg_9 && 1<=Arg_4+Arg_9 && 1<=Arg_3+Arg_9 && 1<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 2<=Arg_2+Arg_8 && Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 2<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0
226:n_eval_counterex1c_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_5___33(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_8+Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=1+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_10+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 0<=Arg_2+Arg_8 && Arg_2<=Arg_8 && 0<=Arg_10+Arg_8 && Arg_10<=Arg_8 && 0<=Arg_1+Arg_8 && 1<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_7<=1 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_10 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && 1<=Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_2<=Arg_10 && 0<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_10 && 0<=Arg_1+Arg_10 && 1<=Arg_0+Arg_10 && Arg_0<=1+Arg_10 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_10 && Arg_10<=Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=Arg_9 && Arg_9<=Arg_1 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0
227:n_eval_counterex1c_bb4_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> n_eval_counterex1c_5___5(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:0<=Arg_9 && 1<=Arg_8+Arg_9 && Arg_7<=1+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && 0<=Arg_2+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 1<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && 1<=Arg_8 && Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 1<=Arg_5+Arg_8 && 1+Arg_5<=Arg_8 && 1<=Arg_2+Arg_8 && 1+Arg_2<=Arg_8 && Arg_10<=Arg_8 && 1<=Arg_1+Arg_8 && 2<=Arg_0+Arg_8 && Arg_0<=Arg_8 && Arg_7<=1 && Arg_6+Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && Arg_7<=1+Arg_1 && Arg_7<=Arg_0 && Arg_0+Arg_7<=2 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && Arg_6<=Arg_1 && 1+Arg_6<=Arg_0 && Arg_0+Arg_6<=1 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_6<=0 && Arg_1<=Arg_9 && 1+Arg_2<=Arg_8 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5 && Arg_5<=Arg_2 && Arg_2<=Arg_8 && Arg_1<=Arg_9 && 0<=Arg_2 && 0<=Arg_1 && Arg_0<=1 && 1<=Arg_0
All Bounds
Timebounds
Overall timebound:224*Arg_9*Arg_9+528*Arg_8*Arg_8+752*Arg_8*Arg_9+35*Arg_10+528*Arg_9+772*Arg_8+323 {O(n^2)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop: 1 {O(1)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in: 1 {O(1)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in: 1 {O(1)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38: 1 {O(1)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in: 1 {O(1)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+2*Arg_10+24*Arg_8+4*Arg_9+10 {O(n^2)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1: 1 {O(1)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24: 4*Arg_9+2 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22: 1 {O(1)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23: 1 {O(1)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+104*Arg_9+4*Arg_10+84*Arg_8+40 {O(n^2)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23: 4*Arg_9+3 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22: 4*Arg_8+4*Arg_9+2 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23: 4*Arg_8+4*Arg_9+2 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16: 4*Arg_9+4 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32: 1 {O(1)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30: 4*Arg_8+4*Arg_9+2 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31: 4*Arg_8+4*Arg_9+1 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30: 1 {O(1)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31: 1 {O(1)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31: 4*Arg_9+5 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18: 4*Arg_8+4*Arg_9+2 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34: 1 {O(1)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in: 1 {O(1)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+44*Arg_8+8*Arg_9+Arg_10+12 {O(n^2)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12: 48*Arg_8*Arg_8+48*Arg_8*Arg_9+4*Arg_10+4*Arg_9+56*Arg_8+12 {O(n^2)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26: 4*Arg_8+4*Arg_9+2 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3: 1 {O(1)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in: 1 {O(1)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13: 16*Arg_8*Arg_8+48*Arg_9*Arg_9+64*Arg_8*Arg_9+3*Arg_10+48*Arg_8+88*Arg_9+38 {O(n^2)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19: 8*Arg_9+8 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27: 8*Arg_9+2 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36: 1 {O(1)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35: 1 {O(1)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15: 32*Arg_8*Arg_8+48*Arg_9*Arg_9+80*Arg_8*Arg_9+3*Arg_10+68*Arg_8+92*Arg_9+40 {O(n^2)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in: 1 {O(1)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21: 8*Arg_9+4 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in: 1 {O(1)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in: 1 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in: 1 {O(1)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29: 8*Arg_9+2 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14: 112*Arg_8*Arg_8+144*Arg_8*Arg_9+32*Arg_9*Arg_9+152*Arg_8+6*Arg_10+72*Arg_9+44 {O(n^2)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20: 4*Arg_8+4*Arg_9+2 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28: 4*Arg_9+2 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37: 1 {O(1)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+4 {O(n^2)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11: 32*Arg_9*Arg_9+64*Arg_8*Arg_8+96*Arg_8*Arg_9+6*Arg_10+60*Arg_9+88*Arg_8+32 {O(n^2)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25: 8*Arg_9+2 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2: 1 {O(1)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17: 4*Arg_8+4*Arg_9+4 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33: 1 {O(1)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
