Initial Problem

Start: n_eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___11, n_eval_nondet_start___29, n_eval_nondet_start___5, n_eval_rank2_3___12, n_eval_rank2_3___30, n_eval_rank2_3___6, n_eval_rank2_4___10, n_eval_rank2_4___28, n_eval_rank2_4___4, n_eval_rank2__Pcritedge_in___14, n_eval_rank2__Pcritedge_in___20, n_eval_rank2__Pcritedge_in___27, n_eval_rank2__Pcritedge_in___3, n_eval_rank2__Pcritedge_in___9, n_eval_rank2_bb0_in___36, n_eval_rank2_bb1_in___18, n_eval_rank2_bb1_in___25, n_eval_rank2_bb1_in___35, n_eval_rank2_bb2_in___17, n_eval_rank2_bb2_in___24, n_eval_rank2_bb2_in___34, n_eval_rank2_bb3_in___15, n_eval_rank2_bb3_in___21, n_eval_rank2_bb3_in___32, n_eval_rank2_bb4_in___13, n_eval_rank2_bb4_in___19, n_eval_rank2_bb4_in___31, n_eval_rank2_bb5_in___2, n_eval_rank2_bb5_in___26, n_eval_rank2_bb5_in___8, n_eval_rank2_bb6_in___16, n_eval_rank2_bb6_in___23, n_eval_rank2_bb6_in___33, n_eval_rank2_start, n_eval_rank2_stop___1, n_eval_rank2_stop___22, n_eval_rank2_stop___7
Transitions:
0:n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
1:n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___10(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
2:n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
3:n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___28(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
4:n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5
5:n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___4(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5
6:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_1<=0
7:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && 0<Arg_1
8:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_1<=0
9:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && 0<Arg_1
10:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5 && Arg_1<=0
11:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5 && 0<Arg_1
12:n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:Arg_4<0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
13:n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:Arg_5<Arg_0
14:n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:Arg_1<=0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
15:n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:Arg_0<=Arg_5 && Arg_1<=0
16:n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:Arg_0<=Arg_5 && Arg_1<=0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
17:n_eval_rank2_bb0_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_2,Arg_2,Arg_5)
18:n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3
19:n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_3<2
20:n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3
21:n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_3<2
22:n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 2<=Arg_3
23:n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<2
24:n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___15(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
25:n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___32(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:Arg_0<=1+Arg_5 && 3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
26:n_eval_rank2_bb2_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___32(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:2<=Arg_4 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
27:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_5<Arg_0
28:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5
29:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<Arg_0
30:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5
31:n_eval_rank2_bb3_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5 && Arg_0<=Arg_5
32:n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
33:n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=Arg_5
34:n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
35:n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:Arg_0<=Arg_5 && 0<Arg_1
36:n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:0<=Arg_4 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
37:n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:Arg_0<=Arg_5 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
38:n_eval_rank2_bb6_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
39:n_eval_rank2_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<3 && 0<=Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
40:n_eval_rank2_bb6_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
41:n_eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb0_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

Preprocessing

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_nondet_start___29

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb5_in___26

Found invariant Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 for location n_eval_rank2_stop___1

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank2__Pcritedge_in___3

Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 3<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=2+Arg_4 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_1+Arg_3<=1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && Arg_0<=2 && 1<=Arg_0 for location n_eval_rank2_bb6_in___23

Found invariant Arg_5<=1+Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_2+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_1+Arg_3<=1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && Arg_0<=2 && 1<=Arg_0 for location n_eval_rank2_stop___22

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_4___10

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb4_in___19

Found invariant 3<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 7<=Arg_2+Arg_5 && 3+Arg_1<=Arg_5 && 6<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 3+Arg_1<=Arg_0 && 3<=Arg_0 for location n_eval_rank2_bb2_in___24

Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_bb3_in___32

Found invariant 1<=Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb4_in___13

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_bb4_in___31

Found invariant 1<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_nondet_start___5

Found invariant 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 1<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank2_bb1_in___25

