Initial Problem
Start: eval_subsetdump_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: eval_subsetdump_0, eval_subsetdump_1, eval_subsetdump_2, eval_subsetdump_3, eval_subsetdump_6, eval_subsetdump_7, eval_subsetdump_bb0_in, eval_subsetdump_bb10_in, eval_subsetdump_bb1_in, eval_subsetdump_bb2_in, eval_subsetdump_bb3_in, eval_subsetdump_bb4_in, eval_subsetdump_bb5_in, eval_subsetdump_bb6_in, eval_subsetdump_bb7_in, eval_subsetdump_bb8_in, eval_subsetdump_bb9_in, eval_subsetdump_start, eval_subsetdump_stop
Transitions:
6:eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
7:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:Arg_0<0
8:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:0<Arg_0
9:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_0<=0 && 0<=Arg_0
14:eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
17:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=0 && 0<=Arg_1
15:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<0
16:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_1
21:eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_7(Arg_0,Arg_1,nondef.2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
22:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:Arg_2<0
23:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:0<Arg_2
24:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_2<=0 && 0<=Arg_2
1:eval_subsetdump_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7)
29:eval_subsetdump_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
3:eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3
2:eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_6
4:eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
10:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<Arg_6
11:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_4
12:eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
18:eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7)
19:eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
25:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<Arg_4
26:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_4<=Arg_7
27:eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1)
28:eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_subsetdump_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
Preprocessing
Found invariant 0<=Arg_3 for location eval_subsetdump_bb1_in
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_bb3_in
Found invariant 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_bb8_in
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_2
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1 for location eval_subsetdump_bb5_in
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_6
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_bb6_in
Found invariant Arg_6<=Arg_3 && 0<=Arg_3 for location eval_subsetdump_stop
Found invariant 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 for location eval_subsetdump_1
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_3
Found invariant 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 for location eval_subsetdump_bb2_in
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_7
Found invariant 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 for location eval_subsetdump_0
Found invariant 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_bb4_in
Found invariant 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3 for location eval_subsetdump_bb9_in
Found invariant Arg_6<=Arg_3 && 0<=Arg_3 for location eval_subsetdump_bb10_in
Found invariant Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 for location eval_subsetdump_bb7_in
Problem after Preprocessing
Start: eval_subsetdump_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: eval_subsetdump_0, eval_subsetdump_1, eval_subsetdump_2, eval_subsetdump_3, eval_subsetdump_6, eval_subsetdump_7, eval_subsetdump_bb0_in, eval_subsetdump_bb10_in, eval_subsetdump_bb1_in, eval_subsetdump_bb2_in, eval_subsetdump_bb3_in, eval_subsetdump_bb4_in, eval_subsetdump_bb5_in, eval_subsetdump_bb6_in, eval_subsetdump_bb7_in, eval_subsetdump_bb8_in, eval_subsetdump_bb9_in, eval_subsetdump_start, eval_subsetdump_stop
Transitions:
6:eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
7:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
8:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
9:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
14:eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
17:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
15:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
16:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
21:eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_7(Arg_0,Arg_1,nondef.2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
22:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
23:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
24:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
1:eval_subsetdump_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5,Arg_6,Arg_7)
29:eval_subsetdump_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 0<=Arg_3
3:eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && Arg_6<=Arg_3
2:eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && Arg_3<Arg_6
4:eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
10:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
11:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
12:eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
18:eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
19:eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
25:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
26:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
27:eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1):|:1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
28:eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
0:eval_subsetdump_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 6:eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_1(nondef.0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_3 ]
eval_subsetdump_6 [Arg_6-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 7:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_3 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_3 ]
eval_subsetdump_6 [Arg_6-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 8:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 9:eval_subsetdump_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_3 ]
eval_subsetdump_6 [Arg_6-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5-1 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 14:eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_3(Arg_0,nondef.1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_4-1 ]
eval_subsetdump_7 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_4 ]
eval_subsetdump_2 [Arg_6-Arg_4 ]
eval_subsetdump_bb5_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb3_in [Arg_6-Arg_4 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4-1 ]
eval_subsetdump_6 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5-1 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 15:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4-1 ]
eval_subsetdump_6 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5-1 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 16:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4-1 ]
eval_subsetdump_6 [Arg_6-Arg_4-1 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5-1 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 17:eval_subsetdump_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_4 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_4 ]
eval_subsetdump_2 [Arg_6-Arg_4 ]
eval_subsetdump_bb5_in [Arg_6-Arg_4-1 ]
eval_subsetdump_bb3_in [Arg_6-Arg_4 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 21:eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_7(Arg_0,Arg_1,nondef.2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6+1-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_3 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_3 ]
eval_subsetdump_2 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6+1-Arg_3 ]
eval_subsetdump_6 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 22:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6+1-Arg_3 ]
eval_subsetdump_7 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_3 ]
eval_subsetdump_2 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6+1-Arg_3 ]
eval_subsetdump_6 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 23:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_3):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6+1-Arg_3 ]
eval_subsetdump_7 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_3 ]
eval_subsetdump_2 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6+1-Arg_3 ]
eval_subsetdump_6 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_3 ]
eval_subsetdump_bb7_in [Arg_6-Arg_3 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 24:eval_subsetdump_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6+1-Arg_3 ]
eval_subsetdump_7 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_3 ]
eval_subsetdump_2 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6+1-Arg_3 ]
eval_subsetdump_6 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 2:eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && Arg_3<Arg_6 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_3 ]
eval_subsetdump_6 [Arg_6-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 4:eval_subsetdump_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_3 ]
eval_subsetdump_2 [Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_3 ]
eval_subsetdump_6 [Arg_6-Arg_3 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 10:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_4 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_4 ]
eval_subsetdump_2 [Arg_6-Arg_4 ]
eval_subsetdump_bb5_in [Arg_6-Arg_4 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_4 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 11:eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6+1-Arg_3 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_3 ]
eval_subsetdump_2 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb5_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_3 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 12:eval_subsetdump_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 of depth 1:
new bound:
Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6+1-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_4 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6+1-Arg_3 ]
eval_subsetdump_0 [Arg_6+1-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6+1-Arg_4 ]
eval_subsetdump_2 [Arg_6-Arg_4 ]
eval_subsetdump_bb5_in [Arg_6-Arg_4 ]
eval_subsetdump_bb3_in [Arg_6+1-Arg_4 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6+1-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 18:eval_subsetdump_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1 of depth 1:
new bound:
Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [Arg_6-Arg_3 ]
eval_subsetdump_3 [Arg_6-Arg_4 ]
eval_subsetdump_7 [Arg_6-Arg_4 ]
eval_subsetdump_bb2_in [Arg_6-Arg_3 ]
eval_subsetdump_0 [Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [Arg_6-Arg_4 ]
eval_subsetdump_2 [Arg_6-Arg_4 ]
eval_subsetdump_bb5_in [Arg_6-Arg_4 ]
eval_subsetdump_bb3_in [Arg_6-Arg_4 ]
eval_subsetdump_bb6_in [Arg_6-Arg_4 ]
eval_subsetdump_6 [Arg_6-Arg_4 ]
eval_subsetdump_bb8_in [Arg_6-Arg_4 ]
eval_subsetdump_bb7_in [Arg_6-Arg_4 ]
eval_subsetdump_bb9_in [Arg_6-Arg_5 ]
eval_subsetdump_bb1_in [Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 19:eval_subsetdump_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 of depth 1:
new bound:
2*Arg_6 {O(n)}
MPRF:
eval_subsetdump_1 [2*Arg_6-Arg_3 ]
eval_subsetdump_3 [2*Arg_6-Arg_3 ]
eval_subsetdump_7 [2*Arg_6-Arg_3-1 ]
eval_subsetdump_bb2_in [2*Arg_6-Arg_3 ]
eval_subsetdump_0 [2*Arg_6-Arg_3 ]
eval_subsetdump_bb4_in [2*Arg_6-Arg_3 ]
eval_subsetdump_2 [2*Arg_6-Arg_3 ]
eval_subsetdump_bb5_in [2*Arg_6-Arg_3 ]
eval_subsetdump_bb3_in [2*Arg_6-Arg_3 ]
eval_subsetdump_bb6_in [2*Arg_6-Arg_3 ]
eval_subsetdump_6 [2*Arg_6-Arg_3-1 ]
eval_subsetdump_bb8_in [2*Arg_6-Arg_3-1 ]
eval_subsetdump_bb7_in [2*Arg_6-Arg_3-1 ]
eval_subsetdump_bb9_in [2*Arg_6-Arg_3-1 ]
eval_subsetdump_bb1_in [2*Arg_6-Arg_3 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 25:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4 of depth 1:
new bound:
2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
MPRF:
eval_subsetdump_1 [1 ]
eval_subsetdump_3 [1 ]
eval_subsetdump_6 [Arg_6+1 ]
eval_subsetdump_7 [Arg_6+1 ]
eval_subsetdump_bb2_in [1 ]
eval_subsetdump_0 [1 ]
eval_subsetdump_bb6_in [1 ]
eval_subsetdump_bb4_in [1 ]
eval_subsetdump_2 [1 ]
eval_subsetdump_bb5_in [1 ]
eval_subsetdump_bb3_in [1 ]
eval_subsetdump_bb8_in [Arg_4-Arg_7 ]
eval_subsetdump_bb7_in [Arg_4+1-Arg_7 ]
eval_subsetdump_bb9_in [1 ]
eval_subsetdump_bb1_in [1 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 26:eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7 of depth 1:
new bound:
4*Arg_6+1 {O(n)}
MPRF:
eval_subsetdump_1 [1 ]
eval_subsetdump_3 [1 ]
eval_subsetdump_6 [2 ]
eval_subsetdump_7 [2 ]
eval_subsetdump_bb2_in [1 ]
eval_subsetdump_0 [1 ]
eval_subsetdump_bb6_in [1 ]
eval_subsetdump_bb4_in [1 ]
eval_subsetdump_2 [1 ]
eval_subsetdump_bb5_in [1 ]
eval_subsetdump_bb3_in [1 ]
eval_subsetdump_bb8_in [2 ]
eval_subsetdump_bb7_in [2 ]
eval_subsetdump_bb9_in [1 ]
eval_subsetdump_bb1_in [1 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 27:eval_subsetdump_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1):|:1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3 of depth 1:
new bound:
2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
MPRF:
eval_subsetdump_1 [1 ]
eval_subsetdump_3 [1 ]
eval_subsetdump_6 [Arg_6+1 ]
eval_subsetdump_7 [Arg_6+1 ]
eval_subsetdump_bb2_in [1 ]
eval_subsetdump_0 [1 ]
eval_subsetdump_bb6_in [1 ]
eval_subsetdump_bb4_in [1 ]
eval_subsetdump_2 [1 ]
eval_subsetdump_bb5_in [1 ]
eval_subsetdump_bb3_in [1 ]
eval_subsetdump_bb8_in [Arg_4+1-Arg_7 ]
eval_subsetdump_bb7_in [Arg_4+1-Arg_7 ]
eval_subsetdump_bb9_in [1 ]
eval_subsetdump_bb1_in [1 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
MPRF for transition 28:eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3 of depth 1:
new bound:
Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
MPRF:
eval_subsetdump_0 [Arg_6+1 ]
eval_subsetdump_1 [Arg_6+1 ]
eval_subsetdump_3 [Arg_6 ]
eval_subsetdump_7 [Arg_6 ]
eval_subsetdump_bb2_in [0 ]
eval_subsetdump_bb4_in [Arg_6 ]
eval_subsetdump_2 [Arg_6 ]
eval_subsetdump_bb5_in [Arg_6 ]
eval_subsetdump_bb3_in [Arg_6 ]
eval_subsetdump_bb6_in [Arg_6 ]
eval_subsetdump_6 [Arg_6 ]
eval_subsetdump_bb8_in [1 ]
eval_subsetdump_bb7_in [1 ]
eval_subsetdump_bb9_in [1 ]
eval_subsetdump_bb1_in [0 ]
Show Graph
G
eval_subsetdump_0
eval_subsetdump_0
eval_subsetdump_1
eval_subsetdump_1
eval_subsetdump_0->eval_subsetdump_1
t₆
η (Arg_0) = nondef.0
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb3_in
eval_subsetdump_bb3_in
eval_subsetdump_1->eval_subsetdump_bb3_in
t₇
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<0
eval_subsetdump_1->eval_subsetdump_bb3_in
t₈
η (Arg_4) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && 0<Arg_0
eval_subsetdump_bb9_in
eval_subsetdump_bb9_in
eval_subsetdump_1->eval_subsetdump_bb9_in
t₉
η (Arg_5) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
eval_subsetdump_2
eval_subsetdump_2
eval_subsetdump_3
eval_subsetdump_3
eval_subsetdump_2->eval_subsetdump_3
t₁₄
η (Arg_1) = nondef.1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in
eval_subsetdump_bb5_in
eval_subsetdump_3->eval_subsetdump_bb5_in
t₁₇