Costbounds
Overall costbound: 224*Arg_9*Arg_9+528*Arg_8*Arg_8+752*Arg_8*Arg_9+35*Arg_10+528*Arg_9+772*Arg_8+323 {O(n^2)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop: 1 {O(1)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in: 1 {O(1)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in: 1 {O(1)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in: 1 {O(1)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38: 1 {O(1)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in: 1 {O(1)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+2*Arg_10+24*Arg_8+4*Arg_9+10 {O(n^2)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1: 1 {O(1)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24: 4*Arg_9+2 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22: 1 {O(1)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23: 1 {O(1)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+104*Arg_9+4*Arg_10+84*Arg_8+40 {O(n^2)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23: 4*Arg_9+3 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22: 4*Arg_8+4*Arg_9+2 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23: 4*Arg_8+4*Arg_9+2 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16: 4*Arg_9+4 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32: 1 {O(1)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30: 4*Arg_8+4*Arg_9+2 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31: 4*Arg_8+4*Arg_9+1 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30: 1 {O(1)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31: 1 {O(1)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31: 4*Arg_9+5 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18: 4*Arg_8+4*Arg_9+2 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34: 1 {O(1)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in: 1 {O(1)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+44*Arg_8+8*Arg_9+Arg_10+12 {O(n^2)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12: 48*Arg_8*Arg_8+48*Arg_8*Arg_9+4*Arg_10+4*Arg_9+56*Arg_8+12 {O(n^2)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26: 4*Arg_8+4*Arg_9+2 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3: 1 {O(1)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in: 1 {O(1)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13: 16*Arg_8*Arg_8+48*Arg_9*Arg_9+64*Arg_8*Arg_9+3*Arg_10+48*Arg_8+88*Arg_9+38 {O(n^2)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19: 8*Arg_9+8 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27: 8*Arg_9+2 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36: 1 {O(1)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35: 1 {O(1)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15: 32*Arg_8*Arg_8+48*Arg_9*Arg_9+80*Arg_8*Arg_9+3*Arg_10+68*Arg_8+92*Arg_9+40 {O(n^2)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in: 1 {O(1)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21: 8*Arg_9+4 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in: 1 {O(1)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+36*Arg_8+Arg_10+2 {O(n^2)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in: 1 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in: 1 {O(1)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29: 8*Arg_9+2 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in: 1 {O(1)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14: 112*Arg_8*Arg_8+144*Arg_8*Arg_9+32*Arg_9*Arg_9+152*Arg_8+6*Arg_10+72*Arg_9+44 {O(n^2)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20: 4*Arg_8+4*Arg_9+2 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28: 4*Arg_9+2 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37: 1 {O(1)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8: 32*Arg_8*Arg_8+32*Arg_8*Arg_9+2*Arg_9+36*Arg_8+Arg_10+4 {O(n^2)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11: 32*Arg_9*Arg_9+64*Arg_8*Arg_8+96*Arg_8*Arg_9+6*Arg_10+60*Arg_9+88*Arg_8+32 {O(n^2)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25: 8*Arg_9+2 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2: 1 {O(1)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17: 4*Arg_8+4*Arg_9+4 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33: 1 {O(1)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5: 16*Arg_8*Arg_8+16*Arg_8*Arg_9+16*Arg_8+Arg_10+2 {O(n^2)}
Sizebounds
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_0: 5*Arg_7+3 {O(n)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_1: 10*Arg_9+7 {O(n)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_2: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+368*Arg_8+40*Arg_10+464*Arg_9+215 {O(n^2)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_3: 1568*Arg_8*Arg_9+672*Arg_8*Arg_8+896*Arg_9*Arg_9+120*Arg_10+1288*Arg_8+15*Arg_3+1624*Arg_9+750 {O(n^2)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_5: 288*Arg_8*Arg_8+384*Arg_9*Arg_9+672*Arg_8*Arg_9+51*Arg_10+552*Arg_8+696*Arg_9+9*Arg_5+322 {O(n^2)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_7: 10*Arg_7 {O(n)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_8: 44*Arg_8 {O(n)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_9: 44*Arg_9 {O(n)}
