Initial Problem
Start: n_eval_foo_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: NoDet0
Locations: n_eval___VERIFIER_nondet_int_start___15, n_eval___VERIFIER_nondet_int_start___22, n_eval___VERIFIER_nondet_int_start___30, n_eval___VERIFIER_nondet_int_start___37, n_eval___VERIFIER_nondet_int_start___50, n_eval___VERIFIER_nondet_int_start___6, n_eval___VERIFIER_nondet_int_start___61, n_eval___VERIFIER_nondet_int_start___71, n_eval_foo_2___16, n_eval_foo_2___23, n_eval_foo_2___31, n_eval_foo_2___38, n_eval_foo_2___51, n_eval_foo_2___62, n_eval_foo_2___7, n_eval_foo_2___72, n_eval_foo_3___14, n_eval_foo_3___21, n_eval_foo_3___29, n_eval_foo_3___36, n_eval_foo_3___49, n_eval_foo_3___5, n_eval_foo_3___60, n_eval_foo_3___70, n_eval_foo__Pcritedge_in___13, n_eval_foo__Pcritedge_in___20, n_eval_foo__Pcritedge_in___28, n_eval_foo__Pcritedge_in___35, n_eval_foo__Pcritedge_in___4, n_eval_foo__Pcritedge_in___42, n_eval_foo__Pcritedge_in___48, n_eval_foo__Pcritedge_in___55, n_eval_foo__Pcritedge_in___59, n_eval_foo__Pcritedge_in___69, n_eval_foo__Pcritedge_in___78, n_eval_foo__Pcritedge_in___79, n_eval_foo_bb0_in___80, n_eval_foo_bb1_in___77, n_eval_foo_bb2_in___43, n_eval_foo_bb2_in___44, n_eval_foo_bb2_in___64, n_eval_foo_bb2_in___65, n_eval_foo_bb2_in___74, n_eval_foo_bb2_in___9, n_eval_foo_bb3_in___24, n_eval_foo_bb3_in___40, n_eval_foo_bb3_in___41, n_eval_foo_bb3_in___53, n_eval_foo_bb3_in___54, n_eval_foo_bb3_in___63, n_eval_foo_bb3_in___73, n_eval_foo_bb3_in___8, n_eval_foo_bb4_in___11, n_eval_foo_bb4_in___12, n_eval_foo_bb4_in___18, n_eval_foo_bb4_in___19, n_eval_foo_bb4_in___2, n_eval_foo_bb4_in___26, n_eval_foo_bb4_in___27, n_eval_foo_bb4_in___3, n_eval_foo_bb4_in___33, n_eval_foo_bb4_in___34, n_eval_foo_bb4_in___46, n_eval_foo_bb4_in___47, n_eval_foo_bb4_in___57, n_eval_foo_bb4_in___58, n_eval_foo_bb4_in___67, n_eval_foo_bb4_in___68, n_eval_foo_start, n_eval_foo_stop___1, n_eval_foo_stop___10, n_eval_foo_stop___17, n_eval_foo_stop___25, n_eval_foo_stop___32, n_eval_foo_stop___39, n_eval_foo_stop___45, n_eval_foo_stop___52, n_eval_foo_stop___56, n_eval_foo_stop___66, n_eval_foo_stop___75, n_eval_foo_stop___76
Transitions:
0:n_eval_foo_2___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1
1:n_eval_foo_2___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___14(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1
2:n_eval_foo_2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
3:n_eval_foo_2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___21(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
4:n_eval_foo_2___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1
5:n_eval_foo_2___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___29(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1
6:n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2
7:n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___36(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2
8:n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1
9:n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___49(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1
10:n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
11:n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___60(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
12:n_eval_foo_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
13:n_eval_foo_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___5(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
14:n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval___VERIFIER_nondet_int_start___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
15:n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_3___70(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
16:n_eval_foo_3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___13(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
17:n_eval_foo_3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
18:n_eval_foo_3___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
19:n_eval_foo_3___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___20(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
20:n_eval_foo_3___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
21:n_eval_foo_3___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
22:n_eval_foo_3___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___28(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<=0 && 0<=Arg_0
23:n_eval_foo_3___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1 && 0<Arg_0
24:n_eval_foo_3___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<0
25:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___35(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
26:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
27:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
28:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___48(0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
29:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
30:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
31:n_eval_foo_3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___4(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
32:n_eval_foo_3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
33:n_eval_foo_3___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
34:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___59(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
35:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
36:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
37:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___69(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
38:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
39:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb4_in___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
40:n_eval_foo__Pcritedge_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
41:n_eval_foo__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
42:n_eval_foo__Pcritedge_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<=0 && 0<=Arg_0
43:n_eval_foo__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
44:n_eval_foo__Pcritedge_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
45:n_eval_foo__Pcritedge_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
46:n_eval_foo__Pcritedge_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
47:n_eval_foo__Pcritedge_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
48:n_eval_foo__Pcritedge_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
49:n_eval_foo__Pcritedge_in___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
50:n_eval_foo__Pcritedge_in___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_2
51:n_eval_foo__Pcritedge_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_stop___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0
52:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_2
53:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0
54:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb1_in___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_2 && Arg_2<Arg_3
55:n_eval_foo_bb1_in___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___74(Arg_0,Arg_2+1,Arg_2,Arg_3,Arg_4):|:Arg_2<Arg_3 && 0<=Arg_2
56:n_eval_foo_bb2_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_2 && Arg_3<Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
57:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___42(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
58:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1
59:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2
60:n_eval_foo_bb2_in___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo__Pcritedge_in___55(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
61:n_eval_foo_bb2_in___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=0 && 0<=Arg_1 && Arg_2<Arg_1
62:n_eval_foo_bb2_in___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
63:n_eval_foo_bb2_in___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
64:n_eval_foo_bb2_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
65:n_eval_foo_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb3_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<Arg_1 && Arg_2<Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<Arg_1
66:n_eval_foo_bb3_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
67:n_eval_foo_bb3_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_2<Arg_1
68:n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_2 && Arg_1<=1+Arg_3
69:n_eval_foo_bb3_in___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_1<=0 && 0<=Arg_1
70:n_eval_foo_bb3_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && Arg_1<=0 && 0<=Arg_1
71:n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
72:n_eval_foo_bb3_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
73:n_eval_foo_bb3_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_2___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
74:n_eval_foo_bb4_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
75:n_eval_foo_bb4_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___9(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
76:n_eval_foo_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
