Initial Problem

Start: n_eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_eval_perfect1_bb0_in___25, n_eval_perfect1_bb1_in___24, n_eval_perfect1_bb2_in___16, n_eval_perfect1_bb2_in___17, n_eval_perfect1_bb2_in___22, n_eval_perfect1_bb3_in___19, n_eval_perfect1_bb3_in___21, n_eval_perfect1_bb4_in___20, n_eval_perfect1_bb5_in___18, n_eval_perfect1_bb6_in___15, n_eval_perfect1_bb6_in___8, n_eval_perfect1_bb7_in___12, n_eval_perfect1_bb7_in___13, n_eval_perfect1_bb7_in___14, n_eval_perfect1_bb7_in___23, n_eval_perfect1_bb7_in___5, n_eval_perfect1_bb7_in___6, n_eval_perfect1_bb7_in___7, n_eval_perfect1_start, n_eval_perfect1_stop___1, n_eval_perfect1_stop___10, n_eval_perfect1_stop___11, n_eval_perfect1_stop___2, n_eval_perfect1_stop___3, n_eval_perfect1_stop___4, n_eval_perfect1_stop___9
Transitions:
0:n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb1_in___24(Arg_0,Arg_1,Arg_2,Arg_3):|:1<Arg_0
1:n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___23(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1
2:n_eval_perfect1_bb1_in___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___22(Arg_0,Arg_0-1,Arg_2,Arg_0):|:1<Arg_0
3:n_eval_perfect1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:Arg_2<=0 && 0<=Arg_2 && 0<Arg_1
4:n_eval_perfect1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0 && 0<=Arg_2 && Arg_1<=0
5:n_eval_perfect1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:0<Arg_1
6:n_eval_perfect1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb6_in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0
7:n_eval_perfect1_bb2_in___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___21(Arg_0,Arg_1,Arg_0,Arg_3):|:Arg_1<=Arg_0 && 0<Arg_1 && 0<Arg_0 && Arg_0<=1+Arg_1 && 1+Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 0<Arg_1
8:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_1 && Arg_1<=Arg_2
9:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_1 && Arg_2<Arg_1
10:n_eval_perfect1_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=Arg_2 && 0<Arg_2 && 0<Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2
11:n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2-Arg_1,Arg_3):|:Arg_1<=Arg_2 && 0<Arg_1
12:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___16(Arg_0,Arg_1-1,0,Arg_3-Arg_1):|:Arg_2<Arg_1 && 0<Arg_1 && Arg_2<=0 && 0<=Arg_2
13:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_2<Arg_1 && 0<Arg_1 && 0<Arg_2
14:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_2<Arg_1 && 0<Arg_1 && Arg_2<0
15:n_eval_perfect1_bb6_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,0):|:Arg_1<=0 && Arg_3<=0 && 0<=Arg_3
16:n_eval_perfect1_bb6_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && 0<Arg_3
17:n_eval_perfect1_bb6_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___14(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_3<0
18:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___5(Arg_0,Arg_1,Arg_2,0):|:Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3
19:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___6(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && 0<Arg_3
20:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<0
21:n_eval_perfect1_bb7_in___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___9(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_3<=0 && 0<=Arg_3
22:n_eval_perfect1_bb7_in___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___10(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && 0<Arg_3
23:n_eval_perfect1_bb7_in___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___11(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_3<0
24:n_eval_perfect1_bb7_in___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1
25:n_eval_perfect1_bb7_in___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
26:n_eval_perfect1_bb7_in___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___3(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && 0<Arg_3 && Arg_2<=0 && 0<=Arg_2
27:n_eval_perfect1_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___4(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=0 && Arg_3<0 && Arg_2<=0 && 0<=Arg_2
28:n_eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3)

Preprocessing

Found invariant 1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb6_in___8

Found invariant 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 3+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb7_in___7

Found invariant Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb4_in___20

Found invariant 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb7_in___6

Found invariant Arg_3<=1+Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb2_in___22

