Initial Problem

Start: eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars: nondef.0, nondef.1
Locations: eval_rank2_.critedge1_in, eval_rank2_.critedge_in, eval_rank2_11, eval_rank2_12, eval_rank2_5, eval_rank2_6, eval_rank2_bb0_in, eval_rank2_bb1_in, eval_rank2_bb2_in, eval_rank2_bb3_in, eval_rank2_bb4_in, eval_rank2_bb5_in, eval_rank2_bb6_in, eval_rank2_bb7_in, eval_rank2_bb8_in, eval_rank2_bb9_in, eval_rank2_start, eval_rank2_stop
Transitions:
21:eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8)
22:eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8)
17:eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_12(nondef.1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
19:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_0<=0
18:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:0<Arg_0
9:eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_6(Arg_0,nondef.0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
11:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_1<=0
10:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:0<Arg_1
1:eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
2:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_3
3:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_3<2
4:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6+Arg_3-1,Arg_8)
6:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<Arg_4+1
5:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4+1<=Arg_7
7:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
12:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1)
14:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<Arg_5+3
13:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_5+3<=Arg_8
15:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
20:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2)
23:eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
0:eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)

Preprocessing

Found invariant Arg_3<=1 for location eval_rank2_stop

Found invariant 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location eval_rank2_.critedge_in

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_11

Found invariant 2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location eval_rank2_5

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location eval_rank2_bb8_in

Found invariant 2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_bb5_in

Found invariant 1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_.critedge1_in

Found invariant 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location eval_rank2_bb3_in

Found invariant 1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_bb6_in

Found invariant 2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location eval_rank2_6

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_bb7_in

Found invariant Arg_3<=1 for location eval_rank2_bb9_in

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location eval_rank2_12

Found invariant 2<=Arg_3 for location eval_rank2_bb2_in

Found invariant 2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location eval_rank2_bb4_in

Problem after Preprocessing

Start: eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars: nondef.0, nondef.1
Locations: eval_rank2_.critedge1_in, eval_rank2_.critedge_in, eval_rank2_11, eval_rank2_12, eval_rank2_5, eval_rank2_6, eval_rank2_bb0_in, eval_rank2_bb1_in, eval_rank2_bb2_in, eval_rank2_bb3_in, eval_rank2_bb4_in, eval_rank2_bb5_in, eval_rank2_bb6_in, eval_rank2_bb7_in, eval_rank2_bb8_in, eval_rank2_bb9_in, eval_rank2_start, eval_rank2_stop
Transitions:
21:eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1
22:eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3
17:eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_12(nondef.1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1
19:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_0<=0
18:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 0<Arg_0
9:eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_6(Arg_0,nondef.0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3
11:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_1<=0
10:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 0<Arg_1
1:eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
2:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_3
3:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_3<2
4:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6+Arg_3-1,Arg_8):|:2<=Arg_3
6:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<Arg_4+1
5:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_4+1<=Arg_7
7:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3
12:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1
14:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<Arg_5+3
13:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_5+3<=Arg_8
15:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1
20:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0
23:eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_3<=1
0:eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)

MPRF for transition 21:eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

eval_rank2_12 [Arg_7 ]
eval_rank2_6 [Arg_7 ]
eval_rank2_bb1_in [Arg_3+Arg_6 ]
eval_rank2_bb2_in [Arg_3+Arg_6 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2_.critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_5 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_.critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_7 ]
eval_rank2_11 [Arg_7 ]
eval_rank2_bb8_in [Arg_7 ]
eval_rank2_bb6_in [Arg_7 ]

MPRF for transition 17:eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_12(nondef.1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 of depth 1:

new bound:

3*Arg_2+9 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_7-Arg_5-9 ]
eval_rank2_6 [2*Arg_7-Arg_4-8 ]
eval_rank2_bb1_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb2_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb3_in [2*Arg_7-Arg_4-8 ]
eval_rank2_.critedge_in [2*Arg_7-Arg_4-8 ]
eval_rank2_bb4_in [2*Arg_7-Arg_4-8 ]
eval_rank2_5 [2*Arg_7-Arg_4-8 ]
eval_rank2_bb5_in [2*Arg_7-Arg_4-8 ]
eval_rank2_.critedge1_in [2*Arg_7-Arg_5-12 ]
eval_rank2_bb7_in [2*Arg_7-Arg_5-8 ]
eval_rank2_11 [2*Arg_7-Arg_5-8 ]
eval_rank2_bb8_in [2*Arg_7-Arg_5-9 ]
eval_rank2_bb6_in [2*Arg_7-Arg_5-8 ]

MPRF for transition 18:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 0<Arg_0 of depth 1:

new bound:

3*Arg_2+9 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_7-Arg_5-8 ]
eval_rank2_6 [2*Arg_7-Arg_4-8 ]
eval_rank2_bb1_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb2_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb3_in [2*Arg_7-Arg_4-8 ]
eval_rank2_.critedge_in [2*Arg_7-Arg_4-8 ]
eval_rank2_bb4_in [2*Arg_7-Arg_4-8 ]
eval_rank2_5 [2*Arg_7-Arg_4-8 ]
eval_rank2_bb5_in [2*Arg_7-Arg_4-8 ]
eval_rank2_.critedge1_in [2*Arg_7-Arg_5-12 ]
eval_rank2_bb7_in [2*Arg_7-Arg_5-8 ]
eval_rank2_11 [2*Arg_7-Arg_5-8 ]
eval_rank2_bb8_in [2*Arg_7-Arg_5-9 ]
eval_rank2_bb6_in [2*Arg_7-Arg_5-8 ]

MPRF for transition 19:eval_rank2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_0<=0 of depth 1:

new bound:

2*Arg_2+4 {O(n)}

MPRF:

eval_rank2_12 [Arg_7-4 ]
eval_rank2_6 [Arg_7-4 ]
eval_rank2_bb1_in [Arg_3+Arg_6-4 ]
eval_rank2_bb2_in [Arg_3+Arg_6-4 ]
eval_rank2_bb3_in [Arg_7-4 ]
eval_rank2_.critedge_in [Arg_7-4 ]
eval_rank2_bb4_in [Arg_7-4 ]
eval_rank2_5 [Arg_7-4 ]
eval_rank2_bb5_in [Arg_7-4 ]
eval_rank2_.critedge1_in [Arg_7-6 ]
eval_rank2_bb7_in [Arg_7-4 ]
eval_rank2_11 [Arg_7-4 ]
eval_rank2_bb8_in [Arg_7-4 ]
eval_rank2_bb6_in [Arg_7-4 ]

MPRF for transition 9:eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_6(Arg_0,nondef.0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 of depth 1:

new bound:

4*Arg_2 {O(n)}

MPRF:

eval_rank2_12 [Arg_5+Arg_7+Arg_8-Arg_4 ]
eval_rank2_6 [2*Arg_7 ]
eval_rank2_bb1_in [2*Arg_3+2*Arg_6 ]
eval_rank2_bb2_in [2*Arg_3+2*Arg_6 ]
eval_rank2_bb3_in [2*Arg_7+2 ]
eval_rank2_.critedge_in [2*Arg_7 ]
eval_rank2_bb4_in [2*Arg_7+2 ]
eval_rank2_5 [2*Arg_7+2 ]
eval_rank2_bb5_in [2*Arg_7 ]
eval_rank2_.critedge1_in [2*Arg_8 ]
eval_rank2_bb7_in [Arg_5+Arg_7+Arg_8+1-Arg_4 ]
eval_rank2_11 [Arg_5+Arg_7+Arg_8-Arg_4 ]
eval_rank2_bb8_in [Arg_5+Arg_7+Arg_8-Arg_4 ]
eval_rank2_bb6_in [Arg_5+Arg_7+Arg_8+1-Arg_4 ]