77:n_eval_foo_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___9(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
78:n_eval_foo_bb4_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___43(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_3<0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
79:n_eval_foo_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___43(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
80:n_eval_foo_bb4_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___9(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_2<0 && Arg_3<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
81:n_eval_foo_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_2<Arg_1 && Arg_3<Arg_1
82:n_eval_foo_bb4_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_2<Arg_1 && Arg_1<=Arg_3
83:n_eval_foo_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_3<Arg_1
84:n_eval_foo_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_1<=Arg_3
85:n_eval_foo_bb4_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___9(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
86:n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
87:n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_3<Arg_1
88:n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
89:n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_3<Arg_1
90:n_eval_foo_bb4_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___43(Arg_0,0,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
91:n_eval_foo_bb4_in___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
92:n_eval_foo_bb4_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___43(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
93:n_eval_foo_bb4_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
94:n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
95:n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
96:n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
97:n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
98:n_eval_foo_bb4_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
99:n_eval_foo_bb4_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
100:n_eval_foo_bb4_in___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
101:n_eval_foo_bb4_in___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
102:n_eval_foo_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
n_eval___VERIFIER_nondet_int_start___15
n_eval___VERIFIER_nondet_int_start___15
n_eval___VERIFIER_nondet_int_start___22
n_eval___VERIFIER_nondet_int_start___22
n_eval___VERIFIER_nondet_int_start___30
n_eval___VERIFIER_nondet_int_start___30
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___6
n_eval___VERIFIER_nondet_int_start___6
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___16
n_eval_foo_2___16
n_eval_foo_2___16->n_eval___VERIFIER_nondet_int_start___15
t₀
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___14
n_eval_foo_3___14
n_eval_foo_2___16->n_eval_foo_3___14
t₁
η (Arg_0) = NoDet0
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___23
n_eval_foo_2___23
n_eval_foo_2___23->n_eval___VERIFIER_nondet_int_start___22
t₂
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___21
n_eval_foo_3___21
n_eval_foo_2___23->n_eval_foo_3___21
t₃
η (Arg_0) = NoDet0
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___31
n_eval_foo_2___31
n_eval_foo_2___31->n_eval___VERIFIER_nondet_int_start___30
t₄
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1
n_eval_foo_3___29
n_eval_foo_3___29
n_eval_foo_2___31->n_eval_foo_3___29
t₅
η (Arg_0) = NoDet0
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₆
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₇
η (Arg_0) = NoDet0
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₈
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₉
η (Arg_0) = NoDet0
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₁₀
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₁₁
η (Arg_0) = NoDet0
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___7
n_eval_foo_2___7
n_eval_foo_2___7->n_eval___VERIFIER_nondet_int_start___6
t₁₂
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___5
n_eval_foo_3___5
n_eval_foo_2___7->n_eval_foo_3___5
t₁₃
η (Arg_0) = NoDet0
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₁₄
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₁₅
η (Arg_0) = NoDet0
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___13
n_eval_foo__Pcritedge_in___13
n_eval_foo_3___14->n_eval_foo__Pcritedge_in___13
t₁₆
η (Arg_0) = 0
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___11
n_eval_foo_bb4_in___11
n_eval_foo_3___14->n_eval_foo_bb4_in___11
t₁₇
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___12
n_eval_foo_bb4_in___12
n_eval_foo_3___14->n_eval_foo_bb4_in___12
t₁₈
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___20
n_eval_foo__Pcritedge_in___20
n_eval_foo_3___21->n_eval_foo__Pcritedge_in___20
t₁₉
η (Arg_0) = 0
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___18
n_eval_foo_bb4_in___18
n_eval_foo_3___21->n_eval_foo_bb4_in___18
t₂₀
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___19
n_eval_foo_bb4_in___19
n_eval_foo_3___21->n_eval_foo_bb4_in___19
t₂₁
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___28
n_eval_foo__Pcritedge_in___28
n_eval_foo_3___29->n_eval_foo__Pcritedge_in___28
t₂₂
η (Arg_0) = 0
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___26
n_eval_foo_bb4_in___26
n_eval_foo_3___29->n_eval_foo_bb4_in___26
t₂₃
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___27
n_eval_foo_bb4_in___27
n_eval_foo_3___29->n_eval_foo_bb4_in___27
t₂₄
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₅
η (Arg_0) = 0
τ = Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₆
τ = Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₇
τ = Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₈
η (Arg_0) = 0
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₉
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₃₀
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___4
n_eval_foo__Pcritedge_in___4
n_eval_foo_3___5->n_eval_foo__Pcritedge_in___4
t₃₁
η (Arg_0) = 0
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___2
n_eval_foo_bb4_in___2
n_eval_foo_3___5->n_eval_foo_bb4_in___2
t₃₂
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___3
n_eval_foo_bb4_in___3
n_eval_foo_3___5->n_eval_foo_bb4_in___3
t₃₃
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₃₄
η (Arg_0) = 0
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₃₅
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₃₆
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₃₇
η (Arg_0) = 0
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₃₈
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₃₉
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___10
n_eval_foo_stop___10
n_eval_foo__Pcritedge_in___13->n_eval_foo_stop___10
t₄₀
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___17
n_eval_foo_stop___17
n_eval_foo__Pcritedge_in___20->n_eval_foo_stop___17
t₄₁
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___25
n_eval_foo_stop___25
n_eval_foo__Pcritedge_in___28->n_eval_foo_stop___25
t₄₂
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₄₃
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___1
n_eval_foo_stop___1
n_eval_foo__Pcritedge_in___4->n_eval_foo_stop___1
t₄₄
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₄₅
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₄₆
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₄₇
τ = Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₄₈
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₄₉
τ = Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₅₀
τ = Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₅₁
τ = Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₅₂
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₅₃
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₅₄
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₅₅
η (Arg_1) = Arg_2+1
τ = Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___43
n_eval_foo_bb2_in___43
n_eval_foo_bb3_in___24
n_eval_foo_bb3_in___24
n_eval_foo_bb2_in___43->n_eval_foo_bb3_in___24
t₅₆
τ = Arg_1<Arg_2 && Arg_3<Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₅₇
η (Arg_2) = Arg_1
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___40
n_eval_foo_bb3_in___40
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___40
t₅₈
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₅₉
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₆₀
η (Arg_2) = Arg_1
τ = Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___53
n_eval_foo_bb3_in___53
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___53
t₆₁
τ = Arg_1<=0 && 0<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₆₂
τ = Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₆₃
τ = Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₆₄
τ = Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb2_in___9
n_eval_foo_bb2_in___9
n_eval_foo_bb3_in___8
n_eval_foo_bb3_in___8
n_eval_foo_bb2_in___9->n_eval_foo_bb3_in___8
t₆₅
τ = Arg_3<Arg_1 && Arg_2<Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___24->n_eval_foo_2___23
t₆₆
τ = Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___40->n_eval_foo_2___31
t₆₇
τ = Arg_1<=1+Arg_3 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₆₈