28: eval_counterex1c_.critedge_in->eval_counterex1c_stop, Arg_10: 44*Arg_10 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_0: 2*Arg_7 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_1: 2*Arg_9 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_2: 2*Arg_10 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_3: 2*Arg_3 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_4: 2*Arg_4 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_5: 2*Arg_5 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_6: 2*Arg_6 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_7: 2*Arg_7 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_8: 2*Arg_8 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_9: 2*Arg_9 {O(n)}
27: eval_counterex1c_NewDefault_in->eval_counterex1c_.critedge_in, Arg_10: 2*Arg_10 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_0: Arg_7 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_1: Arg_9 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_2: Arg_10 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_3: Arg_3 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_5: Arg_5 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_6: Arg_6 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_8: Arg_8 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_9: Arg_9 {O(n)}
1: eval_counterex1c_bb0_in->eval_counterex1c_bb1_in, Arg_10: Arg_10 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_0: Arg_7 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_1: Arg_9 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_2: Arg_10 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_3: Arg_3 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_4: Arg_4 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_5: Arg_5 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_6: Arg_6 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_7: Arg_7 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_8: Arg_8 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_9: Arg_9 {O(n)}
3: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_10: Arg_10 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_0: Arg_7 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_1: Arg_9 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_2: Arg_10 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_3: Arg_3 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_4: Arg_4 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_5: Arg_5 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_6: Arg_6 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_7: Arg_7 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_8: Arg_8 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_9: Arg_9 {O(n)}
4: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_10: Arg_10 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_0: Arg_7 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_1: Arg_9 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_2: Arg_10 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_3: Arg_3 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_4: Arg_4 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_5: Arg_5 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_6: Arg_6 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_7: Arg_7 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_8: Arg_8 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_9: Arg_9 {O(n)}
5: eval_counterex1c_bb1_in->eval_counterex1c_.critedge_in, Arg_10: Arg_10 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_0: Arg_7 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_1: Arg_9 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_2: Arg_10 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_3: Arg_3 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_4: Arg_4 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_5: Arg_5 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_6: Arg_6 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_7: Arg_7 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_8: Arg_8 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_9: Arg_9 {O(n)}
216: eval_counterex1c_bb1_in->n_eval_counterex1c_bb2_in___38, Arg_10: Arg_10 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_8: Arg_8 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_9: Arg_9 {O(n)}
0: eval_counterex1c_start->eval_counterex1c_bb0_in, Arg_10: Arg_10 {O(n)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_0: 0 {O(1)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_1: 4*Arg_9+2 {O(n)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_7: 2 {O(1)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_8: 4*Arg_8 {O(n)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_9: 4*Arg_9 {O(n)}
182: n_eval_counterex1c_1___11->n_eval_counterex1c_2___10, Arg_10: 4*Arg_10 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_0: 0 {O(1)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_1: Arg_9 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_2: Arg_10 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_3: Arg_10+1 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_5: Arg_5 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_6: Arg_6 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_7: 0 {O(1)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_8: Arg_8 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_9: Arg_9 {O(n)}
183: n_eval_counterex1c_1___2->n_eval_counterex1c_2___1, Arg_10: Arg_10 {O(n)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_0: 0 {O(1)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_1: 4*Arg_9+2 {O(n)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_7: 2 {O(1)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_8: 4*Arg_8 {O(n)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_9: 4*Arg_9 {O(n)}
