Initial Problem

Start: eval_rank1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1
Locations: eval_rank1_.critedge_in, eval_rank1_0, eval_rank1_1, eval_rank1_2, eval_rank1_3, eval_rank1_bb0_in, eval_rank1_bb1_in, eval_rank1_bb2_in, eval_rank1_bb3_in, eval_rank1_bb4_in, eval_rank1_bb5_in, eval_rank1_bb6_in, eval_rank1_bb7_in, eval_rank1_start, eval_rank1_stop
Transitions:
18:eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6)
7:eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
8:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:0<Arg_0
9:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:Arg_0<=0
14:eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
16:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=0
15:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_1
1:eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,0,Arg_6,Arg_7)
2:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && 0<=Arg_5
3:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<0
4:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<0
5:eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
11:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<Arg_6
10:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2
12:eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
17:eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7)
19:eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7)
20:eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_rank1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

Preprocessing

Found invariant Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location eval_rank1_3

Found invariant 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 for location eval_rank1_bb6_in

Found invariant 0<=1+Arg_5 && Arg_3<=Arg_2 for location eval_rank1_bb7_in

Found invariant Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location eval_rank1_bb4_in

Found invariant 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location eval_rank1_.critedge_in

Found invariant 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 for location eval_rank1_bb2_in

Found invariant 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 for location eval_rank1_0

Found invariant 0<=1+Arg_5 && Arg_3<=Arg_2 for location eval_rank1_bb1_in

Found invariant Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location eval_rank1_2

Found invariant 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location eval_rank1_bb3_in

Found invariant 0<=1+Arg_5 && Arg_3<=Arg_2 for location eval_rank1_stop

Found invariant 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 for location eval_rank1_1

Found invariant Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location eval_rank1_bb5_in

Problem after Preprocessing

Start: eval_rank1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1
Locations: eval_rank1_.critedge_in, eval_rank1_0, eval_rank1_1, eval_rank1_2, eval_rank1_3, eval_rank1_bb0_in, eval_rank1_bb1_in, eval_rank1_bb2_in, eval_rank1_bb3_in, eval_rank1_bb4_in, eval_rank1_bb5_in, eval_rank1_bb6_in, eval_rank1_bb7_in, eval_rank1_start, eval_rank1_stop
Transitions:
18:eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0
7:eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2
8:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 && 0<Arg_0
9:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 && Arg_0<=0
14:eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0
16:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_1<=0
15:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_1
1:eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,0,Arg_6,Arg_7)
2:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
3:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_3<0
4:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_5<0
5:eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2
11:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_2<Arg_6
10:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_6<=Arg_2
12:eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0
17:eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0
19:eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2
20:eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2
0:eval_rank1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

MPRF for transition 18:eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

eval_rank1_1 [Arg_3+1 ]
eval_rank1_3 [Arg_3+1 ]
eval_rank1_bb2_in [Arg_3+1 ]
eval_rank1_0 [Arg_3+1 ]
eval_rank1_.critedge_in [Arg_3+1 ]
eval_rank1_bb4_in [Arg_3+1 ]
eval_rank1_2 [Arg_3+1 ]
eval_rank1_bb5_in [Arg_3+1 ]
eval_rank1_bb3_in [Arg_3+1 ]
eval_rank1_bb6_in [Arg_4+1 ]
eval_rank1_bb1_in [Arg_3+1 ]

MPRF for transition 8:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 && 0<Arg_0 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

eval_rank1_1 [Arg_3+1 ]
eval_rank1_3 [Arg_3 ]
eval_rank1_bb2_in [Arg_3+1 ]
eval_rank1_0 [Arg_3+1 ]
eval_rank1_.critedge_in [Arg_3 ]
eval_rank1_bb4_in [Arg_3 ]
eval_rank1_2 [Arg_3 ]
eval_rank1_bb5_in [Arg_3 ]
eval_rank1_bb3_in [Arg_3 ]
eval_rank1_bb6_in [Arg_4+1 ]
eval_rank1_bb1_in [Arg_3+1 ]

MPRF for transition 16:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_1<=0 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

eval_rank1_1 [Arg_3+1 ]
eval_rank1_3 [Arg_3+1 ]
eval_rank1_bb2_in [Arg_3+1 ]
eval_rank1_0 [Arg_3+1 ]
eval_rank1_.critedge_in [Arg_3 ]
eval_rank1_bb4_in [Arg_3+1 ]
eval_rank1_2 [Arg_3+1 ]
eval_rank1_bb5_in [Arg_3+1 ]
eval_rank1_bb3_in [Arg_3+1 ]
eval_rank1_bb6_in [Arg_4+1 ]
eval_rank1_bb1_in [Arg_3+1 ]

MPRF for transition 11:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_2<Arg_6 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

eval_rank1_1 [Arg_3+1 ]
eval_rank1_3 [Arg_3+1 ]
eval_rank1_bb2_in [Arg_3+1 ]
eval_rank1_0 [Arg_3+1 ]
eval_rank1_.critedge_in [Arg_3 ]
eval_rank1_bb4_in [Arg_3+1 ]
eval_rank1_2 [Arg_3+1 ]
eval_rank1_bb5_in [Arg_3+1 ]
eval_rank1_bb3_in [Arg_3+1 ]
eval_rank1_bb6_in [Arg_4+1 ]
eval_rank1_bb1_in [Arg_3+1 ]

MPRF for transition 14:eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 of depth 1:

new bound:

4*Arg_2*Arg_2+8*Arg_2+3 {O(n^2)}

MPRF:

eval_rank1_.critedge_in [Arg_2+Arg_3 ]
eval_rank1_1 [Arg_2+Arg_3+1 ]
eval_rank1_3 [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_3+1 ]
eval_rank1_0 [Arg_2+Arg_3+1 ]
eval_rank1_bb4_in [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_2 [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_bb5_in [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb3_in [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_4+1 ]
eval_rank1_bb1_in [Arg_2+Arg_3+1 ]

MPRF for transition 15:eval_rank1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2*Arg_2+5*Arg_2+3 {O(n^2)}

MPRF:

eval_rank1_.critedge_in [Arg_2+1 ]
eval_rank1_1 [Arg_2+1 ]
eval_rank1_3 [Arg_2+1-Arg_6 ]
eval_rank1_bb2_in [Arg_2+1 ]
eval_rank1_0 [Arg_2+1 ]
eval_rank1_bb4_in [Arg_2+1-Arg_6 ]
eval_rank1_2 [Arg_2+1-Arg_6 ]
eval_rank1_bb5_in [Arg_2-Arg_6 ]
eval_rank1_bb3_in [Arg_2+1-Arg_6 ]
eval_rank1_bb6_in [Arg_2+1 ]
eval_rank1_bb1_in [Arg_2+1 ]

MPRF for transition 10:eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_6<=Arg_2 of depth 1:

new bound:

4*Arg_2*Arg_2+8*Arg_2+3 {O(n^2)}

MPRF:

eval_rank1_.critedge_in [Arg_2+Arg_3 ]
eval_rank1_1 [Arg_2+Arg_3+1 ]
eval_rank1_3 [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_3+1 ]
eval_rank1_0 [Arg_2+Arg_3+1 ]
eval_rank1_bb4_in [Arg_2+Arg_3-Arg_6 ]
eval_rank1_2 [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb5_in [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb3_in [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_4+1 ]
eval_rank1_bb1_in [Arg_2+Arg_3+1 ]