Found invariant 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_stop___3

Found invariant Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb3_in___19

Found invariant 2<=Arg_0 for location n_eval_perfect1_bb1_in___24

Found invariant 1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb2_in___16

Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb7_in___5

Found invariant Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb5_in___18

Found invariant Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_bb3_in___21

Found invariant 1<=0 for location n_eval_perfect1_bb6_in___15

Found invariant 1<=0 for location n_eval_perfect1_bb7_in___12

Found invariant Arg_0<=1 for location n_eval_perfect1_bb7_in___23

Found invariant 1<=0 for location n_eval_perfect1_bb7_in___14

Found invariant Arg_3<=Arg_0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 for location n_eval_perfect1_bb2_in___17

Found invariant Arg_0<=1 for location n_eval_perfect1_stop___1

Found invariant 1<=0 for location n_eval_perfect1_stop___10

Found invariant Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_stop___2

Found invariant 1<=0 for location n_eval_perfect1_stop___9

Found invariant 1<=0 for location n_eval_perfect1_stop___11

Found invariant 1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 3+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 for location n_eval_perfect1_stop___4

Found invariant 1<=0 for location n_eval_perfect1_bb7_in___13

Cut unsatisfiable transition 6: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb6_in___15

Cut unsatisfiable transition 15: n_eval_perfect1_bb6_in___15->n_eval_perfect1_bb7_in___12

Cut unsatisfiable transition 16: n_eval_perfect1_bb6_in___15->n_eval_perfect1_bb7_in___13

Cut unsatisfiable transition 17: n_eval_perfect1_bb6_in___15->n_eval_perfect1_bb7_in___14

Cut unsatisfiable transition 21: n_eval_perfect1_bb7_in___12->n_eval_perfect1_stop___9

Cut unsatisfiable transition 22: n_eval_perfect1_bb7_in___13->n_eval_perfect1_stop___10

Cut unsatisfiable transition 23: n_eval_perfect1_bb7_in___14->n_eval_perfect1_stop___11

Cut unreachable locations [n_eval_perfect1_bb6_in___15; n_eval_perfect1_bb7_in___12; n_eval_perfect1_bb7_in___13; n_eval_perfect1_bb7_in___14; n_eval_perfect1_stop___10; n_eval_perfect1_stop___11; n_eval_perfect1_stop___9] from the program graph

Problem after Preprocessing

Start: n_eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: n_eval_perfect1_bb0_in___25, n_eval_perfect1_bb1_in___24, n_eval_perfect1_bb2_in___16, n_eval_perfect1_bb2_in___17, n_eval_perfect1_bb2_in___22, n_eval_perfect1_bb3_in___19, n_eval_perfect1_bb3_in___21, n_eval_perfect1_bb4_in___20, n_eval_perfect1_bb5_in___18, n_eval_perfect1_bb6_in___8, n_eval_perfect1_bb7_in___23, n_eval_perfect1_bb7_in___5, n_eval_perfect1_bb7_in___6, n_eval_perfect1_bb7_in___7, n_eval_perfect1_start, n_eval_perfect1_stop___1, n_eval_perfect1_stop___2, n_eval_perfect1_stop___3, n_eval_perfect1_stop___4
Transitions:
0:n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb1_in___24(Arg_0,Arg_1,Arg_2,Arg_3):|:1<Arg_0
1:n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___23(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1
2:n_eval_perfect1_bb1_in___24(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___22(Arg_0,Arg_0-1,Arg_2,Arg_0):|:2<=Arg_0 && 1<Arg_0
3:n_eval_perfect1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 0<Arg_1
4:n_eval_perfect1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=0
5:n_eval_perfect1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 0<Arg_1
7:n_eval_perfect1_bb2_in___22(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___21(Arg_0,Arg_1,Arg_0,Arg_3):|:Arg_3<=1+Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && Arg_1<=Arg_0 && 0<Arg_1 && 0<Arg_0 && Arg_0<=1+Arg_1 && 1+Arg_1<=Arg_0 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 0<Arg_1
8:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<Arg_1 && Arg_1<=Arg_2
9:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<Arg_1 && Arg_2<Arg_1
10:n_eval_perfect1_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && Arg_3<=1+Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 && Arg_1<=Arg_2 && 0<Arg_2 && 0<Arg_1 && Arg_1<=Arg_2 && Arg_1<=Arg_2
11:n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2-Arg_1,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=Arg_2 && 0<Arg_1
12:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___16(Arg_0,Arg_1-1,0,Arg_3-Arg_1):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && Arg_2<=0 && 0<=Arg_2
13:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && 0<Arg_2
14:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && Arg_2<0
18:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___5(Arg_0,Arg_1,Arg_2,0):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<=0 && 0<=Arg_3
19:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___6(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && 0<Arg_3
20:n_eval_perfect1_bb6_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_2<=0 && 0<=Arg_2 && Arg_3<0
24:n_eval_perfect1_bb7_in___23(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___1(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_0<=1 && Arg_0<=1
25:n_eval_perfect1_bb7_in___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=0 && Arg_3<=Arg_2 && Arg_2+Arg_3<=0 && Arg_3<=Arg_1 && Arg_1+Arg_3<=0 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 2<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_3<=0 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
26:n_eval_perfect1_bb7_in___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___3(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 1<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && 0<Arg_3 && Arg_2<=0 && 0<=Arg_2
27:n_eval_perfect1_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_stop___4(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=0 && 1+Arg_3<=Arg_2 && 1+Arg_2+Arg_3<=0 && 1+Arg_3<=Arg_1 && 1+Arg_1+Arg_3<=0 && 3+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && Arg_1+Arg_2<=0 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 2<=Arg_0+Arg_2 && Arg_1<=0 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=0 && Arg_3<0 && Arg_2<=0 && 0<=Arg_2
28:n_eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb0_in___25(Arg_0,Arg_1,Arg_2,Arg_3)