MPRF for transition 10:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

eval_rank2_12 [Arg_7-1 ]
eval_rank2_6 [Arg_7+1 ]
eval_rank2_bb1_in [Arg_3+Arg_6 ]
eval_rank2_bb2_in [Arg_3+Arg_6 ]
eval_rank2_bb3_in [Arg_7+1 ]
eval_rank2_.critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7+1 ]
eval_rank2_5 [Arg_7+1 ]
eval_rank2_bb5_in [Arg_7-1 ]
eval_rank2_.critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_7-1 ]
eval_rank2_11 [Arg_7-1 ]
eval_rank2_bb8_in [Arg_7-1 ]
eval_rank2_bb6_in [Arg_7-1 ]

MPRF for transition 11:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_1<=0 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

eval_rank2_12 [Arg_7 ]
eval_rank2_6 [Arg_7 ]
eval_rank2_bb1_in [Arg_3+Arg_6-1 ]
eval_rank2_bb2_in [Arg_3+Arg_6-1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2_.critedge_in [Arg_7-1 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_5 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_.critedge1_in [Arg_8-1 ]
eval_rank2_bb7_in [Arg_7 ]
eval_rank2_11 [Arg_7 ]
eval_rank2_bb8_in [Arg_7 ]
eval_rank2_bb6_in [Arg_7 ]

MPRF for transition 5:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_4+1<=Arg_7 of depth 1:

new bound:

4*Arg_2+2 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_8 ]
eval_rank2_6 [2*Arg_7-2 ]
eval_rank2_bb1_in [2*Arg_3+2*Arg_6-2 ]
eval_rank2_bb2_in [2*Arg_3+2*Arg_6-2 ]
eval_rank2_bb3_in [2*Arg_7 ]
eval_rank2_.critedge_in [2*Arg_7-2 ]
eval_rank2_bb4_in [2*Arg_7-2 ]
eval_rank2_5 [2*Arg_7-2 ]
eval_rank2_bb5_in [2*Arg_7-2 ]
eval_rank2_.critedge1_in [2*Arg_8-2 ]
eval_rank2_bb7_in [2*Arg_8 ]
eval_rank2_11 [2*Arg_8 ]
eval_rank2_bb8_in [2*Arg_8 ]
eval_rank2_bb6_in [2*Arg_8 ]

MPRF for transition 7:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 of depth 1:

new bound:

4*Arg_2+2 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_7-2 ]
eval_rank2_6 [2*Arg_7-2 ]
eval_rank2_bb1_in [2*Arg_3+2*Arg_6-2 ]
eval_rank2_bb2_in [2*Arg_3+2*Arg_6-2 ]
eval_rank2_bb3_in [2*Arg_7 ]
eval_rank2_.critedge_in [2*Arg_7-2 ]
eval_rank2_bb4_in [2*Arg_7 ]
eval_rank2_5 [2*Arg_7-2 ]
eval_rank2_bb5_in [2*Arg_7-2 ]
eval_rank2_.critedge1_in [2*Arg_8-2 ]
eval_rank2_bb7_in [2*Arg_7-2 ]
eval_rank2_11 [2*Arg_7-2 ]
eval_rank2_bb8_in [2*Arg_7-2 ]
eval_rank2_bb6_in [2*Arg_7-2 ]

MPRF for transition 12:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:2<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 of depth 1:

new bound:

4*Arg_2 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_7-2 ]
eval_rank2_6 [2*Arg_7+2 ]
eval_rank2_bb1_in [2*Arg_3+2*Arg_6 ]
eval_rank2_bb2_in [2*Arg_3+2*Arg_6 ]
eval_rank2_bb3_in [2*Arg_7+2 ]
eval_rank2_.critedge_in [2*Arg_7 ]
eval_rank2_bb4_in [2*Arg_7+2 ]
eval_rank2_5 [2*Arg_7+2 ]
eval_rank2_bb5_in [2*Arg_7+2 ]
eval_rank2_.critedge1_in [Arg_7+Arg_8-1 ]
eval_rank2_bb7_in [2*Arg_7-2 ]
eval_rank2_11 [2*Arg_7-2 ]
eval_rank2_bb8_in [2*Arg_7-2 ]
eval_rank2_bb6_in [2*Arg_7-2 ]