MPRF for transition 12:eval_rank1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 of depth 1:

new bound:

4*Arg_2*Arg_2+8*Arg_2+3 {O(n^2)}

MPRF:

eval_rank1_.critedge_in [Arg_2+Arg_3 ]
eval_rank1_1 [Arg_2+Arg_3+1 ]
eval_rank1_3 [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_3+1 ]
eval_rank1_0 [Arg_2+Arg_3+1 ]
eval_rank1_bb4_in [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_2 [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb5_in [Arg_2+Arg_3-Arg_6 ]
eval_rank1_bb3_in [Arg_2+Arg_3+1-Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_4+1 ]
eval_rank1_bb1_in [Arg_2+Arg_3+1 ]

MPRF for transition 17:eval_rank1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 of depth 1:

new bound:

2*Arg_2*Arg_2+5*Arg_2+3 {O(n^2)}

MPRF:

eval_rank1_.critedge_in [Arg_2+1 ]
eval_rank1_1 [Arg_2+1 ]
eval_rank1_3 [Arg_2+1-Arg_6 ]
eval_rank1_bb2_in [Arg_2+1 ]
eval_rank1_0 [Arg_2+1 ]
eval_rank1_bb4_in [Arg_2+1-Arg_6 ]
eval_rank1_2 [Arg_2+1-Arg_6 ]
eval_rank1_bb5_in [Arg_2+1-Arg_6 ]
eval_rank1_bb3_in [Arg_2+1-Arg_6 ]
eval_rank1_bb6_in [Arg_2+1 ]
eval_rank1_bb1_in [Arg_2+1 ]

MPRF for transition 7:eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 of depth 1:

new bound:

4*Arg_2*Arg_2*Arg_2*Arg_2+22*Arg_2*Arg_2*Arg_2+44*Arg_2*Arg_2+39*Arg_2+13 {O(n^4)}

MPRF:

eval_rank1_1 [Arg_2+Arg_5 ]
eval_rank1_bb5_in [Arg_2+Arg_6 ]
eval_rank1_3 [Arg_2+Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_5+1 ]
eval_rank1_0 [Arg_2+Arg_5+1 ]
eval_rank1_bb3_in [Arg_2+Arg_6 ]
eval_rank1_.critedge_in [Arg_2+Arg_6 ]
eval_rank1_bb4_in [Arg_2+Arg_6 ]
eval_rank1_2 [Arg_2+Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_7 ]
eval_rank1_bb1_in [Arg_2+Arg_5+1 ]

MPRF for transition 9:eval_rank1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 && Arg_0<=0 of depth 1:

new bound:

4*Arg_2*Arg_2*Arg_2*Arg_2+22*Arg_2*Arg_2*Arg_2+44*Arg_2*Arg_2+39*Arg_2+13 {O(n^4)}

MPRF:

eval_rank1_1 [Arg_2+Arg_5+1 ]
eval_rank1_bb5_in [Arg_2+Arg_6 ]
eval_rank1_3 [Arg_2+Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_5+1 ]
eval_rank1_0 [Arg_2+Arg_5+1 ]
eval_rank1_bb3_in [Arg_2+Arg_6 ]
eval_rank1_.critedge_in [Arg_2+Arg_6 ]
eval_rank1_bb4_in [Arg_2+Arg_6 ]
eval_rank1_2 [Arg_2+Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_7 ]
eval_rank1_bb1_in [Arg_2+Arg_5+1 ]

MPRF for transition 2:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

4*Arg_2*Arg_2*Arg_2*Arg_2+22*Arg_2*Arg_2*Arg_2+46*Arg_2*Arg_2+44*Arg_2+17 {O(n^4)}

MPRF:

eval_rank1_1 [Arg_2+Arg_5+1 ]
eval_rank1_bb5_in [Arg_2+Arg_6+1 ]
eval_rank1_3 [Arg_2+Arg_6+1 ]
eval_rank1_bb2_in [Arg_2+Arg_5+1 ]
eval_rank1_0 [Arg_2+Arg_5+1 ]
eval_rank1_bb3_in [Arg_2+Arg_6+1 ]
eval_rank1_.critedge_in [Arg_2+Arg_6+1 ]
eval_rank1_bb4_in [Arg_2+Arg_6+1 ]
eval_rank1_2 [Arg_2+Arg_6+1 ]
eval_rank1_bb6_in [Arg_2+Arg_7+1 ]
eval_rank1_bb1_in [Arg_2+Arg_5+2 ]

MPRF for transition 5:eval_rank1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 of depth 1:

new bound:

4*Arg_2*Arg_2*Arg_2*Arg_2+22*Arg_2*Arg_2*Arg_2+44*Arg_2*Arg_2+39*Arg_2+13 {O(n^4)}

MPRF:

eval_rank1_1 [Arg_2+Arg_5 ]
eval_rank1_bb5_in [Arg_2+Arg_6 ]
eval_rank1_3 [Arg_2+Arg_6 ]
eval_rank1_bb2_in [Arg_2+Arg_5+1 ]
eval_rank1_0 [Arg_2+Arg_5 ]
eval_rank1_bb3_in [Arg_2+Arg_6 ]
eval_rank1_.critedge_in [Arg_2+Arg_6 ]
eval_rank1_bb4_in [Arg_2+Arg_6 ]
eval_rank1_2 [Arg_2+Arg_6 ]
eval_rank1_bb6_in [Arg_2+Arg_7 ]
eval_rank1_bb1_in [Arg_2+Arg_5+1 ]

MPRF for transition 19:eval_rank1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_2 of depth 1:

new bound:

4*Arg_2*Arg_2*Arg_2*Arg_2+24*Arg_2*Arg_2*Arg_2+55*Arg_2*Arg_2+58*Arg_2+23 {O(n^4)}

MPRF:

eval_rank1_1 [Arg_2+Arg_3+Arg_5+2 ]
eval_rank1_bb5_in [Arg_2+Arg_3+Arg_6+2 ]
eval_rank1_3 [Arg_2+Arg_3+Arg_6+2 ]
eval_rank1_bb2_in [Arg_2+Arg_3+Arg_5+2 ]
eval_rank1_0 [Arg_2+Arg_3+Arg_5+2 ]
eval_rank1_bb3_in [Arg_2+Arg_3+Arg_6+2 ]
eval_rank1_.critedge_in [Arg_2+Arg_3+Arg_6+1 ]
eval_rank1_bb4_in [Arg_2+Arg_3+Arg_6+2 ]
eval_rank1_2 [Arg_2+Arg_3+Arg_6+2 ]
eval_rank1_bb6_in [Arg_2+Arg_4+Arg_7+2 ]
eval_rank1_bb1_in [Arg_2+Arg_3+Arg_5+2 ]

Analysing control-flow refined program

Cut unsatisfiable transition 4: eval_rank1_bb1_in->eval_rank1_bb7_in

Cut unsatisfiable transition 210: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in

Cut unsatisfiable transition 215: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in

Found invariant Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_2___5

Found invariant Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_rank1_bb2_in___27

Found invariant Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 for location n_eval_rank1_0___14

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_bb3_in___24

Found invariant 0<=1+Arg_5 && Arg_3<=Arg_2 for location eval_rank1_bb7_in

Found invariant Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_bb4_in___8

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_bb5_in___18

Found invariant Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_0<=1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 for location n_eval_rank1_bb1_in___11