τ = Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___53->n_eval_foo_2___16
t₆₉
τ = Arg_2<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₇₀
τ = 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₇₁
τ = Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₇₂
τ = Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___8->n_eval_foo_2___7
t₇₃
τ = Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb4_in___11->n_eval_foo_bb2_in___65
t₇₄
η (Arg_1) = Arg_1+1
τ = Arg_2<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___11->n_eval_foo_bb2_in___9
t₇₅
η (Arg_1) = 0
τ = Arg_2<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___12->n_eval_foo_bb2_in___65
t₇₆
η (Arg_1) = Arg_1+1
τ = Arg_0<0 && Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___12->n_eval_foo_bb2_in___9
t₇₇
η (Arg_1) = 0
τ = Arg_0<0 && Arg_2<0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___18->n_eval_foo_bb2_in___43
t₇₈
η (Arg_1) = 0
τ = Arg_3<0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___19->n_eval_foo_bb2_in___43
t₇₉
η (Arg_1) = 0
τ = Arg_0<0 && Arg_3<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___2->n_eval_foo_bb2_in___9
t₈₀
η (Arg_1) = 0
τ = Arg_2<0 && Arg_3<0 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___26->n_eval_foo_bb2_in___64
t₈₁
η (Arg_1) = 0
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_2<Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___26->n_eval_foo_bb2_in___65
t₈₂
η (Arg_1) = Arg_1+1
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_2<Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___27->n_eval_foo_bb2_in___64
t₈₃
η (Arg_1) = 0
τ = Arg_0<0 && Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___27->n_eval_foo_bb2_in___65
t₈₄
η (Arg_1) = Arg_1+1
τ = Arg_0<0 && Arg_1<=1+Arg_3 && Arg_2<Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___3->n_eval_foo_bb2_in___9
t₈₅
η (Arg_1) = 0
τ = Arg_0<0 && Arg_2<0 && Arg_3<0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₈₆
η (Arg_1) = Arg_1+1
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___64
t₈₇
η (Arg_1) = 0
τ = Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_3<Arg_1
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₈₈
η (Arg_1) = Arg_1+1
τ = Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___64
t₈₉
η (Arg_1) = 0
τ = Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_3<Arg_1
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___43
t₉₀
η (Arg_1) = 0
τ = 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₉₁
η (Arg_1) = Arg_1+1
τ = 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___43
t₉₂
η (Arg_1) = 0
τ = Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₉₃
η (Arg_1) = Arg_1+1
τ = Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₉₄
η (Arg_1) = 0
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₉₅
η (Arg_1) = Arg_1+1
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₉₆
η (Arg_1) = 0
τ = Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₉₇
η (Arg_1) = Arg_1+1
τ = Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___64
t₉₈
η (Arg_1) = 0
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₉₉
η (Arg_1) = Arg_1+1
τ = Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___64
t₁₀₀
η (Arg_1) = 0
τ = Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₁₀₁
η (Arg_1) = Arg_1+1
τ = Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₁₀₂
Preprocessing
Cut unsatisfiable transition 58: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___40
Cut unreachable locations [n_eval___VERIFIER_nondet_int_start___30; n_eval_foo_2___31; n_eval_foo_3___29; n_eval_foo__Pcritedge_in___28; n_eval_foo_bb3_in___40; n_eval_foo_bb4_in___26; n_eval_foo_bb4_in___27; n_eval_foo_stop___25] from the program graph
Eliminate variables {Arg_4} that do not contribute to the problem
Found invariant 1+Arg_2<=0 for location n_eval_foo_stop___76
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location n_eval_foo_bb2_in___65
Found invariant 1<=0 for location n_eval_foo_bb4_in___18
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 for location n_eval___VERIFIER_nondet_int_start___71
Found invariant Arg_3<=Arg_2 for location n_eval_foo__Pcritedge_in___78
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 for location n_eval_foo_bb1_in___77
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_foo_bb4_in___46
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo_bb3_in___54
Found invariant 1<=0 for location n_eval_foo_stop___17
Found invariant 1<=0 for location n_eval_foo_bb4_in___2
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_foo_bb4_in___33
Found invariant 1<=0 for location n_eval_foo__Pcritedge_in___13
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 for location n_eval_foo_bb2_in___74
Found invariant 1<=0 for location n_eval_foo_bb4_in___3
Found invariant 1<=0 for location n_eval_foo_3___5
Found invariant 1<=0 for location n_eval_foo_2___16
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo__Pcritedge_in___42
Found invariant 1<=0 for location n_eval_foo_bb2_in___9
Found invariant 1<=0 for location n_eval_foo_bb3_in___24
Found invariant Arg_3<=Arg_2 for location n_eval_foo_stop___75
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo__Pcritedge_in___69
Found invariant 1<=0 for location n_eval___VERIFIER_nondet_int_start___22
Found invariant 1<=0 for location n_eval_foo__Pcritedge_in___4
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo_bb2_in___64
Found invariant 1<=0 for location n_eval___VERIFIER_nondet_int_start___6
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo_2___38
Found invariant 1<=0 for location n_eval_foo_3___21
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo_stop___66
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo_bb2_in___44
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval___VERIFIER_nondet_int_start___50
Found invariant 1<=0 for location n_eval_foo_3___14
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_eval_foo_bb4_in___47
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location n_eval_foo_2___62
Found invariant 1<=0 for location n_eval_foo_stop___1
Found invariant 1<=0 for location n_eval_foo_stop___10
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo_stop___52
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location n_eval___VERIFIER_nondet_int_start___61
Found invariant 1<=0 for location n_eval_foo_bb4_in___19
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo_stop___45
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo_stop___56
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 for location n_eval_foo_3___70
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo__Pcritedge_in___35
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 for location n_eval_foo_bb3_in___73
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location n_eval_foo_bb3_in___63
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_eval_foo_bb4_in___68
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo_stop___32
Found invariant 1<=0 for location n_eval_foo_bb2_in___43
Found invariant 1<=0 for location n_eval_foo_bb4_in___12
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo_3___49
Found invariant 1<=0 for location n_eval_foo_2___23
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo__Pcritedge_in___55
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 for location n_eval_foo_2___51
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_eval_foo_bb4_in___58
Found invariant 1<=0 for location n_eval_foo_bb3_in___8
Found invariant 1+Arg_2<=0 for location n_eval_foo__Pcritedge_in___79
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 for location n_eval_foo_bb4_in___34
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo__Pcritedge_in___59
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 for location n_eval_foo_2___72
Found invariant 1<=0 for location n_eval_foo_bb4_in___11
Found invariant 1<=0 for location n_eval_foo__Pcritedge_in___20
Found invariant 1<=0 for location n_eval_foo_2___7
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo_3___36
Found invariant 1<=0 for location n_eval___VERIFIER_nondet_int_start___15
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval___VERIFIER_nondet_int_start___37
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location n_eval_foo_3___60
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_foo_bb4_in___67
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo_stop___39
Found invariant 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 for location n_eval_foo__Pcritedge_in___48
Found invariant 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location n_eval_foo_bb3_in___41
Found invariant 1<=0 for location n_eval_foo_bb3_in___53
Found invariant 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_foo_bb4_in___57
Cut unsatisfiable transition 209: n_eval_foo_2___16->n_eval___VERIFIER_nondet_int_start___15
Cut unsatisfiable transition 210: n_eval_foo_2___16->n_eval_foo_3___14
Cut unsatisfiable transition 211: n_eval_foo_2___23->n_eval___VERIFIER_nondet_int_start___22
Cut unsatisfiable transition 212: n_eval_foo_2___23->n_eval_foo_3___21
Cut unsatisfiable transition 219: n_eval_foo_2___7->n_eval___VERIFIER_nondet_int_start___6
Cut unsatisfiable transition 220: n_eval_foo_2___7->n_eval_foo_3___5
Cut unsatisfiable transition 223: n_eval_foo_3___14->n_eval_foo__Pcritedge_in___13