184: n_eval_counterex1c_1___25->n_eval_counterex1c_2___24, Arg_10: 4*Arg_10 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_0: 0 {O(1)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_1: Arg_9 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_2: Arg_10+1 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_3: Arg_10+1 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_5: Arg_5 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_6: Arg_6 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_7: 0 {O(1)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_8: Arg_8 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_9: Arg_9 {O(n)}
185: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___22, Arg_10: Arg_10 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_0: 1 {O(1)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_1: Arg_9 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_2: Arg_10+1 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_3: Arg_10+1 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_5: Arg_5 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_6: Arg_6 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_7: 0 {O(1)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_8: Arg_8 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_9: Arg_9 {O(n)}
186: n_eval_counterex1c_2___1->n_eval_counterex1c_bb1_in___23, Arg_10: Arg_10 {O(n)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_0: 0 {O(1)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_1: 4*Arg_9+2 {O(n)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_7: 2 {O(1)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_8: 4*Arg_8 {O(n)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_9: 4*Arg_9 {O(n)}
187: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___22, Arg_10: 4*Arg_10 {O(n)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_0: 1 {O(1)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_1: 4*Arg_9+2 {O(n)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_7: 2 {O(1)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_8: 4*Arg_8 {O(n)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_9: 4*Arg_9 {O(n)}
188: n_eval_counterex1c_2___10->n_eval_counterex1c_bb1_in___23, Arg_10: 4*Arg_10 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_0: 0 {O(1)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_1: 4*Arg_9+2 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_7: 2 {O(1)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_8: 4*Arg_8 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_9: 4*Arg_9 {O(n)}
189: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___22, Arg_10: 4*Arg_10 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_0: 1 {O(1)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_1: 4*Arg_9+2 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_7: 2 {O(1)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_8: 4*Arg_8 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_9: 4*Arg_9 {O(n)}
190: n_eval_counterex1c_2___24->n_eval_counterex1c_bb1_in___23, Arg_10: 4*Arg_10 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_0: 1 {O(1)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_1: 4*Arg_9+2 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_7: 2 {O(1)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_8: 4*Arg_8 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_9: 4*Arg_9 {O(n)}
191: n_eval_counterex1c_5___17->n_eval_counterex1c_6___16, Arg_10: 4*Arg_10 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_0: 1 {O(1)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_1: Arg_9 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_2: Arg_10 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_3: Arg_3 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_4: Arg_4 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_5: Arg_10+1 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_7: 1 {O(1)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_8: Arg_8 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_9: Arg_9 {O(n)}
192: n_eval_counterex1c_5___33->n_eval_counterex1c_6___32, Arg_10: Arg_10 {O(n)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_0: 1 {O(1)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_1: 4*Arg_9+2 {O(n)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_7: 2 {O(1)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_8: 4*Arg_8 {O(n)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_9: 4*Arg_9 {O(n)}
193: n_eval_counterex1c_5___5->n_eval_counterex1c_6___4, Arg_10: 4*Arg_10 {O(n)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_0: 1 {O(1)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_1: 4*Arg_9+2 {O(n)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_7: 2 {O(1)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_8: 4*Arg_8 {O(n)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_9: 4*Arg_9 {O(n)}
194: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___30, Arg_10: 4*Arg_10 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_0: 0 {O(1)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_1: 4*Arg_9+2 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_7: 2 {O(1)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_8: 4*Arg_8 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_9: 4*Arg_9 {O(n)}