MPRF for transition 13:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_5+3<=Arg_8 of depth 1:

new bound:

3*Arg_2+9 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_8-Arg_3-9 ]
eval_rank2_6 [2*Arg_7-Arg_3-7 ]
eval_rank2_bb1_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb2_in [Arg_3+2*Arg_6-9 ]
eval_rank2_bb3_in [2*Arg_7-Arg_3-7 ]
eval_rank2_.critedge_in [2*Arg_7-Arg_4-8 ]
eval_rank2_bb4_in [2*Arg_7-Arg_3-7 ]
eval_rank2_5 [2*Arg_7-Arg_3-7 ]
eval_rank2_bb5_in [2*Arg_7-Arg_3-7 ]
eval_rank2_.critedge1_in [2*Arg_8-Arg_3-9 ]
eval_rank2_bb7_in [2*Arg_8-Arg_3-9 ]
eval_rank2_11 [2*Arg_8-Arg_3-9 ]
eval_rank2_bb8_in [2*Arg_8-Arg_3-9 ]
eval_rank2_bb6_in [2*Arg_8-Arg_3-5 ]

MPRF for transition 14:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && 2<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<Arg_5+3 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

eval_rank2_12 [Arg_7 ]
eval_rank2_6 [Arg_7 ]
eval_rank2_bb1_in [Arg_3+Arg_6 ]
eval_rank2_bb2_in [Arg_3+Arg_6 ]
eval_rank2_bb3_in [Arg_7+1 ]
eval_rank2_.critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7+1 ]
eval_rank2_5 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_.critedge1_in [Arg_7-1 ]
eval_rank2_bb7_in [Arg_7 ]
eval_rank2_11 [Arg_7 ]
eval_rank2_bb8_in [Arg_7 ]
eval_rank2_bb6_in [Arg_7 ]

MPRF for transition 15:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 of depth 1:

new bound:

2*Arg_2+5 {O(n)}

MPRF:

eval_rank2_12 [Arg_8-5 ]
eval_rank2_6 [Arg_7-4 ]
eval_rank2_bb1_in [Arg_3+Arg_6-5 ]
eval_rank2_bb2_in [Arg_3+Arg_6-5 ]
eval_rank2_bb3_in [Arg_7-4 ]
eval_rank2_.critedge_in [Arg_7-4 ]
eval_rank2_bb4_in [Arg_7-4 ]
eval_rank2_5 [Arg_7-4 ]
eval_rank2_bb5_in [Arg_7-4 ]
eval_rank2_.critedge1_in [Arg_8-5 ]
eval_rank2_bb7_in [Arg_8-3 ]
eval_rank2_11 [Arg_8-5 ]
eval_rank2_bb8_in [Arg_8-5 ]
eval_rank2_bb6_in [Arg_8-3 ]

MPRF for transition 20:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

eval_rank2_12 [2*Arg_7-Arg_5 ]
eval_rank2_6 [2*Arg_7-Arg_4 ]
eval_rank2_bb1_in [Arg_3+2*Arg_6-1 ]
eval_rank2_bb2_in [Arg_3+2*Arg_6-1 ]
eval_rank2_bb3_in [2*Arg_7-Arg_4 ]
eval_rank2_.critedge_in [2*Arg_7-Arg_4 ]
eval_rank2_bb4_in [2*Arg_7-Arg_4 ]
eval_rank2_5 [2*Arg_7-Arg_4 ]
eval_rank2_bb5_in [2*Arg_7-Arg_4 ]
eval_rank2_.critedge1_in [2*Arg_8-Arg_5-2 ]
eval_rank2_bb7_in [2*Arg_7-Arg_5 ]
eval_rank2_11 [2*Arg_7-Arg_5 ]
eval_rank2_bb8_in [2*Arg_7-Arg_5 ]
eval_rank2_bb6_in [2*Arg_7-Arg_5 ]

