Initial Problem

Start: eval_serpent_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1
Locations: eval_serpent_.critedge1_in, eval_serpent_.critedge_in, eval_serpent_0, eval_serpent_1, eval_serpent_6, eval_serpent_7, eval_serpent_bb0_in, eval_serpent_bb1_in, eval_serpent_bb2_in, eval_serpent_bb3_in, eval_serpent_bb4_in, eval_serpent_bb5_in, eval_serpent_bb6_in, eval_serpent_bb7_in, eval_serpent_start, eval_serpent_stop
Transitions:
3:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:0<=Arg_4
4:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<0
13:eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6)
9:eval_serpent_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
11:eval_serpent_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<=0
10:eval_serpent_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_0
18:eval_serpent_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_7(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
20:eval_serpent_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_2<=0
19:eval_serpent_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_2
2:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_3,Arg_6,Arg_7):|:0<Arg_3
1:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=0
6:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<0
5:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_6
7:eval_serpent_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
12:eval_serpent_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7)
15:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_3<Arg_7
14:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3
16:eval_serpent_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
21:eval_serpent_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1)
22:eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_serpent_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

Preprocessing

Found invariant Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location eval_serpent_6

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_bb1_in

Found invariant Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_.critedge1_in

Found invariant Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location eval_serpent_bb6_in

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_0

Found invariant Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location eval_serpent_7

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location eval_serpent_bb3_in

Found invariant Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_bb2_in

Found invariant Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location eval_serpent_bb4_in

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_1

Found invariant Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location eval_serpent_bb5_in

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_.critedge_in

Problem after Preprocessing

Start: eval_serpent_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1
Locations: eval_serpent_.critedge1_in, eval_serpent_.critedge_in, eval_serpent_0, eval_serpent_1, eval_serpent_6, eval_serpent_7, eval_serpent_bb0_in, eval_serpent_bb1_in, eval_serpent_bb2_in, eval_serpent_bb3_in, eval_serpent_bb4_in, eval_serpent_bb5_in, eval_serpent_bb6_in, eval_serpent_bb7_in, eval_serpent_start, eval_serpent_stop
Transitions:
3:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && 0<=Arg_4
4:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<0
13:eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3
9:eval_serpent_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3
11:eval_serpent_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0
10:eval_serpent_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && 0<Arg_0
18:eval_serpent_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_7(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1
20:eval_serpent_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0
19:eval_serpent_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && 0<Arg_2
2:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_3,Arg_6,Arg_7):|:0<Arg_3
1:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=0
6:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0
5:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && 0<=Arg_6
7:eval_serpent_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3
12:eval_serpent_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0
15:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_3<Arg_7
14:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_7<=Arg_3
16:eval_serpent_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1
21:eval_serpent_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1
22:eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_serpent_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)

MPRF for transition 3:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && 0<=Arg_4 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_1 [Arg_4 ]
eval_serpent_7 [Arg_4 ]
eval_serpent_.critedge_in [Arg_4 ]
eval_serpent_bb2_in [Arg_4 ]
eval_serpent_0 [Arg_4 ]
eval_serpent_bb3_in [Arg_4 ]
eval_serpent_bb1_in [Arg_4 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
eval_serpent_bb5_in [Arg_4 ]
eval_serpent_6 [Arg_4 ]
eval_serpent_bb6_in [Arg_4 ]
eval_serpent_bb4_in [Arg_4 ]

MPRF for transition 13:eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 of depth 1:

new bound:

2*Arg_3 {O(n)}

MPRF:

eval_serpent_1 [Arg_3+Arg_4 ]
eval_serpent_7 [Arg_3+Arg_4-1 ]
eval_serpent_.critedge_in [Arg_3+Arg_4 ]
eval_serpent_bb2_in [Arg_3+Arg_4 ]
eval_serpent_0 [Arg_3+Arg_4 ]
eval_serpent_bb3_in [Arg_3+Arg_4 ]
eval_serpent_bb1_in [Arg_3+Arg_4 ]
eval_serpent_.critedge1_in [Arg_3+Arg_4 ]
eval_serpent_bb5_in [Arg_3+Arg_4-1 ]
eval_serpent_6 [Arg_3+Arg_4-1 ]
eval_serpent_bb6_in [Arg_3+Arg_4-1 ]
eval_serpent_bb4_in [Arg_3+Arg_4-1 ]

MPRF for transition 11:eval_serpent_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0 of depth 1:

new bound:

2*Arg_3+1 {O(n)}

MPRF:

eval_serpent_1 [Arg_3+Arg_4+1 ]
eval_serpent_7 [Arg_3+Arg_4 ]
eval_serpent_.critedge_in [Arg_3+Arg_4 ]
eval_serpent_bb2_in [Arg_3+Arg_4+1 ]
eval_serpent_0 [Arg_3+Arg_4+1 ]
eval_serpent_bb3_in [Arg_3+Arg_4+1 ]
eval_serpent_bb1_in [Arg_3+Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_3+Arg_4+1 ]
eval_serpent_bb5_in [Arg_1+Arg_3+1 ]
eval_serpent_6 [Arg_3+Arg_4 ]
eval_serpent_bb6_in [Arg_3+Arg_4 ]
eval_serpent_bb4_in [Arg_1+Arg_3+1 ]

MPRF for transition 20:eval_serpent_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_1 [Arg_4+1 ]
eval_serpent_7 [Arg_4+1 ]
eval_serpent_.critedge_in [Arg_4+1 ]
eval_serpent_bb2_in [Arg_4+1 ]
eval_serpent_0 [Arg_4+1 ]
eval_serpent_bb3_in [Arg_4+1 ]
eval_serpent_bb1_in [Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
eval_serpent_bb5_in [Arg_4+1 ]
eval_serpent_6 [Arg_4+1 ]
eval_serpent_bb6_in [Arg_4+1 ]
eval_serpent_bb4_in [2*Arg_4-Arg_1 ]

MPRF for transition 6:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_1 [Arg_4+1 ]
eval_serpent_7 [Arg_1+1 ]
eval_serpent_.critedge_in [Arg_4 ]
eval_serpent_bb2_in [Arg_4+1 ]
eval_serpent_0 [Arg_4+1 ]
eval_serpent_bb3_in [Arg_4+1 ]
eval_serpent_bb1_in [Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
eval_serpent_bb5_in [Arg_1+1 ]
eval_serpent_6 [Arg_1+1 ]
eval_serpent_bb6_in [Arg_1+1 ]
eval_serpent_bb4_in [Arg_1+1 ]