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in
eval_subsetdump_bb6_in
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₅
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_1<0
eval_subsetdump_3->eval_subsetdump_bb6_in
t₁₆
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_1
eval_subsetdump_6
eval_subsetdump_6
eval_subsetdump_7
eval_subsetdump_7
eval_subsetdump_6->eval_subsetdump_7
t₂₁
η (Arg_2) = nondef.2
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb7_in
eval_subsetdump_bb7_in
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₂
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<0
eval_subsetdump_7->eval_subsetdump_bb7_in
t₂₃
η (Arg_7) = Arg_3
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && 0<Arg_2
eval_subsetdump_7->eval_subsetdump_bb9_in
t₂₄
η (Arg_5) = Arg_4
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
eval_subsetdump_bb0_in
eval_subsetdump_bb0_in
eval_subsetdump_bb1_in
eval_subsetdump_bb1_in
eval_subsetdump_bb0_in->eval_subsetdump_bb1_in
t₁
η (Arg_3) = 0
eval_subsetdump_bb10_in
eval_subsetdump_bb10_in
eval_subsetdump_stop
eval_subsetdump_stop
eval_subsetdump_bb10_in->eval_subsetdump_stop
t₂₉
τ = Arg_6<=Arg_3 && 0<=Arg_3
eval_subsetdump_bb1_in->eval_subsetdump_bb10_in
t₃
τ = 0<=Arg_3 && Arg_6<=Arg_3
eval_subsetdump_bb2_in
eval_subsetdump_bb2_in
eval_subsetdump_bb1_in->eval_subsetdump_bb2_in
t₂
τ = 0<=Arg_3 && Arg_3<Arg_6
eval_subsetdump_bb2_in->eval_subsetdump_0
t₄
τ = 1<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_3
eval_subsetdump_bb4_in
eval_subsetdump_bb4_in
eval_subsetdump_bb3_in->eval_subsetdump_bb4_in
t₁₀
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<Arg_6
eval_subsetdump_bb3_in->eval_subsetdump_bb6_in
t₁₁
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_6<=Arg_4
eval_subsetdump_bb4_in->eval_subsetdump_2
t₁₂
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb5_in->eval_subsetdump_bb3_in
t₁₈
η (Arg_4) = Arg_4+1
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 1<=Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 0<=Arg_1
eval_subsetdump_bb6_in->eval_subsetdump_6
t₁₉
τ = 1<=Arg_6 && 1<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 1<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb8_in
eval_subsetdump_bb8_in
eval_subsetdump_bb7_in->eval_subsetdump_bb8_in
t₂₅
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_7<Arg_4
eval_subsetdump_bb7_in->eval_subsetdump_bb9_in
t₂₆
η (Arg_5) = Arg_4
τ = Arg_7<=Arg_4 && 0<=Arg_7 && 0<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 0<=Arg_4 && 0<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 0<=Arg_3 && Arg_4<=Arg_7
eval_subsetdump_bb8_in->eval_subsetdump_bb7_in
t₂₇
η (Arg_7) = Arg_7+1
τ = 1+Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 0<=Arg_3
eval_subsetdump_bb9_in->eval_subsetdump_bb1_in
t₂₈
η (Arg_3) = Arg_5+1
τ = 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
eval_subsetdump_start
eval_subsetdump_start
eval_subsetdump_start->eval_subsetdump_bb0_in
t₀
knowledge_propagation leads to new time bound 6*Arg_6+2 {O(n)} for transition 28:eval_subsetdump_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_subsetdump_bb1_in(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 0<=Arg_3
All Bounds
Timebounds
Overall timebound:4*Arg_6*Arg_6+34*Arg_6+21 {O(n^2)}
6: eval_subsetdump_0->eval_subsetdump_1: Arg_6+1 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in: Arg_6+1 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in: Arg_6+1 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in: Arg_6 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3: Arg_6 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in: Arg_6 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in: Arg_6 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in: Arg_6 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7: Arg_6+1 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in: Arg_6+1 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in: Arg_6+1 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in: Arg_6+1 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in: 1 {O(1)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop: 1 {O(1)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in: Arg_6+1 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in: 1 {O(1)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0: Arg_6+1 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in: Arg_6+1 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in: Arg_6+1 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2: Arg_6+1 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in: Arg_6 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6: 2*Arg_6 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in: 2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in: 4*Arg_6+1 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in: 2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in: 6*Arg_6+2 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 4*Arg_6*Arg_6+34*Arg_6+21 {O(n^2)}