MPRF for transition 22:eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 of depth 1:

new bound:

12*Arg_2*Arg_2+8*Arg_2+1 {O(n^2)}

MPRF:

eval_rank2_bb8_in [Arg_5+2-Arg_3 ]
eval_rank2_12 [Arg_5 ]
eval_rank2_6 [Arg_4 ]
eval_rank2_bb1_in [Arg_3 ]
eval_rank2_bb2_in [Arg_3-1 ]
eval_rank2_bb3_in [Arg_4 ]
eval_rank2_.critedge_in [Arg_4 ]
eval_rank2_bb4_in [Arg_4 ]
eval_rank2_5 [Arg_4 ]
eval_rank2_bb5_in [Arg_4 ]
eval_rank2_bb6_in [Arg_5 ]
eval_rank2_.critedge1_in [Arg_5 ]
eval_rank2_bb7_in [Arg_5 ]
eval_rank2_11 [Arg_5 ]

MPRF for transition 2:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_3 of depth 1:

new bound:

12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}

MPRF:

eval_rank2_bb8_in [Arg_5 ]
eval_rank2_12 [Arg_5 ]
eval_rank2_6 [Arg_4 ]
eval_rank2_bb1_in [Arg_3+1 ]
eval_rank2_bb2_in [Arg_3-1 ]
eval_rank2_bb3_in [Arg_4 ]
eval_rank2_.critedge_in [Arg_4 ]
eval_rank2_bb4_in [Arg_4 ]
eval_rank2_5 [Arg_4 ]
eval_rank2_bb5_in [Arg_4 ]
eval_rank2_bb6_in [Arg_5 ]
eval_rank2_.critedge1_in [Arg_5 ]
eval_rank2_bb7_in [Arg_5 ]
eval_rank2_11 [Arg_5 ]

MPRF for transition 4:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_6+Arg_3-1,Arg_8):|:2<=Arg_3 of depth 1:

new bound:

12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}

MPRF:

eval_rank2_bb8_in [Arg_5 ]
eval_rank2_12 [Arg_5 ]
eval_rank2_6 [Arg_4 ]
eval_rank2_bb1_in [Arg_3+1 ]
eval_rank2_bb2_in [Arg_3+1 ]
eval_rank2_bb3_in [Arg_4 ]
eval_rank2_.critedge_in [Arg_4 ]
eval_rank2_bb4_in [Arg_4 ]
eval_rank2_5 [Arg_4 ]
eval_rank2_bb5_in [Arg_4 ]
eval_rank2_bb6_in [Arg_5 ]
eval_rank2_.critedge1_in [Arg_5 ]
eval_rank2_bb7_in [Arg_5 ]
eval_rank2_11 [Arg_5 ]

MPRF for transition 6:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_rank2_.critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<Arg_4+1 of depth 1:

new bound:

12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}

MPRF:

eval_rank2_bb8_in [Arg_5 ]
eval_rank2_12 [Arg_5 ]
eval_rank2_6 [Arg_4 ]
eval_rank2_bb1_in [Arg_3-1 ]
eval_rank2_bb2_in [Arg_3-1 ]
eval_rank2_bb3_in [Arg_4 ]
eval_rank2_.critedge_in [Arg_4-2 ]
eval_rank2_bb4_in [Arg_4 ]
eval_rank2_5 [Arg_4 ]
eval_rank2_bb5_in [Arg_4 ]
eval_rank2_bb6_in [Arg_5 ]
eval_rank2_.critedge1_in [Arg_5 ]
eval_rank2_bb7_in [Arg_5 ]
eval_rank2_11 [Arg_5 ]

