Initial Problem
Start: eval_s_SFD_process_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: eval_s_SFD_process_1, eval_s_SFD_process_2, eval_s_SFD_process_4, eval_s_SFD_process_5, eval_s_SFD_process_8, eval_s_SFD_process_9, eval_s_SFD_process_bb0_in, eval_s_SFD_process_bb1_in, eval_s_SFD_process_bb2_in, eval_s_SFD_process_bb3_in, eval_s_SFD_process_bb4_in, eval_s_SFD_process_bb5_in, eval_s_SFD_process_bb6_in, eval_s_SFD_process_bb7_in, eval_s_SFD_process_bb8_in, eval_s_SFD_process_start, eval_s_SFD_process_stop
Transitions:
6:eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,nondef.0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
7:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<0
8:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<Arg_6
9:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6
12:eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,nondef.1,Arg_9,Arg_10,Arg_11,Arg_12)
13:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<0
14:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<Arg_8
15:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_7,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && 0<=Arg_8
22:eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,nondef.2,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
25:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_9,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_5<=0 && 0<=Arg_5
23:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_5<0
24:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<Arg_5
1:eval_s_SFD_process_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_11,Arg_10,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
2:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_0<Arg_12
3:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_12<=Arg_0
4:eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
10:eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
17:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_1<=0
16:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<Arg_1
18:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:0<Arg_2
19:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=0
20:eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_2-1,Arg_10,Arg_11,Arg_12)
26:eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4-1,Arg_3,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
27:eval_s_SFD_process_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
0:eval_s_SFD_process_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
Preprocessing
Found invariant Arg_11<=Arg_0 for location eval_s_SFD_process_bb1_in
Found invariant Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location eval_s_SFD_process_bb5_in
Found invariant Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb4_in
Found invariant Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_4
Found invariant Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location eval_s_SFD_process_bb7_in
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb3_in
Found invariant Arg_12<=Arg_0 && Arg_11<=Arg_0 for location eval_s_SFD_process_stop
Found invariant Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location eval_s_SFD_process_bb6_in
Found invariant 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb2_in
Found invariant Arg_12<=Arg_0 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb8_in
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_1
Found invariant 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location eval_s_SFD_process_9
Found invariant Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_5
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_2
Found invariant 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location eval_s_SFD_process_8
Problem after Preprocessing
Start: eval_s_SFD_process_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: eval_s_SFD_process_1, eval_s_SFD_process_2, eval_s_SFD_process_4, eval_s_SFD_process_5, eval_s_SFD_process_8, eval_s_SFD_process_9, eval_s_SFD_process_bb0_in, eval_s_SFD_process_bb1_in, eval_s_SFD_process_bb2_in, eval_s_SFD_process_bb3_in, eval_s_SFD_process_bb4_in, eval_s_SFD_process_bb5_in, eval_s_SFD_process_bb6_in, eval_s_SFD_process_bb7_in, eval_s_SFD_process_bb8_in, eval_s_SFD_process_start, eval_s_SFD_process_stop
Transitions:
6:eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,nondef.0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
7:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
8:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
9:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
12:eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,nondef.1,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
13:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
14:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
15:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_7,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
22:eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,nondef.2,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
25:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_9,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
23:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
24:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
1:eval_s_SFD_process_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_11,Arg_10,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
2:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_0<Arg_12
3:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_12<=Arg_0
4:eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
10:eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
17:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
16:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
18:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
19:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
20:eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_2-1,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
26:eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4-1,Arg_3,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
27:eval_s_SFD_process_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_12<=Arg_0 && Arg_11<=Arg_0