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_3___12

Found invariant 2+Arg_5<=Arg_3 && 4+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 1+Arg_4<=Arg_5 && 3+Arg_4<=Arg_3 && 5+Arg_4<=Arg_2 && 2+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2__Pcritedge_in___14

Found invariant Arg_5<=1 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 2+Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && Arg_0+Arg_5<=3 && Arg_4<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 2+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=3 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=2 && 1<=Arg_0 for location n_eval_rank2_bb6_in___16

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_3___6

Found invariant Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && Arg_2<=Arg_3 for location n_eval_rank2_bb1_in___35

Found invariant Arg_5<=1 && Arg_5<=1+Arg_4 && Arg_4+Arg_5<=1 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 2+Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && Arg_0+Arg_5<=3 && Arg_4<=Arg_5 && Arg_4<=0 && Arg_4<=Arg_3 && Arg_3+Arg_4<=1 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=2 && 1<=Arg_0 for location n_eval_rank2_stop___7

Found invariant 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb3_in___21

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_nondet_start___11

Found invariant Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 for location n_eval_rank2_bb6_in___33

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank2__Pcritedge_in___9

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb5_in___2

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb5_in___8

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_4___28

Found invariant 1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_4___4

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 for location n_eval_rank2__Pcritedge_in___27

Found invariant 1+Arg_4<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb3_in___15

Found invariant 2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 for location n_eval_rank2_3___30

Found invariant 2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2__Pcritedge_in___20

Found invariant Arg_4<=Arg_3 && Arg_4<=Arg_2 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_2 for location n_eval_rank2_bb2_in___34

Found invariant Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb1_in___18

Found invariant Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 for location n_eval_rank2_bb2_in___17

Problem after Preprocessing

Start: n_eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___11, n_eval_nondet_start___29, n_eval_nondet_start___5, n_eval_rank2_3___12, n_eval_rank2_3___30, n_eval_rank2_3___6, n_eval_rank2_4___10, n_eval_rank2_4___28, n_eval_rank2_4___4, n_eval_rank2__Pcritedge_in___14, n_eval_rank2__Pcritedge_in___20, n_eval_rank2__Pcritedge_in___27, n_eval_rank2__Pcritedge_in___3, n_eval_rank2__Pcritedge_in___9, n_eval_rank2_bb0_in___36, n_eval_rank2_bb1_in___18, n_eval_rank2_bb1_in___25, n_eval_rank2_bb1_in___35, n_eval_rank2_bb2_in___17, n_eval_rank2_bb2_in___24, n_eval_rank2_bb2_in___34, n_eval_rank2_bb3_in___15, n_eval_rank2_bb3_in___21, n_eval_rank2_bb3_in___32, n_eval_rank2_bb4_in___13, n_eval_rank2_bb4_in___19, n_eval_rank2_bb4_in___31, n_eval_rank2_bb5_in___2, n_eval_rank2_bb5_in___26, n_eval_rank2_bb5_in___8, n_eval_rank2_bb6_in___16, n_eval_rank2_bb6_in___23, n_eval_rank2_bb6_in___33, n_eval_rank2_start, n_eval_rank2_stop___1, n_eval_rank2_stop___22, n_eval_rank2_stop___7
Transitions:
0:n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
1:n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___10(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
2:n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
3:n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___28(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
4:n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_nondet_start___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5
5:n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___4(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5
6:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_1<=0
7:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && 0<Arg_1
8:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_1<=0
9:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && 0<Arg_1
10:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0
11:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1
12:n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2+Arg_5<=Arg_3 && 4+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 1+Arg_4<=Arg_5 && 3+Arg_4<=Arg_3 && 5+Arg_4<=Arg_2 && 2+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_4<0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
13:n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<Arg_0
14:n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<=0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
15:n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0
16:n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
17:n_eval_rank2_bb0_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_2,Arg_2,Arg_5)
18:n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3
19:n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_3<2
20:n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 1<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3
21:n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 1<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_3<2
22:n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 2<=Arg_3
23:n_eval_rank2_bb1_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb6_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=Arg_3 && Arg_4<=Arg_2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && Arg_3<2
24:n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___15(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
25:n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___32(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:3<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 7<=Arg_2+Arg_5 && 3+Arg_1<=Arg_5 && 6<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 3+Arg_1<=Arg_0 && 3<=Arg_0 && Arg_0<=1+Arg_5 && 3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
26:n_eval_rank2_bb2_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___32(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:Arg_4<=Arg_3 && Arg_4<=Arg_2 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 4<=Arg_2+Arg_4 && Arg_2<=Arg_4 && Arg_3<=Arg_2 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_2 && 2<=Arg_4 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
27:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_4<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_5<Arg_0
28:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_4<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5
29:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<Arg_0
30:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5
31:n_eval_rank2_bb3_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5 && Arg_0<=Arg_5
32:n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4
33:n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5
34:n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
35:n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1
36:n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
37:n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0
38:n_eval_rank2_bb6_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=1 && Arg_4+Arg_5<=2 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 2+Arg_5<=Arg_2 && Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && Arg_0+Arg_5<=3 && Arg_4<=Arg_5 && Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && 2+Arg_4<=Arg_2 && Arg_4<=Arg_1 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=3 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=2 && 1<=Arg_0 && Arg_0<3 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
39:n_eval_rank2_bb6_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 1<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 3<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=2+Arg_4 && Arg_3<=1 && 2+Arg_3<=Arg_2 && Arg_1+Arg_3<=1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=3 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && Arg_0<=2 && 1<=Arg_0 && Arg_0<3 && 0<=Arg_4 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4
40:n_eval_rank2_bb6_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_4<=1 && Arg_4<=Arg_3 && Arg_3+Arg_4<=2 && Arg_4<=Arg_2 && Arg_2+Arg_4<=2 && Arg_3<=Arg_4 && Arg_2<=Arg_4 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_4<2 && Arg_3<=Arg_4 && Arg_4<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2
41:n_eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb0_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)