All Bounds

Timebounds

Overall timebound:48*Arg_2*Arg_2+72*Arg_2+53 {O(n^2)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in: 2*Arg_2 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in: 12*Arg_2*Arg_2+8*Arg_2+1 {O(n^2)}
17: eval_rank2_11->eval_rank2_12: 3*Arg_2+9 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in: 3*Arg_2+9 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in: 2*Arg_2+4 {O(n)}
9: eval_rank2_5->eval_rank2_6: 4*Arg_2 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in: 2*Arg_2 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in: 2*Arg_2+1 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in: 1 {O(1)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in: 1 {O(1)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in: 4*Arg_2+2 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
7: eval_rank2_bb4_in->eval_rank2_5: 4*Arg_2+2 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in: 4*Arg_2 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in: 3*Arg_2+9 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in: 2*Arg_2 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11: 2*Arg_2+5 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in: 3*Arg_2+1 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop: 1 {O(1)}
0: eval_rank2_start->eval_rank2_bb0_in: 1 {O(1)}

Costbounds

Overall costbound: 48*Arg_2*Arg_2+72*Arg_2+53 {O(n^2)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in: 2*Arg_2 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in: 12*Arg_2*Arg_2+8*Arg_2+1 {O(n^2)}
17: eval_rank2_11->eval_rank2_12: 3*Arg_2+9 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in: 3*Arg_2+9 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in: 2*Arg_2+4 {O(n)}
9: eval_rank2_5->eval_rank2_6: 4*Arg_2 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in: 2*Arg_2 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in: 2*Arg_2+1 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in: 1 {O(1)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in: 1 {O(1)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in: 4*Arg_2+2 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in: 12*Arg_2*Arg_2+8*Arg_2+2 {O(n^2)}
7: eval_rank2_bb4_in->eval_rank2_5: 4*Arg_2+2 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in: 4*Arg_2 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in: 3*Arg_2+9 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in: 2*Arg_2 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11: 2*Arg_2+5 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in: 3*Arg_2+1 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop: 1 {O(1)}
0: eval_rank2_start->eval_rank2_bb0_in: 1 {O(1)}