Found invariant Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_bb1_in___6

Found invariant Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1__Pcritedge_in___9

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && 1+Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank1_bb6_in___1

Found invariant Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && Arg_0<=Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_0<=0 for location n_eval_rank1_bb6_in___12

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_3___20

Found invariant Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 for location n_eval_rank1_bb2_in___15

Found invariant Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 for location eval_rank1_bb1_in

Found invariant Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_rank1_1___25

Found invariant Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_bb3_in___10

Found invariant Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_bb5_in___2

Found invariant Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && Arg_5<=0 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_0+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 for location n_eval_rank1_bb6_in___23

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank1__Pcritedge_in___19

Found invariant Arg_7<=Arg_6 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 1<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && 2<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank1_bb6_in___7

Found invariant 0<=1+Arg_5 && Arg_3<=Arg_2 for location eval_rank1_stop

Found invariant Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=1+Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_4+Arg_5 && 0<=2+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && Arg_1<=1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank1_bb1_in___16

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank1_bb6_in___17

Found invariant Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 for location n_eval_rank1_1___13

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_bb4_in___22

Found invariant Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank1__Pcritedge_in___3

Found invariant Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_rank1_0___26

Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_2___21

Found invariant Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 for location n_eval_rank1_3___4

MPRF for transition 158:n_eval_rank1_1___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && 0<Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

3*Arg_2+2 {O(n)}

MPRF:

n_eval_rank1_1___13 [2*Arg_2+Arg_4-1 ]
n_eval_rank1_3___20 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_3___4 [2*Arg_2+Arg_3-2 ]
n_eval_rank1__Pcritedge_in___19 [2*Arg_2+Arg_3-2 ]
n_eval_rank1__Pcritedge_in___3 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb2_in___15 [2*Arg_2+Arg_3-1 ]
n_eval_rank1_0___14 [2*Arg_2+Arg_3-1 ]
n_eval_rank1__Pcritedge_in___9 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb3_in___24 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb4_in___22 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_2___21 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb4_in___8 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_2___5 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb5_in___18 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb5_in___2 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb3_in___10 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb6_in___1 [2*Arg_2+3*Arg_4+1-2*Arg_3 ]
n_eval_rank1_bb6_in___12 [2*Arg_2+Arg_4-1 ]
n_eval_rank1_bb1_in___11 [2*Arg_2+Arg_3-1 ]
n_eval_rank1_bb6_in___17 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb1_in___16 [2*Arg_2+Arg_3-1 ]
n_eval_rank1_bb6_in___7 [2*Arg_2+Arg_3-2 ]
n_eval_rank1_bb1_in___6 [2*Arg_2+Arg_4+Arg_7-Arg_6-1 ]

MPRF for transition 162:n_eval_rank1_2___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_3___20(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg5_P,Arg6_P,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg5_P && Arg6_P<=Arg_2 && Arg5_P<=Arg6_P && 1<=Arg_0 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_6<=Arg6_P && Arg6_P<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3 ]
n_eval_rank1_2___5 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_4+Arg_6-Arg_5 ]

MPRF for transition 164:n_eval_rank1_3___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=0 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_3+1 ]
n_eval_rank1_3___4 [Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_3+1 ]
n_eval_rank1_0___14 [Arg_4+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_3+1 ]
n_eval_rank1_2___21 [Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_3 ]
n_eval_rank1_2___5 [Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_4+1 ]
n_eval_rank1_bb6_in___12 [Arg_4+1 ]
n_eval_rank1_bb1_in___11 [Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_4+1 ]

MPRF for transition 165:n_eval_rank1_3___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && 0<Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [2*Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [2*Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [2*Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [2*Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [2*Arg_2+Arg_4+1 ]
n_eval_rank1_0___14 [2*Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+Arg_6-1 ]
n_eval_rank1_bb3_in___24 [2*Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [2*Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [2*Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [2*Arg_2+Arg_3 ]
n_eval_rank1_2___5 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [2*Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___12 [2*Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___11 [2*Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___17 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [2*Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_4+Arg_6 ]
n_eval_rank1_bb1_in___6 [2*Arg_2+Arg_4+1 ]

MPRF for transition 166:n_eval_rank1_3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=0 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+1 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+1 ]

MPRF for transition 168:n_eval_rank1__Pcritedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+1 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_3+Arg_6 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_4+1 ]

MPRF for transition 169:n_eval_rank1__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3+Arg_6 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3+Arg_6-Arg_7 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_3+Arg_7 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_4+Arg_6-Arg_5 ]

MPRF for transition 170:n_eval_rank1__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_6<=1+Arg_2 && 1+Arg_5<=Arg_6 && 0<=Arg_5 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<Arg_6 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+1 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1_0___14 [Arg_2+Arg_4+1 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3+Arg_6+1-Arg_7 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3+Arg_6-Arg_7 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+Arg_6-Arg_5 ]

MPRF for transition 172:n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=1+Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_4+Arg_5 && 0<=2+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && Arg_1<=1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4 ]
n_eval_rank1_3___20 [Arg_3 ]
n_eval_rank1_3___4 [Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_3 ]
n_eval_rank1_0___14 [Arg_3 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_3 ]
n_eval_rank1_2___21 [Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_3 ]
n_eval_rank1_2___5 [Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_4 ]
n_eval_rank1_bb1_in___11 [Arg_4 ]
n_eval_rank1_bb6_in___17 [Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_4 ]

MPRF for transition 174:n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4 ]
n_eval_rank1_3___20 [Arg_3 ]
n_eval_rank1_3___4 [Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_4 ]
n_eval_rank1_0___14 [Arg_3 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_3 ]
n_eval_rank1_2___21 [Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_3 ]
n_eval_rank1_2___5 [Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_4+1 ]
n_eval_rank1_bb6_in___12 [Arg_3 ]
n_eval_rank1_bb1_in___11 [Arg_4 ]
n_eval_rank1_bb6_in___17 [Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_4 ]
n_eval_rank1_bb6_in___7 [Arg_4+Arg_6-Arg_2 ]
n_eval_rank1_bb1_in___6 [Arg_3+1 ]

MPRF for transition 177:n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_1 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_2<Arg_6 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4+1 ]
n_eval_rank1_3___20 [Arg_3+1 ]
n_eval_rank1_3___4 [Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_4+1 ]
n_eval_rank1_0___14 [Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_3+1 ]
n_eval_rank1_2___21 [Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_3+1 ]
n_eval_rank1_2___5 [Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_3+1 ]
n_eval_rank1_bb6_in___12 [Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_4+1 ]
n_eval_rank1_bb6_in___17 [Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_4+Arg_7-Arg_2 ]
n_eval_rank1_bb1_in___6 [Arg_4+Arg_6-Arg_5 ]

MPRF for transition 179:n_eval_rank1_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb4_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_6<=Arg_2 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+1 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3 ]
n_eval_rank1_2___5 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_4+Arg_7-Arg_5 ]

MPRF for transition 180:n_eval_rank1_bb4_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_2___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_4+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3 ]
n_eval_rank1_2___5 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+Arg_6-Arg_5 ]

MPRF for transition 182:n_eval_rank1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 0<Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && 1<=Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_4+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3+Arg_6-1 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3 ]
n_eval_rank1_2___5 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb6_in___7 [Arg_4+Arg_6 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+1 ]

MPRF for transition 184:n_eval_rank1_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && 1+Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_7<=Arg_2 && 1+Arg_5<=Arg_7 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3 ]
n_eval_rank1_0___14 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3 ]
n_eval_rank1_2___5 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_4 ]