Cut unsatisfiable transition 224: n_eval_foo_3___14->n_eval_foo_bb4_in___11
Cut unsatisfiable transition 225: n_eval_foo_3___14->n_eval_foo_bb4_in___12
Cut unsatisfiable transition 226: n_eval_foo_3___21->n_eval_foo__Pcritedge_in___20
Cut unsatisfiable transition 227: n_eval_foo_3___21->n_eval_foo_bb4_in___18
Cut unsatisfiable transition 228: n_eval_foo_3___21->n_eval_foo_bb4_in___19
Cut unsatisfiable transition 235: n_eval_foo_3___5->n_eval_foo__Pcritedge_in___4
Cut unsatisfiable transition 236: n_eval_foo_3___5->n_eval_foo_bb4_in___2
Cut unsatisfiable transition 237: n_eval_foo_3___5->n_eval_foo_bb4_in___3
Cut unsatisfiable transition 244: n_eval_foo__Pcritedge_in___13->n_eval_foo_stop___10
Cut unsatisfiable transition 245: n_eval_foo__Pcritedge_in___20->n_eval_foo_stop___17
Cut unsatisfiable transition 247: n_eval_foo__Pcritedge_in___4->n_eval_foo_stop___1
Cut unsatisfiable transition 259: n_eval_foo_bb2_in___43->n_eval_foo_bb3_in___24
Cut unsatisfiable transition 263: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___53
Cut unsatisfiable transition 267: n_eval_foo_bb2_in___9->n_eval_foo_bb3_in___8
Cut unsatisfiable transition 268: n_eval_foo_bb3_in___24->n_eval_foo_2___23
Cut unsatisfiable transition 270: n_eval_foo_bb3_in___53->n_eval_foo_2___16
Cut unsatisfiable transition 274: n_eval_foo_bb3_in___8->n_eval_foo_2___7
Cut unsatisfiable transition 275: n_eval_foo_bb4_in___11->n_eval_foo_bb2_in___65
Cut unsatisfiable transition 276: n_eval_foo_bb4_in___11->n_eval_foo_bb2_in___9
Cut unsatisfiable transition 277: n_eval_foo_bb4_in___12->n_eval_foo_bb2_in___65
Cut unsatisfiable transition 278: n_eval_foo_bb4_in___12->n_eval_foo_bb2_in___9
Cut unsatisfiable transition 279: n_eval_foo_bb4_in___18->n_eval_foo_bb2_in___43
Cut unsatisfiable transition 280: n_eval_foo_bb4_in___19->n_eval_foo_bb2_in___43
Cut unsatisfiable transition 281: n_eval_foo_bb4_in___2->n_eval_foo_bb2_in___9
Cut unsatisfiable transition 282: n_eval_foo_bb4_in___3->n_eval_foo_bb2_in___9
Cut unsatisfiable transition 284: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___64
Cut unsatisfiable transition 286: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___64
Cut unsatisfiable transition 287: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___43
Cut unsatisfiable transition 289: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___43
Cut unsatisfiable transition 295: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___64
Cut unsatisfiable transition 297: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___64
Cut unreachable locations [n_eval___VERIFIER_nondet_int_start___15; n_eval___VERIFIER_nondet_int_start___22; n_eval___VERIFIER_nondet_int_start___6; n_eval_foo_2___16; n_eval_foo_2___23; n_eval_foo_2___7; n_eval_foo_3___14; n_eval_foo_3___21; n_eval_foo_3___5; n_eval_foo__Pcritedge_in___13; n_eval_foo__Pcritedge_in___20; n_eval_foo__Pcritedge_in___4; n_eval_foo_bb2_in___43; n_eval_foo_bb2_in___9; n_eval_foo_bb3_in___24; n_eval_foo_bb3_in___53; n_eval_foo_bb3_in___8; n_eval_foo_bb4_in___11; n_eval_foo_bb4_in___12; n_eval_foo_bb4_in___18; n_eval_foo_bb4_in___19; n_eval_foo_bb4_in___2; n_eval_foo_bb4_in___3; n_eval_foo_stop___1; n_eval_foo_stop___10; n_eval_foo_stop___17] from the program graph
Problem after Preprocessing
Start: n_eval_foo_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: NoDet0
Locations: n_eval___VERIFIER_nondet_int_start___37, n_eval___VERIFIER_nondet_int_start___50, n_eval___VERIFIER_nondet_int_start___61, n_eval___VERIFIER_nondet_int_start___71, n_eval_foo_2___38, n_eval_foo_2___51, n_eval_foo_2___62, n_eval_foo_2___72, n_eval_foo_3___36, n_eval_foo_3___49, n_eval_foo_3___60, n_eval_foo_3___70, n_eval_foo__Pcritedge_in___35, n_eval_foo__Pcritedge_in___42, n_eval_foo__Pcritedge_in___48, n_eval_foo__Pcritedge_in___55, n_eval_foo__Pcritedge_in___59, n_eval_foo__Pcritedge_in___69, n_eval_foo__Pcritedge_in___78, n_eval_foo__Pcritedge_in___79, n_eval_foo_bb0_in___80, n_eval_foo_bb1_in___77, n_eval_foo_bb2_in___44, n_eval_foo_bb2_in___64, n_eval_foo_bb2_in___65, n_eval_foo_bb2_in___74, n_eval_foo_bb3_in___41, n_eval_foo_bb3_in___54, n_eval_foo_bb3_in___63, n_eval_foo_bb3_in___73, n_eval_foo_bb4_in___33, n_eval_foo_bb4_in___34, n_eval_foo_bb4_in___46, n_eval_foo_bb4_in___47, n_eval_foo_bb4_in___57, n_eval_foo_bb4_in___58, n_eval_foo_bb4_in___67, n_eval_foo_bb4_in___68, n_eval_foo_start, n_eval_foo_stop___32, n_eval_foo_stop___39, n_eval_foo_stop___45, n_eval_foo_stop___52, n_eval_foo_stop___56, n_eval_foo_stop___66, n_eval_foo_stop___75, n_eval_foo_stop___76
Transitions:
213:n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval___VERIFIER_nondet_int_start___37(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
214:n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___36(NoDet0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
215:n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval___VERIFIER_nondet_int_start___50(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
216:n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___49(NoDet0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
217:n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval___VERIFIER_nondet_int_start___61(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
218:n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___60(NoDet0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
221:n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval___VERIFIER_nondet_int_start___71(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
222:n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___70(NoDet0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
229:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___35(0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
230:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
231:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
232:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___48(0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
233:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___46(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
234:n_eval_foo_3___49(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___47(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
238:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___59(0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
239:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
240:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
241:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___69(0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
242:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___67(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
243:n_eval_foo_3___70(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___68(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
246:n_eval_foo__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___32(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
248:n_eval_foo__Pcritedge_in___42(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___39(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
249:n_eval_foo__Pcritedge_in___48(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___45(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
250:n_eval_foo__Pcritedge_in___55(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___52(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
251:n_eval_foo__Pcritedge_in___59(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___56(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
252:n_eval_foo__Pcritedge_in___69(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___66(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
253:n_eval_foo__Pcritedge_in___78(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___75(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && Arg_3<=Arg_2
254:n_eval_foo__Pcritedge_in___79(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_stop___76(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_2<=0 && Arg_2<0
255:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___78(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2
256:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___79(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<0
257:n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb1_in___77(Arg_0,Arg_1,Arg_2,Arg_3):|:0<=Arg_2 && Arg_2<Arg_3
258:n_eval_foo_bb1_in___77(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___74(Arg_0,Arg_2+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
260:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___42(Arg_0,Arg_1,Arg_1,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
261:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
262:n_eval_foo_bb2_in___64(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo__Pcritedge_in___55(Arg_0,Arg_1,Arg_1,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
264:n_eval_foo_bb2_in___64(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___54(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
265:n_eval_foo_bb2_in___65(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
266:n_eval_foo_bb2_in___74(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___73(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