MPRF for transition 1:n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___10(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 of depth 1:

new bound:

3*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+2*Arg_4-2 ]
n_eval_rank2_4___28 [2*Arg_5-Arg_3 ]
n_eval_rank2_4___4 [Arg_0+2*Arg_5+1-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_5-Arg_0-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0+2*Arg_5+1-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___9 [Arg_4+Arg_5-1 ]
n_eval_rank2_bb1_in___18 [Arg_0+2*Arg_4-1 ]
n_eval_rank2_bb1_in___25 [Arg_3+Arg_4+Arg_5-Arg_0-1 ]
n_eval_rank2_bb2_in___17 [Arg_3+2*Arg_4 ]
n_eval_rank2_bb2_in___24 [Arg_3+2*Arg_4-2 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_5+1-Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3+2*Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [3*Arg_5+3-Arg_0-Arg_3 ]
n_eval_rank2_bb3_in___32 [Arg_3+2*Arg_4-2 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_4+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_3+2*Arg_5-2*Arg_0-1 ]
n_eval_rank2_bb4_in___19 [Arg_0+2*Arg_5+1-2*Arg_3 ]
n_eval_rank2_3___6 [Arg_0+2*Arg_5+1-2*Arg_3 ]
n_eval_rank2_bb4_in___31 [Arg_3+2*Arg_4-2 ]
n_eval_rank2_3___30 [Arg_3+2*Arg_5-2*Arg_0-2 ]
n_eval_rank2_bb5_in___2 [Arg_3+2*Arg_5-2*Arg_0-2 ]
n_eval_rank2_bb5_in___26 [2*Arg_5-Arg_3 ]
n_eval_rank2_bb5_in___8 [Arg_3+2*Arg_5-2*Arg_0-2 ]
n_eval_rank2_bb3_in___21 [2*Arg_5+2-Arg_3 ]