MPRF for transition 186:n_eval_rank1_bb6_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_7<=Arg_2 && Arg_5<=Arg_7 && Arg_1<=0 && 1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_3+1 ]
n_eval_rank1_3___4 [Arg_3 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_3+1 ]
n_eval_rank1_0___14 [Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_3+1 ]
n_eval_rank1_2___21 [Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_3 ]
n_eval_rank1_2___5 [Arg_3 ]
n_eval_rank1_bb5_in___18 [Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_3 ]
n_eval_rank1_bb3_in___10 [Arg_3 ]
n_eval_rank1_bb6_in___1 [Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_3+Arg_5+2-Arg_7 ]
n_eval_rank1_bb6_in___17 [Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_3+1 ]
n_eval_rank1_bb6_in___7 [Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_3+1 ]

MPRF for transition 188:n_eval_rank1_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 1<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && 2<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_6<=1+Arg_2 && 1+Arg_5<=Arg_6 && 0<=Arg_5 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank1_1___13 [Arg_4+1 ]
n_eval_rank1_3___20 [Arg_3+1 ]
n_eval_rank1_3___4 [Arg_3+1 ]
n_eval_rank1__Pcritedge_in___19 [Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_3+1 ]
n_eval_rank1_0___14 [Arg_3+1 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3+1 ]
n_eval_rank1_bb3_in___24 [Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_3+1 ]
n_eval_rank1_2___21 [Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_3+1 ]
n_eval_rank1_2___5 [Arg_3+1 ]
n_eval_rank1_bb5_in___18 [Arg_3+1 ]
n_eval_rank1_bb5_in___2 [Arg_3+1 ]
n_eval_rank1_bb3_in___10 [Arg_3+1 ]
n_eval_rank1_bb6_in___1 [Arg_3 ]
n_eval_rank1_bb6_in___12 [Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_3+Arg_5-Arg_7 ]
n_eval_rank1_bb1_in___16 [Arg_3+Arg_6-Arg_5 ]
n_eval_rank1_bb6_in___7 [Arg_3+1 ]
n_eval_rank1_bb1_in___6 [Arg_4+1 ]

MPRF for transition 156:n_eval_rank1_0___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_1___13(NoDet0,Arg_1,Arg2_P,Arg3_P,Arg_4,Arg5_P,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && 0<=Arg5_P && Arg3_P<=Arg2_P && 0<=Arg3_P && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2<=Arg2_P && Arg2_P<=Arg_2 of depth 1:

new bound:

3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_5 ]
n_eval_rank1_3___20 [Arg_5 ]
n_eval_rank1_3___4 [0 ]
n_eval_rank1__Pcritedge_in___19 [Arg_6 ]
n_eval_rank1__Pcritedge_in___3 [0 ]
n_eval_rank1_bb6_in___1 [Arg_7-Arg_6 ]
n_eval_rank1_bb6_in___7 [Arg_6-Arg_2-1 ]
n_eval_rank1_bb1_in___6 [Arg_2+1 ]
n_eval_rank1_bb2_in___15 [Arg_7 ]
n_eval_rank1_0___14 [Arg_5+1 ]
n_eval_rank1__Pcritedge_in___9 [0 ]
n_eval_rank1_bb3_in___24 [Arg_6 ]
n_eval_rank1_bb4_in___22 [Arg_5 ]
n_eval_rank1_2___21 [Arg_6 ]
n_eval_rank1_bb4_in___8 [0 ]
n_eval_rank1_2___5 [0 ]
n_eval_rank1_bb5_in___18 [0 ]
n_eval_rank1_bb5_in___2 [0 ]
n_eval_rank1_bb3_in___10 [0 ]
n_eval_rank1_bb6_in___12 [Arg_7 ]
n_eval_rank1_bb1_in___11 [Arg_7 ]
n_eval_rank1_bb6_in___17 [Arg_5 ]
n_eval_rank1_bb1_in___16 [Arg_7 ]

MPRF for transition 159:n_eval_rank1_1___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_0<=0 of depth 1:

new bound:

3*Arg_2*Arg_2+7*Arg_2+3 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_7+1 ]
n_eval_rank1_3___20 [Arg_5+1 ]
n_eval_rank1_3___4 [0 ]
n_eval_rank1__Pcritedge_in___19 [Arg_6+1 ]
n_eval_rank1__Pcritedge_in___3 [0 ]
n_eval_rank1_bb6_in___1 [Arg_6-Arg_7 ]
n_eval_rank1_bb6_in___7 [0 ]
n_eval_rank1_bb1_in___6 [Arg_2+2 ]
n_eval_rank1_bb2_in___15 [Arg_7+1 ]
n_eval_rank1_0___14 [Arg_7+1 ]
n_eval_rank1__Pcritedge_in___9 [0 ]
n_eval_rank1_bb3_in___24 [Arg_5+1 ]
n_eval_rank1_bb4_in___22 [Arg_6+1 ]
n_eval_rank1_2___21 [Arg_5+1 ]
n_eval_rank1_bb4_in___8 [0 ]
n_eval_rank1_2___5 [0 ]
n_eval_rank1_bb5_in___18 [1 ]
n_eval_rank1_bb5_in___2 [0 ]
n_eval_rank1_bb3_in___10 [0 ]
n_eval_rank1_bb6_in___12 [Arg_5+1 ]
n_eval_rank1_bb1_in___11 [Arg_7+1 ]
n_eval_rank1_bb6_in___17 [Arg_5+1 ]
n_eval_rank1_bb1_in___16 [Arg_7+1 ]

MPRF for transition 163:n_eval_rank1_2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_3___4(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg5_P,Arg6_P,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg5_P && Arg6_P<=Arg_2 && Arg5_P<=Arg6_P && 1<=Arg_0 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_6<=Arg6_P && Arg6_P<=Arg_6 of depth 1:

new bound:

6*Arg_2*Arg_2+10*Arg_2+2 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3-Arg_7 ]
n_eval_rank1_bb6_in___7 [Arg_3 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_3 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_4+Arg_7-Arg_5 ]

MPRF for transition 167:n_eval_rank1_3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && 0<Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

12*Arg_2*Arg_2+18*Arg_2+4 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3+1-Arg_7 ]
n_eval_rank1_bb6_in___7 [2*Arg_2+Arg_3+1-2*Arg_7 ]
n_eval_rank1_bb1_in___6 [2*Arg_2+Arg_3+Arg_4+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3 ]
n_eval_rank1_0___14 [Arg_2+Arg_4 ]
n_eval_rank1__Pcritedge_in___9 [2*Arg_2+Arg_3+1-2*Arg_6 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_4+1 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+Arg_5+1-Arg_7 ]

