Initial Problem
Start: eval_sipmamergesort2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18
Temp_Vars: nondef.0, nondef.1
Locations: eval_sipmamergesort2_37, eval_sipmamergesort2_38, eval_sipmamergesort2_8, eval_sipmamergesort2_9, eval_sipmamergesort2_bb0_in, eval_sipmamergesort2_bb10_in, eval_sipmamergesort2_bb11_in, eval_sipmamergesort2_bb12_in, eval_sipmamergesort2_bb13_in, eval_sipmamergesort2_bb14_in, eval_sipmamergesort2_bb15_in, eval_sipmamergesort2_bb16_in, eval_sipmamergesort2_bb17_in, eval_sipmamergesort2_bb18_in, eval_sipmamergesort2_bb19_in, eval_sipmamergesort2_bb1_in, eval_sipmamergesort2_bb20_in, eval_sipmamergesort2_bb21_in, eval_sipmamergesort2_bb22_in, eval_sipmamergesort2_bb23_in, eval_sipmamergesort2_bb24_in, eval_sipmamergesort2_bb25_in, eval_sipmamergesort2_bb26_in, eval_sipmamergesort2_bb27_in, eval_sipmamergesort2_bb28_in, eval_sipmamergesort2_bb2_in, eval_sipmamergesort2_bb3_in, eval_sipmamergesort2_bb4_in, eval_sipmamergesort2_bb5_in, eval_sipmamergesort2_bb6_in, eval_sipmamergesort2_bb7_in, eval_sipmamergesort2_bb8_in, eval_sipmamergesort2_bb9_in, eval_sipmamergesort2_start, eval_sipmamergesort2_stop
Transitions:
37:eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_38(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
38:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_2
39:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_2<=0
12:eval_sipmamergesort2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,nondef.0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
13:eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_4
14:eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_4<=0
1:eval_sipmamergesort2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
22:eval_sipmamergesort2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
24:eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_3<=0
23:eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_3,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_3
26:eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb13_in(2*Arg_9,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2*Arg_9<Arg_8
25:eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0):|:Arg_8<=2*Arg_9
27:eval_sipmamergesort2_bb13_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
28:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_7-2*Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_0,Arg_17,Arg_18):|:Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
29:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_7-Arg_0,Arg_17,Arg_18):|:Arg_0<=Arg_7 && Arg_7<2*Arg_0
30:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,-Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7,Arg_13,Arg_14,Arg_15,Arg_0,Arg_17,Arg_18):|:Arg_7<Arg_0 && Arg_0<=0
31:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18):|:Arg_7<Arg_0 && 0<Arg_0
32:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_12 && 0<Arg_16
33:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:Arg_12<=0
34:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:Arg_16<=0
35:eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
40:eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
41:eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16-1,Arg_17,Arg_18)
42:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_17
43:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_17<=0
2:eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_8,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
44:eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17-1,Arg_18)
45:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_13
46:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_13<=0
47:eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
48:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_1
49:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_1<=0
50:eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,2*Arg_0,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2*Arg_0<Arg_8
51:eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,1):|:Arg_8<=2*Arg_0
52:eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_18<=0 && 0<=Arg_18
53:eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_18<0
54:eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_18
55:eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_5<=Arg_8
56:eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_8<Arg_5
57:eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
58:eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
3:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_6-2*Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_11,Arg_12,Arg_13,Arg_9,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
4:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_11,Arg_12,Arg_13,Arg_6-Arg_9,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_9<=Arg_6 && Arg_6<2*Arg_9
5:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,-Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_6,Arg_11,Arg_12,Arg_13,Arg_9,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_6<Arg_9 && Arg_9<=0
6:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_6,Arg_11,Arg_12,Arg_13,0,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_6<Arg_9 && 0<Arg_9
7:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_10 && 0<Arg_14
8:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_14,Arg_16,Arg_17,Arg_18):|:Arg_10<=0
9:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_14,Arg_16,Arg_17,Arg_18):|:Arg_14<=0
10:eval_sipmamergesort2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
15:eval_sipmamergesort2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10-1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
16:eval_sipmamergesort2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14-1,Arg_15,Arg_16,Arg_17,Arg_18)
17:eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_15
18:eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_15<=0
19:eval_sipmamergesort2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15-1,Arg_16,Arg_17,Arg_18)
20:eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:0<Arg_11
21:eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:Arg_11<=0
0:eval_sipmamergesort2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₀
η (Arg_1) = -Arg_0
η (Arg_12) = Arg_7
η (Arg_16) = Arg_0
τ = Arg_7<Arg_0 && Arg_0<=0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₃
τ = Arg_18<0
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₅
η (Arg_3) = -Arg_9
η (Arg_10) = Arg_6
η (Arg_14) = Arg_9
τ = Arg_6<Arg_9 && Arg_9<=0
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
Preprocessing
Cut unsatisfiable transition 53: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
Found invariant 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb12_in
Found invariant 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 for location eval_sipmamergesort2_bb6_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_37
Found invariant 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 for location eval_sipmamergesort2_bb9_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb19_in
Found invariant 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 for location eval_sipmamergesort2_bb5_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb16_in
Found invariant 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb11_in
Found invariant 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb25_in
Found invariant 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 for location eval_sipmamergesort2_9
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb22_in
Found invariant 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb27_in
Found invariant 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 for location eval_sipmamergesort2_bb7_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb23_in
Found invariant 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 for location eval_sipmamergesort2_bb4_in
Found invariant 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb28_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb21_in
Found invariant 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14 for location eval_sipmamergesort2_bb8_in
Found invariant 1<=Arg_9 for location eval_sipmamergesort2_bb2_in
Found invariant 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10 for location eval_sipmamergesort2_bb10_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb15_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb13_in
Found invariant 1<=Arg_9 for location eval_sipmamergesort2_bb1_in
Found invariant 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 for location eval_sipmamergesort2_8
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb20_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb18_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_38
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb14_in
Found invariant 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_bb26_in
Found invariant 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 for location eval_sipmamergesort2_stop
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb17_in
Found invariant 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 for location eval_sipmamergesort2_bb24_in
Found invariant 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 for location eval_sipmamergesort2_bb3_in
Cut unsatisfiable transition 30: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
Cut unsatisfiable transition 5: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
Problem after Preprocessing
Start: eval_sipmamergesort2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18
Temp_Vars: nondef.0, nondef.1
Locations: eval_sipmamergesort2_37, eval_sipmamergesort2_38, eval_sipmamergesort2_8, eval_sipmamergesort2_9, eval_sipmamergesort2_bb0_in, eval_sipmamergesort2_bb10_in, eval_sipmamergesort2_bb11_in, eval_sipmamergesort2_bb12_in, eval_sipmamergesort2_bb13_in, eval_sipmamergesort2_bb14_in, eval_sipmamergesort2_bb15_in, eval_sipmamergesort2_bb16_in, eval_sipmamergesort2_bb17_in, eval_sipmamergesort2_bb18_in, eval_sipmamergesort2_bb19_in, eval_sipmamergesort2_bb1_in, eval_sipmamergesort2_bb20_in, eval_sipmamergesort2_bb21_in, eval_sipmamergesort2_bb22_in, eval_sipmamergesort2_bb23_in, eval_sipmamergesort2_bb24_in, eval_sipmamergesort2_bb25_in, eval_sipmamergesort2_bb26_in, eval_sipmamergesort2_bb27_in, eval_sipmamergesort2_bb28_in, eval_sipmamergesort2_bb2_in, eval_sipmamergesort2_bb3_in, eval_sipmamergesort2_bb4_in, eval_sipmamergesort2_bb5_in, eval_sipmamergesort2_bb6_in, eval_sipmamergesort2_bb7_in, eval_sipmamergesort2_bb8_in, eval_sipmamergesort2_bb9_in, eval_sipmamergesort2_start, eval_sipmamergesort2_stop
Transitions:
37:eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_38(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
38:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
39:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
12:eval_sipmamergesort2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,nondef.0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
13:eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
14:eval_sipmamergesort2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
1:eval_sipmamergesort2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
22:eval_sipmamergesort2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
24:eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
23:eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_3,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
26:eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb13_in(2*Arg_9,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
25:eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
27:eval_sipmamergesort2_bb13_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
28:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_7-2*Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
29:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_7-Arg_0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
31:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
32:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
33:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
34:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
35:eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
40:eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
41:eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16-1,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
42:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
43:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
2:eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_8,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9
44:eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17-1,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
45:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
46:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
47:eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
48:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
49:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
50:eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,2*Arg_0,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
51:eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,1):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
52:eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
54:eval_sipmamergesort2_bb25_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
55:eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
56:eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
57:eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
58:eval_sipmamergesort2_bb28_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
3:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_6-2*Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_11,Arg_12,Arg_13,Arg_9,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
4:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_9,Arg_11,Arg_12,Arg_13,Arg_6-Arg_9,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
6:eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_6,Arg_11,Arg_12,Arg_13,0,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
7:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
8:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_14,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
9:eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_14,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
10:eval_sipmamergesort2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
15:eval_sipmamergesort2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10-1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
16:eval_sipmamergesort2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14-1,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
17:eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
18:eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
19:eval_sipmamergesort2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15-1,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
20:eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
21:eval_sipmamergesort2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
0:eval_sipmamergesort2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18)
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 26:eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb13_in(2*Arg_9,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8 of depth 1:
new bound:
Arg_8+2 {O(n)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_9 [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb12_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_37 [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb24_in [Arg_8-Arg_0-6 ]
eval_sipmamergesort2_bb1_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb2_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb4_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_8 [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb5_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb6_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb3_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb8_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb7_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb10_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb9_in [Arg_8-2*Arg_9 ]
eval_sipmamergesort2_bb11_in [Arg_8-2*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 27:eval_sipmamergesort2_bb13_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 of depth 1:
new bound:
Arg_8+2 {O(n)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_37 [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb24_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9-1 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 49:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0 of depth 1:
new bound:
Arg_8+1 {O(n)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_9 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_37 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb24_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 50:eval_sipmamergesort2_bb24_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,2*Arg_0,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8 of depth 1:
new bound:
Arg_8+1 {O(n)}
MPRF:
eval_sipmamergesort2_38 [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_8+3*Arg_9-2*Arg_0 ]
eval_sipmamergesort2_bb16_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_37 [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb17_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb18_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb15_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb20_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb19_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb22_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb21_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb14_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb23_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb24_in [Arg_8+3-2*Arg_0 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
knowledge_propagation leads to new time bound Arg_8+2 {O(n)} for transition 2:eval_sipmamergesort2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_8,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9
MPRF for transition 24:eval_sipmamergesort2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0 of depth 1:
new bound:
3*Arg_8+6 {O(n)}
MPRF:
eval_sipmamergesort2_38 [2 ]
eval_sipmamergesort2_9 [3 ]
eval_sipmamergesort2_bb12_in [2 ]
eval_sipmamergesort2_bb13_in [2 ]
eval_sipmamergesort2_bb16_in [2 ]
eval_sipmamergesort2_37 [2 ]
eval_sipmamergesort2_bb17_in [2 ]
eval_sipmamergesort2_bb18_in [2 ]
eval_sipmamergesort2_bb15_in [2 ]
eval_sipmamergesort2_bb1_in [3 ]
eval_sipmamergesort2_bb20_in [2 ]
eval_sipmamergesort2_bb19_in [2 ]
eval_sipmamergesort2_bb22_in [2 ]
eval_sipmamergesort2_bb21_in [2 ]
eval_sipmamergesort2_bb14_in [2 ]
eval_sipmamergesort2_bb23_in [2 ]
eval_sipmamergesort2_bb24_in [2 ]
eval_sipmamergesort2_bb2_in [3 ]
eval_sipmamergesort2_bb4_in [3 ]
eval_sipmamergesort2_8 [3 ]
eval_sipmamergesort2_bb5_in [3 ]
eval_sipmamergesort2_bb6_in [3 ]
eval_sipmamergesort2_bb3_in [3 ]
eval_sipmamergesort2_bb8_in [3 ]
eval_sipmamergesort2_bb7_in [3 ]
eval_sipmamergesort2_bb10_in [3 ]
eval_sipmamergesort2_bb9_in [3 ]
eval_sipmamergesort2_bb11_in [3 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 28:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_7-2*Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7 of depth 1:
new bound:
2*Arg_8*Arg_8+4*Arg_8 {O(n^2)}
MPRF:
eval_sipmamergesort2_38 [Arg_1+1 ]
eval_sipmamergesort2_9 [2*Arg_8 ]
eval_sipmamergesort2_bb12_in [2*Arg_8 ]
eval_sipmamergesort2_bb13_in [2*Arg_8 ]
eval_sipmamergesort2_bb16_in [Arg_1+1 ]
eval_sipmamergesort2_37 [Arg_1+1 ]
eval_sipmamergesort2_bb17_in [Arg_1+1 ]
eval_sipmamergesort2_bb18_in [Arg_1+1 ]
eval_sipmamergesort2_bb15_in [Arg_1+1 ]
eval_sipmamergesort2_bb1_in [2*Arg_8 ]
eval_sipmamergesort2_bb20_in [Arg_1+1 ]
eval_sipmamergesort2_bb19_in [Arg_1+1 ]
eval_sipmamergesort2_bb22_in [Arg_1 ]
eval_sipmamergesort2_bb21_in [Arg_1 ]
eval_sipmamergesort2_bb14_in [Arg_7 ]
eval_sipmamergesort2_bb23_in [Arg_1 ]
eval_sipmamergesort2_bb24_in [Arg_1 ]
eval_sipmamergesort2_bb2_in [2*Arg_8 ]
eval_sipmamergesort2_bb4_in [2*Arg_8 ]
eval_sipmamergesort2_8 [2*Arg_8 ]
eval_sipmamergesort2_bb5_in [2*Arg_8 ]
eval_sipmamergesort2_bb6_in [2*Arg_8 ]
eval_sipmamergesort2_bb3_in [2*Arg_8 ]
eval_sipmamergesort2_bb8_in [2*Arg_8 ]
eval_sipmamergesort2_bb7_in [2*Arg_8 ]
eval_sipmamergesort2_bb10_in [2*Arg_8 ]
eval_sipmamergesort2_bb9_in [2*Arg_8 ]
eval_sipmamergesort2_bb11_in [2*Arg_8 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 29:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0,Arg_13,Arg_14,Arg_15,Arg_7-Arg_0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0 of depth 1:
new bound:
Arg_8*Arg_8+2*Arg_8 {O(n^2)}
MPRF:
eval_sipmamergesort2_38 [Arg_1-1 ]
eval_sipmamergesort2_9 [Arg_8 ]
eval_sipmamergesort2_bb12_in [Arg_8 ]
eval_sipmamergesort2_bb13_in [Arg_8 ]
eval_sipmamergesort2_bb16_in [Arg_1-1 ]
eval_sipmamergesort2_37 [Arg_1-1 ]
eval_sipmamergesort2_bb17_in [Arg_1-1 ]
eval_sipmamergesort2_bb18_in [Arg_1-1 ]
eval_sipmamergesort2_bb15_in [Arg_1-1 ]
eval_sipmamergesort2_bb1_in [Arg_8 ]
eval_sipmamergesort2_bb20_in [Arg_1-1 ]
eval_sipmamergesort2_bb19_in [Arg_1-1 ]
eval_sipmamergesort2_bb22_in [Arg_1-1 ]
eval_sipmamergesort2_bb21_in [Arg_1-1 ]
eval_sipmamergesort2_bb14_in [Arg_7-1 ]
eval_sipmamergesort2_bb23_in [Arg_1-1 ]
eval_sipmamergesort2_bb24_in [Arg_1-1 ]
eval_sipmamergesort2_bb2_in [Arg_8 ]
eval_sipmamergesort2_bb4_in [Arg_8 ]
eval_sipmamergesort2_8 [Arg_8 ]
eval_sipmamergesort2_bb5_in [Arg_8 ]
eval_sipmamergesort2_bb6_in [Arg_8 ]
eval_sipmamergesort2_bb3_in [Arg_8 ]
eval_sipmamergesort2_bb8_in [Arg_8 ]
eval_sipmamergesort2_bb7_in [Arg_8 ]
eval_sipmamergesort2_bb10_in [Arg_8 ]
eval_sipmamergesort2_bb9_in [Arg_8 ]
eval_sipmamergesort2_bb11_in [Arg_8 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 31:eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0 of depth 1:
new bound:
Arg_8*Arg_8+2*Arg_8 {O(n^2)}
MPRF:
eval_sipmamergesort2_38 [Arg_1 ]
eval_sipmamergesort2_9 [Arg_8 ]
eval_sipmamergesort2_bb12_in [Arg_8 ]
eval_sipmamergesort2_bb13_in [Arg_8 ]
eval_sipmamergesort2_bb16_in [Arg_1 ]
eval_sipmamergesort2_37 [Arg_1 ]
eval_sipmamergesort2_bb17_in [Arg_1 ]
eval_sipmamergesort2_bb18_in [Arg_1 ]
eval_sipmamergesort2_bb15_in [Arg_1 ]
eval_sipmamergesort2_bb1_in [Arg_8 ]
eval_sipmamergesort2_bb20_in [Arg_1 ]
eval_sipmamergesort2_bb19_in [Arg_1 ]
eval_sipmamergesort2_bb22_in [Arg_1 ]
eval_sipmamergesort2_bb21_in [Arg_1 ]
eval_sipmamergesort2_bb14_in [Arg_7 ]
eval_sipmamergesort2_bb23_in [Arg_1 ]
eval_sipmamergesort2_bb24_in [Arg_1 ]
eval_sipmamergesort2_bb2_in [Arg_8 ]
eval_sipmamergesort2_bb4_in [Arg_8 ]
eval_sipmamergesort2_8 [Arg_8 ]
eval_sipmamergesort2_bb5_in [Arg_8 ]
eval_sipmamergesort2_bb6_in [Arg_8 ]
eval_sipmamergesort2_bb3_in [Arg_8 ]
eval_sipmamergesort2_bb8_in [Arg_8 ]
eval_sipmamergesort2_bb7_in [Arg_8 ]
eval_sipmamergesort2_bb10_in [Arg_8 ]
eval_sipmamergesort2_bb9_in [Arg_8 ]
eval_sipmamergesort2_bb11_in [Arg_8 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 48:eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb14_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1 of depth 1:
new bound:
Arg_8*Arg_8+2*Arg_8 {O(n^2)}
MPRF:
eval_sipmamergesort2_38 [Arg_1 ]
eval_sipmamergesort2_9 [Arg_8 ]
eval_sipmamergesort2_bb12_in [Arg_8 ]
eval_sipmamergesort2_bb13_in [Arg_8 ]
eval_sipmamergesort2_bb16_in [Arg_1 ]
eval_sipmamergesort2_37 [Arg_1 ]
eval_sipmamergesort2_bb17_in [Arg_1 ]
eval_sipmamergesort2_bb18_in [Arg_1 ]
eval_sipmamergesort2_bb15_in [Arg_1 ]
eval_sipmamergesort2_bb1_in [Arg_8 ]
eval_sipmamergesort2_bb20_in [Arg_1 ]
eval_sipmamergesort2_bb19_in [Arg_1 ]
eval_sipmamergesort2_bb22_in [Arg_1 ]
eval_sipmamergesort2_bb21_in [Arg_1 ]
eval_sipmamergesort2_bb14_in [Arg_7-1 ]
eval_sipmamergesort2_bb23_in [Arg_1 ]
eval_sipmamergesort2_bb24_in [Arg_1 ]
eval_sipmamergesort2_bb2_in [Arg_8 ]
eval_sipmamergesort2_bb4_in [Arg_8 ]
eval_sipmamergesort2_8 [Arg_8 ]
eval_sipmamergesort2_bb5_in [Arg_8 ]
eval_sipmamergesort2_bb6_in [Arg_8 ]
eval_sipmamergesort2_bb3_in [Arg_8 ]
eval_sipmamergesort2_bb8_in [Arg_8 ]
eval_sipmamergesort2_bb7_in [Arg_8 ]
eval_sipmamergesort2_bb10_in [Arg_8 ]
eval_sipmamergesort2_bb9_in [Arg_8 ]
eval_sipmamergesort2_bb11_in [Arg_8 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 39:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0 of depth 1:
new bound:
16*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*32*Arg_8+5*Arg_8*Arg_8*Arg_8+10*Arg_8*Arg_8+5*Arg_8+3 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_9 [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb12_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_0+5*Arg_8-5*Arg_9 ]
eval_sipmamergesort2_bb14_in [Arg_0+5*Arg_8-5*Arg_9 ]