195: n_eval_counterex1c_6___16->n_eval_counterex1c_bb1_in___31, Arg_10: 4*Arg_10 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_0: 1 {O(1)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_1: Arg_9 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_2: Arg_10+1 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_3: Arg_3 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_4: Arg_4 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_5: Arg_10+1 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_7: 1 {O(1)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_8: Arg_8 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_9: Arg_9 {O(n)}
196: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___30, Arg_10: Arg_10 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_0: 0 {O(1)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_1: Arg_9+1 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_2: Arg_10+1 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_3: Arg_3 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_4: Arg_4 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_5: Arg_10+1 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_7: 1 {O(1)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_8: Arg_8 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_9: Arg_9 {O(n)}
197: n_eval_counterex1c_6___32->n_eval_counterex1c_bb1_in___31, Arg_10: Arg_10 {O(n)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_0: 1 {O(1)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_1: 4*Arg_9+2 {O(n)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_7: 2 {O(1)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_8: 4*Arg_8 {O(n)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_9: 4*Arg_9 {O(n)}
198: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___30, Arg_10: 4*Arg_10 {O(n)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_0: 0 {O(1)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_1: 4*Arg_9+2 {O(n)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_7: 2 {O(1)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_8: 4*Arg_8 {O(n)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_9: 4*Arg_9 {O(n)}
199: n_eval_counterex1c_6___4->n_eval_counterex1c_bb1_in___31, Arg_10: 4*Arg_10 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_0: 1 {O(1)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_1: 4*Arg_9+2 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_5: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_5+34*Arg_10+368*Arg_8+464*Arg_9+212 {O(n^2)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_7: 2 {O(1)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_8: 4*Arg_8 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_9: 4*Arg_9 {O(n)}
200: n_eval_counterex1c_LeafBlock8_in___19->n_eval_counterex1c_bb4_in___18, Arg_10: 4*Arg_10 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_0: 1 {O(1)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_1: Arg_9 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_2: Arg_10 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_3: Arg_3 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_4: Arg_4 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_5: Arg_5 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_6: Arg_6 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_7: 1 {O(1)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_8: Arg_8 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_9: Arg_9 {O(n)}
201: n_eval_counterex1c_LeafBlock8_in___36->n_eval_counterex1c_bb4_in___34, Arg_10: Arg_10 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_0: Arg_7 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_1: Arg_9 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_2: Arg_10 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_3: Arg_3 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_4: Arg_4 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_5: Arg_5 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_6: Arg_6 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_7: Arg_7 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_8: Arg_8 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_9: Arg_9 {O(n)}
261: n_eval_counterex1c_LeafBlock8_in___36->eval_counterex1c_NewDefault_in, Arg_10: Arg_10 {O(n)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_0: 1 {O(1)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_1: 4*Arg_9+2 {O(n)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_7: 2 {O(1)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_8: 4*Arg_8 {O(n)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_9: 4*Arg_9 {O(n)}
202: n_eval_counterex1c_LeafBlock8_in___7->n_eval_counterex1c_bb4_in___6, Arg_10: 4*Arg_10 {O(n)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_0: 0 {O(1)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_1: 4*Arg_9+2 {O(n)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_7: 2 {O(1)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_8: 4*Arg_8 {O(n)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_9: 4*Arg_9 {O(n)}
203: n_eval_counterex1c_LeafBlock_in___13->n_eval_counterex1c_bb3_in___12, Arg_10: 4*Arg_10 {O(n)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_0: 0 {O(1)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_1: 4*Arg_9+2 {O(n)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_3: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_3+34*Arg_10+368*Arg_8+464*Arg_9+214 {O(n^2)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_7: 2 {O(1)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_8: 4*Arg_8 {O(n)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_9: 4*Arg_9 {O(n)}