MPRF for transition 171:n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_0<=1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_5+1 ]
n_eval_rank1_3___20 [Arg_5 ]
n_eval_rank1_3___4 [0 ]
n_eval_rank1__Pcritedge_in___19 [Arg_6 ]
n_eval_rank1__Pcritedge_in___3 [0 ]
n_eval_rank1_bb6_in___1 [0 ]
n_eval_rank1_bb6_in___7 [0 ]
n_eval_rank1_bb1_in___6 [Arg_2+1 ]
n_eval_rank1_bb2_in___15 [Arg_7 ]
n_eval_rank1_0___14 [Arg_7 ]
n_eval_rank1__Pcritedge_in___9 [0 ]
n_eval_rank1_bb3_in___24 [Arg_5 ]
n_eval_rank1_bb4_in___22 [Arg_5 ]
n_eval_rank1_2___21 [Arg_5 ]
n_eval_rank1_bb4_in___8 [0 ]
n_eval_rank1_2___5 [0 ]
n_eval_rank1_bb5_in___18 [0 ]
n_eval_rank1_bb5_in___2 [0 ]
n_eval_rank1_bb3_in___10 [0 ]
n_eval_rank1_bb6_in___12 [Arg_5+1 ]
n_eval_rank1_bb1_in___11 [Arg_7+1 ]
n_eval_rank1_bb6_in___17 [Arg_6 ]
n_eval_rank1_bb1_in___16 [Arg_7 ]

MPRF for transition 175:n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_0___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 of depth 1:

new bound:

3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_7-1 ]
n_eval_rank1_3___20 [Arg_6 ]
n_eval_rank1_3___4 [0 ]
n_eval_rank1__Pcritedge_in___19 [Arg_6 ]
n_eval_rank1__Pcritedge_in___3 [0 ]
n_eval_rank1_bb6_in___1 [0 ]
n_eval_rank1_bb6_in___7 [0 ]
n_eval_rank1_bb1_in___6 [Arg_2+1 ]
n_eval_rank1_bb2_in___15 [Arg_7 ]
n_eval_rank1_0___14 [Arg_7-1 ]
n_eval_rank1__Pcritedge_in___9 [0 ]
n_eval_rank1_bb3_in___24 [Arg_6 ]
n_eval_rank1_bb4_in___22 [Arg_6 ]
n_eval_rank1_2___21 [Arg_6 ]
n_eval_rank1_bb4_in___8 [0 ]
n_eval_rank1_2___5 [0 ]
n_eval_rank1_bb5_in___18 [0 ]
n_eval_rank1_bb5_in___2 [0 ]
n_eval_rank1_bb3_in___10 [0 ]
n_eval_rank1_bb6_in___12 [Arg_5 ]
n_eval_rank1_bb1_in___11 [Arg_7 ]
n_eval_rank1_bb6_in___17 [Arg_5 ]
n_eval_rank1_bb1_in___16 [Arg_7 ]

MPRF for transition 178:n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb4_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_1 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

6*Arg_2*Arg_2+10*Arg_2+3 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_7-Arg_5 ]
n_eval_rank1_3___20 [Arg_2+Arg_3+1 ]
n_eval_rank1_3___4 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3+1 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_3+1-Arg_7 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3+2-Arg_7 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3+1 ]
n_eval_rank1_0___14 [Arg_2+Arg_3+Arg_7-Arg_5 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+2-Arg_6 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3+1 ]
n_eval_rank1_2___21 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_2___5 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+2-Arg_6 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3+1 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+1 ]

MPRF for transition 181:n_eval_rank1_bb4_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

6*Arg_2*Arg_2+7*Arg_2+1 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_4+Arg_5+1-Arg_7 ]
n_eval_rank1_3___20 [Arg_2+Arg_3 ]
n_eval_rank1_3___4 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb6_in___1 [Arg_2+Arg_4+1-Arg_6 ]
n_eval_rank1_bb6_in___7 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb1_in___6 [Arg_2+Arg_3 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_3 ]
n_eval_rank1_0___14 [Arg_2+Arg_4+Arg_5+1-Arg_7 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_3 ]
n_eval_rank1_2___21 [Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_2___5 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb5_in___18 [Arg_2+Arg_3 ]
n_eval_rank1_bb5_in___2 [Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb3_in___10 [Arg_2+Arg_3+1-Arg_6 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_3+Arg_5+1-Arg_7 ]

MPRF for transition 183:n_eval_rank1_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 0<Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && 1<=Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:

new bound:

9*Arg_2*Arg_2+12*Arg_2+2 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [2*Arg_2+Arg_4 ]
n_eval_rank1_3___20 [2*Arg_2+Arg_3 ]
n_eval_rank1_3___4 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1__Pcritedge_in___19 [2*Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___3 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb6_in___1 [2*Arg_2+Arg_4+1-Arg_6 ]
n_eval_rank1_bb6_in___7 [2*Arg_2+Arg_3-Arg_7 ]
n_eval_rank1_bb1_in___6 [2*Arg_2+Arg_4 ]
n_eval_rank1_bb2_in___15 [2*Arg_2+Arg_3 ]
n_eval_rank1_0___14 [2*Arg_2+Arg_3 ]
n_eval_rank1__Pcritedge_in___9 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb3_in___24 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___22 [2*Arg_2+Arg_3 ]
n_eval_rank1_2___21 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb4_in___8 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_2___5 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb5_in___18 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb5_in___2 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb3_in___10 [2*Arg_2+Arg_3-Arg_6 ]
n_eval_rank1_bb6_in___12 [2*Arg_2+Arg_4 ]
n_eval_rank1_bb1_in___11 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb6_in___17 [2*Arg_2+Arg_3 ]
n_eval_rank1_bb1_in___16 [2*Arg_2+Arg_4 ]

MPRF for transition 185:n_eval_rank1_bb6_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && Arg_0<=Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_0<=0 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_0<=0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4 of depth 1:

new bound:

6*Arg_2*Arg_2+6*Arg_2+1 {O(n^2)}

MPRF:

n_eval_rank1_1___13 [Arg_2+Arg_5+1 ]
n_eval_rank1_3___20 [Arg_2+Arg_5 ]
n_eval_rank1_3___4 [Arg_2 ]
n_eval_rank1__Pcritedge_in___19 [Arg_2+Arg_5 ]
n_eval_rank1__Pcritedge_in___3 [Arg_2 ]
n_eval_rank1_bb6_in___1 [Arg_2 ]
n_eval_rank1_bb6_in___7 [Arg_6-1 ]
n_eval_rank1_bb1_in___6 [2*Arg_2+1 ]
n_eval_rank1_bb2_in___15 [Arg_2+Arg_7 ]
n_eval_rank1_0___14 [Arg_2+Arg_5+1 ]
n_eval_rank1__Pcritedge_in___9 [Arg_2 ]
n_eval_rank1_bb3_in___24 [Arg_2+Arg_6 ]
n_eval_rank1_bb4_in___22 [Arg_2+Arg_5 ]
n_eval_rank1_2___21 [Arg_2+Arg_6 ]
n_eval_rank1_bb4_in___8 [Arg_2 ]
n_eval_rank1_2___5 [Arg_2 ]
n_eval_rank1_bb5_in___18 [Arg_2 ]
n_eval_rank1_bb5_in___2 [Arg_2 ]
n_eval_rank1_bb3_in___10 [Arg_2 ]
n_eval_rank1_bb6_in___12 [Arg_2+Arg_5+1 ]
n_eval_rank1_bb1_in___11 [Arg_2+Arg_7 ]
n_eval_rank1_bb6_in___17 [Arg_2+Arg_7 ]
n_eval_rank1_bb1_in___16 [Arg_2+Arg_6 ]

CFR: Improvement to new bound with the following program:

new bound:

57*Arg_2*Arg_2+112*Arg_2+34 {O(n^2)}

cfr-program:

Start: eval_rank1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: Arg2_P, Arg3_P, Arg5_P, Arg6_P, NoDet0
Locations: eval_rank1_bb0_in, eval_rank1_bb1_in, eval_rank1_bb7_in, eval_rank1_start, eval_rank1_stop, n_eval_rank1_0___14, n_eval_rank1_0___26, n_eval_rank1_1___13, n_eval_rank1_1___25, n_eval_rank1_2___21, n_eval_rank1_2___5, n_eval_rank1_3___20, n_eval_rank1_3___4, n_eval_rank1__Pcritedge_in___19, n_eval_rank1__Pcritedge_in___3, n_eval_rank1__Pcritedge_in___9, n_eval_rank1_bb1_in___11, n_eval_rank1_bb1_in___16, n_eval_rank1_bb1_in___6, n_eval_rank1_bb2_in___15, n_eval_rank1_bb2_in___27, n_eval_rank1_bb3_in___10, n_eval_rank1_bb3_in___24, n_eval_rank1_bb4_in___22, n_eval_rank1_bb4_in___8, n_eval_rank1_bb5_in___18, n_eval_rank1_bb5_in___2, n_eval_rank1_bb6_in___1, n_eval_rank1_bb6_in___12, n_eval_rank1_bb6_in___17, n_eval_rank1_bb6_in___23, n_eval_rank1_bb6_in___7
Transitions:
1:eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,0,Arg_6,Arg_7)
3:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_3<0
173:eval_rank1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
20:eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_5 && Arg_3<=Arg_2 && 0<=1+Arg_5 && Arg_3<=Arg_2
0:eval_rank1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
156:n_eval_rank1_0___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_1___13(NoDet0,Arg_1,Arg2_P,Arg3_P,Arg_4,Arg5_P,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && 0<=Arg5_P && Arg3_P<=Arg2_P && 0<=Arg3_P && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2<=Arg2_P && Arg2_P<=Arg_2
157:n_eval_rank1_0___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_1___25(NoDet0,Arg_1,Arg2_P,Arg3_P,Arg_4,Arg5_P,Arg_6,Arg_7):|:Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 && 0<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && 0<=Arg5_P && Arg3_P<=Arg2_P && 0<=Arg3_P && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_2<=Arg2_P && Arg2_P<=Arg_2
158:n_eval_rank1_1___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && 0<Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
159:n_eval_rank1_1___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_0<=0
160:n_eval_rank1_1___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 && 0<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && 0<Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
161:n_eval_rank1_1___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_5):|:Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 && 0<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_0<=0
162:n_eval_rank1_2___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_3___20(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg5_P,Arg6_P,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg5_P && Arg6_P<=Arg_2 && Arg5_P<=Arg6_P && 1<=Arg_0 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_6<=Arg6_P && Arg6_P<=Arg_6
163:n_eval_rank1_2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_3___4(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg5_P,Arg6_P,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg5_P && Arg6_P<=Arg_2 && Arg5_P<=Arg6_P && 1<=Arg_0 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_6<=Arg6_P && Arg6_P<=Arg_6
164:n_eval_rank1_3___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=0
165:n_eval_rank1_3___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && 0<Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
166:n_eval_rank1_3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_1<=0
167:n_eval_rank1_3___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && 0<Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
168:n_eval_rank1__Pcritedge_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
169:n_eval_rank1__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
170:n_eval_rank1__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_6<=1+Arg_2 && 1+Arg_5<=Arg_6 && 0<=Arg_5 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<Arg_6 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
213:n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_0<=1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && 0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_5<0
171:n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_0<=1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
211:n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=1+Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_4+Arg_5 && 0<=2+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && Arg_1<=1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && 0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_3<0
214:n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=1+Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_4+Arg_5 && 0<=2+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && Arg_1<=1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && 0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_5<0
172:n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=1+Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=1+Arg_5 && 0<=2+Arg_4+Arg_5 && 0<=2+Arg_3+Arg_5 && 0<=1+Arg_2+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && Arg_1<=1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
212:n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_rank1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<=1+Arg_5 && Arg_3<=Arg_2 && Arg_3<0
174:n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_5 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=1+Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_2 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && 0<=Arg_5 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && 1+Arg_5<=Arg_7 && Arg_7<=1+Arg_5 && 0<=1+Arg_5 && 0<=Arg_2 && 0<=1+Arg_4 && Arg_4<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
175:n_eval_rank1_bb2_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_0___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_5 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 1<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_2 && Arg_5<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5+1<=Arg_7 && Arg_7<=1+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
176:n_eval_rank1_bb2_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_0___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_2 && 0<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5
177:n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_1 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6 && Arg_2<Arg_6
178:n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb4_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg_0 && 1<=Arg_0 && 1<=Arg_1 && 1+Arg_5<=Arg_6 && Arg_6<=1+Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
179:n_eval_rank1_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb4_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_5<=Arg_6 && 0<=Arg_5 && 0<=Arg_3 && Arg_3<=Arg_2 && Arg_6<=Arg_2 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
180:n_eval_rank1_bb4_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_2___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
181:n_eval_rank1_bb4_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_2___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 1<=Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
182:n_eval_rank1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && Arg_5<=Arg_6 && 0<Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && 1<=Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
183:n_eval_rank1_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb3_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_6<=Arg_2 && 1+Arg_5<=Arg_6 && 0<Arg_1 && 1<=Arg_0 && Arg_6<=Arg_2 && 1<=Arg_1 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && 1<=Arg_0 && Arg_5<=Arg_6
184:n_eval_rank1_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 2<=Arg_2+Arg_7 && 1+Arg_1<=Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 2<=Arg_2+Arg_6 && 1+Arg_1<=Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1<=Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_7<=Arg_2 && 1+Arg_5<=Arg_7 && Arg_1<=0 && 1<=Arg_0 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4
185:n_eval_rank1_bb6_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && Arg_0<=Arg_7 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 1<=Arg_2+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_0<=0 && Arg_3<=Arg_2 && Arg_5<=Arg_2 && 0<=Arg_3 && 0<=Arg_5 && Arg_0<=0 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4
186:n_eval_rank1_bb6_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___16(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_2 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=1+Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_1<=Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_7<=Arg_2 && Arg_5<=Arg_7 && Arg_1<=0 && 1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4
187:n_eval_rank1_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___11(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=0 && Arg_7<=Arg_5 && Arg_5+Arg_7<=0 && Arg_7<=Arg_4 && Arg_7<=Arg_3 && Arg_7<=Arg_2 && Arg_0+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && Arg_0<=Arg_7 && Arg_5<=0 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && Arg_5<=Arg_2 && Arg_0+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=Arg_2 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_0<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && Arg_0<=Arg_2 && Arg_0<=0 && Arg_0<=0 && 0<=Arg_4 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_7<=0 && 0<=Arg_7 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4
188:n_eval_rank1_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_rank1_bb1_in___6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_4,Arg_7-1,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=1+Arg_2 && 1<=Arg_7 && 2<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 1<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && 2<=Arg_1+Arg_7 && 2<=Arg_0+Arg_7 && Arg_6<=1+Arg_2 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 2+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_2+Arg_6 && 1+Arg_2<=Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_2 && 0<=Arg_5 && 0<=1+Arg_4+Arg_5 && 0<=Arg_3+Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_2 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=Arg_1+Arg_4 && 0<=Arg_0+Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_3<=Arg_2 && 0<=Arg_3 && Arg_6<=1+Arg_2 && 1+Arg_5<=Arg_6 && 0<=Arg_5 && 1<=Arg_1 && 1<=Arg_0 && Arg_2<Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_4<=Arg_3 && Arg_3<=Arg_2 && 0<=Arg_5 && 0<=Arg_3 && Arg_5<=Arg_7 && Arg_3<=1+Arg_4