MPRF for transition 15:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_3<Arg_7 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_1 [Arg_4+1 ]
eval_serpent_7 [Arg_1+2 ]
eval_serpent_.critedge_in [Arg_4+1 ]
eval_serpent_bb2_in [Arg_4+1 ]
eval_serpent_0 [Arg_4+1 ]
eval_serpent_bb3_in [Arg_4+1 ]
eval_serpent_bb1_in [Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
eval_serpent_bb5_in [Arg_1+2 ]
eval_serpent_6 [Arg_1+2 ]
eval_serpent_bb6_in [Arg_4+1 ]
eval_serpent_bb4_in [Arg_4+1 ]

Analysing control-flow refined program

Found invariant Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location n_eval_serpent_0___8

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location n_eval_serpent_6___8

Found invariant Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_bb1_in

Found invariant Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_.critedge1_in

Found invariant 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_eval_serpent_0___3

Found invariant Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_eval_serpent_bb3_in___6

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location n_eval_serpent_bb6_in___6

Found invariant 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_eval_serpent_bb3_in___1

Found invariant Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location n_eval_serpent_1___7

Found invariant Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location n_eval_serpent_7___2

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location n_eval_serpent_7___7

Found invariant 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location n_eval_serpent_1___2

Found invariant Arg_7<=1+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location n_eval_serpent_bb4_in___5

Found invariant Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location n_eval_serpent_bb5_in___4

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location eval_serpent_bb4_in

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 for location n_eval_serpent_bb5_in___9

Found invariant 1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_eval_serpent_bb2_in___4

Found invariant Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location n_eval_serpent_bb2_in___9

Found invariant Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location n_eval_serpent_6___3

Found invariant 1+Arg_6<=Arg_5 && 0<=1+Arg_6 && 0<=1+Arg_5+Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 for location n_eval_serpent_bb1_in___5

Found invariant Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 for location n_eval_serpent_bb6_in___1

Found invariant Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_serpent_.critedge_in

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 138:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 0<=Arg_4 && Arg_4<=Arg_3 && 1<=Arg_3 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 171:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_7<=Arg_5 && 1<=Arg_3 && 0<=Arg_4 && Arg_4<=Arg_3 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 141:n_eval_serpent_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 174:n_eval_serpent_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 135:n_eval_serpent_0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_1___7(NoDet0,Arg_1,Arg_2,Arg3_P,Arg4_P,Arg_5,Arg6_P,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg4_P<=Arg3_P && 0<=Arg4_P && 1<=Arg3_P && Arg6_P<=Arg_5 && Arg_4<=Arg4_P && Arg4_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_6<=Arg6_P && Arg6_P<=Arg_6

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 137:n_eval_serpent_1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb3_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 154:n_eval_serpent_1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 168:n_eval_serpent_6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_7___7(Arg_0,Arg1_P,NoDet0,Arg3_P,Arg4_P,Arg5_P,Arg6_P,Arg7_P):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg1_P<=Arg3_P && 0<=1+Arg1_P && 1<=Arg3_P && Arg7_P<=Arg3_P && Arg6_P<=Arg7_P && Arg6_P<=Arg5_P && Arg_6<=Arg6_P && Arg6_P<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_4<=Arg1_P+1 && 1+Arg1_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg1_P+1<=Arg4_P && Arg4_P<=1+Arg1_P && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_7<=Arg7_P && Arg7_P<=Arg_7

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 170:n_eval_serpent_7___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb6_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 187:n_eval_serpent_7___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0

knowledge_propagation leads to new time bound Arg_3+1 {O(n)} for transition 143:n_eval_serpent_bb3_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 0<Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5

knowledge_propagation leads to new time bound 2*Arg_3 {O(n)} for transition 176:n_eval_serpent_bb6_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7+1):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && Arg_7<=Arg_5 && 0<Arg_2 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 1<=Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1

MPRF for transition 134:n_eval_serpent_0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_1___2(NoDet0,Arg_1,Arg_2,Arg3_P,Arg4_P,Arg_5,Arg6_P,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 1<=Arg_0 && Arg4_P<=Arg3_P && 0<=Arg4_P && 1<=Arg3_P && Arg6_P<=Arg_5 && Arg_4<=Arg4_P && Arg4_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_6<=Arg6_P && Arg6_P<=Arg_6 of depth 1:

new bound:

2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_6 ]
eval_serpent_bb4_in [Arg_6 ]
n_eval_serpent_1___2 [Arg_6 ]
n_eval_serpent_1___7 [Arg_5 ]
n_eval_serpent_7___2 [Arg_3+Arg_4-Arg_1 ]
n_eval_serpent_bb6_in___6 [Arg_6 ]
n_eval_serpent_7___7 [Arg_6 ]
eval_serpent_.critedge_in [Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_6+1 ]
n_eval_serpent_0___3 [Arg_6+1 ]
n_eval_serpent_bb2_in___9 [Arg_5 ]
n_eval_serpent_0___8 [Arg_6 ]
n_eval_serpent_bb3_in___1 [Arg_6 ]
n_eval_serpent_bb3_in___6 [Arg_6 ]
n_eval_serpent_bb1_in___5 [Arg_6+1 ]
eval_serpent_.critedge1_in [Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1 ]
n_eval_serpent_6___3 [Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_6 ]
n_eval_serpent_6___8 [Arg_6 ]
n_eval_serpent_bb6_in___1 [Arg_3+1 ]
n_eval_serpent_bb4_in___5 [Arg_3+1 ]

MPRF for transition 136:n_eval_serpent_1___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb3_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 of depth 1:

new bound:

2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_5 ]
eval_serpent_bb4_in [Arg_7 ]
n_eval_serpent_1___2 [Arg_6+1 ]
n_eval_serpent_1___7 [Arg_5 ]
n_eval_serpent_7___2 [Arg_3+1 ]
n_eval_serpent_bb6_in___6 [Arg_6 ]
n_eval_serpent_7___7 [Arg_6 ]
eval_serpent_.critedge_in [Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_6+1 ]
n_eval_serpent_0___3 [Arg_6+1 ]
n_eval_serpent_bb2_in___9 [Arg_6 ]
n_eval_serpent_0___8 [Arg_5 ]
n_eval_serpent_bb3_in___1 [Arg_6 ]
n_eval_serpent_bb3_in___6 [Arg_6 ]
n_eval_serpent_bb1_in___5 [Arg_6+1 ]
eval_serpent_.critedge1_in [Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1 ]
n_eval_serpent_6___3 [Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_7 ]
n_eval_serpent_6___8 [Arg_7 ]
n_eval_serpent_bb6_in___1 [Arg_3+1 ]
n_eval_serpent_bb4_in___5 [Arg_3+1 ]

MPRF for transition 153:n_eval_serpent_1___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_bb1_in [Arg_4+1 ]
eval_serpent_bb4_in [Arg_4 ]
n_eval_serpent_1___2 [Arg_4+1 ]
n_eval_serpent_1___7 [Arg_4+1 ]
n_eval_serpent_7___2 [Arg_1+1 ]
n_eval_serpent_7___7 [Arg_4 ]
eval_serpent_.critedge_in [Arg_4 ]
n_eval_serpent_bb2_in___4 [Arg_4+1 ]
n_eval_serpent_0___3 [Arg_4+1 ]
n_eval_serpent_bb2_in___9 [Arg_4+1 ]
n_eval_serpent_0___8 [Arg_4+1 ]
n_eval_serpent_bb3_in___1 [Arg_4+1 ]
n_eval_serpent_bb3_in___6 [Arg_4+1 ]
n_eval_serpent_bb1_in___5 [Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
n_eval_serpent_bb5_in___4 [Arg_1+1 ]
n_eval_serpent_6___3 [Arg_4 ]
n_eval_serpent_bb5_in___9 [Arg_1+1 ]
n_eval_serpent_6___8 [Arg_1+1 ]
n_eval_serpent_bb6_in___1 [Arg_1+1 ]
n_eval_serpent_bb6_in___6 [Arg_1+1 ]
n_eval_serpent_bb4_in___5 [Arg_1+1 ]

MPRF for transition 167:n_eval_serpent_6___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_7___2(Arg_0,Arg1_P,NoDet0,Arg3_P,Arg4_P,Arg5_P,Arg6_P,Arg7_P):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1<=Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg1_P<=Arg3_P && 0<=1+Arg1_P && 1<=Arg3_P && Arg7_P<=Arg3_P && Arg6_P<=Arg7_P && Arg6_P<=Arg5_P && Arg_6<=Arg6_P && Arg6_P<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_4<=Arg1_P+1 && 1+Arg1_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg1_P+1<=Arg4_P && Arg4_P<=1+Arg1_P && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_7<=Arg7_P && Arg7_P<=Arg_7 of depth 1:

new bound:

Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3-Arg_6 ]
eval_serpent_bb4_in [Arg_3-Arg_7 ]
n_eval_serpent_1___2 [Arg_3+1 ]
n_eval_serpent_bb3_in___6 [Arg_3-Arg_6 ]
n_eval_serpent_1___7 [Arg_3-Arg_6 ]
n_eval_serpent_7___2 [Arg_3-Arg_7 ]
n_eval_serpent_7___7 [Arg_3-Arg_6 ]
eval_serpent_.critedge_in [Arg_3-Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_3+1 ]
n_eval_serpent_0___3 [Arg_3+1 ]
n_eval_serpent_bb2_in___9 [Arg_3-Arg_5 ]
n_eval_serpent_0___8 [Arg_3-Arg_5 ]
n_eval_serpent_bb3_in___1 [Arg_3+1 ]
n_eval_serpent_bb1_in___5 [Arg_3+1 ]
eval_serpent_.critedge1_in [Arg_3-Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___3 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb5_in___9 [Arg_3-Arg_7 ]
n_eval_serpent_6___8 [Arg_3-Arg_6 ]
n_eval_serpent_bb6_in___1 [Arg_3-Arg_7 ]
n_eval_serpent_bb6_in___6 [Arg_3-Arg_6 ]
n_eval_serpent_bb4_in___5 [Arg_3+1-Arg_7 ]

MPRF for transition 169:n_eval_serpent_7___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:

new bound:

2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3-Arg_6 ]
eval_serpent_bb4_in [Arg_3-Arg_7 ]
n_eval_serpent_1___2 [2*Arg_3 ]
n_eval_serpent_bb3_in___6 [Arg_3+Arg_5-2*Arg_6 ]
n_eval_serpent_1___7 [Arg_3+Arg_5-2*Arg_6 ]
n_eval_serpent_7___2 [Arg_3+1-Arg_7 ]
n_eval_serpent_7___7 [Arg_3-Arg_6 ]
eval_serpent_.critedge_in [Arg_3-Arg_6 ]
n_eval_serpent_bb2_in___4 [2*Arg_3 ]
n_eval_serpent_0___3 [2*Arg_3 ]
n_eval_serpent_bb2_in___9 [Arg_3-Arg_6 ]
n_eval_serpent_0___8 [Arg_3-Arg_6 ]
n_eval_serpent_bb3_in___1 [2*Arg_3 ]
n_eval_serpent_bb1_in___5 [2*Arg_3 ]
eval_serpent_.critedge1_in [Arg_3-Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___3 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb5_in___9 [Arg_3-Arg_7 ]
n_eval_serpent_6___8 [Arg_3-Arg_7 ]
n_eval_serpent_bb6_in___1 [Arg_3-Arg_7 ]
n_eval_serpent_bb6_in___6 [Arg_3-Arg_6 ]
n_eval_serpent_bb4_in___5 [Arg_3+1-Arg_7 ]

MPRF for transition 186:n_eval_serpent_7___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0 of depth 1:

new bound:

2*Arg_3 {O(n)}

MPRF:

eval_serpent_bb1_in [Arg_3+Arg_4 ]
eval_serpent_bb4_in [Arg_3+Arg_4 ]
n_eval_serpent_1___2 [Arg_3+Arg_4 ]
n_eval_serpent_1___7 [Arg_3+Arg_4 ]
n_eval_serpent_7___2 [Arg_1+Arg_3+1 ]
n_eval_serpent_7___7 [Arg_3+Arg_4 ]
eval_serpent_.critedge_in [Arg_3+Arg_4 ]
n_eval_serpent_bb2_in___4 [Arg_3+Arg_4 ]
n_eval_serpent_0___3 [Arg_3+Arg_4 ]
n_eval_serpent_bb2_in___9 [Arg_3+Arg_4 ]
n_eval_serpent_0___8 [Arg_3+Arg_4 ]
n_eval_serpent_bb3_in___1 [Arg_3+Arg_4 ]
n_eval_serpent_bb3_in___6 [Arg_3+Arg_4 ]
n_eval_serpent_bb1_in___5 [Arg_3+Arg_4 ]
eval_serpent_.critedge1_in [Arg_3+Arg_4 ]
n_eval_serpent_bb5_in___4 [Arg_1+Arg_3+1 ]
n_eval_serpent_6___3 [Arg_1+Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_1+Arg_3+1 ]
n_eval_serpent_6___8 [Arg_1+Arg_3+1 ]
n_eval_serpent_bb6_in___1 [Arg_3+Arg_4 ]
n_eval_serpent_bb6_in___6 [Arg_1+Arg_3+1 ]
n_eval_serpent_bb4_in___5 [Arg_1+Arg_3+1 ]

MPRF for transition 139:n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=1+Arg_6 && 0<=1+Arg_5+Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && 1<=Arg_0 && 1+Arg_6<=Arg_5 && 0<=Arg_4 && Arg_4<=Arg_3 && 1<=Arg_3 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6 of depth 1:

new bound:

4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3+Arg_6 ]
eval_serpent_bb4_in [Arg_3+Arg_6 ]
n_eval_serpent_1___2 [Arg_3+Arg_6 ]
n_eval_serpent_1___7 [Arg_3+Arg_6 ]
n_eval_serpent_7___2 [2*Arg_3+1 ]
n_eval_serpent_bb6_in___6 [Arg_3+Arg_6 ]
n_eval_serpent_7___7 [Arg_3+Arg_6 ]
eval_serpent_.critedge_in [Arg_3+Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_3+Arg_6 ]
n_eval_serpent_0___3 [Arg_3+Arg_6 ]
n_eval_serpent_bb2_in___9 [Arg_3+Arg_5 ]
n_eval_serpent_0___8 [Arg_3+Arg_6 ]
n_eval_serpent_bb3_in___1 [Arg_3+Arg_6 ]
n_eval_serpent_bb3_in___6 [Arg_3+Arg_5 ]
n_eval_serpent_bb1_in___5 [Arg_3+Arg_6+1 ]
eval_serpent_.critedge1_in [Arg_3+Arg_5 ]
n_eval_serpent_bb5_in___4 [2*Arg_3+1 ]
n_eval_serpent_6___3 [2*Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_3+Arg_6 ]
n_eval_serpent_6___8 [Arg_3+Arg_7 ]
n_eval_serpent_bb6_in___1 [2*Arg_3+1 ]
n_eval_serpent_bb4_in___5 [2*Arg_3+1 ]

MPRF for transition 152:n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=1+Arg_6 && 0<=1+Arg_5+Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0 of depth 1:

new bound:

2*Arg_3 {O(n)}

MPRF:

eval_serpent_bb1_in [Arg_3+Arg_4 ]
eval_serpent_bb4_in [Arg_3+Arg_4-1 ]
n_eval_serpent_1___2 [Arg_3+Arg_4 ]
n_eval_serpent_1___7 [Arg_3+Arg_4 ]
n_eval_serpent_7___2 [Arg_1+Arg_3 ]
n_eval_serpent_7___7 [Arg_1+Arg_3 ]
eval_serpent_.critedge_in [Arg_3+Arg_4-1 ]
n_eval_serpent_bb2_in___4 [Arg_3+Arg_4 ]
n_eval_serpent_0___3 [Arg_3+Arg_4 ]
n_eval_serpent_bb2_in___9 [Arg_3+Arg_4 ]
n_eval_serpent_0___8 [Arg_3+Arg_4 ]
n_eval_serpent_bb3_in___1 [Arg_3+Arg_4 ]
n_eval_serpent_bb3_in___6 [Arg_3+Arg_4 ]
n_eval_serpent_bb1_in___5 [Arg_3+Arg_4 ]
eval_serpent_.critedge1_in [Arg_3+Arg_4 ]
n_eval_serpent_bb5_in___4 [Arg_1+Arg_3 ]
n_eval_serpent_6___3 [Arg_1+Arg_3 ]
n_eval_serpent_bb5_in___9 [Arg_1+Arg_3 ]
n_eval_serpent_6___8 [Arg_1+Arg_3 ]
n_eval_serpent_bb6_in___1 [Arg_1+Arg_3 ]
n_eval_serpent_bb6_in___6 [Arg_1+Arg_3 ]
n_eval_serpent_bb4_in___5 [Arg_1+Arg_3 ]

MPRF for transition 140:n_eval_serpent_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6 of depth 1:

new bound:

4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3+Arg_6 ]
eval_serpent_bb4_in [Arg_3+Arg_7 ]
n_eval_serpent_1___2 [Arg_3+Arg_6 ]
n_eval_serpent_1___7 [Arg_3+Arg_5 ]
n_eval_serpent_7___2 [2*Arg_3+1 ]
n_eval_serpent_bb6_in___6 [Arg_3+Arg_6 ]
n_eval_serpent_7___7 [Arg_3+Arg_6 ]
eval_serpent_.critedge_in [Arg_3+Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_3+Arg_6+1 ]
n_eval_serpent_0___3 [Arg_3+Arg_6 ]
n_eval_serpent_bb2_in___9 [Arg_3+Arg_5 ]
n_eval_serpent_0___8 [Arg_3+Arg_6 ]
n_eval_serpent_bb3_in___1 [Arg_3+Arg_6 ]
n_eval_serpent_bb3_in___6 [Arg_3+Arg_6 ]
n_eval_serpent_bb1_in___5 [Arg_3+Arg_6+1 ]
eval_serpent_.critedge1_in [Arg_3+Arg_5 ]
n_eval_serpent_bb5_in___4 [2*Arg_3+1 ]
n_eval_serpent_6___3 [2*Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_3+Arg_7 ]
n_eval_serpent_6___8 [Arg_3+Arg_6 ]
n_eval_serpent_bb6_in___1 [2*Arg_3+1 ]
n_eval_serpent_bb4_in___5 [2*Arg_3+1 ]