0:eval_s_SFD_process_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 7:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_5 [Arg_1+Arg_12-Arg_0-Arg_7 ]
eval_s_SFD_process_9 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_4 ]
eval_s_SFD_process_4 [Arg_12-Arg_0-1 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb6_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_8 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb7_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 8:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_5 [Arg_1+Arg_12-Arg_0-Arg_7 ]
eval_s_SFD_process_9 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_4 ]
eval_s_SFD_process_4 [Arg_12-Arg_0-1 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb6_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_8 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb7_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 12:eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,nondef.1,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 of depth 1:
new bound:
2*Arg_11+2*Arg_12+1 {O(n)}
MPRF:
eval_s_SFD_process_2 [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_5 [Arg_0+2*Arg_12-2*Arg_4-Arg_11 ]
eval_s_SFD_process_9 [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_bb2_in [2*Arg_12-Arg_0-Arg_11-1 ]
eval_s_SFD_process_1 [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_bb3_in [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_4 [Arg_0+2*Arg_12+1-2*Arg_4-Arg_11 ]
eval_s_SFD_process_bb4_in [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_bb5_in [2*Arg_12-Arg_0-Arg_11-1 ]
eval_s_SFD_process_bb6_in [2*Arg_12-Arg_0-Arg_11-1 ]
eval_s_SFD_process_8 [2*Arg_12-Arg_0-Arg_11-1 ]
eval_s_SFD_process_bb7_in [2*Arg_12-Arg_4-Arg_11 ]
eval_s_SFD_process_bb1_in [2*Arg_12-Arg_0-Arg_11-1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 13:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12-Arg_0 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_9 [Arg_2+Arg_12-Arg_4-Arg_9 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb4_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb5_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_12-Arg_0 ]
eval_s_SFD_process_8 [Arg_2+Arg_12-Arg_0-Arg_9-1 ]
eval_s_SFD_process_bb7_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 14:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_9 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_8 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb7_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 15:eval_s_SFD_process_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_7,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_9 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb6_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_8 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb7_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 10:eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_5 [Arg_1+Arg_12-Arg_0-Arg_7 ]
eval_s_SFD_process_9 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb3_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_4 [Arg_12-Arg_0-1 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_12-Arg_0 ]
eval_s_SFD_process_8 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb7_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 17:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 of depth 1:
new bound:
Arg_11+Arg_12 {O(n)}
MPRF:
eval_s_SFD_process_2 [Arg_12-Arg_0 ]
eval_s_SFD_process_5 [Arg_12-Arg_0 ]
eval_s_SFD_process_9 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_12-Arg_0 ]
eval_s_SFD_process_1 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb3_in [Arg_12-Arg_0 ]
eval_s_SFD_process_4 [Arg_12-Arg_0 ]
eval_s_SFD_process_bb4_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb5_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_bb6_in [Arg_12+1-Arg_4 ]
eval_s_SFD_process_8 [Arg_2+Arg_12-Arg_4-Arg_9 ]
eval_s_SFD_process_bb7_in [Arg_12-Arg_0 ]
eval_s_SFD_process_bb1_in [Arg_12-Arg_0 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 22:eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,nondef.2,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 of depth 1:
new bound:
13*Arg_12*Arg_12+16*Arg_11*Arg_11+29*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+3*Arg_11+3*Arg_12+Arg_10+1 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_2 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_4 [Arg_4-Arg_0 ]
eval_s_SFD_process_5 [Arg_4-Arg_0 ]
eval_s_SFD_process_9 [Arg_2 ]
eval_s_SFD_process_bb2_in [Arg_1+1 ]
eval_s_SFD_process_1 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb4_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb5_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_8 [Arg_2+1 ]
eval_s_SFD_process_bb7_in [Arg_3+1 ]
eval_s_SFD_process_bb1_in [Arg_1+1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 23:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0 of depth 1:
new bound:
12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_2 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_9 [Arg_9+2 ]
eval_s_SFD_process_bb2_in [Arg_1+1 ]
eval_s_SFD_process_1 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb4_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb5_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_8 [Arg_9+2 ]
eval_s_SFD_process_bb7_in [Arg_3+1 ]
eval_s_SFD_process_bb1_in [Arg_1+1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 24:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5 of depth 1:
new bound:
12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_2 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_9 [Arg_9+2 ]
eval_s_SFD_process_bb2_in [Arg_1+1 ]
eval_s_SFD_process_1 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb4_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb5_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_2+Arg_4-Arg_0 ]
eval_s_SFD_process_8 [Arg_9+2 ]
eval_s_SFD_process_bb7_in [Arg_3+1 ]
eval_s_SFD_process_bb1_in [Arg_1+1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 25:eval_s_SFD_process_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_9,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1 ]
eval_s_SFD_process_2 [Arg_1 ]
eval_s_SFD_process_4 [0 ]
eval_s_SFD_process_5 [0 ]
eval_s_SFD_process_9 [Arg_9+1 ]