All Bounds

Timebounds

Overall timebound:57*Arg_2*Arg_2+112*Arg_2+48 {O(n^2)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in: 1 {O(1)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in: 1 {O(1)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27: 1 {O(1)}
20: eval_rank1_bb7_in->eval_rank1_stop: 1 {O(1)}
0: eval_rank1_start->eval_rank1_bb0_in: 1 {O(1)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25: 1 {O(1)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24: 3*Arg_2+2 {O(n)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12: 3*Arg_2*Arg_2+7*Arg_2+3 {O(n^2)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24: 1 {O(1)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23: 1 {O(1)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20: 2*Arg_2+1 {O(n)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4: 6*Arg_2*Arg_2+10*Arg_2+2 {O(n^2)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19: Arg_2+1 {O(n)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18: 3*Arg_2+1 {O(n)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3: 2*Arg_2+1 {O(n)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2: 12*Arg_2*Arg_2+18*Arg_2+4 {O(n^2)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17: 2*Arg_2+1 {O(n)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1: 2*Arg_2+1 {O(n)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7: 2*Arg_2+1 {O(n)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in: 1 {O(1)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15: Arg_2 {O(n)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in: 1 {O(1)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in: 1 {O(1)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15: Arg_2 {O(n)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in: 1 {O(1)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26: 1 {O(1)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9: Arg_2+1 {O(n)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8: 6*Arg_2*Arg_2+10*Arg_2+3 {O(n^2)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22: 2*Arg_2+1 {O(n)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21: 2*Arg_2+1 {O(n)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5: 6*Arg_2*Arg_2+7*Arg_2+1 {O(n^2)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10: 2*Arg_2+1 {O(n)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10: 9*Arg_2*Arg_2+12*Arg_2+2 {O(n^2)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6: 2*Arg_2 {O(n)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11: 6*Arg_2*Arg_2+6*Arg_2+1 {O(n^2)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16: Arg_2+1 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11: 1 {O(1)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6: Arg_2+1 {O(n)}

Costbounds

Overall costbound: 57*Arg_2*Arg_2+112*Arg_2+48 {O(n^2)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in: 1 {O(1)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in: 1 {O(1)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27: 1 {O(1)}
20: eval_rank1_bb7_in->eval_rank1_stop: 1 {O(1)}
0: eval_rank1_start->eval_rank1_bb0_in: 1 {O(1)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25: 1 {O(1)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24: 3*Arg_2+2 {O(n)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12: 3*Arg_2*Arg_2+7*Arg_2+3 {O(n^2)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24: 1 {O(1)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23: 1 {O(1)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20: 2*Arg_2+1 {O(n)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4: 6*Arg_2*Arg_2+10*Arg_2+2 {O(n^2)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19: Arg_2+1 {O(n)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18: 3*Arg_2+1 {O(n)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3: 2*Arg_2+1 {O(n)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2: 12*Arg_2*Arg_2+18*Arg_2+4 {O(n^2)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17: 2*Arg_2+1 {O(n)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1: 2*Arg_2+1 {O(n)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7: 2*Arg_2+1 {O(n)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in: 1 {O(1)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15: Arg_2 {O(n)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in: 1 {O(1)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in: 1 {O(1)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15: Arg_2 {O(n)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in: 1 {O(1)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14: 3*Arg_2*Arg_2+4*Arg_2+1 {O(n^2)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26: 1 {O(1)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9: Arg_2+1 {O(n)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8: 6*Arg_2*Arg_2+10*Arg_2+3 {O(n^2)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22: 2*Arg_2+1 {O(n)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21: 2*Arg_2+1 {O(n)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5: 6*Arg_2*Arg_2+7*Arg_2+1 {O(n^2)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10: 2*Arg_2+1 {O(n)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10: 9*Arg_2*Arg_2+12*Arg_2+2 {O(n^2)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6: 2*Arg_2 {O(n)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11: 6*Arg_2*Arg_2+6*Arg_2+1 {O(n^2)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16: Arg_2+1 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11: 1 {O(1)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6: Arg_2+1 {O(n)}