MPRF for transition 142:n_eval_serpent_bb3_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 of depth 1:

new bound:

2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_6 ]
eval_serpent_bb4_in [Arg_6 ]
n_eval_serpent_1___2 [Arg_6+1 ]
n_eval_serpent_1___7 [Arg_6 ]
n_eval_serpent_7___2 [Arg_3+1 ]
n_eval_serpent_bb6_in___6 [Arg_6 ]
n_eval_serpent_7___7 [Arg_6 ]
eval_serpent_.critedge_in [Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_6+1 ]
n_eval_serpent_0___3 [Arg_6+1 ]
n_eval_serpent_bb2_in___9 [Arg_5 ]
n_eval_serpent_0___8 [Arg_6 ]
n_eval_serpent_bb3_in___1 [Arg_6+1 ]
n_eval_serpent_bb3_in___6 [Arg_5 ]
n_eval_serpent_bb1_in___5 [Arg_6+1 ]
eval_serpent_.critedge1_in [Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1 ]
n_eval_serpent_6___3 [Arg_3+1 ]
n_eval_serpent_bb5_in___9 [Arg_6 ]
n_eval_serpent_6___8 [Arg_7 ]
n_eval_serpent_bb6_in___1 [Arg_3+1 ]
n_eval_serpent_bb4_in___5 [Arg_3+1 ]

MPRF for transition 172:n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb5_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1<=Arg_2 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:

new bound:

Arg_3*Arg_3+5*Arg_3+3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3+1-Arg_5 ]
eval_serpent_bb4_in [Arg_3+1-Arg_7 ]
n_eval_serpent_1___2 [Arg_3+2 ]
n_eval_serpent_bb3_in___6 [Arg_3-Arg_5 ]
n_eval_serpent_1___7 [Arg_3+1-Arg_5 ]
n_eval_serpent_7___2 [Arg_3+1-Arg_7 ]
n_eval_serpent_7___7 [Arg_3+Arg_4-Arg_1-Arg_6 ]
eval_serpent_.critedge_in [Arg_3+1-Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_3+2 ]
n_eval_serpent_0___3 [Arg_3+2 ]
n_eval_serpent_bb2_in___9 [Arg_3+1-Arg_5 ]
n_eval_serpent_0___8 [Arg_3+1-Arg_6 ]
n_eval_serpent_bb3_in___1 [Arg_3+2 ]
n_eval_serpent_bb1_in___5 [Arg_3+2 ]
eval_serpent_.critedge1_in [Arg_3+1-Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___3 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb5_in___9 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___8 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb6_in___1 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb6_in___6 [Arg_3+1-Arg_6 ]
n_eval_serpent_bb4_in___5 [Arg_3+2-Arg_7 ]

MPRF for transition 185:n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=1+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_3<Arg_7 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_serpent_bb1_in [Arg_4+1 ]
eval_serpent_bb4_in [Arg_4+1 ]
n_eval_serpent_1___2 [Arg_4+1 ]
n_eval_serpent_1___7 [Arg_4+1 ]
n_eval_serpent_7___2 [Arg_1+2 ]
n_eval_serpent_7___7 [Arg_1+2 ]
eval_serpent_.critedge_in [Arg_4+1 ]
n_eval_serpent_bb2_in___4 [Arg_4+1 ]
n_eval_serpent_0___3 [Arg_4+1 ]
n_eval_serpent_bb2_in___9 [Arg_4+1 ]
n_eval_serpent_0___8 [Arg_4+1 ]
n_eval_serpent_bb3_in___1 [Arg_4+1 ]
n_eval_serpent_bb3_in___6 [Arg_4+1 ]
n_eval_serpent_bb1_in___5 [Arg_4+1 ]
eval_serpent_.critedge1_in [Arg_4+1 ]
n_eval_serpent_bb5_in___4 [Arg_1+2 ]
n_eval_serpent_6___3 [Arg_1+2 ]
n_eval_serpent_bb5_in___9 [Arg_1+2 ]
n_eval_serpent_6___8 [Arg_1+2 ]
n_eval_serpent_bb6_in___1 [Arg_1+2 ]
n_eval_serpent_bb6_in___6 [Arg_1+2 ]
n_eval_serpent_bb4_in___5 [Arg_4+1 ]

MPRF for transition 173:n_eval_serpent_bb5_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_6___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1<=Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:

new bound:

Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3-Arg_6 ]
eval_serpent_bb4_in [Arg_3-Arg_6 ]
n_eval_serpent_1___2 [Arg_3+1 ]
n_eval_serpent_bb3_in___6 [Arg_3-Arg_5 ]
n_eval_serpent_1___7 [Arg_3-Arg_6 ]
n_eval_serpent_7___2 [Arg_3-Arg_7 ]
n_eval_serpent_7___7 [Arg_3-Arg_6 ]
eval_serpent_.critedge_in [Arg_3-Arg_6 ]
n_eval_serpent_bb2_in___4 [Arg_3+1 ]
n_eval_serpent_0___3 [Arg_3+1 ]
n_eval_serpent_bb2_in___9 [Arg_3-Arg_6 ]
n_eval_serpent_0___8 [Arg_3-Arg_5 ]
n_eval_serpent_bb3_in___1 [Arg_3+1 ]
n_eval_serpent_bb1_in___5 [Arg_3+1 ]
eval_serpent_.critedge1_in [Arg_3-Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___3 [Arg_3-Arg_7 ]
n_eval_serpent_bb5_in___9 [Arg_3-Arg_7 ]
n_eval_serpent_6___8 [Arg_3-Arg_6 ]
n_eval_serpent_bb6_in___1 [Arg_3-Arg_7 ]
n_eval_serpent_bb6_in___6 [Arg_3-Arg_7 ]
n_eval_serpent_bb4_in___5 [Arg_3+1-Arg_7 ]

MPRF for transition 175:n_eval_serpent_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7+1):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 0<Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 1<=Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:

new bound:

2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}

MPRF:

eval_serpent_bb1_in [Arg_3-Arg_6 ]
eval_serpent_bb4_in [Arg_3-Arg_6 ]
n_eval_serpent_1___2 [2*Arg_3 ]
n_eval_serpent_bb3_in___6 [Arg_3-Arg_5 ]
n_eval_serpent_1___7 [Arg_3-Arg_5 ]
n_eval_serpent_7___2 [Arg_3+1-Arg_7 ]
n_eval_serpent_7___7 [Arg_3-Arg_6 ]
eval_serpent_.critedge_in [Arg_3-Arg_6 ]
n_eval_serpent_bb2_in___4 [2*Arg_3 ]
n_eval_serpent_0___3 [2*Arg_3 ]
n_eval_serpent_bb2_in___9 [Arg_3-Arg_6 ]
n_eval_serpent_0___8 [Arg_3+Arg_5-2*Arg_6 ]
n_eval_serpent_bb3_in___1 [2*Arg_3 ]
n_eval_serpent_bb1_in___5 [2*Arg_3 ]
eval_serpent_.critedge1_in [Arg_3-Arg_5 ]
n_eval_serpent_bb5_in___4 [Arg_3+1-Arg_7 ]
n_eval_serpent_6___3 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb5_in___9 [Arg_3-Arg_6 ]
n_eval_serpent_6___8 [Arg_3-Arg_7 ]
n_eval_serpent_bb6_in___1 [Arg_3+1-Arg_7 ]
n_eval_serpent_bb6_in___6 [Arg_3-Arg_6 ]
n_eval_serpent_bb4_in___5 [Arg_3+1-Arg_7 ]

CFR: Improvement to new bound with the following program:

new bound:

21*Arg_3*Arg_3+67*Arg_3+16 {O(n^2)}

cfr-program:

Start: eval_serpent_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: Arg1_P, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P, NoDet0
Locations: eval_serpent_.critedge1_in, eval_serpent_.critedge_in, eval_serpent_bb0_in, eval_serpent_bb1_in, eval_serpent_bb4_in, eval_serpent_bb7_in, eval_serpent_start, eval_serpent_stop, n_eval_serpent_0___3, n_eval_serpent_0___8, n_eval_serpent_1___2, n_eval_serpent_1___7, n_eval_serpent_6___3, n_eval_serpent_6___8, n_eval_serpent_7___2, n_eval_serpent_7___7, n_eval_serpent_bb1_in___5, n_eval_serpent_bb2_in___4, n_eval_serpent_bb2_in___9, n_eval_serpent_bb3_in___1, n_eval_serpent_bb3_in___6, n_eval_serpent_bb4_in___5, n_eval_serpent_bb5_in___4, n_eval_serpent_bb5_in___9, n_eval_serpent_bb6_in___1, n_eval_serpent_bb6_in___6
Transitions:
3:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7):|:Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && 0<=Arg_4
4:eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=1+Arg_4 && 0<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<0
13:eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb4_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3
2:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_3,Arg_6,Arg_7):|:0<Arg_3
1:eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<=0
6:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0
138:eval_serpent_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 0<=Arg_4 && Arg_4<=Arg_3 && 1<=Arg_3 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6
15:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_3<Arg_7
171:eval_serpent_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_7<=Arg_5 && 1<=Arg_3 && 0<=Arg_4 && Arg_4<=Arg_3 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
22:eval_serpent_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_serpent_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
134:n_eval_serpent_0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_1___2(NoDet0,Arg_1,Arg_2,Arg3_P,Arg4_P,Arg_5,Arg6_P,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 1<=Arg_0 && Arg4_P<=Arg3_P && 0<=Arg4_P && 1<=Arg3_P && Arg6_P<=Arg_5 && Arg_4<=Arg4_P && Arg4_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_6<=Arg6_P && Arg6_P<=Arg_6
135:n_eval_serpent_0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_1___7(NoDet0,Arg_1,Arg_2,Arg3_P,Arg4_P,Arg_5,Arg6_P,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && Arg4_P<=Arg3_P && 0<=Arg4_P && 1<=Arg3_P && Arg6_P<=Arg_5 && Arg_4<=Arg4_P && Arg4_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_6<=Arg6_P && Arg6_P<=Arg_6
153:n_eval_serpent_1___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0
136:n_eval_serpent_1___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb3_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5
154:n_eval_serpent_1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_0<=0
137:n_eval_serpent_1___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb3_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5
167:n_eval_serpent_6___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_7___2(Arg_0,Arg1_P,NoDet0,Arg3_P,Arg4_P,Arg5_P,Arg6_P,Arg7_P):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1<=Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg1_P<=Arg3_P && 0<=1+Arg1_P && 1<=Arg3_P && Arg7_P<=Arg3_P && Arg6_P<=Arg7_P && Arg6_P<=Arg5_P && Arg_6<=Arg6_P && Arg6_P<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_4<=Arg1_P+1 && 1+Arg1_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg1_P+1<=Arg4_P && Arg4_P<=1+Arg1_P && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_7<=Arg7_P && Arg7_P<=Arg_7
168:n_eval_serpent_6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_7___7(Arg_0,Arg1_P,NoDet0,Arg3_P,Arg4_P,Arg5_P,Arg6_P,Arg7_P):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg1_P<=Arg3_P && 0<=1+Arg1_P && 1<=Arg3_P && Arg7_P<=Arg3_P && Arg6_P<=Arg7_P && Arg6_P<=Arg5_P && Arg_6<=Arg6_P && Arg6_P<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_4<=Arg1_P+1 && 1+Arg1_P<=Arg_4 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg1_P+1<=Arg4_P && Arg4_P<=1+Arg1_P && Arg_1<=Arg1_P && Arg1_P<=Arg_1 && Arg_7<=Arg7_P && Arg7_P<=Arg_7
186:n_eval_serpent_7___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0
169:n_eval_serpent_7___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
187:n_eval_serpent_7___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_2<=0
170:n_eval_serpent_7___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb6_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
152:n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=1+Arg_6 && 0<=1+Arg_5+Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0
139:n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=1+Arg_6 && 0<=1+Arg_5+Arg_6 && 0<=1+Arg_4+Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_5 && 1<=Arg_0 && 1+Arg_6<=Arg_5 && 0<=Arg_4 && Arg_4<=Arg_3 && 1<=Arg_3 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6
140:n_eval_serpent_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_0___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6
141:n_eval_serpent_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_0___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_5 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5 && 0<=Arg_6
142:n_eval_serpent_bb3_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7):|:1+Arg_6<=Arg_5 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 1<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 1+Arg_6<=Arg_5 && 0<Arg_0 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5
143:n_eval_serpent_bb3_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb1_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7):|:Arg_6<=Arg_5 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_4+Arg_6 && 1<=Arg_3+Arg_6 && 1<=Arg_0+Arg_6 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 1<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_0+Arg_4 && 1<=Arg_3 && 2<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && 0<=Arg_6 && 0<Arg_0 && Arg_5<=Arg_6 && Arg_6<=Arg_5 && 1<=Arg_0 && 1<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_4 && Arg_6<=Arg_5
185:n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_serpent_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_7,Arg_6,Arg_7):|:Arg_7<=1+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_3<Arg_7
172:n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb5_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=1+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1<=Arg_2 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_7 && Arg_7<=1+Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
173:n_eval_serpent_bb5_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_6___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1<=Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
174:n_eval_serpent_bb5_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_6___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_6<=Arg_3 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
175:n_eval_serpent_bb6_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7+1):|:Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 1+Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=Arg_5 && 0<Arg_2 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 1<=Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
176:n_eval_serpent_bb6_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_serpent_bb4_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7+1):|:Arg_7<=Arg_6 && Arg_7<=Arg_5 && Arg_7<=Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && 0<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=1+Arg_1 && Arg_4<=Arg_3 && 0<=Arg_4 && 1<=Arg_3 && Arg_7<=Arg_3 && Arg_7<=Arg_5 && 0<Arg_2 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_7<=Arg_3 && 1<=Arg_3 && 1<=Arg_2 && 0<=1+Arg_1 && Arg_6<=Arg_5 && Arg_6<=Arg_7 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1