Sizebounds

21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_2: Arg_2 {O(n)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_3: 4*Arg_2+1 {O(n)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_4: 4*Arg_2+1 {O(n)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_5: 8*Arg_2+2 {O(n)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
21: eval_rank2_.critedge1_in->eval_rank2_bb3_in, Arg_8: 432*Arg_2*Arg_2*Arg_2+396*Arg_2*Arg_2+159*Arg_2+21 {O(n^3)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_2: Arg_2 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_3: 4*Arg_2+1 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_4: 8*Arg_2+2 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_7: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+14 {O(n^3)}
22: eval_rank2_.critedge_in->eval_rank2_bb1_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
17: eval_rank2_11->eval_rank2_12, Arg_2: Arg_2 {O(n)}
17: eval_rank2_11->eval_rank2_12, Arg_3: 4*Arg_2+1 {O(n)}
17: eval_rank2_11->eval_rank2_12, Arg_4: 4*Arg_2+1 {O(n)}
17: eval_rank2_11->eval_rank2_12, Arg_5: 4*Arg_2+1 {O(n)}
17: eval_rank2_11->eval_rank2_12, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
17: eval_rank2_11->eval_rank2_12, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
17: eval_rank2_11->eval_rank2_12, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_2: Arg_2 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_3: 4*Arg_2+1 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_4: 4*Arg_2+1 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_5: 4*Arg_2+1 {O(n)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
18: eval_rank2_12->eval_rank2_bb8_in, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_2: Arg_2 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_3: 4*Arg_2+1 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_4: 4*Arg_2+1 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_5: 4*Arg_2+1 {O(n)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
19: eval_rank2_12->eval_rank2_.critedge1_in, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
9: eval_rank2_5->eval_rank2_6, Arg_2: Arg_2 {O(n)}
9: eval_rank2_5->eval_rank2_6, Arg_3: 4*Arg_2+1 {O(n)}
9: eval_rank2_5->eval_rank2_6, Arg_4: 4*Arg_2+1 {O(n)}
9: eval_rank2_5->eval_rank2_6, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
9: eval_rank2_5->eval_rank2_6, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
9: eval_rank2_5->eval_rank2_6, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
9: eval_rank2_5->eval_rank2_6, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_2: Arg_2 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_3: 4*Arg_2+1 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_4: 4*Arg_2+1 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
10: eval_rank2_6->eval_rank2_bb5_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_2: Arg_2 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_3: 4*Arg_2+1 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_4: 4*Arg_2+1 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
11: eval_rank2_6->eval_rank2_.critedge_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_0: Arg_0 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_1: Arg_1 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_2: Arg_2 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_3: Arg_2 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_5: Arg_5 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_6: Arg_2 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_bb1_in, Arg_8: Arg_8 {O(n)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_2: Arg_2 {O(n)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_3: 4*Arg_2+1 {O(n)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_4: 8*Arg_2+Arg_4+2 {O(n)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_7: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+Arg_7+14 {O(n^3)}
2: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_2: 2*Arg_2 {O(n)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_3: 5*Arg_2+1 {O(n)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_4: 8*Arg_2+Arg_4+2 {O(n)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_5: 16*Arg_2+2*Arg_5+4 {O(n)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+54*Arg_2+7 {O(n^3)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_7: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+Arg_7+14 {O(n^3)}
3: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+2*Arg_8+318*Arg_2+42 {O(n^3)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_2: Arg_2 {O(n)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_3: 4*Arg_2+1 {O(n)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_4: 4*Arg_2+1 {O(n)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
4: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_2: Arg_2 {O(n)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_3: 4*Arg_2+1 {O(n)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_4: 4*Arg_2+1 {O(n)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
5: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_2: Arg_2 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_3: 8*Arg_2+2 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_4: 4*Arg_2+1 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_6: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+14 {O(n^3)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
6: eval_rank2_bb3_in->eval_rank2_.critedge_in, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_2: Arg_2 {O(n)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_3: 4*Arg_2+1 {O(n)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_4: 4*Arg_2+1 {O(n)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_5: 16*Arg_2+Arg_5+4 {O(n)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
7: eval_rank2_bb4_in->eval_rank2_5, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+318*Arg_2+Arg_8+42 {O(n^3)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_2: Arg_2 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_3: 4*Arg_2+1 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_4: 4*Arg_2+1 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_5: 4*Arg_2+1 {O(n)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
12: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_2: Arg_2 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_3: 4*Arg_2+1 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_4: 4*Arg_2+1 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_5: 4*Arg_2+1 {O(n)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
13: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_2: Arg_2 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_3: 4*Arg_2+1 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_4: 8*Arg_2+2 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_5: 4*Arg_2+1 {O(n)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
14: eval_rank2_bb6_in->eval_rank2_.critedge1_in, Arg_8: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+14 {O(n^3)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_2: Arg_2 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_3: 4*Arg_2+1 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_4: 4*Arg_2+1 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_5: 4*Arg_2+1 {O(n)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
15: eval_rank2_bb7_in->eval_rank2_11, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_2: Arg_2 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_3: 4*Arg_2+1 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_4: 4*Arg_2+1 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_5: 4*Arg_2+1 {O(n)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_7: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
20: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_8: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+53*Arg_2+7 {O(n^3)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_2: 2*Arg_2 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_3: 5*Arg_2+1 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_4: 8*Arg_2+Arg_4+2 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_5: 16*Arg_2+2*Arg_5+4 {O(n)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_6: 144*Arg_2*Arg_2*Arg_2+132*Arg_2*Arg_2+54*Arg_2+7 {O(n^3)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_7: 288*Arg_2*Arg_2*Arg_2+264*Arg_2*Arg_2+106*Arg_2+Arg_7+14 {O(n^3)}
23: eval_rank2_bb9_in->eval_rank2_stop, Arg_8: 864*Arg_2*Arg_2*Arg_2+792*Arg_2*Arg_2+2*Arg_8+318*Arg_2+42 {O(n^3)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_8: Arg_8 {O(n)}