eval_s_SFD_process_bb2_in [Arg_1 ]
eval_s_SFD_process_1 [Arg_1 ]
eval_s_SFD_process_bb4_in [Arg_1 ]
eval_s_SFD_process_bb5_in [Arg_2 ]
eval_s_SFD_process_bb6_in [Arg_2 ]
eval_s_SFD_process_8 [Arg_9+1 ]
eval_s_SFD_process_bb7_in [Arg_3 ]
eval_s_SFD_process_bb1_in [Arg_1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 16:eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1 of depth 1:
new bound:
2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1 ]
eval_s_SFD_process_2 [Arg_1 ]
eval_s_SFD_process_4 [0 ]
eval_s_SFD_process_5 [0 ]
eval_s_SFD_process_9 [Arg_1+Arg_9-Arg_2 ]
eval_s_SFD_process_bb2_in [Arg_1 ]
eval_s_SFD_process_1 [Arg_1 ]
eval_s_SFD_process_bb4_in [Arg_1 ]
eval_s_SFD_process_bb5_in [Arg_1-1 ]
eval_s_SFD_process_bb6_in [Arg_1-1 ]
eval_s_SFD_process_8 [Arg_1+Arg_9-Arg_2 ]
eval_s_SFD_process_bb7_in [Arg_3 ]
eval_s_SFD_process_bb1_in [Arg_1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 18:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2 of depth 1:
new bound:
2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1 ]
eval_s_SFD_process_2 [Arg_1 ]
eval_s_SFD_process_4 [0 ]
eval_s_SFD_process_5 [0 ]
eval_s_SFD_process_9 [Arg_9 ]
eval_s_SFD_process_bb2_in [Arg_1 ]
eval_s_SFD_process_1 [Arg_1 ]
eval_s_SFD_process_bb4_in [Arg_1 ]
eval_s_SFD_process_bb5_in [Arg_2 ]
eval_s_SFD_process_bb6_in [Arg_2-1 ]
eval_s_SFD_process_8 [Arg_9 ]
eval_s_SFD_process_bb7_in [Arg_3 ]
eval_s_SFD_process_bb1_in [Arg_1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 19:eval_s_SFD_process_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0 of depth 1:
new bound:
2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1 ]
eval_s_SFD_process_2 [Arg_1+1 ]
eval_s_SFD_process_4 [1 ]
eval_s_SFD_process_5 [1 ]
eval_s_SFD_process_9 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb2_in [Arg_1+1 ]
eval_s_SFD_process_1 [Arg_1+1 ]
eval_s_SFD_process_bb4_in [Arg_1+1 ]
eval_s_SFD_process_bb5_in [Arg_1+1 ]
eval_s_SFD_process_bb6_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_8 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb7_in [Arg_3+1 ]
eval_s_SFD_process_bb1_in [Arg_1+1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 20:eval_s_SFD_process_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_2-1,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 of depth 1:
new bound:
2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1 ]
eval_s_SFD_process_2 [Arg_1 ]
eval_s_SFD_process_4 [0 ]
eval_s_SFD_process_5 [0 ]
eval_s_SFD_process_9 [Arg_2-1 ]
eval_s_SFD_process_bb2_in [Arg_1 ]
eval_s_SFD_process_1 [Arg_1 ]
eval_s_SFD_process_bb4_in [Arg_1 ]
eval_s_SFD_process_bb5_in [Arg_2 ]
eval_s_SFD_process_bb6_in [Arg_2 ]
eval_s_SFD_process_8 [Arg_2-1 ]
eval_s_SFD_process_bb7_in [Arg_3 ]
eval_s_SFD_process_bb1_in [Arg_1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
MPRF for transition 26:eval_s_SFD_process_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb1_in(Arg_4-1,Arg_3,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 of depth 1:
new bound:
12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
MPRF:
eval_s_SFD_process_bb3_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_2 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_4 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_5 [Arg_12+1-Arg_0 ]
eval_s_SFD_process_9 [Arg_1+1 ]
eval_s_SFD_process_bb2_in [Arg_1+1 ]
eval_s_SFD_process_1 [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb4_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb5_in [Arg_1+Arg_4-Arg_0 ]
eval_s_SFD_process_bb6_in [Arg_1+1 ]
eval_s_SFD_process_8 [Arg_1+1 ]
eval_s_SFD_process_bb7_in [Arg_3+2 ]
eval_s_SFD_process_bb1_in [Arg_1+1 ]
Show Graph
G
eval_s_SFD_process_1
eval_s_SFD_process_1
eval_s_SFD_process_2
eval_s_SFD_process_2
eval_s_SFD_process_1->eval_s_SFD_process_2
t₆
η (Arg_6) = nondef.0
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in
eval_s_SFD_process_bb3_in
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₇
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
eval_s_SFD_process_2->eval_s_SFD_process_bb3_in
t₈
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
eval_s_SFD_process_bb4_in
eval_s_SFD_process_bb4_in
eval_s_SFD_process_2->eval_s_SFD_process_bb4_in
t₉
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
eval_s_SFD_process_4
eval_s_SFD_process_4
eval_s_SFD_process_5
eval_s_SFD_process_5
eval_s_SFD_process_4->eval_s_SFD_process_5
t₁₂
η (Arg_8) = nondef.1
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb1_in
eval_s_SFD_process_bb1_in
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₃
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<0
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₄
η (Arg_0) = Arg_4
η (Arg_1) = 0
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_8
eval_s_SFD_process_5->eval_s_SFD_process_bb1_in
t₁₅
η (Arg_0) = Arg_4
η (Arg_1) = Arg_7
τ = Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8
eval_s_SFD_process_8
eval_s_SFD_process_8
eval_s_SFD_process_9
eval_s_SFD_process_9
eval_s_SFD_process_8->eval_s_SFD_process_9
t₂₂
η (Arg_5) = nondef.2
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb5_in
eval_s_SFD_process_bb5_in
eval_s_SFD_process_9->eval_s_SFD_process_bb5_in
t₂₅
η (Arg_2) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<=0 && 0<=Arg_5
eval_s_SFD_process_bb7_in
eval_s_SFD_process_bb7_in
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₃
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_5<0
eval_s_SFD_process_9->eval_s_SFD_process_bb7_in
t₂₄
η (Arg_3) = Arg_9
τ = 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_5
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in
eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in
t₁
η (Arg_0) = Arg_11
η (Arg_1) = Arg_10
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb2_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in
t₂
τ = Arg_11<=Arg_0 && Arg_0<Arg_12
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb8_in
eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in
t₃
τ = Arg_11<=Arg_0 && Arg_12<=Arg_0
eval_s_SFD_process_bb2_in->eval_s_SFD_process_1
t₄
η (Arg_4) = Arg_0+1
τ = 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb3_in->eval_s_SFD_process_4
t₁₀
η (Arg_7) = Arg_1+1
τ = Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in