eval_sipmamergesort2_bb16_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_37 [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb17_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb18_in [5*Arg_8+Arg_16-5*Arg_9-1 ]
eval_sipmamergesort2_bb15_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb20_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb19_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb22_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb21_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb23_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb24_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb1_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb2_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb4_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_8 [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb5_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb6_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb3_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb8_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb7_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb10_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb9_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb11_in [5*Arg_8-3*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 32:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16 of depth 1:
new bound:
4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
MPRF:
eval_sipmamergesort2_38 [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_9 [2*Arg_8+1 ]
eval_sipmamergesort2_bb12_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb13_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb14_in [3*Arg_8+1-Arg_7 ]
eval_sipmamergesort2_bb16_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_37 [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb17_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb18_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb15_in [3*Arg_8+Arg_12+Arg_16+1-2*Arg_7 ]
eval_sipmamergesort2_bb1_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb20_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb19_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb22_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb21_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb23_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb24_in [3*Arg_8+Arg_12+Arg_16-2*Arg_7 ]
eval_sipmamergesort2_bb2_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb4_in [2*Arg_8+1 ]
eval_sipmamergesort2_8 [2*Arg_8+1 ]
eval_sipmamergesort2_bb5_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb6_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb3_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb8_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb7_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb10_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb9_in [2*Arg_8+1 ]
eval_sipmamergesort2_bb11_in [2*Arg_8+1 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 33:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0 of depth 1:
new bound:
2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+Arg_8*Arg_8*Arg_8+2*Arg_8*Arg_8+Arg_8+1 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_9 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_37 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_9-3 ]
eval_sipmamergesort2_bb24_in [Arg_8-2*Arg_0 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 34:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0 of depth 1:
new bound:
2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+Arg_8*Arg_8*Arg_8+3*Arg_8*Arg_8+3*Arg_8+2 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_37 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb24_in [Arg_8+Arg_9-2*Arg_0-2 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9-1 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 35:eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 of depth 1:
new bound:
2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8*Arg_8+4 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [Arg_12+Arg_16-2 ]
eval_sipmamergesort2_9 [4*Arg_9 ]
eval_sipmamergesort2_bb12_in [4*Arg_9 ]
eval_sipmamergesort2_bb13_in [2*Arg_0 ]
eval_sipmamergesort2_bb14_in [2*Arg_0 ]
eval_sipmamergesort2_bb16_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_37 [Arg_12+Arg_16-2 ]
eval_sipmamergesort2_bb17_in [Arg_12+Arg_16-2 ]
eval_sipmamergesort2_bb18_in [Arg_12+Arg_16-2 ]
eval_sipmamergesort2_bb15_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_bb1_in [4*Arg_9 ]
eval_sipmamergesort2_bb20_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_bb19_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_bb22_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_bb21_in [Arg_12+Arg_16-1 ]
eval_sipmamergesort2_bb23_in [7*Arg_9+Arg_12+Arg_16+13-7*Arg_8 ]
eval_sipmamergesort2_bb24_in [7*Arg_9+Arg_12+Arg_16+13-7*Arg_8 ]
eval_sipmamergesort2_bb2_in [4*Arg_9 ]
eval_sipmamergesort2_bb4_in [4*Arg_9 ]
eval_sipmamergesort2_8 [4*Arg_9 ]
eval_sipmamergesort2_bb5_in [4*Arg_9 ]
eval_sipmamergesort2_bb6_in [4*Arg_9 ]
eval_sipmamergesort2_bb3_in [4*Arg_9 ]
eval_sipmamergesort2_bb8_in [4*Arg_9 ]
eval_sipmamergesort2_bb7_in [4*Arg_9 ]
eval_sipmamergesort2_bb10_in [4*Arg_9 ]
eval_sipmamergesort2_bb9_in [4*Arg_9 ]
eval_sipmamergesort2_bb11_in [4*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 41:eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16-1,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 of depth 1:
new bound:
2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*30*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*60*Arg_8+13*Arg_8*Arg_8*Arg_8+28*Arg_8*Arg_8+17*Arg_8+8 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_9 [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb12_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb13_in [2*Arg_0+13*Arg_8-10*Arg_9-2 ]
eval_sipmamergesort2_bb14_in [2*Arg_0+13*Arg_8-10*Arg_9-2 ]
eval_sipmamergesort2_bb16_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_37 [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb17_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb18_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb15_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb20_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb19_in [13*Arg_8+2*Arg_16-Arg_1-10*Arg_9-16 ]
eval_sipmamergesort2_bb22_in [13*Arg_8-2*Arg_0-Arg_1-10*Arg_9-12 ]
eval_sipmamergesort2_bb21_in [13*Arg_8-2*Arg_0-Arg_1-10*Arg_9-12 ]
eval_sipmamergesort2_bb23_in [13*Arg_8-2*Arg_0-Arg_1-10*Arg_9-12 ]
eval_sipmamergesort2_bb24_in [13*Arg_8-12*Arg_0-2 ]
eval_sipmamergesort2_bb1_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb2_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb4_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_8 [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb5_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb6_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb3_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb8_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb7_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb10_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb9_in [13*Arg_8-6*Arg_9-2 ]
eval_sipmamergesort2_bb11_in [13*Arg_8-6*Arg_9-2 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 42:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17 of depth 1:
new bound:
16*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*32*Arg_8+5*Arg_8*Arg_8*Arg_8+10*Arg_8*Arg_8+5*Arg_8+3 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_9 [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb12_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_0+5*Arg_8-5*Arg_9 ]
eval_sipmamergesort2_bb14_in [Arg_0+5*Arg_8-5*Arg_9 ]
eval_sipmamergesort2_bb16_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_37 [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb17_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb18_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb15_in [5*Arg_8+Arg_16-5*Arg_9 ]
eval_sipmamergesort2_bb20_in [5*Arg_8+Arg_17-5*Arg_9-1 ]
eval_sipmamergesort2_bb19_in [5*Arg_8+Arg_17-5*Arg_9 ]
eval_sipmamergesort2_bb22_in [5*Arg_8+Arg_17-5*Arg_9 ]
eval_sipmamergesort2_bb21_in [5*Arg_8+Arg_17-5*Arg_9 ]
eval_sipmamergesort2_bb23_in [5*Arg_8+Arg_17-5*Arg_9 ]
eval_sipmamergesort2_bb24_in [5*Arg_8+Arg_17-5*Arg_9 ]
eval_sipmamergesort2_bb1_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb2_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb4_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_8 [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb5_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb6_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb3_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb8_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb7_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb10_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb9_in [5*Arg_8-3*Arg_9 ]
eval_sipmamergesort2_bb11_in [5*Arg_8-3*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 43:eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0 of depth 1:
new bound:
12*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8*Arg_8+2*Arg_8*Arg_8*Arg_8+5*Arg_8*Arg_8+4*Arg_8+1 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_9 [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb12_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb13_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb14_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb16_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_37 [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb17_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb18_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb15_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb20_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb19_in [2*Arg_8-2*Arg_9-1 ]
eval_sipmamergesort2_bb22_in [2*Arg_8-2*Arg_9-2 ]
eval_sipmamergesort2_bb21_in [2*Arg_8-2*Arg_9-2 ]
eval_sipmamergesort2_bb23_in [2*Arg_8-2*Arg_9-2 ]
eval_sipmamergesort2_bb24_in [2*Arg_8-2*Arg_9-2 ]
eval_sipmamergesort2_bb1_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb2_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb4_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_8 [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb5_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb6_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb3_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb8_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb7_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb10_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb9_in [2*Arg_8-Arg_9 ]
eval_sipmamergesort2_bb11_in [2*Arg_8-Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 44:eval_sipmamergesort2_bb20_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17-1,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 of depth 1:
new bound:
2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*30*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*60*Arg_8+10*Arg_8*Arg_8*Arg_8+20*Arg_8*Arg_8+10*Arg_8+6 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_9 [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb12_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb13_in [2*Arg_0+10*Arg_8-10*Arg_9 ]
eval_sipmamergesort2_bb14_in [2*Arg_0+10*Arg_8-10*Arg_9 ]
eval_sipmamergesort2_bb16_in [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_37 [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_bb17_in [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_bb18_in [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_bb15_in [10*Arg_8+2*Arg_16-10*Arg_9-14 ]
eval_sipmamergesort2_bb20_in [10*Arg_8+2*Arg_17-10*Arg_9-14 ]
eval_sipmamergesort2_bb19_in [10*Arg_8+2*Arg_17-10*Arg_9-14 ]
eval_sipmamergesort2_bb22_in [10*Arg_8+2*Arg_17-10*Arg_9-14 ]
eval_sipmamergesort2_bb21_in [10*Arg_8+2*Arg_17-10*Arg_9-14 ]
eval_sipmamergesort2_bb23_in [10*Arg_8+2*Arg_17-10*Arg_0-4 ]
eval_sipmamergesort2_bb24_in [10*Arg_8+2*Arg_17-10*Arg_0-4 ]
eval_sipmamergesort2_bb1_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb2_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb4_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_8 [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb5_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb6_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb3_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb8_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb7_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb10_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb9_in [10*Arg_8-6*Arg_9 ]