204: n_eval_counterex1c_LeafBlock_in___27->n_eval_counterex1c_bb3_in___26, Arg_10: 4*Arg_10 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_0: 0 {O(1)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_1: Arg_9 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_2: Arg_10 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_3: Arg_3 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_4: Arg_4 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_5: Arg_5 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_6: Arg_6 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_7: 0 {O(1)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_8: Arg_8 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_9: Arg_9 {O(n)}
205: n_eval_counterex1c_LeafBlock_in___35->n_eval_counterex1c_bb3_in___3, Arg_10: Arg_10 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_0: Arg_7 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_1: Arg_9 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_2: Arg_10 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_3: Arg_3 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_4: Arg_4 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_5: Arg_5 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_6: Arg_6 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_7: Arg_7 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_8: Arg_8 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_9: Arg_9 {O(n)}
265: n_eval_counterex1c_LeafBlock_in___35->eval_counterex1c_NewDefault_in, Arg_10: Arg_10 {O(n)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_0: 0 {O(1)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_1: 4*Arg_9+2 {O(n)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_7: 2 {O(1)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_8: 4*Arg_8 {O(n)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_9: 4*Arg_9 {O(n)}
206: n_eval_counterex1c_NodeBlock_in___14->n_eval_counterex1c_LeafBlock_in___13, Arg_10: 4*Arg_10 {O(n)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_0: 1 {O(1)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_1: 4*Arg_9+2 {O(n)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_5: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_5+34*Arg_10+368*Arg_8+464*Arg_9+212 {O(n^2)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_7: 2 {O(1)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_8: 4*Arg_8 {O(n)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_9: 4*Arg_9 {O(n)}
207: n_eval_counterex1c_NodeBlock_in___20->n_eval_counterex1c_LeafBlock8_in___19, Arg_10: 4*Arg_10 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_0: 0 {O(1)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_1: 4*Arg_9+2 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_3: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_3+34*Arg_10+368*Arg_8+464*Arg_9+214 {O(n^2)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_7: 2 {O(1)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_8: 4*Arg_8 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_9: 4*Arg_9 {O(n)}
208: n_eval_counterex1c_NodeBlock_in___28->n_eval_counterex1c_LeafBlock_in___27, Arg_10: 4*Arg_10 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_0: Arg_7 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_1: Arg_9 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_2: Arg_10 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_3: Arg_3 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_4: Arg_4 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_5: Arg_5 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_6: Arg_6 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_7: Arg_7 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_8: Arg_8 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_9: Arg_9 {O(n)}
209: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock8_in___36, Arg_10: Arg_10 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_0: Arg_7 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_1: Arg_9 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_2: Arg_10 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_3: Arg_3 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_4: Arg_4 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_5: Arg_5 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_6: Arg_6 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_7: Arg_7 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_8: Arg_8 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_9: Arg_9 {O(n)}
210: n_eval_counterex1c_NodeBlock_in___37->n_eval_counterex1c_LeafBlock_in___35, Arg_10: Arg_10 {O(n)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_0: 1 {O(1)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_1: 4*Arg_9+2 {O(n)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_7: 2 {O(1)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_8: 4*Arg_8 {O(n)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_9: 4*Arg_9 {O(n)}
211: n_eval_counterex1c_NodeBlock_in___8->n_eval_counterex1c_LeafBlock8_in___7, Arg_10: 4*Arg_10 {O(n)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_0: 0 {O(1)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_1: 4*Arg_9+2 {O(n)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_7: 2 {O(1)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_8: 4*Arg_8 {O(n)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_9: 4*Arg_9 {O(n)}
212: n_eval_counterex1c_bb1_in___22->n_eval_counterex1c_bb2_in___15, Arg_10: 4*Arg_10 {O(n)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_0: 0 {O(1)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+2 {O(n)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+9*Arg_10+92*Arg_8+53 {O(n^2)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+9*Arg_10+92*Arg_8+54 {O(n^2)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_5+232*Arg_9+106 {O(n^2)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_7: 2 {O(1)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