t₁₇
η (Arg_0) = Arg_4
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0
eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in
t₁₆
η (Arg_2) = Arg_1
τ = Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_1
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb6_in
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in
t₁₈
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && 0<Arg_2
eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in
t₁₉
η (Arg_3) = Arg_2
τ = Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 && Arg_2<=0
eval_s_SFD_process_bb6_in->eval_s_SFD_process_8
t₂₀
η (Arg_9) = Arg_2-1
τ = Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in
t₂₆
η (Arg_0) = Arg_4-1
η (Arg_1) = Arg_3
τ = Arg_6<=0 && Arg_6<=Arg_3 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1
eval_s_SFD_process_stop
eval_s_SFD_process_stop
eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop
t₂₇
τ = Arg_12<=Arg_0 && Arg_11<=Arg_0
eval_s_SFD_process_start
eval_s_SFD_process_start
eval_s_SFD_process_start->eval_s_SFD_process_bb0_in
t₀
knowledge_propagation leads to new time bound 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)} for transition 2:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_0<Arg_12
knowledge_propagation leads to new time bound 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)} for transition 4:eval_s_SFD_process_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
knowledge_propagation leads to new time bound 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)} for transition 6:eval_s_SFD_process_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,nondef.0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0
knowledge_propagation leads to new time bound 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)} for transition 9:eval_s_SFD_process_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6
Analysing control-flow refined program
Cut unsatisfiable transition 291: n_eval_s_SFD_process_bb1_in___18->eval_s_SFD_process_bb8_in
Cut unsatisfiable transition 292: n_eval_s_SFD_process_bb1_in___23->eval_s_SFD_process_bb8_in
Found invariant Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_5<=Arg_1 && Arg_1+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && 0<=Arg_1 for location n_eval_s_SFD_process_2___15
Found invariant Arg_11<=Arg_0 for location eval_s_SFD_process_bb1_in
Found invariant Arg_8<=0 && Arg_7+Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_1+Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_1<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_1 && Arg_1+Arg_7<=0 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=Arg_0 && 2+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && Arg_0<=Arg_12 && 2+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb1_in___5
Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_6<=Arg_1 && Arg_1+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_5<=Arg_1 && Arg_1+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb4_in___14
Found invariant Arg_8<=0 && Arg_7+Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_1+Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_1<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_1 && Arg_1+Arg_7<=0 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 3+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 3+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 2+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_1___3
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 for location n_eval_s_SFD_process_1___44
Found invariant 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 for location n_eval_s_SFD_process_bb2_in___45
Found invariant Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb4_in___10
Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_6<=Arg_1 && Arg_1+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_5<=Arg_1 && Arg_1+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb1_in___18
Found invariant Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && 1+Arg_4<=Arg_12 && Arg_4<=Arg_0 && 1+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb2_in___39
Found invariant Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb4_in___36
Found invariant Arg_12<=Arg_0 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb8_in
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_1___12
Found invariant Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_5<=0 && Arg_5<=Arg_2 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb5_in___32
Found invariant Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_5
Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_6<=Arg_1 && Arg_1+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_5<=Arg_1 && Arg_1+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && 0<=Arg_1 for location n_eval_s_SFD_process_1___16
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_2___11
Found invariant Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_4<=Arg_12 && Arg_4<=Arg_0 && 1+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 for location n_eval_s_SFD_process_bb2_in___9
Found invariant Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 for location n_eval_s_SFD_process_bb4_in___42
Found invariant Arg_8<=0 && Arg_7+Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_1+Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_1<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_1 && Arg_1+Arg_7<=0 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && 1+Arg_4<=Arg_12 && Arg_4<=Arg_0 && 2+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 3+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 2+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb2_in___4
Found invariant Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 for location n_eval_s_SFD_process_bb4_in___6
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<=Arg_1 for location n_eval_s_SFD_process_1___21
Found invariant Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 for location n_eval_s_SFD_process_1___8
Found invariant Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb5_in___40