eval_sipmamergesort2_bb11_in [10*Arg_8-6*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 45:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13 of depth 1:
new bound:
2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+3*Arg_8*Arg_8+6*Arg_8+1 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [3*Arg_0 ]
eval_sipmamergesort2_9 [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb12_in [3*Arg_8 ]
eval_sipmamergesort2_bb13_in [3*Arg_0 ]
eval_sipmamergesort2_bb14_in [3*Arg_0 ]
eval_sipmamergesort2_bb16_in [3*Arg_0 ]
eval_sipmamergesort2_37 [3*Arg_0 ]
eval_sipmamergesort2_bb17_in [3*Arg_0 ]
eval_sipmamergesort2_bb18_in [3*Arg_0 ]
eval_sipmamergesort2_bb15_in [3*Arg_0 ]
eval_sipmamergesort2_bb1_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb20_in [2*Arg_0+Arg_12 ]
eval_sipmamergesort2_bb19_in [2*Arg_0+Arg_12 ]
eval_sipmamergesort2_bb22_in [2*Arg_0+Arg_13-5 ]
eval_sipmamergesort2_bb21_in [2*Arg_0+Arg_13-4 ]
eval_sipmamergesort2_bb23_in [2*Arg_0+Arg_13-4 ]
eval_sipmamergesort2_bb24_in [2*Arg_0+Arg_13-4 ]
eval_sipmamergesort2_bb2_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb4_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_8 [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb5_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb6_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb3_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb8_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb7_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb10_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb9_in [3*Arg_8+Arg_9 ]
eval_sipmamergesort2_bb11_in [3*Arg_8+Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 46:eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb23_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0 of depth 1:
new bound:
2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+Arg_8*Arg_8*Arg_8+3*Arg_8*Arg_8+3*Arg_8+2 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_9 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb12_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb13_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb14_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb16_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_37 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb17_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb18_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb15_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb20_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb19_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb22_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb21_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb23_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb24_in [Arg_8-Arg_9-4 ]
eval_sipmamergesort2_bb1_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb2_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb4_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_8 [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb5_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb6_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb3_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb8_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb7_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb10_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb9_in [Arg_8-Arg_9-1 ]
eval_sipmamergesort2_bb11_in [Arg_8-Arg_9-1 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 47:eval_sipmamergesort2_bb22_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb21_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13-1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 of depth 1:
new bound:
2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2 {O(EXP)}
MPRF:
eval_sipmamergesort2_38 [Arg_0 ]
eval_sipmamergesort2_9 [2*Arg_9 ]
eval_sipmamergesort2_bb12_in [2*Arg_9 ]
eval_sipmamergesort2_bb13_in [Arg_0 ]
eval_sipmamergesort2_bb14_in [Arg_0 ]
eval_sipmamergesort2_bb16_in [Arg_0 ]
eval_sipmamergesort2_37 [Arg_0 ]
eval_sipmamergesort2_bb17_in [Arg_0 ]
eval_sipmamergesort2_bb18_in [Arg_0 ]
eval_sipmamergesort2_bb15_in [Arg_0 ]
eval_sipmamergesort2_bb1_in [2*Arg_9 ]
eval_sipmamergesort2_bb20_in [Arg_12 ]
eval_sipmamergesort2_bb19_in [Arg_12 ]
eval_sipmamergesort2_bb22_in [Arg_13 ]
eval_sipmamergesort2_bb21_in [Arg_13 ]
eval_sipmamergesort2_bb23_in [Arg_13 ]
eval_sipmamergesort2_bb24_in [Arg_13 ]
eval_sipmamergesort2_bb2_in [2*Arg_9 ]
eval_sipmamergesort2_bb4_in [2*Arg_9 ]
eval_sipmamergesort2_8 [2*Arg_9 ]
eval_sipmamergesort2_bb5_in [2*Arg_9 ]
eval_sipmamergesort2_bb6_in [2*Arg_9 ]
eval_sipmamergesort2_bb3_in [2*Arg_9 ]
eval_sipmamergesort2_bb8_in [2*Arg_9 ]
eval_sipmamergesort2_bb7_in [2*Arg_9 ]
eval_sipmamergesort2_bb10_in [2*Arg_9 ]
eval_sipmamergesort2_bb9_in [2*Arg_9 ]
eval_sipmamergesort2_bb11_in [2*Arg_9 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
knowledge_propagation leads to new time bound 2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8*Arg_8+4 {O(EXP)} for transition 37:eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_38(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8*Arg_8+4 {O(EXP)} for transition 38:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 35:eval_sipmamergesort2_bb16_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8*Arg_8+4 {O(EXP)} for transition 40:eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 37:eval_sipmamergesort2_37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_38(Arg_0,Arg_1,nondef.1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 38:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 39:eval_sipmamergesort2_38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 40:eval_sipmamergesort2_bb17_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12-1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)} for transition 41:eval_sipmamergesort2_bb18_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16-1,Arg_17,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
knowledge_propagation leads to new time bound 8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(n^3)} for transition 33:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
knowledge_propagation leads to new time bound 4*Arg_8*Arg_8*Arg_8+13*Arg_8*Arg_8+11*Arg_8+2 {O(n^3)} for transition 34:eval_sipmamergesort2_bb15_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb19_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_16,Arg_18):|:2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
MPRF for transition 55:eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8 of depth 1:
new bound:
Arg_8+2 {O(n)}
MPRF:
eval_sipmamergesort2_bb27_in [Arg_8-Arg_5 ]
eval_sipmamergesort2_bb26_in [Arg_8+1-Arg_5 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
MPRF for transition 57:eval_sipmamergesort2_bb27_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18) -> eval_sipmamergesort2_bb26_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18):|:1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 of depth 1:
new bound:
Arg_8+2 {O(n)}
MPRF:
eval_sipmamergesort2_bb27_in [Arg_8+1-Arg_5 ]
eval_sipmamergesort2_bb26_in [Arg_8+1-Arg_5 ]
Show Graph
G
eval_sipmamergesort2_37
eval_sipmamergesort2_37
eval_sipmamergesort2_38
eval_sipmamergesort2_38
eval_sipmamergesort2_37->eval_sipmamergesort2_38
t₃₇
η (Arg_2) = nondef.1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_bb17_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in
t₃₈
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_2
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_bb18_in
eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in
t₃₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_2<=0
eval_sipmamergesort2_8
eval_sipmamergesort2_8
eval_sipmamergesort2_9
eval_sipmamergesort2_9
eval_sipmamergesort2_8->eval_sipmamergesort2_9
t₁₂
η (Arg_4) = nondef.0
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_bb5_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in
t₁₃
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && 0<Arg_4
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_bb6_in
eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in
t₁₄
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10 && Arg_4<=0
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb0_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb1_in
eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in
t₁
η (Arg_9) = 1
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb10_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb9_in
eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in
t₂₂
η (Arg_11) = Arg_11-1
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_11+Arg_9 && Arg_11<=Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_11 && 1+Arg_15<=Arg_10 && Arg_11<=Arg_10 && 1<=Arg_11 && 2<=Arg_10+Arg_11 && 1<=Arg_10
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb11_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb12_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in
t₂₄
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_3<=0
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb2_in
eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in
t₂₃
η (Arg_6) = Arg_3
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_3
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb13_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in
t₂₆
η (Arg_0) = 2*Arg_9
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 2*Arg_9<Arg_8
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb25_in
eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in
t₂₅
η (Arg_18) = 0
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<=2*Arg_9
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb14_in
eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in
t₂₇
η (Arg_7) = Arg_8
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb15_in
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₈
η (Arg_1) = Arg_7-2*Arg_0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && 2*Arg_0<=Arg_7
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₂₉
η (Arg_1) = 0
η (Arg_12) = Arg_0
η (Arg_16) = Arg_7-Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_7 && Arg_7<2*Arg_0
eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in
t₃₁
η (Arg_1) = 0
η (Arg_12) = Arg_7
η (Arg_16) = 0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 2<=Arg_7+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 5<=Arg_0+Arg_8 && 1<=Arg_7 && 1+Arg_3<=Arg_7 && 1+Arg_15<=Arg_7 && 1+Arg_11<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_7<Arg_0 && 0<Arg_0
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb16_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in
t₃₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_12 && 0<Arg_16
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb19_in
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₃
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_12<=0
eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in
t₃₄
η (Arg_17) = Arg_16
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_16<=0
eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37
t₃₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 2<=Arg_12+Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in
t₄₀
η (Arg_12) = Arg_12-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_2+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_2+Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && 1<=Arg_2 && 2<=Arg_16+Arg_2 && 1+Arg_15<=Arg_2 && 1+Arg_11<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in
t₄₁
η (Arg_16) = Arg_16-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_2<=Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_2<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_2<=0 && 1+Arg_2<=Arg_16 && Arg_15+Arg_2<=0 && Arg_11+Arg_2<=0 && 2+Arg_2<=Arg_0 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_12<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb20_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in
t₄₂
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_17
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb21_in
eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in
t₄₃
η (Arg_13) = Arg_12
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 2+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_17<=0
eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in