269:n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
271:n_eval_foo_bb3_in___54(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___51(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
272:n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
273:n_eval_foo_bb3_in___73(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___72(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
283:n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
285:n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
288:n_eval_foo_bb4_in___46(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
290:n_eval_foo_bb4_in___47(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
291:n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
292:n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
293:n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___64(Arg_0,0,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
294:n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
296:n_eval_foo_bb4_in___67(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
298:n_eval_foo_bb4_in___68(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
299:n_eval_foo_start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb0_in___80(Arg_0,Arg_1,Arg_2,Arg_3)
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 218:n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___60(NoDet0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 of depth 1:
new bound:
2*Arg_2+2*Arg_3+10 {O(n)}
MPRF:
n_eval_foo_3___60 [Arg_3+2-Arg_1 ]
n_eval_foo_bb3_in___63 [Arg_3+3-Arg_1 ]
n_eval_foo_2___62 [Arg_3+3-Arg_1 ]
n_eval_foo_bb4_in___57 [Arg_3+2-Arg_1 ]
n_eval_foo_bb4_in___58 [Arg_3+2-Arg_1 ]
n_eval_foo_bb2_in___65 [Arg_3+3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 239:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0 of depth 1:
new bound:
2*Arg_2+2*Arg_3+10 {O(n)}
MPRF:
n_eval_foo_3___60 [Arg_3+3-Arg_1 ]
n_eval_foo_bb3_in___63 [Arg_3+3-Arg_1 ]
n_eval_foo_2___62 [Arg_3+3-Arg_1 ]
n_eval_foo_bb4_in___57 [Arg_3+2-Arg_1 ]
n_eval_foo_bb4_in___58 [Arg_3+2-Arg_1 ]
n_eval_foo_bb2_in___65 [Arg_3+3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 240:n_eval_foo_3___60(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0 of depth 1:
new bound:
2*Arg_2+2*Arg_3+10 {O(n)}
MPRF:
n_eval_foo_3___60 [Arg_3+3-Arg_1 ]
n_eval_foo_bb3_in___63 [Arg_3+3-Arg_1 ]
n_eval_foo_2___62 [Arg_3+3-Arg_1 ]
n_eval_foo_bb4_in___57 [Arg_3+2-Arg_1 ]
n_eval_foo_bb4_in___58 [Arg_3+2-Arg_1 ]
n_eval_foo_bb2_in___65 [Arg_3+3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 265:n_eval_foo_bb2_in___65(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1 of depth 1:
new bound:
2*Arg_2+2*Arg_3+8 {O(n)}
MPRF:
n_eval_foo_3___60 [Arg_3+1-Arg_1 ]
n_eval_foo_bb3_in___63 [Arg_3+1-Arg_1 ]
n_eval_foo_2___62 [Arg_3+1-Arg_1 ]
n_eval_foo_bb4_in___57 [Arg_3+1-Arg_1 ]
n_eval_foo_bb4_in___58 [Arg_3+1-Arg_1 ]
n_eval_foo_bb2_in___65 [Arg_3+2-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 272:n_eval_foo_bb3_in___63(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___62(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 of depth 1:
new bound:
2*Arg_2+4*Arg_3+6 {O(n)}
MPRF:
n_eval_foo_3___60 [2*Arg_3-Arg_1 ]
n_eval_foo_bb3_in___63 [2*Arg_3+1-Arg_1 ]
n_eval_foo_2___62 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___57 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___58 [2*Arg_3-Arg_1 ]
n_eval_foo_bb2_in___65 [2*Arg_3+1-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 292:n_eval_foo_bb4_in___57(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3 of depth 1:
new bound:
2*Arg_2+4*Arg_3+4 {O(n)}
MPRF:
n_eval_foo_3___60 [2*Arg_3-Arg_1 ]
n_eval_foo_bb3_in___63 [2*Arg_3-Arg_1 ]
n_eval_foo_2___62 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___57 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___58 [2*Arg_3-Arg_1 ]
n_eval_foo_bb2_in___65 [2*Arg_3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 294:n_eval_foo_bb4_in___58(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___65(Arg_0,Arg_1+1,Arg_2,Arg_3):|:1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3 of depth 1:
new bound:
2*Arg_2+4*Arg_3+4 {O(n)}
MPRF:
n_eval_foo_3___60 [2*Arg_3-Arg_1 ]
n_eval_foo_bb3_in___63 [2*Arg_3-Arg_1 ]
n_eval_foo_2___62 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___57 [2*Arg_3-Arg_1 ]
n_eval_foo_bb4_in___58 [2*Arg_3-Arg_1 ]
n_eval_foo_bb2_in___65 [2*Arg_3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 214:n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_3___36(NoDet0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 of depth 1:
new bound:
8*Arg_3+4 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_3-Arg_1 ]
n_eval_foo_bb3_in___41 [Arg_3+1-Arg_1 ]
n_eval_foo_2___38 [Arg_3+1-Arg_1 ]
n_eval_foo_bb4_in___33 [Arg_3-Arg_1 ]
n_eval_foo_bb4_in___34 [Arg_3-Arg_1 ]
n_eval_foo_bb2_in___44 [Arg_3+1-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 230:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0 of depth 1:
new bound:
8*Arg_2+2 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_2-Arg_1 ]
n_eval_foo_bb3_in___41 [Arg_2-Arg_1 ]
n_eval_foo_2___38 [Arg_2-Arg_1 ]
n_eval_foo_bb4_in___33 [Arg_2-Arg_1-1 ]
n_eval_foo_bb4_in___34 [Arg_2-Arg_1 ]
n_eval_foo_bb2_in___44 [Arg_2-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 231:n_eval_foo_3___36(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0 of depth 1:
new bound:
8*Arg_2+6 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_2+2-Arg_1 ]
n_eval_foo_bb3_in___41 [Arg_2+2-Arg_1 ]
n_eval_foo_2___38 [Arg_2+2-Arg_1 ]
n_eval_foo_bb4_in___33 [Arg_2+1-Arg_1 ]
n_eval_foo_bb4_in___34 [Arg_2+1-Arg_1 ]
n_eval_foo_bb2_in___44 [Arg_2+2-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 261:n_eval_foo_bb2_in___44(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3):|:2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 of depth 1:
new bound:
8*Arg_3+2 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_3-Arg_1-1 ]
n_eval_foo_bb3_in___41 [Arg_3-Arg_1-1 ]
n_eval_foo_2___38 [Arg_3-Arg_1-1 ]
n_eval_foo_bb4_in___33 [Arg_3-Arg_1-1 ]
n_eval_foo_bb4_in___34 [Arg_3-Arg_1-1 ]
n_eval_foo_bb2_in___44 [Arg_3-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 269:n_eval_foo_bb3_in___41(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_2___38(Arg_0,Arg_1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 of depth 1:
new bound:
8*Arg_3+4 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_3-Arg_1 ]
n_eval_foo_bb3_in___41 [Arg_3+1-Arg_1 ]
n_eval_foo_2___38 [Arg_3-Arg_1 ]
n_eval_foo_bb4_in___33 [Arg_3-Arg_1 ]
n_eval_foo_bb4_in___34 [Arg_3-Arg_1 ]
n_eval_foo_bb2_in___44 [Arg_3+1-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 283:n_eval_foo_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3 of depth 1:
new bound:
8*Arg_2+2 {O(n)}
MPRF:
n_eval_foo_3___36 [Arg_2-Arg_1 ]
n_eval_foo_bb3_in___41 [Arg_2-Arg_1 ]
n_eval_foo_2___38 [Arg_2-Arg_1 ]
n_eval_foo_bb4_in___33 [Arg_2-Arg_1 ]
n_eval_foo_bb4_in___34 [Arg_2-Arg_1 ]
n_eval_foo_bb2_in___44 [Arg_2-Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
MPRF for transition 285:n_eval_foo_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_foo_bb2_in___44(Arg_0,Arg_1+1,Arg_2,Arg_3):|:3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3 of depth 1:
new bound:
40*Arg_3+6 {O(n)}
MPRF:
n_eval_foo_3___36 [5*Arg_3-3*Arg_1 ]
n_eval_foo_bb3_in___41 [5*Arg_3-3*Arg_1 ]
n_eval_foo_2___38 [5*Arg_3-3*Arg_1 ]
n_eval_foo_bb4_in___33 [5*Arg_3-3*Arg_1 ]
n_eval_foo_bb4_in___34 [5*Arg_3-3*Arg_1 ]
n_eval_foo_bb2_in___44 [5*Arg_3-3*Arg_1 ]
Show Graph
G
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___37
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___50
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___61
n_eval___VERIFIER_nondet_int_start___71
n_eval___VERIFIER_nondet_int_start___71
n_eval_foo_2___38
n_eval_foo_2___38
n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37
t₂₁₃
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_3___36
n_eval_foo_3___36
n_eval_foo_2___38->n_eval_foo_3___36
t₂₁₄
η (Arg_0) = NoDet0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_2___51
n_eval_foo_2___51
n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50
t₂₁₅
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_3___49
n_eval_foo_3___49
n_eval_foo_2___51->n_eval_foo_3___49
t₂₁₆
η (Arg_0) = NoDet0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_2___62
n_eval_foo_2___62
n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61
t₂₁₇
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_3___60
n_eval_foo_3___60
n_eval_foo_2___62->n_eval_foo_3___60
t₂₁₈
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_2___72
n_eval_foo_2___72
n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71
t₂₂₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_3___70
n_eval_foo_3___70
n_eval_foo_2___72->n_eval_foo_3___70
t₂₂₂
η (Arg_0) = NoDet0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___35
n_eval_foo__Pcritedge_in___35
n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35
t₂₂₉
η (Arg_0) = 0
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___33
n_eval_foo_bb4_in___33
n_eval_foo_3___36->n_eval_foo_bb4_in___33
t₂₃₀
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && 0<Arg_0
n_eval_foo_bb4_in___34
n_eval_foo_bb4_in___34
n_eval_foo_3___36->n_eval_foo_bb4_in___34