MPRF for transition 3:n_eval_perfect1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:1+Arg_3<=Arg_0 && Arg_2<=0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 0<=Arg_1 && 2<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 0<Arg_1 of depth 1:

new bound:

Arg_0 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [Arg_1 ]
n_eval_perfect1_bb3_in___19 [Arg_1 ]
n_eval_perfect1_bb2_in___16 [Arg_1+1 ]
n_eval_perfect1_bb5_in___18 [Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_1 ]

MPRF for transition 5:n_eval_perfect1_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_0,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 2+Arg_1<=Arg_0 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 0<Arg_1 of depth 1:

new bound:

2*Arg_0 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [2*Arg_1 ]
n_eval_perfect1_bb3_in___19 [2*Arg_1 ]
n_eval_perfect1_bb2_in___16 [2*Arg_1 ]
n_eval_perfect1_bb5_in___18 [2*Arg_1-1 ]
n_eval_perfect1_bb2_in___17 [2*Arg_1+1 ]

MPRF for transition 9:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<Arg_1 && Arg_2<Arg_1 of depth 1:

new bound:

Arg_0+1 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [Arg_1+1 ]
n_eval_perfect1_bb3_in___19 [Arg_1+1 ]
n_eval_perfect1_bb2_in___16 [Arg_1+1 ]
n_eval_perfect1_bb5_in___18 [Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_1+1 ]

MPRF for transition 12:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___16(Arg_0,Arg_1-1,0,Arg_3-Arg_1):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:

new bound:

2*Arg_0 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [Arg_0+Arg_1 ]
n_eval_perfect1_bb3_in___19 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___16 [Arg_0+Arg_1 ]
n_eval_perfect1_bb5_in___18 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_0+Arg_1 ]

MPRF for transition 13:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && 0<Arg_2 of depth 1:

new bound:

2*Arg_0 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [Arg_0+Arg_1 ]
n_eval_perfect1_bb3_in___19 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___16 [Arg_0+Arg_1 ]
n_eval_perfect1_bb5_in___18 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_0+Arg_1 ]

MPRF for transition 14:n_eval_perfect1_bb5_in___18(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb2_in___17(Arg_0,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && 1+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_2<Arg_1 && 0<Arg_1 && Arg_2<0 of depth 1:

new bound:

2*Arg_0 {O(n)}

MPRF:

n_eval_perfect1_bb4_in___20 [Arg_0+Arg_1 ]
n_eval_perfect1_bb3_in___19 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___16 [Arg_0+Arg_1 ]
n_eval_perfect1_bb5_in___18 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_0+Arg_1 ]

MPRF for transition 8:n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && 0<Arg_1 && Arg_1<=Arg_2 of depth 1:

new bound:

6*Arg_0*Arg_0+2*Arg_0 {O(n^2)}

MPRF:

n_eval_perfect1_bb2_in___16 [Arg_0 ]
n_eval_perfect1_bb2_in___17 [Arg_0 ]
n_eval_perfect1_bb5_in___18 [Arg_2-Arg_1 ]
n_eval_perfect1_bb4_in___20 [Arg_2-Arg_1 ]
n_eval_perfect1_bb3_in___19 [Arg_2+1-Arg_1 ]

MPRF for transition 11:n_eval_perfect1_bb4_in___20(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_perfect1_bb3_in___19(Arg_0,Arg_1,Arg_2-Arg_1,Arg_3):|:Arg_3<=Arg_0 && Arg_2<=Arg_0 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && 2<=Arg_0 && Arg_1<=Arg_2 && 0<Arg_1 of depth 1:

new bound:

12*Arg_0*Arg_0+Arg_0 {O(n^2)}

MPRF:

n_eval_perfect1_bb2_in___16 [Arg_0+Arg_1 ]
n_eval_perfect1_bb2_in___17 [Arg_0+Arg_1 ]
n_eval_perfect1_bb5_in___18 [Arg_1+Arg_2-1 ]
n_eval_perfect1_bb4_in___20 [Arg_2 ]
n_eval_perfect1_bb3_in___19 [Arg_1+Arg_2-1 ]

All Bounds

Timebounds

Overall timebound:18*Arg_0*Arg_0+13*Arg_0+15 {O(n^2)}
0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24: 1 {O(1)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23: 1 {O(1)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22: 1 {O(1)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19: Arg_0 {O(n)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8: 1 {O(1)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19: 2*Arg_0 {O(n)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21: 1 {O(1)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20: 6*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18: Arg_0+1 {O(n)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20: 1 {O(1)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19: 12*Arg_0*Arg_0+Arg_0 {O(n^2)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16: 2*Arg_0 {O(n)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17: 2*Arg_0 {O(n)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17: 2*Arg_0 {O(n)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5: 1 {O(1)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6: 1 {O(1)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7: 1 {O(1)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1: 1 {O(1)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2: 1 {O(1)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3: 1 {O(1)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4: 1 {O(1)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25: 1 {O(1)}

Costbounds

Overall costbound: 18*Arg_0*Arg_0+13*Arg_0+15 {O(n^2)}
0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24: 1 {O(1)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23: 1 {O(1)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22: 1 {O(1)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19: Arg_0 {O(n)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8: 1 {O(1)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19: 2*Arg_0 {O(n)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21: 1 {O(1)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20: 6*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18: Arg_0+1 {O(n)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20: 1 {O(1)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19: 12*Arg_0*Arg_0+Arg_0 {O(n^2)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16: 2*Arg_0 {O(n)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17: 2*Arg_0 {O(n)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17: 2*Arg_0 {O(n)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5: 1 {O(1)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6: 1 {O(1)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7: 1 {O(1)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1: 1 {O(1)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2: 1 {O(1)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3: 1 {O(1)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4: 1 {O(1)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25: 1 {O(1)}