MPRF for transition 3:n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___28(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_5 ]
n_eval_rank2_4___28 [Arg_3-2 ]
n_eval_rank2_4___4 [Arg_3-2 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5-Arg_4-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0-1 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0 ]
n_eval_rank2_bb1_in___18 [Arg_5 ]
n_eval_rank2_bb1_in___25 [Arg_0-1 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2_bb2_in___24 [Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0+Arg_4 ]
n_eval_rank2_bb3_in___15 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___19 [Arg_3-2 ]
n_eval_rank2_3___6 [Arg_3-2 ]
n_eval_rank2_bb4_in___31 [Arg_3 ]
n_eval_rank2_3___30 [Arg_3-1 ]
n_eval_rank2_bb5_in___2 [Arg_3-2 ]
n_eval_rank2_bb5_in___26 [Arg_3-2 ]
n_eval_rank2_bb5_in___8 [Arg_5 ]
n_eval_rank2_bb3_in___21 [Arg_3-2 ]

MPRF for transition 5:n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_4___4(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 of depth 1:

new bound:

4*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0+Arg_2+2*Arg_4-1 ]
n_eval_rank2_4___28 [Arg_2+2*Arg_5-Arg_3-2 ]
n_eval_rank2_4___4 [4*Arg_0+Arg_2+2*Arg_5+2-5*Arg_3 ]
n_eval_rank2__Pcritedge_in___27 [Arg_2+2*Arg_5-Arg_0-3 ]
n_eval_rank2__Pcritedge_in___3 [Arg_2+2*Arg_5-Arg_0-3 ]
n_eval_rank2__Pcritedge_in___9 [Arg_2+Arg_3+2*Arg_4-4 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_2+2*Arg_4-3 ]
n_eval_rank2_bb1_in___25 [Arg_2+Arg_4+Arg_5-4 ]
n_eval_rank2_bb2_in___17 [Arg_0+Arg_2+2*Arg_4-3 ]
n_eval_rank2_bb2_in___24 [Arg_2+Arg_3+Arg_4+Arg_5-Arg_0-3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0+Arg_2+2*Arg_4-1 ]
n_eval_rank2_bb3_in___15 [Arg_2+Arg_3+2*Arg_4-2 ]
n_eval_rank2__Pcritedge_in___20 [Arg_2+Arg_5-2 ]
n_eval_rank2_bb3_in___32 [Arg_2+Arg_3+2*Arg_4-4 ]
n_eval_rank2_bb4_in___13 [Arg_2+Arg_3+2*Arg_4-2 ]
n_eval_rank2_3___12 [Arg_2+Arg_3+2*Arg_4-2 ]
n_eval_rank2_bb4_in___19 [Arg_2+2*Arg_5-Arg_3 ]
n_eval_rank2_3___6 [Arg_2+2*Arg_5-Arg_3 ]
n_eval_rank2_bb4_in___31 [Arg_2+Arg_3+2*Arg_5-2*Arg_0-4 ]
n_eval_rank2_3___30 [Arg_2+Arg_3+2*Arg_5-2*Arg_0-4 ]
n_eval_rank2_bb5_in___2 [4*Arg_0+Arg_2+2*Arg_5+2-5*Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_2+2*Arg_5-Arg_3-2 ]
n_eval_rank2_bb5_in___8 [Arg_0+Arg_2+2*Arg_4-1 ]
n_eval_rank2_bb3_in___21 [Arg_2+2*Arg_5-Arg_0-1 ]

MPRF for transition 6:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_1<=0 of depth 1:

new bound:

Arg_2+3 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0 ]
n_eval_rank2_4___28 [Arg_5-Arg_4-2 ]
n_eval_rank2_4___4 [Arg_0-2 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0-4 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5-Arg_4-4 ]
n_eval_rank2_bb1_in___18 [Arg_0-2 ]
n_eval_rank2_bb1_in___25 [4*Arg_5-3*Arg_0-4*Arg_4 ]
n_eval_rank2_bb2_in___17 [Arg_3-1 ]
n_eval_rank2_bb2_in___24 [Arg_3-3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0-2 ]
n_eval_rank2_bb3_in___15 [Arg_0 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0-2 ]
n_eval_rank2_bb3_in___32 [Arg_3-3 ]
n_eval_rank2_bb4_in___13 [Arg_0 ]
n_eval_rank2_3___12 [Arg_0 ]
n_eval_rank2_bb4_in___19 [Arg_0-2 ]
n_eval_rank2_3___6 [Arg_0-2 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-Arg_4-3 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-Arg_4-3 ]
n_eval_rank2_bb5_in___2 [Arg_0-2 ]
n_eval_rank2_bb5_in___26 [Arg_5-Arg_4-2 ]
n_eval_rank2_bb5_in___8 [Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_0-2 ]