t₂₃₁
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3 && Arg_0<0
n_eval_foo__Pcritedge_in___48
n_eval_foo__Pcritedge_in___48
n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48
t₂₃₂
η (Arg_0) = 0
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___46
n_eval_foo_bb4_in___46
n_eval_foo_3___49->n_eval_foo_bb4_in___46
t₂₃₃
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___47
n_eval_foo_bb4_in___47
n_eval_foo_3___49->n_eval_foo_bb4_in___47
t₂₃₄
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___59
n_eval_foo__Pcritedge_in___59
n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59
t₂₃₈
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___57
n_eval_foo_bb4_in___57
n_eval_foo_3___60->n_eval_foo_bb4_in___57
t₂₃₉
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___58
n_eval_foo_bb4_in___58
n_eval_foo_3___60->n_eval_foo_bb4_in___58
t₂₄₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo__Pcritedge_in___69
n_eval_foo__Pcritedge_in___69
n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69
t₂₄₁
η (Arg_0) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_bb4_in___67
n_eval_foo_bb4_in___67
n_eval_foo_3___70->n_eval_foo_bb4_in___67
t₂₄₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && 0<Arg_0
n_eval_foo_bb4_in___68
n_eval_foo_bb4_in___68
n_eval_foo_3___70->n_eval_foo_bb4_in___68
t₂₄₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_0<0
n_eval_foo_stop___32
n_eval_foo_stop___32
n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32
t₂₄₆
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 3+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___42
n_eval_foo__Pcritedge_in___42
n_eval_foo_stop___39
n_eval_foo_stop___39
n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39
t₂₄₈
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_stop___45
n_eval_foo_stop___45
n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45
t₂₄₉
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && Arg_1<=Arg_0 && Arg_0+Arg_1<=0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo__Pcritedge_in___55
n_eval_foo__Pcritedge_in___55
n_eval_foo_stop___52
n_eval_foo_stop___52
n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52
t₂₅₀
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_2<=0 && 0<=Arg_2
n_eval_foo_stop___56
n_eval_foo_stop___56
n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56
t₂₅₁
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 2<=Arg_1 && 2<=Arg_0+Arg_1 && 2+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_0<=0 && 0<=Arg_0
n_eval_foo_stop___66
n_eval_foo_stop___66
n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66
t₂₅₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=1+Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo__Pcritedge_in___78
n_eval_foo__Pcritedge_in___78
n_eval_foo_stop___75
n_eval_foo_stop___75
n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75
t₂₅₃
τ = Arg_3<=Arg_2 && Arg_3<=Arg_2
n_eval_foo__Pcritedge_in___79
n_eval_foo__Pcritedge_in___79
n_eval_foo_stop___76
n_eval_foo_stop___76
n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76
t₂₅₄
τ = 1+Arg_2<=0 && Arg_2<0
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78
t₂₅₅
τ = Arg_3<=Arg_2
n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79
t₂₅₆
τ = Arg_2<0
n_eval_foo_bb1_in___77
n_eval_foo_bb1_in___77
n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77
t₂₅₇
τ = 0<=Arg_2 && Arg_2<Arg_3
n_eval_foo_bb2_in___74
n_eval_foo_bb2_in___74
n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74
t₂₅₈
η (Arg_1) = Arg_2+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 0<=Arg_2 && Arg_2<Arg_3 && 0<=Arg_2
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44
n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42
t₂₆₀
η (Arg_2) = Arg_1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___41
n_eval_foo_bb3_in___41
n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41
t₂₆₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<Arg_2
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64
n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55
t₂₆₂
η (Arg_2) = Arg_1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_1
n_eval_foo_bb3_in___54
n_eval_foo_bb3_in___54
n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54
t₂₆₄
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=0 && 0<=Arg_1 && Arg_1<Arg_2
n_eval_foo_bb2_in___65
n_eval_foo_bb2_in___65
n_eval_foo_bb3_in___63
n_eval_foo_bb3_in___63
n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63
t₂₆₅
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___73
n_eval_foo_bb3_in___73
n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73
t₂₆₆
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_2<Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=1+Arg_2 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_1 && Arg_2<Arg_1
n_eval_foo_bb3_in___41->n_eval_foo_2___38
t₂₆₉
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 && Arg_1<=1+Arg_3
n_eval_foo_bb3_in___54->n_eval_foo_2___51
t₂₇₁
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=0 && 0<=Arg_1 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1
n_eval_foo_bb3_in___63->n_eval_foo_2___62
t₂₇₂
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
n_eval_foo_bb3_in___73->n_eval_foo_2___72
t₂₇₃
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_1 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1
n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44
t₂₈₃
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && Arg_1<Arg_2 && 0<Arg_0 && Arg_1<=Arg_3
n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44
t₂₈₅
η (Arg_1) = Arg_1+1
τ = 3<=Arg_3 && 5<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 4+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_1<=1+Arg_3 && Arg_0<0 && Arg_1<Arg_2 && Arg_1<=Arg_3
n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44
t₂₈₈
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 && 0<Arg_2 && 0<Arg_0 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44
t₂₉₀
η (Arg_1) = Arg_1+1
τ = 2<=Arg_3 && 3<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && 2+Arg_1<=Arg_3 && 3+Arg_0<=Arg_3 && 1<=Arg_2 && 1<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 2+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_0+Arg_1<=0 && 0<=Arg_1 && 1+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && 0<Arg_2 && Arg_1<=0 && 0<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64
t₂₉₁
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65
t₂₉₂
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2<=Arg_0+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_0+Arg_2 && 2<=Arg_1 && 3<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64
t₂₉₃
η (Arg_1) = 0
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_3<Arg_1
n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65
t₂₉₄
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 2+Arg_0<=Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1+Arg_0<=Arg_2 && 2<=Arg_1 && 3+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65
t₂₉₆
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_1<=1+Arg_3 && 0<Arg_0 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65
t₂₉₈
η (Arg_1) = Arg_1+1
τ = 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2+Arg_0<=Arg_1 && 1+Arg_0<=0 && Arg_0<0 && Arg_1<=1+Arg_3 && Arg_1<=Arg_2+1 && 1+Arg_2<=Arg_1 && Arg_1<=Arg_3
n_eval_foo_start
n_eval_foo_start
n_eval_foo_start->n_eval_foo_bb0_in___80
t₂₉₉
All Bounds
Timebounds
Overall timebound:38*Arg_2+84*Arg_3+117 {O(n)}
213: n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37: 1 {O(1)}
214: n_eval_foo_2___38->n_eval_foo_3___36: 8*Arg_3+4 {O(n)}
215: n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50: 1 {O(1)}
216: n_eval_foo_2___51->n_eval_foo_3___49: 1 {O(1)}
217: n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61: 1 {O(1)}
218: n_eval_foo_2___62->n_eval_foo_3___60: 2*Arg_2+2*Arg_3+10 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71: 1 {O(1)}
222: n_eval_foo_2___72->n_eval_foo_3___70: 1 {O(1)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35: 1 {O(1)}
230: n_eval_foo_3___36->n_eval_foo_bb4_in___33: 8*Arg_2+2 {O(n)}
231: n_eval_foo_3___36->n_eval_foo_bb4_in___34: 8*Arg_2+6 {O(n)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48: 1 {O(1)}
233: n_eval_foo_3___49->n_eval_foo_bb4_in___46: 1 {O(1)}
234: n_eval_foo_3___49->n_eval_foo_bb4_in___47: 1 {O(1)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59: 1 {O(1)}
239: n_eval_foo_3___60->n_eval_foo_bb4_in___57: 2*Arg_2+2*Arg_3+10 {O(n)}
240: n_eval_foo_3___60->n_eval_foo_bb4_in___58: 2*Arg_2+2*Arg_3+10 {O(n)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69: 1 {O(1)}
242: n_eval_foo_3___70->n_eval_foo_bb4_in___67: 1 {O(1)}
243: n_eval_foo_3___70->n_eval_foo_bb4_in___68: 1 {O(1)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32: 1 {O(1)}
248: n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39: 1 {O(1)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45: 1 {O(1)}
250: n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52: 1 {O(1)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56: 1 {O(1)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66: 1 {O(1)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75: 1 {O(1)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76: 1 {O(1)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78: 1 {O(1)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79: 1 {O(1)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77: 1 {O(1)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74: 1 {O(1)}