t₂
η (Arg_6) = Arg_8
τ = 1<=Arg_9
eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in
t₄₄
η (Arg_17) = Arg_17-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 2<=Arg_17+Arg_9 && 2<=Arg_16+Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 4<=Arg_17+Arg_8 && 2+Arg_17<=Arg_8 && 4<=Arg_16+Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && 1+Arg_3<=Arg_17 && 1+Arg_3<=Arg_16 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=Arg_16 && 1<=Arg_17 && 2<=Arg_16+Arg_17 && 1+Arg_15<=Arg_17 && 1+Arg_11<=Arg_17 && 3<=Arg_0+Arg_17 && 1<=Arg_16 && 1+Arg_15<=Arg_16 && 1+Arg_11<=Arg_16 && 3<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb22_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in
t₄₅
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_13
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb23_in
eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in
t₄₆
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_13<=0
eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in
t₄₇
η (Arg_13) = Arg_13-1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 2<=Arg_13+Arg_9 && 2<=Arg_12+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 4<=Arg_13+Arg_8 && 4<=Arg_12+Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && 1+Arg_3<=Arg_13 && 1+Arg_3<=Arg_12 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && 1+Arg_17<=Arg_13 && 1+Arg_17<=Arg_12 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && 1+Arg_15<=Arg_13 && 1+Arg_15<=Arg_12 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=Arg_12 && 1<=Arg_13 && 2<=Arg_12+Arg_13 && 1+Arg_11<=Arg_13 && 3<=Arg_0+Arg_13 && 1<=Arg_12 && 1+Arg_11<=Arg_12 && 3<=Arg_0+Arg_12 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in
t₄₈
η (Arg_7) = Arg_1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && 0<Arg_1
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb24_in
eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in
t₄₉
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && 2<=Arg_0 && Arg_1<=0
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in
t₅₀
η (Arg_9) = 2*Arg_0
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && 2*Arg_0<Arg_8
eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in
t₅₁
η (Arg_18) = 1
τ = 2+Arg_9<=Arg_8 && 1+Arg_9<=Arg_0 && 1<=Arg_9 && 4<=Arg_8+Arg_9 && 1+Arg_3<=Arg_9 && 1+Arg_17<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_13<=Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1+Arg_1<=Arg_9 && 3<=Arg_0+Arg_9 && 3<=Arg_8 && Arg_7<=Arg_8 && 3+Arg_3<=Arg_8 && 3+Arg_17<=Arg_8 && 2+Arg_16<=Arg_8 && 3<=Arg_15+Arg_8 && 3+Arg_15<=Arg_8 && 3<=Arg_14+Arg_8 && 3+Arg_13<=Arg_8 && 3+Arg_11<=Arg_8 && 2+Arg_10<=Arg_8 && 3+Arg_1<=Arg_8 && 5<=Arg_0+Arg_8 && Arg_3<=0 && Arg_17+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_13+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_15+Arg_17<=0 && Arg_13+Arg_17<=0 && Arg_11+Arg_17<=0 && Arg_1+Arg_17<=0 && 2+Arg_17<=Arg_0 && 2<=Arg_0+Arg_17 && 2<=Arg_0+Arg_16 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_13+Arg_15<=0 && Arg_11+Arg_15<=0 && Arg_1+Arg_15<=0 && 2+Arg_15<=Arg_0 && 2<=Arg_0+Arg_15 && 2<=Arg_0+Arg_14 && Arg_13<=0 && Arg_13<=Arg_12 && Arg_11+Arg_13<=0 && Arg_1+Arg_13<=0 && 2+Arg_13<=Arg_0 && Arg_11<=0 && Arg_1+Arg_11<=0 && 2+Arg_11<=Arg_0 && 1+Arg_10<=Arg_0 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_8<=2*Arg_0
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb26_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in
t₅₂
η (Arg_5) = 1
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_18<=0 && 0<=Arg_18
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb28_in
eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in
t₅₄
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && 0<Arg_18
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb27_in
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in
t₅₅
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_5<=Arg_8
eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in
t₅₆
τ = 1<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0 && Arg_8<Arg_5
eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in
t₅₇
η (Arg_5) = Arg_5+1
τ = 1<=Arg_9 && 2<=Arg_8+Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && 1+Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && 1<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 1+Arg_3<=Arg_8 && 1<=Arg_18+Arg_8 && 1+Arg_18<=Arg_8 && 1+Arg_15<=Arg_8 && 1+Arg_11<=Arg_8 && 1<=Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_18+Arg_5 && 1+Arg_18<=Arg_5 && 1+Arg_15<=Arg_5 && 1+Arg_11<=Arg_5 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=0 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=0 && Arg_15+Arg_18<=0 && Arg_11+Arg_18<=0 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_stop
eval_sipmamergesort2_stop
eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop
t₅₈
τ = 1<=Arg_9 && 1+Arg_3<=Arg_9 && 1<=Arg_18+Arg_9 && Arg_18<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && 1+Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_3<=0 && Arg_3<=Arg_18 && Arg_18+Arg_3<=1 && Arg_15+Arg_3<=0 && Arg_11+Arg_3<=0 && Arg_18<=1 && Arg_15+Arg_18<=1 && Arg_11+Arg_18<=1 && 0<=Arg_18 && Arg_15<=Arg_18 && Arg_11<=Arg_18 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11+Arg_15<=0 && Arg_11<=0
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb3_in
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₃
η (Arg_3) = Arg_6-2*Arg_9
η (Arg_10) = Arg_9
η (Arg_14) = Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && 2*Arg_9<=Arg_6
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₄
η (Arg_3) = 0
η (Arg_10) = Arg_9
η (Arg_14) = Arg_6-Arg_9
τ = 1<=Arg_9 && Arg_9<=Arg_6 && Arg_6<2*Arg_9
eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in
t₆
η (Arg_3) = 0
η (Arg_10) = Arg_6
η (Arg_14) = 0
τ = 1<=Arg_9 && Arg_6<Arg_9 && 0<Arg_9
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb4_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in
t₇
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && 0<Arg_10 && 0<Arg_14
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb7_in
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₈
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_10<=0
eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in
t₉
η (Arg_15) = Arg_14
τ = 1<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_14<=0
eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8
t₁₀
τ = 1<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in
t₁₅
η (Arg_10) = Arg_10-1
τ = 1<=Arg_9 && 2<=Arg_4+Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && 1<=Arg_4 && 2<=Arg_14+Arg_4 && 2<=Arg_10+Arg_4 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in
t₁₆
η (Arg_14) = Arg_14-1
τ = 1<=Arg_9 && 1+Arg_4<=Arg_9 && 2<=Arg_14+Arg_9 && 2<=Arg_10+Arg_9 && Arg_10<=Arg_9 && Arg_4<=0 && 1+Arg_4<=Arg_14 && 1+Arg_4<=Arg_10 && 1<=Arg_14 && 2<=Arg_10+Arg_14 && 1<=Arg_10
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb8_in
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in
t₁₇
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 0<Arg_15
eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in
t₁₈
η (Arg_11) = Arg_10
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && Arg_15<=0
eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in
t₁₉
η (Arg_15) = Arg_15-1
τ = 1<=Arg_9 && 2<=Arg_15+Arg_9 && 2<=Arg_14+Arg_9 && Arg_10<=Arg_9 && Arg_15<=Arg_14 && 1<=Arg_15 && 2<=Arg_14+Arg_15 && 1<=Arg_14
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in
t₂₀
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && 0<Arg_11
eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in
t₂₁
τ = 1<=Arg_9 && 1<=Arg_15+Arg_9 && 1+Arg_15<=Arg_9 && 1<=Arg_14+Arg_9 && Arg_11<=Arg_9 && Arg_10<=Arg_9 && Arg_15<=0 && Arg_15<=Arg_14 && Arg_11<=Arg_10 && Arg_11<=0
eval_sipmamergesort2_start
eval_sipmamergesort2_start
eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in
t₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9: inf {Infinity}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in: inf {Infinity}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in: inf {Infinity}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in: 1 {O(1)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in: inf {Infinity}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in: inf {Infinity}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in: 3*Arg_8+6 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in: 1 {O(1)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in: Arg_8+2 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in: Arg_8+2 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: 2*Arg_8*Arg_8+4*Arg_8 {O(n^2)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in: 8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(n^3)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in: 4*Arg_8*Arg_8*Arg_8+13*Arg_8*Arg_8+11*Arg_8+2 {O(n^3)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in: 16*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*32*Arg_8+5*Arg_8*Arg_8*Arg_8+10*Arg_8*Arg_8+5*Arg_8+3 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in: 12*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8*Arg_8+2*Arg_8*Arg_8*Arg_8+5*Arg_8*Arg_8+4*Arg_8+1 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in: Arg_8+2 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in: 2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*30*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*60*Arg_8+10*Arg_8*Arg_8*Arg_8+20*Arg_8*Arg_8+10*Arg_8+6 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in: 2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+3*Arg_8*Arg_8+6*Arg_8+1 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in: 2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+Arg_8*Arg_8*Arg_8+3*Arg_8*Arg_8+3*Arg_8+2 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in: Arg_8+1 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in: Arg_8+1 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in: 1 {O(1)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in: 1 {O(1)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in: 1 {O(1)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in: Arg_8+2 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in: 1 {O(1)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in: Arg_8+2 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop: 1 {O(1)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in: inf {Infinity}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8: inf {Infinity}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in: inf {Infinity}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in: inf {Infinity}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in: inf {Infinity}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in: inf {Infinity}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9: inf {Infinity}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in: inf {Infinity}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in: inf {Infinity}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in: 1 {O(1)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in: inf {Infinity}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in: inf {Infinity}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in: 3*Arg_8+6 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in: 1 {O(1)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in: Arg_8+2 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in: Arg_8+2 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: 2*Arg_8*Arg_8+4*Arg_8 {O(n^2)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in: 8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(n^3)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in: 4*Arg_8*Arg_8*Arg_8+13*Arg_8*Arg_8+11*Arg_8+2 {O(n^3)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in: 4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(n^3)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in: 16*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*32*Arg_8+5*Arg_8*Arg_8*Arg_8+10*Arg_8*Arg_8+5*Arg_8+3 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in: 12*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8*Arg_8+2*Arg_8*Arg_8*Arg_8+5*Arg_8*Arg_8+4*Arg_8+1 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in: Arg_8+2 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in: 2*2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*30*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*60*Arg_8+10*Arg_8*Arg_8*Arg_8+20*Arg_8*Arg_8+10*Arg_8+6 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in: 2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8+3*Arg_8*Arg_8+6*Arg_8+1 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in: 2^(Arg_8+1)*2^(Arg_8+2)*3*Arg_8*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*6*Arg_8+Arg_8*Arg_8*Arg_8+3*Arg_8*Arg_8+3*Arg_8+2 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4*Arg_8+2^(Arg_8+1)*2^(Arg_8+2)*Arg_8*Arg_8+2 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in: Arg_8*Arg_8+2*Arg_8 {O(n^2)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in: Arg_8+1 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in: Arg_8+1 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in: 1 {O(1)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in: 1 {O(1)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in: 1 {O(1)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in: Arg_8+2 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in: 1 {O(1)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in: Arg_8+2 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop: 1 {O(1)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in: inf {Infinity}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8: inf {Infinity}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in: inf {Infinity}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in: inf {Infinity}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in: inf {Infinity}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in: inf {Infinity}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in: inf {Infinity}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in: inf {Infinity}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in: 1 {O(1)}