Found invariant Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 1<=Arg_9 && 1<=Arg_6+Arg_9 && 1+Arg_6<=Arg_9 && 1<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 2<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 3<=Arg_1+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_2 && 2+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 2<=Arg_1 for location n_eval_s_SFD_process_bb6_in___29
Found invariant 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb2_in___13
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb4_in___19
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 for location n_eval_s_SFD_process_2___43
Found invariant 1+Arg_9<=Arg_2 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 2<=Arg_1+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 1+Arg_6<=Arg_2 && 2+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 2<=Arg_1 for location n_eval_s_SFD_process_8___27
Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 1<=Arg_1+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 1<=Arg_1+Arg_6 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=0 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb7_in___28
Found invariant Arg_9<=0 && Arg_9<=Arg_6 && Arg_6+Arg_9<=0 && Arg_9<=Arg_5 && Arg_5+Arg_9<=0 && Arg_9<=Arg_3 && Arg_3+Arg_9<=0 && Arg_9<=Arg_2 && Arg_2+Arg_9<=0 && Arg_9<=Arg_1 && Arg_1+Arg_9<=0 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_5+Arg_9 && Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 0<=Arg_2+Arg_9 && Arg_2<=Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && Arg_3+Arg_6<=0 && Arg_6<=Arg_2 && Arg_2+Arg_6<=0 && Arg_6<=Arg_1 && Arg_1+Arg_6<=0 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 0<=Arg_2+Arg_6 && Arg_2<=Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && Arg_5<=0 && Arg_5<=Arg_3 && Arg_3+Arg_5<=0 && Arg_5<=Arg_2 && Arg_2+Arg_5<=0 && Arg_5<=Arg_1 && Arg_1+Arg_5<=0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb2_in___17
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb2_in___22
Found invariant Arg_7<=1+Arg_1 && 1+Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_4
Found invariant Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 for location n_eval_s_SFD_process_2___7
Found invariant 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_1<=1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_8___34
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 for location eval_s_SFD_process_bb3_in
Found invariant Arg_12<=Arg_0 && Arg_11<=Arg_0 for location eval_s_SFD_process_stop
Found invariant Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_2___37
Found invariant Arg_8<=0 && Arg_7+Arg_8<=0 && Arg_1+Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_8 && Arg_1<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_1 && Arg_1+Arg_7<=0 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 3+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 3+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 2+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_2___2
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<=Arg_1 for location n_eval_s_SFD_process_2___20
Found invariant Arg_8<=0 && Arg_7+Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && Arg_1+Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_1<=Arg_8 && Arg_7<=0 && Arg_7<=Arg_6 && Arg_6+Arg_7<=0 && Arg_7<=Arg_1 && Arg_1+Arg_7<=0 && Arg_1<=Arg_7 && Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 3+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 3+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 2+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb4_in___1
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_1<=1+Arg_9 && Arg_6<=0 && 1+Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 2+Arg_5<=Arg_1 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb7_in___31
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 2<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_5+Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 2+Arg_6<=Arg_1 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 3+Arg_5<=Arg_1 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 2<=Arg_1 for location n_eval_s_SFD_process_bb7_in___25
Found invariant Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb6_in___35
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_5+Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 2<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 2+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_5 && 1<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 2<=Arg_1 for location n_eval_s_SFD_process_bb7_in___24
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_5+Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_1<=1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && 1<=Arg_5 && 1<=Arg_3+Arg_5 && 2<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 1<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_bb7_in___30
Found invariant 1+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 1<=Arg_1+Arg_9 && Arg_1<=1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 1<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 1<=Arg_1 for location n_eval_s_SFD_process_9___33
Found invariant Arg_9<=Arg_3 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 0<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 0<=Arg_1+Arg_9 && Arg_1<=Arg_9 && Arg_6<=0 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && 0<=Arg_6 && 0<=Arg_3+Arg_6 && 1<=Arg_2+Arg_6 && 0<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<=Arg_1 for location n_eval_s_SFD_process_bb1_in___23
Found invariant Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=Arg_0 && 1+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_bb1_in___41
Found invariant Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=0 for location n_eval_s_SFD_process_1___38
Found invariant 1+Arg_9<=Arg_2 && 2+Arg_9<=Arg_1 && 0<=Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=Arg_9 && 1<=Arg_2+Arg_9 && Arg_2<=1+Arg_9 && 2<=Arg_1+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_2 && 2+Arg_6<=Arg_1 && 0<=Arg_6 && 1<=Arg_2+Arg_6 && 2<=Arg_1+Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 2<=Arg_1 for location n_eval_s_SFD_process_9___26
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 233:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_11<=Arg_0 && Arg_8<=0 && 0<=Arg_8 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_11<=Arg_0 && Arg_0<Arg_12