MPRF for transition 7:n_eval_rank2_4___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0+Arg_2+1 ]
n_eval_rank2_4___28 [Arg_0+Arg_2 ]
n_eval_rank2_4___4 [Arg_0+Arg_2 ]
n_eval_rank2__Pcritedge_in___27 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0+Arg_2 ]
n_eval_rank2__Pcritedge_in___9 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2_bb1_in___18 [2*Arg_0+Arg_2+Arg_4-Arg_3-1 ]
n_eval_rank2_bb1_in___25 [Arg_0+Arg_2 ]
n_eval_rank2_bb2_in___17 [2*Arg_0+Arg_2+Arg_4-Arg_3-2 ]
n_eval_rank2_bb2_in___24 [Arg_2+Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_2+Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_2+Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0+Arg_2 ]
n_eval_rank2_bb3_in___32 [Arg_2+Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_2+Arg_5+1 ]
n_eval_rank2_3___12 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb4_in___19 [Arg_0+Arg_2 ]
n_eval_rank2_3___6 [Arg_0+Arg_2 ]
n_eval_rank2_bb4_in___31 [Arg_2+Arg_3 ]
n_eval_rank2_3___30 [Arg_0+Arg_2 ]
n_eval_rank2_bb5_in___2 [Arg_0+Arg_2 ]
n_eval_rank2_bb5_in___26 [Arg_0+Arg_2 ]
n_eval_rank2_bb5_in___8 [Arg_2+Arg_3-1 ]
n_eval_rank2_bb3_in___21 [Arg_0+Arg_2 ]

MPRF for transition 8:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_1<=0 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_2+Arg_5+1-Arg_4 ]
n_eval_rank2_4___28 [Arg_2+Arg_3 ]
n_eval_rank2_4___4 [Arg_0+Arg_2+1 ]
n_eval_rank2__Pcritedge_in___27 [Arg_2+Arg_3-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0+Arg_2 ]
n_eval_rank2__Pcritedge_in___9 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb1_in___25 [Arg_2+2*Arg_3+1-Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_2+Arg_3 ]
n_eval_rank2_bb2_in___24 [Arg_2+Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb3_in___15 [Arg_2+Arg_3 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb3_in___32 [Arg_2+Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_2+Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___12 [Arg_2+Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_0+Arg_2+1 ]
n_eval_rank2_3___6 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb4_in___31 [Arg_2+Arg_3 ]
n_eval_rank2_3___30 [Arg_2+Arg_3 ]
n_eval_rank2_bb5_in___2 [Arg_0+Arg_2+1 ]
n_eval_rank2_bb5_in___26 [Arg_2+Arg_3 ]
n_eval_rank2_bb5_in___8 [Arg_2+Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_2+Arg_3 ]

MPRF for transition 9:n_eval_rank2_4___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_3 ]
n_eval_rank2_4___28 [2*Arg_0+3 ]
n_eval_rank2_4___4 [2*Arg_0+2 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_0 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_5-2*Arg_4 ]
n_eval_rank2_bb1_in___18 [2*Arg_5 ]
n_eval_rank2_bb1_in___25 [2*Arg_3+2 ]
n_eval_rank2_bb2_in___17 [2*Arg_3+2*Arg_5+2-2*Arg_0 ]
n_eval_rank2_bb2_in___24 [2*Arg_3+2 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_3+2*Arg_5-2*Arg_0 ]
n_eval_rank2_bb3_in___15 [2*Arg_3+2*Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [2*Arg_3-4 ]
n_eval_rank2_bb3_in___32 [2*Arg_3+2 ]
n_eval_rank2_bb4_in___13 [2*Arg_3+2*Arg_4 ]
n_eval_rank2_3___12 [2*Arg_3 ]
n_eval_rank2_bb4_in___19 [2*Arg_3 ]
n_eval_rank2_3___6 [2*Arg_0+2 ]
n_eval_rank2_bb4_in___31 [2*Arg_3+2 ]
n_eval_rank2_3___30 [2*Arg_5+3-2*Arg_4 ]
n_eval_rank2_bb5_in___2 [2*Arg_0+2 ]
n_eval_rank2_bb5_in___26 [2*Arg_0+2 ]
n_eval_rank2_bb5_in___8 [2*Arg_3 ]
n_eval_rank2_bb3_in___21 [2*Arg_3 ]