260: n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42: 1 {O(1)}
261: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41: 8*Arg_3+2 {O(n)}
262: n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55: 1 {O(1)}
264: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54: 1 {O(1)}
265: n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63: 2*Arg_2+2*Arg_3+8 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73: 1 {O(1)}
269: n_eval_foo_bb3_in___41->n_eval_foo_2___38: 8*Arg_3+4 {O(n)}
271: n_eval_foo_bb3_in___54->n_eval_foo_2___51: 1 {O(1)}
272: n_eval_foo_bb3_in___63->n_eval_foo_2___62: 2*Arg_2+4*Arg_3+6 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72: 1 {O(1)}
283: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44: 8*Arg_2+2 {O(n)}
285: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44: 40*Arg_3+6 {O(n)}
288: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44: 1 {O(1)}
290: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44: 1 {O(1)}
291: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64: 1 {O(1)}
292: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65: 2*Arg_2+4*Arg_3+4 {O(n)}
293: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64: 1 {O(1)}
294: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65: 2*Arg_2+4*Arg_3+4 {O(n)}
296: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65: 1 {O(1)}
298: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65: 1 {O(1)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80: 1 {O(1)}
Costbounds
Overall costbound: 38*Arg_2+84*Arg_3+117 {O(n)}
213: n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37: 1 {O(1)}
214: n_eval_foo_2___38->n_eval_foo_3___36: 8*Arg_3+4 {O(n)}
215: n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50: 1 {O(1)}
216: n_eval_foo_2___51->n_eval_foo_3___49: 1 {O(1)}
217: n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61: 1 {O(1)}
218: n_eval_foo_2___62->n_eval_foo_3___60: 2*Arg_2+2*Arg_3+10 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71: 1 {O(1)}
222: n_eval_foo_2___72->n_eval_foo_3___70: 1 {O(1)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35: 1 {O(1)}
230: n_eval_foo_3___36->n_eval_foo_bb4_in___33: 8*Arg_2+2 {O(n)}
231: n_eval_foo_3___36->n_eval_foo_bb4_in___34: 8*Arg_2+6 {O(n)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48: 1 {O(1)}
233: n_eval_foo_3___49->n_eval_foo_bb4_in___46: 1 {O(1)}
234: n_eval_foo_3___49->n_eval_foo_bb4_in___47: 1 {O(1)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59: 1 {O(1)}
239: n_eval_foo_3___60->n_eval_foo_bb4_in___57: 2*Arg_2+2*Arg_3+10 {O(n)}
240: n_eval_foo_3___60->n_eval_foo_bb4_in___58: 2*Arg_2+2*Arg_3+10 {O(n)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69: 1 {O(1)}
242: n_eval_foo_3___70->n_eval_foo_bb4_in___67: 1 {O(1)}
243: n_eval_foo_3___70->n_eval_foo_bb4_in___68: 1 {O(1)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32: 1 {O(1)}
248: n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39: 1 {O(1)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45: 1 {O(1)}
250: n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52: 1 {O(1)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56: 1 {O(1)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66: 1 {O(1)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75: 1 {O(1)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76: 1 {O(1)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78: 1 {O(1)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79: 1 {O(1)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77: 1 {O(1)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74: 1 {O(1)}
260: n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42: 1 {O(1)}
261: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41: 8*Arg_3+2 {O(n)}
262: n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55: 1 {O(1)}
264: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54: 1 {O(1)}
265: n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63: 2*Arg_2+2*Arg_3+8 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73: 1 {O(1)}
269: n_eval_foo_bb3_in___41->n_eval_foo_2___38: 8*Arg_3+4 {O(n)}
271: n_eval_foo_bb3_in___54->n_eval_foo_2___51: 1 {O(1)}
272: n_eval_foo_bb3_in___63->n_eval_foo_2___62: 2*Arg_2+4*Arg_3+6 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72: 1 {O(1)}
283: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44: 8*Arg_2+2 {O(n)}
285: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44: 40*Arg_3+6 {O(n)}
288: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44: 1 {O(1)}
290: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44: 1 {O(1)}
291: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64: 1 {O(1)}
292: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65: 2*Arg_2+4*Arg_3+4 {O(n)}
293: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64: 1 {O(1)}
294: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65: 2*Arg_2+4*Arg_3+4 {O(n)}
296: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65: 1 {O(1)}
298: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65: 1 {O(1)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80: 1 {O(1)}
Sizebounds
213: n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
213: n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37, Arg_2: 8*Arg_2 {O(n)}
213: n_eval_foo_2___38->n_eval___VERIFIER_nondet_int_start___37, Arg_3: 8*Arg_3 {O(n)}
214: n_eval_foo_2___38->n_eval_foo_3___36, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
214: n_eval_foo_2___38->n_eval_foo_3___36, Arg_2: 8*Arg_2 {O(n)}
214: n_eval_foo_2___38->n_eval_foo_3___36, Arg_3: 8*Arg_3 {O(n)}
215: n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50, Arg_1: 0 {O(1)}
215: n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50, Arg_2: 4*Arg_2 {O(n)}
215: n_eval_foo_2___51->n_eval___VERIFIER_nondet_int_start___50, Arg_3: 4*Arg_3 {O(n)}
216: n_eval_foo_2___51->n_eval_foo_3___49, Arg_1: 0 {O(1)}
216: n_eval_foo_2___51->n_eval_foo_3___49, Arg_2: 4*Arg_2 {O(n)}
216: n_eval_foo_2___51->n_eval_foo_3___49, Arg_3: 4*Arg_3 {O(n)}
217: n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
217: n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61, Arg_2: 2*Arg_2 {O(n)}
217: n_eval_foo_2___62->n_eval___VERIFIER_nondet_int_start___61, Arg_3: 2*Arg_3 {O(n)}
218: n_eval_foo_2___62->n_eval_foo_3___60, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
218: n_eval_foo_2___62->n_eval_foo_3___60, Arg_2: 2*Arg_2 {O(n)}
218: n_eval_foo_2___62->n_eval_foo_3___60, Arg_3: 2*Arg_3 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71, Arg_0: Arg_0 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71, Arg_1: Arg_2+1 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71, Arg_2: Arg_2 {O(n)}
221: n_eval_foo_2___72->n_eval___VERIFIER_nondet_int_start___71, Arg_3: Arg_3 {O(n)}
222: n_eval_foo_2___72->n_eval_foo_3___70, Arg_1: Arg_2+1 {O(n)}
222: n_eval_foo_2___72->n_eval_foo_3___70, Arg_2: Arg_2 {O(n)}
222: n_eval_foo_2___72->n_eval_foo_3___70, Arg_3: Arg_3 {O(n)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35, Arg_0: 0 {O(1)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35, Arg_2: 8*Arg_2 {O(n)}
229: n_eval_foo_3___36->n_eval_foo__Pcritedge_in___35, Arg_3: 8*Arg_3 {O(n)}
230: n_eval_foo_3___36->n_eval_foo_bb4_in___33, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
230: n_eval_foo_3___36->n_eval_foo_bb4_in___33, Arg_2: 8*Arg_2 {O(n)}
230: n_eval_foo_3___36->n_eval_foo_bb4_in___33, Arg_3: 8*Arg_3 {O(n)}
231: n_eval_foo_3___36->n_eval_foo_bb4_in___34, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
231: n_eval_foo_3___36->n_eval_foo_bb4_in___34, Arg_2: 8*Arg_2 {O(n)}
231: n_eval_foo_3___36->n_eval_foo_bb4_in___34, Arg_3: 8*Arg_3 {O(n)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48, Arg_0: 0 {O(1)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48, Arg_1: 0 {O(1)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48, Arg_2: 4*Arg_2 {O(n)}
232: n_eval_foo_3___49->n_eval_foo__Pcritedge_in___48, Arg_3: 4*Arg_3 {O(n)}
233: n_eval_foo_3___49->n_eval_foo_bb4_in___46, Arg_1: 0 {O(1)}
233: n_eval_foo_3___49->n_eval_foo_bb4_in___46, Arg_2: 4*Arg_2 {O(n)}
233: n_eval_foo_3___49->n_eval_foo_bb4_in___46, Arg_3: 4*Arg_3 {O(n)}
234: n_eval_foo_3___49->n_eval_foo_bb4_in___47, Arg_1: 0 {O(1)}
234: n_eval_foo_3___49->n_eval_foo_bb4_in___47, Arg_2: 4*Arg_2 {O(n)}
234: n_eval_foo_3___49->n_eval_foo_bb4_in___47, Arg_3: 4*Arg_3 {O(n)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59, Arg_0: 0 {O(1)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59, Arg_2: 2*Arg_2 {O(n)}
238: n_eval_foo_3___60->n_eval_foo__Pcritedge_in___59, Arg_3: 2*Arg_3 {O(n)}
239: n_eval_foo_3___60->n_eval_foo_bb4_in___57, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
239: n_eval_foo_3___60->n_eval_foo_bb4_in___57, Arg_2: 2*Arg_2 {O(n)}
239: n_eval_foo_3___60->n_eval_foo_bb4_in___57, Arg_3: 2*Arg_3 {O(n)}
240: n_eval_foo_3___60->n_eval_foo_bb4_in___58, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
240: n_eval_foo_3___60->n_eval_foo_bb4_in___58, Arg_2: 2*Arg_2 {O(n)}