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 234:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb2_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_11<=Arg_0 && Arg_0<Arg_12
knowledge_propagation leads to new time bound 1 {O(1)} for transition 235:eval_s_SFD_process_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb2_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_11<=Arg_0 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_11<=Arg_0 && Arg_0<Arg_12
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 237:n_eval_s_SFD_process_bb2_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_1___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_0<Arg_12 && Arg_1<=0 && Arg_11<=Arg_0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12
knowledge_propagation leads to new time bound 1 {O(1)} for transition 242:n_eval_s_SFD_process_bb2_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_1___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && Arg_0<Arg_12 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 243:n_eval_s_SFD_process_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && 1+Arg_4<=Arg_12 && Arg_4<=Arg_0 && 1+Arg_11<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_0<Arg_12 && 1+Arg_11<=Arg_0 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_8<=0 && 0<=Arg_8 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 208:n_eval_s_SFD_process_1___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_2___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,NoDet0,Arg_7,Arg_8,Arg_9,Arg_10,Arg11_P,Arg12_P):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_1<=0 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg12_P && Arg11_P<=Arg_0 && Arg_11<=Arg11_P && Arg11_P<=Arg_11 && Arg_12<=Arg12_P && Arg12_P<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
knowledge_propagation leads to new time bound 1 {O(1)} for transition 213:n_eval_s_SFD_process_1___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_2___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,NoDet0,Arg_7,Arg_8,Arg_9,Arg_10,Arg11_P,Arg12_P):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && 1+Arg_0<=Arg_12 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg12_P && Arg11_P<=Arg_0 && Arg_11<=Arg11_P && Arg11_P<=Arg_11 && Arg_12<=Arg12_P && Arg12_P<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 214:n_eval_s_SFD_process_1___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,NoDet0,Arg_7,Arg_8,Arg_9,Arg_10,Arg11_P,Arg12_P):|:Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && 1+Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_8<=0 && 0<=Arg_8 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && 1+Arg_0<=Arg12_P && Arg11_P<=Arg_0 && Arg_11<=Arg11_P && Arg11_P<=Arg_11 && Arg_12<=Arg12_P && Arg12_P<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 215:n_eval_s_SFD_process_2___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb4_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_1<=0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 295:n_eval_s_SFD_process_2___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 302:n_eval_s_SFD_process_2___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
knowledge_propagation leads to new time bound 1 {O(1)} for transition 220:n_eval_s_SFD_process_2___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb4_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && 1+Arg_0<=Arg_12 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound 1 {O(1)} for transition 300:n_eval_s_SFD_process_2___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
knowledge_propagation leads to new time bound 1 {O(1)} for transition 307:n_eval_s_SFD_process_2___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 221:n_eval_s_SFD_process_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb4_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && 1+Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_8<=0 && 0<=Arg_8 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 301:n_eval_s_SFD_process_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_6<0
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 308:n_eval_s_SFD_process_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> eval_s_SFD_process_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && 0<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && 0<Arg_6
knowledge_propagation leads to new time bound 3*Arg_11+3*Arg_12+1 {O(n)} for transition 245:n_eval_s_SFD_process_bb4_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb1_in___41(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && Arg_1+Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_1<=0 && Arg_1<=0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_6<=0 && 0<=Arg_6 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_1<=0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound 1 {O(1)} for transition 250:n_eval_s_SFD_process_bb4_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb1_in___41(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_1<=0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound 1 {O(1)} for transition 251:n_eval_s_SFD_process_bb4_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb5_in___40(Arg_0,Arg_1,Arg_1,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_11 && Arg_4<=1+Arg_0 && 1+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 1+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && Arg_11<=Arg_0 && Arg_0<=Arg_11 && Arg_10<=Arg_1 && Arg_1<=Arg_10 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_0<=Arg_11 && Arg_11<=Arg_0 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=Arg_10 && Arg_10<=Arg_1 && Arg_11<=Arg_0 && 0<Arg_1 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 252:n_eval_s_SFD_process_bb4_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb1_in___5(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && 1+Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_8<=0 && 0<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=0 && Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound Arg_11+Arg_12 {O(n)} for transition 253:n_eval_s_SFD_process_bb4_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> n_eval_s_SFD_process_bb5_in___40(Arg_0,Arg_1,Arg_1,Arg_3,Arg_0+1,Arg_5,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_8<=0 && Arg_8<=Arg_6 && Arg_6+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_6+Arg_8 && Arg_6<=Arg_8 && Arg_7<=Arg_1 && Arg_1<=Arg_7 && Arg_6<=0 && 0<=Arg_6 && Arg_4<=Arg_12 && Arg_4<=1+Arg_0 && 2+Arg_11<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_11<=Arg_12 && 1+Arg_0<=Arg_12 && 1+Arg_11<=Arg_0 && 1+Arg_11<=Arg_0 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_8<=0 && 0<=Arg_8 && Arg_1<=Arg_7 && Arg_7<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_11<=Arg_0 && 0<Arg_1 && 1+Arg_0<=Arg_12 && Arg_0+1<=Arg_4 && Arg_4<=1+Arg_0 && Arg_6<=0 && 0<=Arg_6