All Bounds

Timebounds

Overall timebound:21*Arg_3*Arg_3+67*Arg_3+21 {O(n^2)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in: Arg_3+1 {O(n)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in: 1 {O(1)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in: 2*Arg_3 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in: 1 {O(1)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in: 1 {O(1)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9: Arg_3+1 {O(n)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in: Arg_3+1 {O(n)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9: 2*Arg_3 {O(n)}
22: eval_serpent_bb7_in->eval_serpent_stop: 1 {O(1)}
0: eval_serpent_start->eval_serpent_bb0_in: 1 {O(1)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7: Arg_3+1 {O(n)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6: Arg_3+1 {O(n)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2: Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7: 2*Arg_3 {O(n)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1: 2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in: 2*Arg_3 {O(n)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6: 2*Arg_3 {O(n)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in: 2*Arg_3 {O(n)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4: 4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in: 2*Arg_3 {O(n)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3: 4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8: Arg_3+1 {O(n)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5: Arg_3+1 {O(n)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4: Arg_3*Arg_3+5*Arg_3+3 {O(n^2)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in: Arg_3+1 {O(n)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3: Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8: 2*Arg_3 {O(n)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5: 2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5: 2*Arg_3 {O(n)}

Costbounds

Overall costbound: 21*Arg_3*Arg_3+67*Arg_3+21 {O(n^2)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in: Arg_3+1 {O(n)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in: 1 {O(1)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in: 2*Arg_3 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in: 1 {O(1)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in: 1 {O(1)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9: Arg_3+1 {O(n)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in: Arg_3+1 {O(n)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9: 2*Arg_3 {O(n)}
22: eval_serpent_bb7_in->eval_serpent_stop: 1 {O(1)}
0: eval_serpent_start->eval_serpent_bb0_in: 1 {O(1)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7: Arg_3+1 {O(n)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6: Arg_3+1 {O(n)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in: Arg_3+1 {O(n)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2: Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7: 2*Arg_3 {O(n)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1: 2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in: 2*Arg_3 {O(n)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6: 2*Arg_3 {O(n)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in: 2*Arg_3 {O(n)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4: 4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in: 2*Arg_3 {O(n)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3: 4*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8: Arg_3+1 {O(n)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5: 2*Arg_3*Arg_3+3*Arg_3 {O(n^2)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5: Arg_3+1 {O(n)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4: Arg_3*Arg_3+5*Arg_3+3 {O(n^2)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in: Arg_3+1 {O(n)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3: Arg_3*Arg_3+4*Arg_3+1 {O(n^2)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8: 2*Arg_3 {O(n)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5: 2*Arg_3*Arg_3+4*Arg_3 {O(n^2)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5: 2*Arg_3 {O(n)}