6: eval_subsetdump_0->eval_subsetdump_1: Arg_6+1 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in: Arg_6+1 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in: Arg_6+1 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in: Arg_6 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3: Arg_6 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in: Arg_6 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in: Arg_6 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in: Arg_6 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7: Arg_6+1 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in: Arg_6+1 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in: Arg_6+1 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in: Arg_6+1 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in: 1 {O(1)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop: 1 {O(1)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in: Arg_6+1 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in: 1 {O(1)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0: Arg_6+1 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in: Arg_6+1 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in: Arg_6+1 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2: Arg_6+1 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in: Arg_6 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6: 2*Arg_6 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in: 2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in: 4*Arg_6+1 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in: 2*Arg_6*Arg_6+2*Arg_6+1 {O(n^2)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in: 6*Arg_6+2 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in: 1 {O(1)}
Sizebounds
6: eval_subsetdump_0->eval_subsetdump_1, Arg_3: 7*Arg_6+2 {O(n)}
6: eval_subsetdump_0->eval_subsetdump_1, Arg_4: 28*Arg_6+Arg_4+8 {O(n)}
6: eval_subsetdump_0->eval_subsetdump_1, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
6: eval_subsetdump_0->eval_subsetdump_1, Arg_6: Arg_6 {O(n)}
6: eval_subsetdump_0->eval_subsetdump_1, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_3: 7*Arg_6+2 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_4: 7*Arg_6+2 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_6: Arg_6 {O(n)}
7: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_3: 7*Arg_6+2 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_4: 7*Arg_6+2 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_6: Arg_6 {O(n)}
8: eval_subsetdump_1->eval_subsetdump_bb3_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_0: 0 {O(1)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_3: 7*Arg_6+2 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_4: 28*Arg_6+Arg_4+8 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_5: 7*Arg_6+2 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_6: Arg_6 {O(n)}
9: eval_subsetdump_1->eval_subsetdump_bb9_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
14: eval_subsetdump_2->eval_subsetdump_3, Arg_3: 14*Arg_6+4 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3, Arg_4: 7*Arg_6+2 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3, Arg_6: Arg_6 {O(n)}
14: eval_subsetdump_2->eval_subsetdump_3, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_3: 14*Arg_6+4 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_4: 7*Arg_6+2 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_6: Arg_6 {O(n)}
15: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_3: 14*Arg_6+4 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_4: 7*Arg_6+2 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_6: Arg_6 {O(n)}
16: eval_subsetdump_3->eval_subsetdump_bb6_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_1: 0 {O(1)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_3: 14*Arg_6+4 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_4: 7*Arg_6+2 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_6: Arg_6 {O(n)}
17: eval_subsetdump_3->eval_subsetdump_bb5_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
21: eval_subsetdump_6->eval_subsetdump_7, Arg_3: 42*Arg_6+12 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7, Arg_4: 7*Arg_6+2 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7, Arg_5: 126*Arg_6+6*Arg_5+36 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7, Arg_6: Arg_6 {O(n)}
21: eval_subsetdump_6->eval_subsetdump_7, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_3: 42*Arg_6+12 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_4: 7*Arg_6+2 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_5: 126*Arg_6+6*Arg_5+36 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_6: Arg_6 {O(n)}
22: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_7: 42*Arg_6+12 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_3: 42*Arg_6+12 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_4: 7*Arg_6+2 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_5: 126*Arg_6+6*Arg_5+36 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_6: Arg_6 {O(n)}
23: eval_subsetdump_7->eval_subsetdump_bb7_in, Arg_7: 42*Arg_6+12 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_2: 0 {O(1)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_3: 42*Arg_6+12 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_4: 7*Arg_6+2 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_5: 7*Arg_6+2 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_6: Arg_6 {O(n)}