Sizebounds

1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_0: Arg_0 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_1: Arg_1 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_2: Arg_2 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_3: Arg_2 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_5: 0 {O(1)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_6: Arg_6 {O(n)}
1: eval_rank1_bb0_in->eval_rank1_bb1_in, Arg_7: Arg_7 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_0: Arg_0 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_1: Arg_1 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_2: Arg_2 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_3: Arg_2 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_4: Arg_4 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_5: 0 {O(1)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_6: Arg_6 {O(n)}
3: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_7: Arg_7 {O(n)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_2: Arg_2 {O(n)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_3: Arg_2+1 {O(n)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_4: 3*Arg_2+5 {O(n)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_5: 1 {O(1)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_6: 4*Arg_2*Arg_2+10*Arg_2+Arg_6+8 {O(n^2)}
4: eval_rank1_bb1_in->eval_rank1_bb7_in, Arg_7: 4*Arg_2*Arg_2+10*Arg_2+8 {O(n^2)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_0: Arg_0 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_1: Arg_1 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_2: Arg_2 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_3: Arg_2 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_4: Arg_4 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_5: 0 {O(1)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_6: Arg_6 {O(n)}
173: eval_rank1_bb1_in->n_eval_rank1_bb2_in___27, Arg_7: Arg_7 {O(n)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_2: 7*Arg_2 {O(n)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_3: 4*Arg_2+4 {O(n)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_4: 3*Arg_2+Arg_4+5 {O(n)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_5: 2*Arg_2*Arg_2+5*Arg_2+5 {O(n^2)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_6: 8*Arg_2*Arg_2+20*Arg_2+3*Arg_6+16 {O(n^2)}
20: eval_rank1_bb7_in->eval_rank1_stop, Arg_7: 8*Arg_2*Arg_2+20*Arg_2+Arg_7+16 {O(n^2)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_rank1_start->eval_rank1_bb0_in, Arg_7: Arg_7 {O(n)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_2: Arg_2 {O(n)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_3: Arg_2+1 {O(n)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_4: 4*Arg_2+7 {O(n)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+12 {O(n^2)}
156: n_eval_rank1_0___14->n_eval_rank1_1___13, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+16 {O(n^2)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_1: Arg_1 {O(n)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_2: Arg_2 {O(n)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_3: Arg_2 {O(n)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_4: Arg_4 {O(n)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_5: 0 {O(1)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_6: Arg_6 {O(n)}
157: n_eval_rank1_0___26->n_eval_rank1_1___25, Arg_7: Arg_7 {O(n)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_2: Arg_2 {O(n)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_3: Arg_2+1 {O(n)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_4: 4*Arg_2+7 {O(n)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
158: n_eval_rank1_1___13->n_eval_rank1_bb3_in___24, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+16 {O(n^2)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_2: Arg_2 {O(n)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_3: Arg_2+1 {O(n)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_4: Arg_2+1 {O(n)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+12 {O(n^2)}
159: n_eval_rank1_1___13->n_eval_rank1_bb6_in___12, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_1: Arg_1 {O(n)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_2: Arg_2 {O(n)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_3: Arg_2 {O(n)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_4: Arg_4 {O(n)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_5: 0 {O(1)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_6: 0 {O(1)}
160: n_eval_rank1_1___25->n_eval_rank1_bb3_in___24, Arg_7: Arg_7 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_1: Arg_1 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_2: Arg_2 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_3: Arg_2 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_4: Arg_2 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_5: 0 {O(1)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_6: Arg_6 {O(n)}
161: n_eval_rank1_1___25->n_eval_rank1_bb6_in___23, Arg_7: 0 {O(1)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_2: Arg_2 {O(n)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_3: Arg_2+1 {O(n)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
162: n_eval_rank1_2___21->n_eval_rank1_3___20, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_2: Arg_2 {O(n)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_3: Arg_2+1 {O(n)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
163: n_eval_rank1_2___5->n_eval_rank1_3___4, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_2: Arg_2 {O(n)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_3: Arg_2+1 {O(n)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
164: n_eval_rank1_3___20->n_eval_rank1__Pcritedge_in___19, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_2: Arg_2 {O(n)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_3: Arg_2+1 {O(n)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
165: n_eval_rank1_3___20->n_eval_rank1_bb5_in___18, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_2: Arg_2 {O(n)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_3: Arg_2+1 {O(n)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
166: n_eval_rank1_3___4->n_eval_rank1__Pcritedge_in___3, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_2: Arg_2 {O(n)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_3: Arg_2+1 {O(n)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
167: n_eval_rank1_3___4->n_eval_rank1_bb5_in___2, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_2: Arg_2 {O(n)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_3: Arg_2+1 {O(n)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_4: Arg_2+2 {O(n)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
168: n_eval_rank1__Pcritedge_in___19->n_eval_rank1_bb6_in___17, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_2: Arg_2 {O(n)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_3: Arg_2+1 {O(n)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_4: Arg_2+2 {O(n)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
169: n_eval_rank1__Pcritedge_in___3->n_eval_rank1_bb6_in___1, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_2: Arg_2 {O(n)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_3: Arg_2+1 {O(n)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_4: Arg_2+2 {O(n)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_5: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
170: n_eval_rank1__Pcritedge_in___9->n_eval_rank1_bb6_in___7, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_2: Arg_2 {O(n)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_3: Arg_2+1 {O(n)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_4: Arg_2+1 {O(n)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+12 {O(n^2)}
171: n_eval_rank1_bb1_in___11->n_eval_rank1_bb2_in___15, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_2: 2*Arg_2 {O(n)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_3: 2*Arg_2+1 {O(n)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_4: 2*Arg_2+1 {O(n)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_5: 1 {O(1)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+Arg_6+12 {O(n^2)}
213: n_eval_rank1_bb1_in___11->eval_rank1_bb7_in, Arg_7: 0 {O(1)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_2: Arg_2 {O(n)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_3: Arg_2+1 {O(n)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_4: Arg_2+2 {O(n)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
172: n_eval_rank1_bb1_in___16->n_eval_rank1_bb2_in___15, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_2: Arg_2 {O(n)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_3: 1 {O(1)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_4: 1 {O(1)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
211: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_2: Arg_2 {O(n)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_3: Arg_2+1 {O(n)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_4: Arg_2+2 {O(n)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_5: 1 {O(1)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_6: 0 {O(1)}
214: n_eval_rank1_bb1_in___16->eval_rank1_bb7_in, Arg_7: 0 {O(1)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_2: Arg_2 {O(n)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_3: Arg_2+1 {O(n)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_4: 2*Arg_2+4 {O(n)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_6: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
174: n_eval_rank1_bb1_in___6->n_eval_rank1_bb2_in___15, Arg_7: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_2: 2*Arg_2 {O(n)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_3: 1 {O(1)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_4: 1 {O(1)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_5: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_6: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
212: n_eval_rank1_bb1_in___6->eval_rank1_bb7_in, Arg_7: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_2: Arg_2 {O(n)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_3: Arg_2+1 {O(n)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_4: 4*Arg_2+7 {O(n)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+12 {O(n^2)}
175: n_eval_rank1_bb2_in___15->n_eval_rank1_0___14, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+16 {O(n^2)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_0: Arg_0 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_1: Arg_1 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_2: Arg_2 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_3: Arg_2 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_4: Arg_4 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_5: 0 {O(1)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_6: Arg_6 {O(n)}
176: n_eval_rank1_bb2_in___27->n_eval_rank1_0___26, Arg_7: Arg_7 {O(n)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_2: Arg_2 {O(n)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_3: Arg_2+1 {O(n)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_4: 2*Arg_4+8*Arg_2+14 {O(n)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_5: 18*Arg_2*Arg_2+28*Arg_2+8 {O(n^2)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
177: n_eval_rank1_bb3_in___10->n_eval_rank1__Pcritedge_in___9, Arg_7: 72*Arg_2*Arg_2+112*Arg_2+2*Arg_7+32 {O(n^2)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_2: Arg_2 {O(n)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_3: Arg_2+1 {O(n)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
178: n_eval_rank1_bb3_in___10->n_eval_rank1_bb4_in___8, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_2: Arg_2 {O(n)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_3: Arg_2+1 {O(n)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
179: n_eval_rank1_bb3_in___24->n_eval_rank1_bb4_in___22, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_2: Arg_2 {O(n)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_3: Arg_2+1 {O(n)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
180: n_eval_rank1_bb4_in___22->n_eval_rank1_2___21, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_2: Arg_2 {O(n)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_3: Arg_2+1 {O(n)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
181: n_eval_rank1_bb4_in___8->n_eval_rank1_2___5, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_2: Arg_2 {O(n)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_3: Arg_2+1 {O(n)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
182: n_eval_rank1_bb5_in___18->n_eval_rank1_bb3_in___10, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_2: Arg_2 {O(n)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_3: Arg_2+1 {O(n)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_4: 4*Arg_2+Arg_4+7 {O(n)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
183: n_eval_rank1_bb5_in___2->n_eval_rank1_bb3_in___10, Arg_7: 36*Arg_2*Arg_2+56*Arg_2+Arg_7+16 {O(n^2)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_2: Arg_2 {O(n)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_3: Arg_2+1 {O(n)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_4: Arg_2+2 {O(n)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
184: n_eval_rank1_bb6_in___1->n_eval_rank1_bb1_in___6, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_2: Arg_2 {O(n)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_3: Arg_2+1 {O(n)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_4: Arg_2+1 {O(n)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_6: 27*Arg_2*Arg_2+42*Arg_2+12 {O(n^2)}
185: n_eval_rank1_bb6_in___12->n_eval_rank1_bb1_in___11, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_2: Arg_2 {O(n)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_3: Arg_2+1 {O(n)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_4: Arg_2+2 {O(n)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
186: n_eval_rank1_bb6_in___17->n_eval_rank1_bb1_in___16, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_1: Arg_1 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_2: Arg_2 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_3: Arg_2 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_4: Arg_2 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_5: 1 {O(1)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_6: Arg_6 {O(n)}
187: n_eval_rank1_bb6_in___23->n_eval_rank1_bb1_in___11, Arg_7: 0 {O(1)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_2: Arg_2 {O(n)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_3: Arg_2+1 {O(n)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_4: Arg_2+2 {O(n)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_5: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_6: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}
188: n_eval_rank1_bb6_in___7->n_eval_rank1_bb1_in___6, Arg_7: 9*Arg_2*Arg_2+14*Arg_2+4 {O(n^2)}