Sizebounds

3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_3: Arg_3 {O(n)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_4: Arg_3+1 {O(n)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
3: eval_serpent_.critedge1_in->eval_serpent_bb1_in, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_1: 5*Arg_3+5 {O(n)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_3: 4*Arg_3 {O(n)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_4: 1 {O(1)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_5: 8*Arg_3*Arg_3+28*Arg_3+8 {O(n^2)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_6: 30*Arg_3*Arg_3+105*Arg_3+35 {O(n^2)}
4: eval_serpent_.critedge1_in->eval_serpent_bb7_in, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+10 {O(n^2)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_1: Arg_3+1 {O(n)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_3: Arg_3 {O(n)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_4: 4*Arg_3+4 {O(n)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
13: eval_serpent_.critedge_in->eval_serpent_bb4_in, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_0: Arg_0 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_1: Arg_1 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_2: Arg_2 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_3: Arg_3 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_4: Arg_4 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_5: Arg_5 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_6: Arg_6 {O(n)}
1: eval_serpent_bb0_in->eval_serpent_bb7_in, Arg_7: Arg_7 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_0: Arg_0 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_1: Arg_1 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_2: Arg_2 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_3: Arg_3 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_4: Arg_3 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_5: Arg_3 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_6: Arg_6 {O(n)}
2: eval_serpent_bb0_in->eval_serpent_.critedge1_in, Arg_7: Arg_7 {O(n)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_3: Arg_3 {O(n)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_4: Arg_3+1 {O(n)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
6: eval_serpent_bb1_in->eval_serpent_.critedge_in, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_3: Arg_3 {O(n)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_4: Arg_3+1 {O(n)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
138: eval_serpent_bb1_in->n_eval_serpent_bb2_in___9, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_1: Arg_3+1 {O(n)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_3: Arg_3 {O(n)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_4: Arg_3+1 {O(n)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_5: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
15: eval_serpent_bb4_in->eval_serpent_.critedge1_in, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_1: Arg_3+1 {O(n)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_3: Arg_3 {O(n)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_4: Arg_3+2 {O(n)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
171: eval_serpent_bb4_in->n_eval_serpent_bb5_in___9, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_3: 5*Arg_3 {O(n)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_4: Arg_4+1 {O(n)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_5: 8*Arg_3*Arg_3+28*Arg_3+Arg_5+8 {O(n^2)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_6: 30*Arg_3*Arg_3+105*Arg_3+Arg_6+35 {O(n^2)}
22: eval_serpent_bb7_in->eval_serpent_stop, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_serpent_start->eval_serpent_bb0_in, Arg_7: Arg_7 {O(n)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_3: Arg_3 {O(n)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_4: Arg_3+1 {O(n)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
134: n_eval_serpent_0___3->n_eval_serpent_1___2, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_3: Arg_3 {O(n)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_4: Arg_3+1 {O(n)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
135: n_eval_serpent_0___8->n_eval_serpent_1___7, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_3: Arg_3 {O(n)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_4: Arg_3+1 {O(n)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
136: n_eval_serpent_1___2->n_eval_serpent_bb3_in___1, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_3: Arg_3 {O(n)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_4: Arg_3+1 {O(n)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
153: n_eval_serpent_1___2->eval_serpent_.critedge_in, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_3: Arg_3 {O(n)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_4: Arg_3+1 {O(n)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
137: n_eval_serpent_1___7->n_eval_serpent_bb3_in___6, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_3: Arg_3 {O(n)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_4: Arg_3+1 {O(n)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
154: n_eval_serpent_1___7->eval_serpent_.critedge_in, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_1: Arg_3+1 {O(n)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_3: Arg_3 {O(n)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_4: Arg_3+2 {O(n)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
167: n_eval_serpent_6___3->n_eval_serpent_7___2, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_1: Arg_3+1 {O(n)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_3: Arg_3 {O(n)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_4: Arg_3+2 {O(n)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
168: n_eval_serpent_6___8->n_eval_serpent_7___7, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_1: Arg_3+1 {O(n)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_3: Arg_3 {O(n)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_4: Arg_3+2 {O(n)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
169: n_eval_serpent_7___2->n_eval_serpent_bb6_in___1, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_1: Arg_3+1 {O(n)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_3: Arg_3 {O(n)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_4: Arg_3+1 {O(n)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_5: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
186: n_eval_serpent_7___2->eval_serpent_.critedge1_in, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_1: Arg_3+1 {O(n)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_3: Arg_3 {O(n)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_4: Arg_3+2 {O(n)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
170: n_eval_serpent_7___7->n_eval_serpent_bb6_in___6, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_1: Arg_3+1 {O(n)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_3: Arg_3 {O(n)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_4: Arg_3+1 {O(n)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_5: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
187: n_eval_serpent_7___7->eval_serpent_.critedge1_in, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_3: Arg_3 {O(n)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_4: Arg_3+1 {O(n)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
139: n_eval_serpent_bb1_in___5->n_eval_serpent_bb2_in___4, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_1: 10*Arg_3+2*Arg_1+10 {O(n)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_3: Arg_3 {O(n)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_4: Arg_3+1 {O(n)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_5: 16*Arg_3*Arg_3+58*Arg_3+16 {O(n^2)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_6: 1 {O(1)}
152: n_eval_serpent_bb1_in___5->eval_serpent_.critedge_in, Arg_7: 20*Arg_3*Arg_3+2*Arg_7+70*Arg_3+20 {O(n^2)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_3: Arg_3 {O(n)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_4: Arg_3+1 {O(n)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
140: n_eval_serpent_bb2_in___4->n_eval_serpent_0___3, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_3: Arg_3 {O(n)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_4: Arg_3+1 {O(n)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
141: n_eval_serpent_bb2_in___9->n_eval_serpent_0___8, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_3: Arg_3 {O(n)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_4: Arg_3+1 {O(n)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
142: n_eval_serpent_bb3_in___1->n_eval_serpent_bb1_in___5, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_1: 5*Arg_3+Arg_1+5 {O(n)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_3: Arg_3 {O(n)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_4: Arg_3+1 {O(n)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_5: 8*Arg_3*Arg_3+29*Arg_3+8 {O(n^2)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_6: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
143: n_eval_serpent_bb3_in___6->n_eval_serpent_bb1_in___5, Arg_7: 10*Arg_3*Arg_3+35*Arg_3+Arg_7+10 {O(n^2)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_1: Arg_3+1 {O(n)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_3: Arg_3 {O(n)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_4: 2*Arg_3+4 {O(n)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
172: n_eval_serpent_bb4_in___5->n_eval_serpent_bb5_in___4, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_1: 2*Arg_3+2 {O(n)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_3: Arg_3 {O(n)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_4: Arg_3+1 {O(n)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_5: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_6: 12*Arg_3*Arg_3+42*Arg_3+14 {O(n^2)}
185: n_eval_serpent_bb4_in___5->eval_serpent_.critedge1_in, Arg_7: 4*Arg_3*Arg_3+14*Arg_3+4 {O(n^2)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_1: Arg_3+1 {O(n)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_3: Arg_3 {O(n)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_4: Arg_3+2 {O(n)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
173: n_eval_serpent_bb5_in___4->n_eval_serpent_6___3, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_1: Arg_3+1 {O(n)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_3: Arg_3 {O(n)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_4: Arg_3+2 {O(n)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
174: n_eval_serpent_bb5_in___9->n_eval_serpent_6___8, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_1: Arg_3+1 {O(n)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_3: Arg_3 {O(n)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_4: Arg_3+2 {O(n)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
175: n_eval_serpent_bb6_in___1->n_eval_serpent_bb4_in___5, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_1: Arg_3+1 {O(n)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_3: Arg_3 {O(n)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_4: Arg_3+2 {O(n)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_5: 40*Arg_3*Arg_3+145*Arg_3+40 {O(n^2)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_6: 6*Arg_3*Arg_3+21*Arg_3+7 {O(n^2)}
176: n_eval_serpent_bb6_in___6->n_eval_serpent_bb4_in___5, Arg_7: 2*Arg_3*Arg_3+7*Arg_3+2 {O(n^2)}