MPRF for transition 10:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_5-Arg_4 ]
n_eval_rank2_4___28 [Arg_0 ]
n_eval_rank2_4___4 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0-2 ]
n_eval_rank2__Pcritedge_in___3 [Arg_3-3 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0-2 ]
n_eval_rank2_bb1_in___18 [Arg_0 ]
n_eval_rank2_bb1_in___25 [Arg_0-2 ]
n_eval_rank2_bb2_in___17 [Arg_3 ]
n_eval_rank2_bb2_in___24 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3-1 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___12 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_3-1 ]
n_eval_rank2_3___6 [Arg_3-1 ]
n_eval_rank2_bb4_in___31 [Arg_3-1 ]
n_eval_rank2_3___30 [Arg_3-1 ]
n_eval_rank2_bb5_in___2 [Arg_3-1 ]
n_eval_rank2_bb5_in___26 [Arg_0 ]
n_eval_rank2_bb5_in___8 [Arg_5-Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_0 ]

MPRF for transition 11:n_eval_rank2_4___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_4___28 [Arg_3+Arg_4 ]
n_eval_rank2_4___4 [Arg_5+1 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb1_in___25 [Arg_5 ]
n_eval_rank2_bb2_in___17 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___19 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___6 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_4 ]
n_eval_rank2_3___30 [Arg_3+Arg_4 ]
n_eval_rank2_bb5_in___2 [Arg_5 ]
n_eval_rank2_bb5_in___26 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_3+Arg_5-Arg_0 ]

MPRF for transition 12:n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2+Arg_5<=Arg_3 && 4+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 1+Arg_4<=Arg_5 && 3+Arg_4<=Arg_3 && 5+Arg_4<=Arg_2 && 2+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_4<0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3 ]
n_eval_rank2_4___28 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_4___4 [Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5-Arg_4 ]
n_eval_rank2_bb1_in___18 [Arg_5-Arg_4 ]
n_eval_rank2_bb1_in___25 [Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_3 ]
n_eval_rank2_bb2_in___24 [Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0+1 ]
n_eval_rank2_bb3_in___15 [Arg_0+1 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0-1 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_0+1 ]
n_eval_rank2_3___12 [Arg_3 ]
n_eval_rank2_bb4_in___19 [Arg_0 ]
n_eval_rank2_3___6 [Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb5_in___2 [2*Arg_0+1-Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_5-Arg_4 ]
n_eval_rank2_bb5_in___8 [Arg_3 ]
n_eval_rank2_bb3_in___21 [Arg_0 ]

MPRF for transition 13:n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2+Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<Arg_0 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_5+1-Arg_3 ]
n_eval_rank2_4___28 [Arg_3+2*Arg_4-1 ]
n_eval_rank2_4___4 [2*Arg_5+1-Arg_3 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_5+1-Arg_3 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_5+1-Arg_3 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb1_in___18 [2*Arg_5+1-Arg_0 ]
n_eval_rank2_bb1_in___25 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_3+2*Arg_4 ]
n_eval_rank2_bb2_in___24 [2*Arg_5-Arg_0 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3+2*Arg_5-2*Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3+2*Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3+2*Arg_4-1 ]
n_eval_rank2_bb4_in___13 [Arg_3+2*Arg_5-2*Arg_0 ]
n_eval_rank2_3___12 [Arg_3+2*Arg_5-2*Arg_0 ]
n_eval_rank2_bb4_in___19 [2*Arg_5-Arg_0 ]
n_eval_rank2_3___6 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+2*Arg_4-1 ]
n_eval_rank2_3___30 [Arg_3+2*Arg_4-1 ]
n_eval_rank2_bb5_in___2 [2*Arg_5+1-Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_3+2*Arg_5-2*Arg_0-1 ]
n_eval_rank2_bb5_in___8 [2*Arg_5+1-Arg_3 ]
n_eval_rank2_bb3_in___21 [2*Arg_5+2-Arg_0 ]