278: n_eval_counterex1c_bb1_in___22->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_0: 1 {O(1)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_1: 4*Arg_9+2 {O(n)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_5: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_5+34*Arg_10+368*Arg_8+464*Arg_9+212 {O(n^2)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_7: 2 {O(1)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_8: 4*Arg_8 {O(n)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_9: 4*Arg_9 {O(n)}
213: n_eval_counterex1c_bb1_in___23->n_eval_counterex1c_bb2_in___21, Arg_10: 4*Arg_10 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_0: 1 {O(1)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+2 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+9*Arg_10+92*Arg_8+53 {O(n^2)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+9*Arg_10+92*Arg_8+54 {O(n^2)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_5+232*Arg_9+106 {O(n^2)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_7: 2 {O(1)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
279: n_eval_counterex1c_bb1_in___23->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_0: 1 {O(1)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_1: 4*Arg_9+2 {O(n)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_7: 2 {O(1)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_8: 4*Arg_8 {O(n)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_9: 4*Arg_9 {O(n)}
214: n_eval_counterex1c_bb1_in___30->n_eval_counterex1c_bb2_in___9, Arg_10: 4*Arg_10 {O(n)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_0: 1 {O(1)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+2 {O(n)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_2: 1 {O(1)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_3+232*Arg_9+107 {O(n^2)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_5: 1 {O(1)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_7: 3 {O(1)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
268: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_0: 1 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+2 {O(n)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_2: 1 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_3+232*Arg_9+107 {O(n^2)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_5: 1 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_7: 3 {O(1)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
276: n_eval_counterex1c_bb1_in___30->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_0: 0 {O(1)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_1: 4*Arg_9+2 {O(n)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_3: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_3+34*Arg_10+368*Arg_8+464*Arg_9+214 {O(n^2)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_7: 2 {O(1)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_8: 4*Arg_8 {O(n)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_9: 4*Arg_9 {O(n)}
215: n_eval_counterex1c_bb1_in___31->n_eval_counterex1c_bb2_in___29, Arg_10: 4*Arg_10 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_0: 0 {O(1)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+3 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_2: 1 {O(1)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_3+232*Arg_9+107 {O(n^2)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_5: 1 {O(1)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_7: 3 {O(1)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
269: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_0: 0 {O(1)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_1: 1 {O(1)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_2: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+105 {O(n^2)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_3: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_3+34*Arg_10+368*Arg_8+464*Arg_9+214 {O(n^2)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_7: 5 {O(1)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_8: 9*Arg_8 {O(n)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_9: 9*Arg_9 {O(n)}
273: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_10: 9*Arg_10 {O(n)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_0: 0 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_1: 5*Arg_9+3 {O(n)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_2: 1 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+2*Arg_3+232*Arg_9+107 {O(n^2)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_5: 1 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_7: 3 {O(1)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_8: 5*Arg_8 {O(n)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_9: 5*Arg_9 {O(n)}
277: n_eval_counterex1c_bb1_in___31->eval_counterex1c_.critedge_in, Arg_10: 5*Arg_10 {O(n)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_0: 0 {O(1)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_1: 4*Arg_9+2 {O(n)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_7: 2 {O(1)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_8: 4*Arg_8 {O(n)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_9: 4*Arg_9 {O(n)}
217: n_eval_counterex1c_bb2_in___15->n_eval_counterex1c_NodeBlock_in___14, Arg_10: 4*Arg_10 {O(n)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_0: 1 {O(1)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_1: 4*Arg_9+2 {O(n)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_5: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_5+34*Arg_10+368*Arg_8+464*Arg_9+212 {O(n^2)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_7: 2 {O(1)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_8: 4*Arg_8 {O(n)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_9: 4*Arg_9 {O(n)}