Sizebounds
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_1: Arg_8 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_3: 6*Arg_8 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_5: Arg_5 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_6: 240*Arg_8 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_7: 4*Arg_8 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_8: Arg_8 {O(n)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
37: eval_sipmamergesort2_37->eval_sipmamergesort2_38, Arg_18: Arg_18 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_1: Arg_8 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_3: 6*Arg_8 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_5: Arg_5 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_6: 240*Arg_8 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_7: 4*Arg_8 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_8: Arg_8 {O(n)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
38: eval_sipmamergesort2_38->eval_sipmamergesort2_bb17_in, Arg_18: Arg_18 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_1: Arg_8 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_3: 6*Arg_8 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_5: Arg_5 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_6: 240*Arg_8 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_7: 4*Arg_8 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_8: Arg_8 {O(n)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
39: eval_sipmamergesort2_38->eval_sipmamergesort2_bb18_in, Arg_18: Arg_18 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_3: 2*Arg_8 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_5: Arg_5 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_6: 8*Arg_8 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_8: Arg_8 {O(n)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
12: eval_sipmamergesort2_8->eval_sipmamergesort2_9, Arg_18: Arg_18 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_3: 2*Arg_8 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_5: Arg_5 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_6: 8*Arg_8 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_8: Arg_8 {O(n)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
13: eval_sipmamergesort2_9->eval_sipmamergesort2_bb5_in, Arg_18: Arg_18 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_3: 2*Arg_8 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_5: Arg_5 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_6: 8*Arg_8 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_8: Arg_8 {O(n)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
14: eval_sipmamergesort2_9->eval_sipmamergesort2_bb6_in, Arg_18: Arg_18 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_0: Arg_0 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_1: Arg_1 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_2: Arg_2 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_3: Arg_3 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_5: Arg_5 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_6: Arg_6 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_8: Arg_8 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_9: 1 {O(1)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_10: Arg_10 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_11: Arg_11 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_12: Arg_12 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_13: Arg_13 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_14: Arg_14 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_15: Arg_15 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_16: Arg_16 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_17: Arg_17 {O(n)}
1: eval_sipmamergesort2_bb0_in->eval_sipmamergesort2_bb1_in, Arg_18: Arg_18 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_3: 2*Arg_8 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_5: Arg_5 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_6: 40*Arg_8 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_8: Arg_8 {O(n)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_11: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
22: eval_sipmamergesort2_bb10_in->eval_sipmamergesort2_bb9_in, Arg_18: Arg_18 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_3: 2*Arg_8 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_5: Arg_5 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_6: 2*Arg_8 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_8: Arg_8 {O(n)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
23: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb2_in, Arg_18: Arg_18 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_3: 2*Arg_8 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_5: Arg_5 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_6: 80*Arg_8 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_8: Arg_8 {O(n)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
24: eval_sipmamergesort2_bb11_in->eval_sipmamergesort2_bb12_in, Arg_18: Arg_18 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_3: 2*Arg_8 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_5: Arg_5 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_6: 80*Arg_8 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_8: Arg_8 {O(n)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
25: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb25_in, Arg_18: 0 {O(1)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_3: 2*Arg_8 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_5: Arg_5 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_6: 80*Arg_8 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_8: Arg_8 {O(n)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
26: eval_sipmamergesort2_bb12_in->eval_sipmamergesort2_bb13_in, Arg_18: Arg_18 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_3: 2*Arg_8 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_5: Arg_5 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_6: 80*Arg_8 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_7: Arg_8 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_8: Arg_8 {O(n)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
27: eval_sipmamergesort2_bb13_in->eval_sipmamergesort2_bb14_in, Arg_18: Arg_18 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_1: Arg_8 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_3: 6*Arg_8 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_5: Arg_5 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_6: 240*Arg_8 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_7: 2*Arg_8 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_8: Arg_8 {O(n)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_12: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_13: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+160*Arg_8*Arg_8*Arg_8+440*Arg_8*Arg_8+296*Arg_8+3*Arg_13+80 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_16: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_17: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+3*Arg_17 {O(EXP)}
28: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_18: Arg_18 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_1: 0 {O(1)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_3: 6*Arg_8 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_5: Arg_5 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_6: 240*Arg_8 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_7: 2*Arg_8 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_8: Arg_8 {O(n)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_12: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_13: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+160*Arg_8*Arg_8*Arg_8+440*Arg_8*Arg_8+296*Arg_8+3*Arg_13+80 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_16: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_17: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+3*Arg_17 {O(EXP)}
29: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_18: Arg_18 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_1: 0 {O(1)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_3: 6*Arg_8 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_5: Arg_5 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_6: 240*Arg_8 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_7: 2*Arg_8 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_8: Arg_8 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_12: 2*Arg_8 {O(n)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_13: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+160*Arg_8*Arg_8*Arg_8+440*Arg_8*Arg_8+296*Arg_8+3*Arg_13+80 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_16: 0 {O(1)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_17: 144*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+3*Arg_17 {O(EXP)}
31: eval_sipmamergesort2_bb14_in->eval_sipmamergesort2_bb15_in, Arg_18: Arg_18 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_1: Arg_8 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_3: 6*Arg_8 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_5: Arg_5 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_6: 240*Arg_8 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_7: 4*Arg_8 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_8: Arg_8 {O(n)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
32: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb16_in, Arg_18: Arg_18 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_1: Arg_8 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_3: 6*Arg_8 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_5: Arg_5 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_6: 240*Arg_8 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_7: 8*Arg_8 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_8: Arg_8 {O(n)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*8+8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_13: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*576+640*Arg_8*Arg_8*Arg_8+1760*Arg_8*Arg_8+1184*Arg_8+12*Arg_13+320 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
33: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_18: Arg_18 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_1: Arg_8 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_3: 6*Arg_8 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_5: Arg_5 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_6: 240*Arg_8 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_7: 8*Arg_8 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_8: Arg_8 {O(n)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_12: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+9*Arg_8+2 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_13: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*576+640*Arg_8*Arg_8*Arg_8+1760*Arg_8*Arg_8+1184*Arg_8+12*Arg_13+320 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_16: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_17: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