MPRF for transition 14:n_eval_rank2__Pcritedge_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2+Arg_1<=Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_1<=0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_5-Arg_4 ]
n_eval_rank2_4___28 [Arg_0+1 ]
n_eval_rank2_4___4 [Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5-Arg_4-1 ]
n_eval_rank2_bb1_in___18 [Arg_0 ]
n_eval_rank2_bb1_in___25 [Arg_0-1 ]
n_eval_rank2_bb2_in___17 [Arg_3 ]
n_eval_rank2_bb2_in___24 [Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_0 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_5-Arg_4 ]
n_eval_rank2_3___12 [Arg_5-Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_0 ]
n_eval_rank2_3___6 [Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3 ]
n_eval_rank2_3___30 [Arg_3 ]
n_eval_rank2_bb5_in___2 [Arg_0 ]
n_eval_rank2_bb5_in___26 [Arg_0 ]
n_eval_rank2_bb5_in___8 [Arg_5-Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_0 ]

MPRF for transition 15:n_eval_rank2__Pcritedge_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_2+Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_4___28 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2_4___4 [Arg_0+Arg_2 ]
n_eval_rank2__Pcritedge_in___27 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0+Arg_2 ]
n_eval_rank2__Pcritedge_in___9 [Arg_2+Arg_5 ]
n_eval_rank2_bb1_in___18 [Arg_2+Arg_5 ]
n_eval_rank2_bb1_in___25 [Arg_0+Arg_2-2 ]
n_eval_rank2_bb2_in___17 [Arg_2+Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2_bb2_in___24 [Arg_0+Arg_2-2 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0+Arg_2+Arg_4 ]
n_eval_rank2_bb3_in___15 [Arg_2+Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0+Arg_2 ]
n_eval_rank2_bb3_in___32 [Arg_2+Arg_3-1 ]
n_eval_rank2_bb4_in___13 [Arg_2+Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_2+Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___19 [Arg_0+Arg_2 ]
n_eval_rank2_3___6 [Arg_0+Arg_2 ]
n_eval_rank2_bb4_in___31 [Arg_2+Arg_3-1 ]
n_eval_rank2_3___30 [Arg_2+Arg_3-1 ]
n_eval_rank2_bb5_in___2 [Arg_0+Arg_2 ]
n_eval_rank2_bb5_in___26 [Arg_2+Arg_5-Arg_4 ]
n_eval_rank2_bb5_in___8 [Arg_2+Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_2+Arg_3-1 ]

MPRF for transition 16:n_eval_rank2__Pcritedge_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_0-1,Arg_5+1-Arg_0,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && Arg_0<=Arg_5 && Arg_1<=0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_4 ]
n_eval_rank2_4___28 [Arg_5-1 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0+Arg_4-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_3+Arg_4-1 ]
n_eval_rank2_bb1_in___18 [Arg_5 ]
n_eval_rank2_bb1_in___25 [Arg_5-1 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4-1 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3+Arg_4 ]
n_eval_rank2_bb3_in___15 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4-1 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [2*Arg_3+Arg_4-Arg_0-1 ]
n_eval_rank2_bb4_in___19 [Arg_5 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb5_in___2 [Arg_5 ]
n_eval_rank2_bb5_in___26 [Arg_5-1 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_5 ]