240: n_eval_foo_3___60->n_eval_foo_bb4_in___58, Arg_3: 2*Arg_3 {O(n)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69, Arg_0: 0 {O(1)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69, Arg_1: Arg_2+1 {O(n)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69, Arg_2: Arg_2 {O(n)}
241: n_eval_foo_3___70->n_eval_foo__Pcritedge_in___69, Arg_3: Arg_3 {O(n)}
242: n_eval_foo_3___70->n_eval_foo_bb4_in___67, Arg_1: Arg_2+1 {O(n)}
242: n_eval_foo_3___70->n_eval_foo_bb4_in___67, Arg_2: Arg_2 {O(n)}
242: n_eval_foo_3___70->n_eval_foo_bb4_in___67, Arg_3: Arg_3 {O(n)}
243: n_eval_foo_3___70->n_eval_foo_bb4_in___68, Arg_1: Arg_2+1 {O(n)}
243: n_eval_foo_3___70->n_eval_foo_bb4_in___68, Arg_2: Arg_2 {O(n)}
243: n_eval_foo_3___70->n_eval_foo_bb4_in___68, Arg_3: Arg_3 {O(n)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32, Arg_0: 0 {O(1)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32, Arg_2: 8*Arg_2 {O(n)}
246: n_eval_foo__Pcritedge_in___35->n_eval_foo_stop___32, Arg_3: 8*Arg_3 {O(n)}
248: n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39, Arg_1: 16*Arg_2+80*Arg_3+22 {O(n)}
248: n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39, Arg_2: 16*Arg_2+80*Arg_3+22 {O(n)}
248: n_eval_foo__Pcritedge_in___42->n_eval_foo_stop___39, Arg_3: 24*Arg_3 {O(n)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45, Arg_0: 0 {O(1)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45, Arg_1: 0 {O(1)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45, Arg_2: 4*Arg_2 {O(n)}
249: n_eval_foo__Pcritedge_in___48->n_eval_foo_stop___45, Arg_3: 4*Arg_3 {O(n)}
250: n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52, Arg_1: 0 {O(1)}
250: n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52, Arg_2: 0 {O(1)}
250: n_eval_foo__Pcritedge_in___55->n_eval_foo_stop___52, Arg_3: 4*Arg_3 {O(n)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56, Arg_0: 0 {O(1)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56, Arg_2: 2*Arg_2 {O(n)}
251: n_eval_foo__Pcritedge_in___59->n_eval_foo_stop___56, Arg_3: 2*Arg_3 {O(n)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66, Arg_0: 0 {O(1)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66, Arg_1: Arg_2+1 {O(n)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66, Arg_2: Arg_2 {O(n)}
252: n_eval_foo__Pcritedge_in___69->n_eval_foo_stop___66, Arg_3: Arg_3 {O(n)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75, Arg_0: Arg_0 {O(n)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75, Arg_1: Arg_1 {O(n)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75, Arg_2: Arg_2 {O(n)}
253: n_eval_foo__Pcritedge_in___78->n_eval_foo_stop___75, Arg_3: Arg_3 {O(n)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76, Arg_0: Arg_0 {O(n)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76, Arg_1: Arg_1 {O(n)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76, Arg_2: Arg_2 {O(n)}
254: n_eval_foo__Pcritedge_in___79->n_eval_foo_stop___76, Arg_3: Arg_3 {O(n)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78, Arg_0: Arg_0 {O(n)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78, Arg_1: Arg_1 {O(n)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78, Arg_2: Arg_2 {O(n)}
255: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___78, Arg_3: Arg_3 {O(n)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79, Arg_0: Arg_0 {O(n)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79, Arg_1: Arg_1 {O(n)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79, Arg_2: Arg_2 {O(n)}
256: n_eval_foo_bb0_in___80->n_eval_foo__Pcritedge_in___79, Arg_3: Arg_3 {O(n)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77, Arg_0: Arg_0 {O(n)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77, Arg_1: Arg_1 {O(n)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77, Arg_2: Arg_2 {O(n)}
257: n_eval_foo_bb0_in___80->n_eval_foo_bb1_in___77, Arg_3: Arg_3 {O(n)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74, Arg_0: Arg_0 {O(n)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74, Arg_1: Arg_2+1 {O(n)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74, Arg_2: Arg_2 {O(n)}
258: n_eval_foo_bb1_in___77->n_eval_foo_bb2_in___74, Arg_3: Arg_3 {O(n)}
260: n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42, Arg_1: 16*Arg_2+80*Arg_3+22 {O(n)}
260: n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42, Arg_2: 16*Arg_2+80*Arg_3+22 {O(n)}
260: n_eval_foo_bb2_in___44->n_eval_foo__Pcritedge_in___42, Arg_3: 24*Arg_3 {O(n)}
261: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
261: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41, Arg_2: 8*Arg_2 {O(n)}
261: n_eval_foo_bb2_in___44->n_eval_foo_bb3_in___41, Arg_3: 8*Arg_3 {O(n)}
262: n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55, Arg_1: 0 {O(1)}
262: n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55, Arg_2: 0 {O(1)}
262: n_eval_foo_bb2_in___64->n_eval_foo__Pcritedge_in___55, Arg_3: 4*Arg_3 {O(n)}
264: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54, Arg_1: 0 {O(1)}
264: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54, Arg_2: 4*Arg_2 {O(n)}
264: n_eval_foo_bb2_in___64->n_eval_foo_bb3_in___54, Arg_3: 4*Arg_3 {O(n)}
265: n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
265: n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63, Arg_2: 2*Arg_2 {O(n)}
265: n_eval_foo_bb2_in___65->n_eval_foo_bb3_in___63, Arg_3: 2*Arg_3 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73, Arg_0: Arg_0 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73, Arg_1: Arg_2+1 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73, Arg_2: Arg_2 {O(n)}
266: n_eval_foo_bb2_in___74->n_eval_foo_bb3_in___73, Arg_3: Arg_3 {O(n)}
269: n_eval_foo_bb3_in___41->n_eval_foo_2___38, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
269: n_eval_foo_bb3_in___41->n_eval_foo_2___38, Arg_2: 8*Arg_2 {O(n)}
269: n_eval_foo_bb3_in___41->n_eval_foo_2___38, Arg_3: 8*Arg_3 {O(n)}
271: n_eval_foo_bb3_in___54->n_eval_foo_2___51, Arg_1: 0 {O(1)}
271: n_eval_foo_bb3_in___54->n_eval_foo_2___51, Arg_2: 4*Arg_2 {O(n)}
271: n_eval_foo_bb3_in___54->n_eval_foo_2___51, Arg_3: 4*Arg_3 {O(n)}
272: n_eval_foo_bb3_in___63->n_eval_foo_2___62, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
272: n_eval_foo_bb3_in___63->n_eval_foo_2___62, Arg_2: 2*Arg_2 {O(n)}
272: n_eval_foo_bb3_in___63->n_eval_foo_2___62, Arg_3: 2*Arg_3 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72, Arg_0: Arg_0 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72, Arg_1: Arg_2+1 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72, Arg_2: Arg_2 {O(n)}
273: n_eval_foo_bb3_in___73->n_eval_foo_2___72, Arg_3: Arg_3 {O(n)}
283: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
283: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44, Arg_2: 8*Arg_2 {O(n)}
283: n_eval_foo_bb4_in___33->n_eval_foo_bb2_in___44, Arg_3: 8*Arg_3 {O(n)}
285: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44, Arg_1: 40*Arg_3+8*Arg_2+10 {O(n)}
285: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44, Arg_2: 8*Arg_2 {O(n)}
285: n_eval_foo_bb4_in___34->n_eval_foo_bb2_in___44, Arg_3: 8*Arg_3 {O(n)}
288: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44, Arg_1: 1 {O(1)}
288: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44, Arg_2: 4*Arg_2 {O(n)}
288: n_eval_foo_bb4_in___46->n_eval_foo_bb2_in___44, Arg_3: 4*Arg_3 {O(n)}
290: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44, Arg_1: 1 {O(1)}
290: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44, Arg_2: 4*Arg_2 {O(n)}
290: n_eval_foo_bb4_in___47->n_eval_foo_bb2_in___44, Arg_3: 4*Arg_3 {O(n)}
291: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64, Arg_1: 0 {O(1)}
291: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64, Arg_2: 2*Arg_2 {O(n)}
291: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___64, Arg_3: 2*Arg_3 {O(n)}
292: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
292: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65, Arg_2: 2*Arg_2 {O(n)}
292: n_eval_foo_bb4_in___57->n_eval_foo_bb2_in___65, Arg_3: 2*Arg_3 {O(n)}
293: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64, Arg_1: 0 {O(1)}
293: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64, Arg_2: 2*Arg_2 {O(n)}
293: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___64, Arg_3: 2*Arg_3 {O(n)}
294: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65, Arg_1: 6*Arg_2+8*Arg_3+12 {O(n)}
294: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65, Arg_2: 2*Arg_2 {O(n)}
294: n_eval_foo_bb4_in___58->n_eval_foo_bb2_in___65, Arg_3: 2*Arg_3 {O(n)}
296: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65, Arg_1: Arg_2+2 {O(n)}
296: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65, Arg_2: Arg_2 {O(n)}
296: n_eval_foo_bb4_in___67->n_eval_foo_bb2_in___65, Arg_3: Arg_3 {O(n)}
298: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65, Arg_1: Arg_2+2 {O(n)}
298: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65, Arg_2: Arg_2 {O(n)}
298: n_eval_foo_bb4_in___68->n_eval_foo_bb2_in___65, Arg_3: Arg_3 {O(n)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80, Arg_0: Arg_0 {O(n)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80, Arg_1: Arg_1 {O(n)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80, Arg_2: Arg_2 {O(n)}
299: n_eval_foo_start->n_eval_foo_bb0_in___80, Arg_3: Arg_3 {O(n)}