34: eval_sipmamergesort2_bb15_in->eval_sipmamergesort2_bb19_in, Arg_18: Arg_18 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_1: Arg_8 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_3: 6*Arg_8 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_5: Arg_5 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_6: 240*Arg_8 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_7: 4*Arg_8 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_8: Arg_8 {O(n)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
35: eval_sipmamergesort2_bb16_in->eval_sipmamergesort2_37, Arg_18: Arg_18 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_1: Arg_8 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_3: 6*Arg_8 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_5: Arg_5 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_6: 240*Arg_8 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_7: 4*Arg_8 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_8: Arg_8 {O(n)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
40: eval_sipmamergesort2_bb17_in->eval_sipmamergesort2_bb15_in, Arg_18: Arg_18 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_1: Arg_8 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_3: 6*Arg_8 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_5: Arg_5 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_6: 240*Arg_8 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_7: 4*Arg_8 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_8: Arg_8 {O(n)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8*Arg_8*Arg_8+11*Arg_8*Arg_8+7*Arg_8+2 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_13: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+320*Arg_8*Arg_8*Arg_8+880*Arg_8*Arg_8+592*Arg_8+6*Arg_13+160 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_17: 288*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+6*Arg_17 {O(EXP)}
41: eval_sipmamergesort2_bb18_in->eval_sipmamergesort2_bb15_in, Arg_18: Arg_18 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_1: Arg_8 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_3: 6*Arg_8 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_5: Arg_5 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_6: 240*Arg_8 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_7: 8*Arg_8 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_8: Arg_8 {O(n)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*8+8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_13: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*576+640*Arg_8*Arg_8*Arg_8+1760*Arg_8*Arg_8+1184*Arg_8+12*Arg_13+320 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
42: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb20_in, Arg_18: Arg_18 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_1: Arg_8 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_3: 6*Arg_8 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_5: Arg_5 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_6: 240*Arg_8 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_7: 24*Arg_8 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_8: Arg_8 {O(n)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_12: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_13: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_16: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_17: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
43: eval_sipmamergesort2_bb19_in->eval_sipmamergesort2_bb21_in, Arg_18: Arg_18 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)+Arg_0 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_1: Arg_1+Arg_8 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_3: 6*Arg_8+Arg_3 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_5: Arg_5 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_6: 2*Arg_8 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_7: 48*Arg_8+Arg_7 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_8: Arg_8 {O(n)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8+Arg_10 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8+Arg_11 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+Arg_12+20 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+Arg_13+20 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8+Arg_14 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8+Arg_15 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+Arg_16 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+Arg_17 {O(EXP)}
2: eval_sipmamergesort2_bb1_in->eval_sipmamergesort2_bb2_in, Arg_18: Arg_18 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_1: Arg_8 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_3: 6*Arg_8 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_5: Arg_5 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_6: 240*Arg_8 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_7: 8*Arg_8 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_8: Arg_8 {O(n)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*8+8*Arg_8*Arg_8*Arg_8+22*Arg_8*Arg_8+14*Arg_8+4 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_13: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*576+640*Arg_8*Arg_8*Arg_8+1760*Arg_8*Arg_8+1184*Arg_8+12*Arg_13+320 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
44: eval_sipmamergesort2_bb20_in->eval_sipmamergesort2_bb19_in, Arg_18: Arg_18 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_1: Arg_8 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_3: 6*Arg_8 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_5: Arg_5 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_6: 240*Arg_8 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_7: 24*Arg_8 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_8: Arg_8 {O(n)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_12: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_13: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_16: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_17: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
45: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb22_in, Arg_18: Arg_18 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_1: Arg_8 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_3: 6*Arg_8 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_5: Arg_5 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_6: 240*Arg_8 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_7: 48*Arg_8 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_8: Arg_8 {O(n)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
46: eval_sipmamergesort2_bb21_in->eval_sipmamergesort2_bb23_in, Arg_18: Arg_18 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_1: Arg_8 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_3: 6*Arg_8 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_5: Arg_5 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_6: 240*Arg_8 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_7: 24*Arg_8 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_8: Arg_8 {O(n)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_12: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_13: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+20*Arg_8*Arg_8*Arg_8+55*Arg_8*Arg_8+37*Arg_8+10 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_16: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_17: 18*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
47: eval_sipmamergesort2_bb22_in->eval_sipmamergesort2_bb21_in, Arg_18: Arg_18 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_1: Arg_8 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_3: 6*Arg_8 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_5: Arg_5 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_6: 240*Arg_8 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_7: Arg_8 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_8: Arg_8 {O(n)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
48: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb14_in, Arg_18: Arg_18 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_1: Arg_8 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_3: 6*Arg_8 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_5: Arg_5 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_6: 240*Arg_8 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_7: 48*Arg_8 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_8: Arg_8 {O(n)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
49: eval_sipmamergesort2_bb23_in->eval_sipmamergesort2_bb24_in, Arg_18: Arg_18 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_1: Arg_8 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_3: 6*Arg_8 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_5: Arg_5 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_6: 240*Arg_8 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_7: 48*Arg_8 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_8: Arg_8 {O(n)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
50: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb1_in, Arg_18: Arg_18 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_1: Arg_8 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_3: 6*Arg_8 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_5: Arg_5 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_6: 240*Arg_8 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_7: 48*Arg_8 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_8: Arg_8 {O(n)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
51: eval_sipmamergesort2_bb24_in->eval_sipmamergesort2_bb25_in, Arg_18: 1 {O(1)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_3: 2*Arg_8 {O(n)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_5: 1 {O(1)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_6: 80*Arg_8 {O(n)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_8: Arg_8 {O(n)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
52: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb26_in, Arg_18: 0 {O(1)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_1: Arg_8 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_3: 6*Arg_8 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_5: Arg_5 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_6: 240*Arg_8 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_7: 48*Arg_8 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_8: Arg_8 {O(n)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+72*Arg_8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_12: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_13: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8+40*Arg_8*Arg_8*Arg_8+110*Arg_8*Arg_8+74*Arg_8+20 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+96*Arg_8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_16: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_17: 2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*8 {O(EXP)}
54: eval_sipmamergesort2_bb25_in->eval_sipmamergesort2_bb28_in, Arg_18: 1 {O(1)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_3: 2*Arg_8 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_5: Arg_8+3 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_6: 80*Arg_8 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_8: Arg_8 {O(n)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
55: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb27_in, Arg_18: 0 {O(1)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*6+6*Arg_0 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_1: 6*Arg_1+6*Arg_8 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_3: 4*Arg_8 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_5: Arg_8+4 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_6: 160*Arg_8 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_7: 288*Arg_8+6*Arg_7 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_8: 2*Arg_8 {O(n)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_9: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*8+48*Arg_8 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*8+48*Arg_8 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_12: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*72+240*Arg_8*Arg_8*Arg_8+660*Arg_8*Arg_8+444*Arg_8+6*Arg_12+120 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_13: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*72+240*Arg_8*Arg_8*Arg_8+660*Arg_8*Arg_8+444*Arg_8+6*Arg_13+120 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_14: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*8+64*Arg_8 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_15: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*8+64*Arg_8 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_16: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*72+6*Arg_16 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_17: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*72+6*Arg_17 {O(EXP)}