218: n_eval_counterex1c_bb2_in___21->n_eval_counterex1c_NodeBlock_in___20, Arg_10: 4*Arg_10 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_0: 0 {O(1)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_1: 4*Arg_9+2 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_3: 192*Arg_8*Arg_8+256*Arg_9*Arg_9+448*Arg_8*Arg_9+2*Arg_3+34*Arg_10+368*Arg_8+464*Arg_9+214 {O(n^2)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_7: 2 {O(1)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_8: 4*Arg_8 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_9: 4*Arg_9 {O(n)}
219: n_eval_counterex1c_bb2_in___29->n_eval_counterex1c_NodeBlock_in___28, Arg_10: 4*Arg_10 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_0: Arg_7 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_1: Arg_9 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_2: Arg_10 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_3: Arg_3 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_4: Arg_4 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_5: Arg_5 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_6: Arg_6 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_7: Arg_7 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_8: Arg_8 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_9: Arg_9 {O(n)}
220: n_eval_counterex1c_bb2_in___38->n_eval_counterex1c_NodeBlock_in___37, Arg_10: Arg_10 {O(n)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_0: 1 {O(1)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_1: 4*Arg_9+2 {O(n)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_7: 2 {O(1)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_8: 4*Arg_8 {O(n)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_9: 4*Arg_9 {O(n)}
221: n_eval_counterex1c_bb2_in___9->n_eval_counterex1c_NodeBlock_in___8, Arg_10: 4*Arg_10 {O(n)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_0: 0 {O(1)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_1: 4*Arg_9+2 {O(n)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_5+106 {O(n^2)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_7: 2 {O(1)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_8: 4*Arg_8 {O(n)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_9: 4*Arg_9 {O(n)}
222: n_eval_counterex1c_bb3_in___12->n_eval_counterex1c_1___11, Arg_10: 4*Arg_10 {O(n)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_0: 0 {O(1)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_1: 4*Arg_9+2 {O(n)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_3: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_5: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+106 {O(n^2)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_7: 2 {O(1)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_8: 4*Arg_8 {O(n)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_9: 4*Arg_9 {O(n)}
223: n_eval_counterex1c_bb3_in___26->n_eval_counterex1c_1___25, Arg_10: 4*Arg_10 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_0: 0 {O(1)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_1: Arg_9 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_2: Arg_10 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_3: Arg_10+1 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_4: Arg_4 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_5: Arg_5 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_6: Arg_6 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_7: 0 {O(1)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_8: Arg_8 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_9: Arg_9 {O(n)}
224: n_eval_counterex1c_bb3_in___3->n_eval_counterex1c_1___2, Arg_10: Arg_10 {O(n)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_0: 1 {O(1)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_1: 4*Arg_9+2 {O(n)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+107 {O(n^2)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_7: 2 {O(1)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_8: 4*Arg_8 {O(n)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_9: 4*Arg_9 {O(n)}
225: n_eval_counterex1c_bb4_in___18->n_eval_counterex1c_5___17, Arg_10: 4*Arg_10 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_0: 1 {O(1)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_1: Arg_9 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_2: Arg_10 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_3: Arg_3 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_4: Arg_4 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_5: Arg_10+1 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_6: Arg_6 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_7: 1 {O(1)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_8: Arg_8 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_9: Arg_9 {O(n)}
226: n_eval_counterex1c_bb4_in___34->n_eval_counterex1c_5___33, Arg_10: Arg_10 {O(n)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_0: 1 {O(1)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_1: 4*Arg_9+2 {O(n)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_2: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+52 {O(n^2)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_3: 128*Arg_9*Arg_9+224*Arg_8*Arg_9+96*Arg_8*Arg_8+17*Arg_10+184*Arg_8+232*Arg_9+Arg_3+107 {O(n^2)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_5: 112*Arg_8*Arg_9+48*Arg_8*Arg_8+64*Arg_9*Arg_9+116*Arg_9+8*Arg_10+92*Arg_8+53 {O(n^2)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_7: 2 {O(1)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_8: 4*Arg_8 {O(n)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_9: 4*Arg_9 {O(n)}
227: n_eval_counterex1c_bb4_in___6->n_eval_counterex1c_5___5, Arg_10: 4*Arg_10 {O(n)}