24: eval_subsetdump_7->eval_subsetdump_bb9_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_0: Arg_0 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_1: Arg_1 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_2: Arg_2 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_3: 0 {O(1)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_4: Arg_4 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_5: Arg_5 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_6: Arg_6 {O(n)}
1: eval_subsetdump_bb0_in->eval_subsetdump_bb1_in, Arg_7: Arg_7 {O(n)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop, Arg_3: 7*Arg_6+2 {O(n)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop, Arg_4: 2*Arg_4+28*Arg_6+8 {O(n)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop, Arg_6: 2*Arg_6 {O(n)}
29: eval_subsetdump_bb10_in->eval_subsetdump_stop, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+2*Arg_7+49 {O(n^2)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in, Arg_3: 7*Arg_6+2 {O(n)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in, Arg_4: 28*Arg_6+Arg_4+8 {O(n)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in, Arg_6: Arg_6 {O(n)}
2: eval_subsetdump_bb1_in->eval_subsetdump_bb2_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in, Arg_3: 7*Arg_6+2 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in, Arg_4: 2*Arg_4+28*Arg_6+8 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in, Arg_6: 2*Arg_6 {O(n)}
3: eval_subsetdump_bb1_in->eval_subsetdump_bb10_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+2*Arg_7+49 {O(n^2)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0, Arg_3: 7*Arg_6+2 {O(n)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0, Arg_4: 28*Arg_6+Arg_4+8 {O(n)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0, Arg_5: 21*Arg_6+Arg_5+6 {O(n)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0, Arg_6: Arg_6 {O(n)}
4: eval_subsetdump_bb2_in->eval_subsetdump_0, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in, Arg_3: 14*Arg_6+4 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in, Arg_4: 7*Arg_6+2 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in, Arg_6: Arg_6 {O(n)}
10: eval_subsetdump_bb3_in->eval_subsetdump_bb4_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_1: 0 {O(1)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_3: 14*Arg_6+4 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_4: 7*Arg_6+2 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_6: Arg_6 {O(n)}
11: eval_subsetdump_bb3_in->eval_subsetdump_bb6_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2, Arg_3: 14*Arg_6+4 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2, Arg_4: 7*Arg_6+2 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2, Arg_6: Arg_6 {O(n)}
12: eval_subsetdump_bb4_in->eval_subsetdump_2, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_1: 0 {O(1)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_3: 14*Arg_6+4 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_4: 7*Arg_6+2 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_5: 2*Arg_5+42*Arg_6+12 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_6: Arg_6 {O(n)}
18: eval_subsetdump_bb5_in->eval_subsetdump_bb3_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6, Arg_3: 42*Arg_6+12 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6, Arg_4: 7*Arg_6+2 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6, Arg_5: 126*Arg_6+6*Arg_5+36 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6, Arg_6: Arg_6 {O(n)}
19: eval_subsetdump_bb6_in->eval_subsetdump_6, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in, Arg_3: 84*Arg_6+24 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in, Arg_4: 7*Arg_6+2 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in, Arg_5: 12*Arg_5+252*Arg_6+72 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in, Arg_6: Arg_6 {O(n)}
25: eval_subsetdump_bb7_in->eval_subsetdump_bb8_in, Arg_7: 2*Arg_6*Arg_6+86*Arg_6+25 {O(n^2)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in, Arg_3: 168*Arg_6+48 {O(n)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in, Arg_4: 21*Arg_6+6 {O(n)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in, Arg_5: 7*Arg_6+2 {O(n)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in, Arg_6: Arg_6 {O(n)}
26: eval_subsetdump_bb7_in->eval_subsetdump_bb9_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+49 {O(n^2)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in, Arg_3: 84*Arg_6+24 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in, Arg_4: 7*Arg_6+2 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in, Arg_5: 12*Arg_5+252*Arg_6+72 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in, Arg_6: Arg_6 {O(n)}
27: eval_subsetdump_bb8_in->eval_subsetdump_bb7_in, Arg_7: 2*Arg_6*Arg_6+86*Arg_6+25 {O(n^2)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in, Arg_3: 7*Arg_6+2 {O(n)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in, Arg_4: 28*Arg_6+Arg_4+8 {O(n)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in, Arg_5: 21*Arg_6+6 {O(n)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in, Arg_6: Arg_6 {O(n)}
28: eval_subsetdump_bb9_in->eval_subsetdump_bb1_in, Arg_7: 2*Arg_6*Arg_6+170*Arg_6+Arg_7+49 {O(n^2)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_subsetdump_start->eval_subsetdump_bb0_in, Arg_7: Arg_7 {O(n)}