Sizebounds

0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24, Arg_0: Arg_0 {O(n)}
0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24, Arg_1: Arg_1 {O(n)}
0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24, Arg_2: Arg_2 {O(n)}
0: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb1_in___24, Arg_3: Arg_3 {O(n)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23, Arg_0: Arg_0 {O(n)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23, Arg_1: Arg_1 {O(n)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23, Arg_2: Arg_2 {O(n)}
1: n_eval_perfect1_bb0_in___25->n_eval_perfect1_bb7_in___23, Arg_3: Arg_3 {O(n)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22, Arg_0: Arg_0 {O(n)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22, Arg_1: Arg_0 {O(n)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22, Arg_2: Arg_2 {O(n)}
2: n_eval_perfect1_bb1_in___24->n_eval_perfect1_bb2_in___22, Arg_3: Arg_0 {O(n)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19, Arg_0: Arg_0 {O(n)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19, Arg_1: Arg_0 {O(n)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19, Arg_2: Arg_0 {O(n)}
3: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb3_in___19, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8, Arg_0: Arg_0 {O(n)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8, Arg_1: 0 {O(1)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8, Arg_2: 0 {O(1)}
4: n_eval_perfect1_bb2_in___16->n_eval_perfect1_bb6_in___8, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19, Arg_0: Arg_0 {O(n)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19, Arg_1: Arg_0 {O(n)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19, Arg_2: 2*Arg_0 {O(n)}
5: n_eval_perfect1_bb2_in___17->n_eval_perfect1_bb3_in___19, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21, Arg_0: Arg_0 {O(n)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21, Arg_1: Arg_0 {O(n)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21, Arg_2: Arg_0 {O(n)}
7: n_eval_perfect1_bb2_in___22->n_eval_perfect1_bb3_in___21, Arg_3: Arg_0 {O(n)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20, Arg_0: Arg_0 {O(n)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20, Arg_1: Arg_0 {O(n)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20, Arg_2: 4*Arg_0 {O(n)}
8: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb4_in___20, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18, Arg_0: Arg_0 {O(n)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18, Arg_1: Arg_0 {O(n)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18, Arg_2: 4*Arg_0 {O(n)}
9: n_eval_perfect1_bb3_in___19->n_eval_perfect1_bb5_in___18, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20, Arg_0: Arg_0 {O(n)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20, Arg_1: Arg_0 {O(n)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20, Arg_2: Arg_0 {O(n)}
10: n_eval_perfect1_bb3_in___21->n_eval_perfect1_bb4_in___20, Arg_3: Arg_0 {O(n)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19, Arg_0: Arg_0 {O(n)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19, Arg_1: Arg_0 {O(n)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19, Arg_2: 4*Arg_0 {O(n)}
11: n_eval_perfect1_bb4_in___20->n_eval_perfect1_bb3_in___19, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16, Arg_0: Arg_0 {O(n)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16, Arg_1: Arg_0 {O(n)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16, Arg_2: 0 {O(1)}
12: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___16, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_0: Arg_0 {O(n)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_1: Arg_0 {O(n)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_2: 4*Arg_0 {O(n)}
13: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_0: Arg_0 {O(n)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_1: Arg_0 {O(n)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_2: 4*Arg_0 {O(n)}
14: n_eval_perfect1_bb5_in___18->n_eval_perfect1_bb2_in___17, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5, Arg_0: Arg_0 {O(n)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5, Arg_1: 0 {O(1)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5, Arg_2: 0 {O(1)}
18: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___5, Arg_3: 0 {O(1)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6, Arg_0: Arg_0 {O(n)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6, Arg_1: 0 {O(1)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6, Arg_2: 0 {O(1)}
19: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___6, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7, Arg_0: Arg_0 {O(n)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7, Arg_1: 0 {O(1)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7, Arg_2: 0 {O(1)}
20: n_eval_perfect1_bb6_in___8->n_eval_perfect1_bb7_in___7, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1, Arg_0: Arg_0 {O(n)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1, Arg_1: Arg_1 {O(n)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1, Arg_2: Arg_2 {O(n)}
24: n_eval_perfect1_bb7_in___23->n_eval_perfect1_stop___1, Arg_3: Arg_3 {O(n)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2, Arg_0: Arg_0 {O(n)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2, Arg_1: 0 {O(1)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2, Arg_2: 0 {O(1)}
25: n_eval_perfect1_bb7_in___5->n_eval_perfect1_stop___2, Arg_3: 0 {O(1)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3, Arg_0: Arg_0 {O(n)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3, Arg_1: 0 {O(1)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3, Arg_2: 0 {O(1)}
26: n_eval_perfect1_bb7_in___6->n_eval_perfect1_stop___3, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4, Arg_0: Arg_0 {O(n)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4, Arg_1: 0 {O(1)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4, Arg_2: 0 {O(1)}
27: n_eval_perfect1_bb7_in___7->n_eval_perfect1_stop___4, Arg_3: 2*Arg_0*Arg_0+2*Arg_0 {O(n^2)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25, Arg_0: Arg_0 {O(n)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25, Arg_1: Arg_1 {O(n)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25, Arg_2: Arg_2 {O(n)}
28: n_eval_perfect1_start->n_eval_perfect1_bb0_in___25, Arg_3: Arg_3 {O(n)}