56: eval_sipmamergesort2_bb26_in->eval_sipmamergesort2_bb28_in, Arg_18: 0 {O(1)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_3: 2*Arg_8 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_5: Arg_8+3 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_6: 80*Arg_8 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_8: Arg_8 {O(n)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
57: eval_sipmamergesort2_bb27_in->eval_sipmamergesort2_bb26_in, Arg_18: 0 {O(1)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*6+6*Arg_0 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_1: 6*Arg_1+7*Arg_8 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_3: 10*Arg_8 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_5: Arg_5+Arg_8+4 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_6: 400*Arg_8 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_7: 336*Arg_8+6*Arg_7 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_8: 3*Arg_8 {O(n)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_9: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*3 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+2^(Arg_8+1)*2^(Arg_8+2)*64+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_11: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*64+2^(Arg_8+1)*2^(Arg_8+2)*64+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_12: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+280*Arg_8*Arg_8*Arg_8+770*Arg_8*Arg_8+518*Arg_8+6*Arg_12+140 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_13: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+280*Arg_8*Arg_8*Arg_8+770*Arg_8*Arg_8+518*Arg_8+6*Arg_13+140 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_14: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+160*Arg_8 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_15: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+160*Arg_8 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_16: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+6*Arg_16 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_17: 160*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+6*Arg_17 {O(EXP)}
58: eval_sipmamergesort2_bb28_in->eval_sipmamergesort2_stop, Arg_18: 1 {O(1)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_3: 2*Arg_8 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_5: Arg_5 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_6: 4*Arg_8 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_8: Arg_8 {O(n)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+96*Arg_8+Arg_11 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_15: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+128*Arg_8+Arg_15 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
3: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_18: Arg_18 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_3: 0 {O(1)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_5: Arg_5 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_6: 4*Arg_8 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_8: Arg_8 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+96*Arg_8+Arg_11 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_14: 4*Arg_8 {O(n)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_15: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+128*Arg_8+Arg_15 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
4: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_18: Arg_18 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_3: 0 {O(1)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_5: Arg_5 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_6: 4*Arg_8 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_8: Arg_8 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_10: 4*Arg_8 {O(n)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+96*Arg_8+Arg_11 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_14: 0 {O(1)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_15: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+128*Arg_8+Arg_15 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
6: eval_sipmamergesort2_bb2_in->eval_sipmamergesort2_bb3_in, Arg_18: Arg_18 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_3: 2*Arg_8 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_5: Arg_5 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_6: 8*Arg_8 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_8: Arg_8 {O(n)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
7: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb4_in, Arg_18: Arg_18 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_3: 2*Arg_8 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_5: Arg_5 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_6: 12*Arg_8 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_8: Arg_8 {O(n)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_11: 272*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+288*Arg_8+3*Arg_11 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
8: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_18: Arg_18 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_3: 2*Arg_8 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_5: Arg_5 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_6: 16*Arg_8 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_8: Arg_8 {O(n)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_11: 2^(Arg_8+1)*2^(Arg_8+2)*384+2^(Arg_8+1)*2^(Arg_8+2)*64+384*Arg_8+4*Arg_11 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+8*Arg_8 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+8*Arg_8 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
9: eval_sipmamergesort2_bb3_in->eval_sipmamergesort2_bb7_in, Arg_18: Arg_18 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_3: 2*Arg_8 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_5: Arg_5 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_6: 8*Arg_8 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_8: Arg_8 {O(n)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
10: eval_sipmamergesort2_bb4_in->eval_sipmamergesort2_8, Arg_18: Arg_18 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_3: 2*Arg_8 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_5: Arg_5 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_6: 8*Arg_8 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_8: Arg_8 {O(n)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
15: eval_sipmamergesort2_bb5_in->eval_sipmamergesort2_bb3_in, Arg_18: Arg_18 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_3: 2*Arg_8 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_5: Arg_5 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_6: 8*Arg_8 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_8: Arg_8 {O(n)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_11: 128*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+192*Arg_8+2*Arg_11 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*32+2^(Arg_8+1)*2^(Arg_8+2)*64+2*Arg_15+256*Arg_8 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
16: eval_sipmamergesort2_bb6_in->eval_sipmamergesort2_bb3_in, Arg_18: Arg_18 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_3: 2*Arg_8 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_5: Arg_5 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_6: 12*Arg_8 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_8: Arg_8 {O(n)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_11: 272*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+288*Arg_8+3*Arg_11 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
17: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb8_in, Arg_18: Arg_18 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_3: 2*Arg_8 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_5: Arg_5 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_6: 40*Arg_8 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_8: Arg_8 {O(n)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_11: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
18: eval_sipmamergesort2_bb7_in->eval_sipmamergesort2_bb9_in, Arg_18: Arg_18 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_3: 2*Arg_8 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_5: Arg_5 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_6: 12*Arg_8 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_8: Arg_8 {O(n)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_10: 2^(Arg_8+1)*2^(Arg_8+2)*4+4*Arg_8 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_11: 272*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*64+288*Arg_8+3*Arg_11 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+4*Arg_8 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
19: eval_sipmamergesort2_bb8_in->eval_sipmamergesort2_bb7_in, Arg_18: Arg_18 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_3: 2*Arg_8 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_5: Arg_5 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_6: 40*Arg_8 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_8: Arg_8 {O(n)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_10: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_11: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+12*Arg_8 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_14: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_15: 2*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+16*Arg_8 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
20: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb10_in, Arg_18: Arg_18 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_0: 2^(Arg_8+1)*2^(Arg_8+2)*3+3*Arg_0 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_1: 3*Arg_1+3*Arg_8 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_3: 2*Arg_8 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_5: Arg_5 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_6: 80*Arg_8 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_7: 144*Arg_8+3*Arg_7 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_8: Arg_8 {O(n)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_9: 2^(Arg_8+1)*2^(Arg_8+2) {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_10: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_11: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+24*Arg_8 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_12: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_12+60 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_13: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+120*Arg_8*Arg_8*Arg_8+330*Arg_8*Arg_8+222*Arg_8+3*Arg_13+60 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_14: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_15: 2^(Arg_8+1)*2^(Arg_8+2)*4+2^(Arg_8+1)*2^(Arg_8+2)*8+32*Arg_8 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_16: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_16 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_17: 16*2^(Arg_8+1)*2^(Arg_8+2)+2^(Arg_8+1)*2^(Arg_8+2)*36+2^(Arg_8+1)*2^(Arg_8+2)*72+2^(Arg_8+1)*2^(Arg_8+2)*8+3*Arg_17 {O(EXP)}
21: eval_sipmamergesort2_bb9_in->eval_sipmamergesort2_bb11_in, Arg_18: Arg_18 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_8: Arg_8 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_9: Arg_9 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_10: Arg_10 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_11: Arg_11 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_12: Arg_12 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_13: Arg_13 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_14: Arg_14 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_15: Arg_15 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_16: Arg_16 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_17: Arg_17 {O(n)}
0: eval_sipmamergesort2_start->eval_sipmamergesort2_bb0_in, Arg_18: Arg_18 {O(n)}