All Bounds
Timebounds
Overall timebound:123*Arg_11*Arg_12+13*Arg_10*Arg_11+13*Arg_10*Arg_12+60*Arg_12*Arg_12+63*Arg_11*Arg_11+13*Arg_10+44*Arg_11+44*Arg_12+18 {O(n^2)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in: Arg_11+Arg_12 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in: Arg_11+Arg_12 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5: 2*Arg_11+2*Arg_12+1 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9: 13*Arg_12*Arg_12+16*Arg_11*Arg_11+29*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+3*Arg_11+3*Arg_12+Arg_10+1 {O(n^2)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in: 1 {O(1)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in: 1 {O(1)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4: Arg_11+Arg_12 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop: 1 {O(1)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 123*Arg_11*Arg_12+13*Arg_10*Arg_11+13*Arg_10*Arg_12+60*Arg_12*Arg_12+63*Arg_11*Arg_11+13*Arg_10+44*Arg_11+44*Arg_12+18 {O(n^2)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in: Arg_11+Arg_12 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in: Arg_11+Arg_12 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5: 2*Arg_11+2*Arg_12+1 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9: 13*Arg_12*Arg_12+16*Arg_11*Arg_11+29*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+3*Arg_11+3*Arg_12+Arg_10+1 {O(n^2)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in: 1 {O(1)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in: 1 {O(1)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+6*Arg_11+6*Arg_12+Arg_10+2 {O(n^2)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4: Arg_11+Arg_12 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in: Arg_11+Arg_12 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8: 2*Arg_11*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+Arg_11*Arg_11+Arg_12*Arg_12+Arg_10 {O(n^2)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in: 12*Arg_11*Arg_12+6*Arg_11*Arg_11+6*Arg_12*Arg_12+Arg_10*Arg_11+Arg_10*Arg_12+2*Arg_11+2*Arg_12+Arg_10+1 {O(n^2)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop: 1 {O(1)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in: 1 {O(1)}
Sizebounds
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_10: Arg_10 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_11: Arg_11 {O(n)}
6: eval_s_SFD_process_1->eval_s_SFD_process_2, Arg_12: Arg_12 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_10: Arg_10 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_11: Arg_11 {O(n)}
7: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_12: Arg_12 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_10: Arg_10 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_11: Arg_11 {O(n)}
8: eval_s_SFD_process_2->eval_s_SFD_process_bb3_in, Arg_12: Arg_12 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_6: 0 {O(1)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_10: Arg_10 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_11: Arg_11 {O(n)}
9: eval_s_SFD_process_2->eval_s_SFD_process_bb4_in, Arg_12: Arg_12 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_4: 10*Arg_11+8*Arg_12+2 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_7: 2*Arg_10+2*Arg_11+2*Arg_12+2 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_10: Arg_10 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_11: Arg_11 {O(n)}
12: eval_s_SFD_process_4->eval_s_SFD_process_5, Arg_12: Arg_12 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_1: 0 {O(1)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_4: 10*Arg_11+8*Arg_12+2 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_7: 2*Arg_10+2*Arg_11+2*Arg_12+2 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
13: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_1: 0 {O(1)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_4: 10*Arg_11+8*Arg_12+2 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_7: 2*Arg_10+2*Arg_11+2*Arg_12+2 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
14: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_4: 10*Arg_11+8*Arg_12+2 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_7: 2*Arg_10+2*Arg_11+2*Arg_12+2 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_8: 0 {O(1)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
15: eval_s_SFD_process_5->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_6: 0 {O(1)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_10: Arg_10 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_11: Arg_11 {O(n)}
22: eval_s_SFD_process_8->eval_s_SFD_process_9, Arg_12: Arg_12 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_3: Arg_10+Arg_11+Arg_12 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_6: 0 {O(1)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_10: Arg_10 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_11: Arg_11 {O(n)}
23: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_12: Arg_12 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_3: Arg_10+Arg_11+Arg_12 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_6: 0 {O(1)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_10: Arg_10 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_11: Arg_11 {O(n)}
24: eval_s_SFD_process_9->eval_s_SFD_process_bb7_in, Arg_12: Arg_12 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_5: 0 {O(1)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_6: 0 {O(1)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_10: Arg_10 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_11: Arg_11 {O(n)}
25: eval_s_SFD_process_9->eval_s_SFD_process_bb5_in, Arg_12: Arg_12 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_0: Arg_11 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_1: Arg_10 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_2: Arg_2 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_3: Arg_3 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_5: Arg_5 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_6: Arg_6 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_8: Arg_8 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_9: Arg_9 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
1: eval_s_SFD_process_bb0_in->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_4: 40*Arg_12+50*Arg_11+Arg_4+10 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_10: Arg_10 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_11: Arg_11 {O(n)}
2: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb2_in, Arg_12: Arg_12 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_0: 16*Arg_12+21*Arg_11 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_1: 2*Arg_11+2*Arg_12+3*Arg_10 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_2: 5*Arg_2+8*Arg_10+8*Arg_11+8*Arg_12 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_3: 5*Arg_3+8*Arg_10+8*Arg_11+8*Arg_12 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_4: 28*Arg_12+35*Arg_11+Arg_4+7 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_7: 12*Arg_10+12*Arg_11+12*Arg_12+2*Arg_7+12 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_9: 12*Arg_10+12*Arg_11+12*Arg_12+5*Arg_9 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_10: 5*Arg_10 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_11: 5*Arg_11 {O(n)}
3: eval_s_SFD_process_bb1_in->eval_s_SFD_process_bb8_in, Arg_12: 5*Arg_12 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_10: Arg_10 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_11: Arg_11 {O(n)}
4: eval_s_SFD_process_bb2_in->eval_s_SFD_process_1, Arg_12: Arg_12 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_4: 10*Arg_11+8*Arg_12+2 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_7: 2*Arg_10+2*Arg_11+2*Arg_12+2 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_10: Arg_10 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_11: Arg_11 {O(n)}
10: eval_s_SFD_process_bb3_in->eval_s_SFD_process_4, Arg_12: Arg_12 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_6: 0 {O(1)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_10: Arg_10 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_11: Arg_11 {O(n)}
16: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb5_in, Arg_12: Arg_12 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_2 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_6: 0 {O(1)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12+Arg_9 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
17: eval_s_SFD_process_bb4_in->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_6: 0 {O(1)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_9: 4*Arg_10+4*Arg_11+4*Arg_12+Arg_9 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_10: Arg_10 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_11: Arg_11 {O(n)}
18: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb6_in, Arg_12: Arg_12 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_2: 0 {O(1)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_3: 0 {O(1)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_5: 0 {O(1)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_6: 0 {O(1)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_10: Arg_10 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_11: Arg_11 {O(n)}
19: eval_s_SFD_process_bb5_in->eval_s_SFD_process_bb7_in, Arg_12: Arg_12 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_2: Arg_10+Arg_11+Arg_12 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12+Arg_3 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_4: 4*Arg_12+5*Arg_11+1 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_6: 0 {O(1)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_9: Arg_10+Arg_11+Arg_12 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_10: Arg_10 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_11: Arg_11 {O(n)}
20: eval_s_SFD_process_bb6_in->eval_s_SFD_process_8, Arg_12: Arg_12 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_0: 4*Arg_12+5*Arg_11 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_1: Arg_10+Arg_11+Arg_12 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_2: 2*Arg_10+2*Arg_11+2*Arg_12 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_3: 2*Arg_10+2*Arg_11+2*Arg_12 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_4: 12*Arg_12+15*Arg_11+3 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_6: 0 {O(1)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_7: 6*Arg_10+6*Arg_11+6*Arg_12+Arg_7+6 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_9: 3*Arg_10+3*Arg_11+3*Arg_12 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_10: Arg_10 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_11: Arg_11 {O(n)}
26: eval_s_SFD_process_bb7_in->eval_s_SFD_process_bb1_in, Arg_12: Arg_12 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_0: 16*Arg_12+21*Arg_11 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_1: 2*Arg_11+2*Arg_12+3*Arg_10 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_2: 5*Arg_2+8*Arg_10+8*Arg_11+8*Arg_12 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_3: 5*Arg_3+8*Arg_10+8*Arg_11+8*Arg_12 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_4: 28*Arg_12+35*Arg_11+Arg_4+7 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_7: 12*Arg_10+12*Arg_11+12*Arg_12+2*Arg_7+12 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_9: 12*Arg_10+12*Arg_11+12*Arg_12+5*Arg_9 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_10: 5*Arg_10 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_11: 5*Arg_11 {O(n)}
27: eval_s_SFD_process_bb8_in->eval_s_SFD_process_stop, Arg_12: 5*Arg_12 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_8: Arg_8 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_9: Arg_9 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_10: Arg_10 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_11: Arg_11 {O(n)}
0: eval_s_SFD_process_start->eval_s_SFD_process_bb0_in, Arg_12: Arg_12 {O(n)}