MPRF for transition 18:n_eval_rank2_bb1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0 ]
n_eval_rank2_4___28 [Arg_5-Arg_4 ]
n_eval_rank2_4___4 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___27 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0 ]
n_eval_rank2_bb1_in___18 [Arg_0 ]
n_eval_rank2_bb1_in___25 [3*Arg_3+1-2*Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_0-2 ]
n_eval_rank2_bb2_in___24 [3*Arg_3+1-2*Arg_0 ]
n_eval_rank2__Pcritedge_in___14 [Arg_5-Arg_4 ]
n_eval_rank2_bb3_in___15 [Arg_5-Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_3-1 ]
n_eval_rank2_bb3_in___32 [Arg_3-1 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0-Arg_4-1 ]
n_eval_rank2_3___12 [2*Arg_0+Arg_4-Arg_5 ]
n_eval_rank2_bb4_in___19 [Arg_3-1 ]
n_eval_rank2_3___6 [Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3-1 ]
n_eval_rank2_3___30 [Arg_5-Arg_4 ]
n_eval_rank2_bb5_in___2 [Arg_3-1 ]
n_eval_rank2_bb5_in___26 [Arg_5-Arg_4 ]
n_eval_rank2_bb5_in___8 [Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_3-1 ]

MPRF for transition 20:n_eval_rank2_bb1_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3<=Arg_2+Arg_5 && 1+Arg_1<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 1<=Arg_3+Arg_4 && 3<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2<=Arg_2 && 2+Arg_1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 1+Arg_1<=Arg_0 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=1+Arg_5 && 1+Arg_5<=Arg_0+Arg_4 && Arg_0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 2<=Arg_3 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_0-1 ]
n_eval_rank2_4___28 [2*Arg_5-2*Arg_4-1 ]
n_eval_rank2_4___4 [2*Arg_0-1 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_0-1 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_0-1 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0+Arg_3-2 ]
n_eval_rank2_bb1_in___18 [2*Arg_0-1 ]
n_eval_rank2_bb1_in___25 [2*Arg_0-1 ]
n_eval_rank2_bb2_in___17 [2*Arg_3+1 ]
n_eval_rank2_bb2_in___24 [2*Arg_0-3 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_3+1 ]
n_eval_rank2_bb3_in___15 [2*Arg_3+1 ]
n_eval_rank2__Pcritedge_in___20 [2*Arg_0-1 ]
n_eval_rank2_bb3_in___32 [2*Arg_3-1 ]
n_eval_rank2_bb4_in___13 [2*Arg_3+2*Arg_5+1-2*Arg_0-2*Arg_4 ]
n_eval_rank2_3___12 [4*Arg_3-2*Arg_0-1 ]
n_eval_rank2_bb4_in___19 [4*Arg_0+1-2*Arg_3 ]
n_eval_rank2_3___6 [4*Arg_0+1-2*Arg_3 ]
n_eval_rank2_bb4_in___31 [2*Arg_3+Arg_5-Arg_0-Arg_4-1 ]
n_eval_rank2_3___30 [Arg_3+2*Arg_5-Arg_0-2*Arg_4-2 ]
n_eval_rank2_bb5_in___2 [2*Arg_0-1 ]
n_eval_rank2_bb5_in___26 [2*Arg_5-2*Arg_4-1 ]
n_eval_rank2_bb5_in___8 [4*Arg_5+1-2*Arg_3-4*Arg_4 ]
n_eval_rank2_bb3_in___21 [4*Arg_0+1-2*Arg_3 ]

MPRF for transition 24:n_eval_rank2_bb2_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___15(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:Arg_5<=Arg_3 && 2+Arg_5<=Arg_2 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_5 && Arg_4<=Arg_3 && 2+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 4<=Arg_0+Arg_1 && 3<=Arg_0 && 3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_3+Arg_4-Arg_5-1 ]
n_eval_rank2_4___28 [Arg_5-Arg_4 ]
n_eval_rank2_4___4 [Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5-Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_0+Arg_4-Arg_5 ]
n_eval_rank2_bb1_in___18 [Arg_0 ]
n_eval_rank2_bb1_in___25 [Arg_3 ]
n_eval_rank2_bb2_in___17 [Arg_3+1 ]
n_eval_rank2_bb2_in___24 [Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_3 ]
n_eval_rank2_3___12 [Arg_0+Arg_3+Arg_4-Arg_5 ]
n_eval_rank2_bb4_in___19 [Arg_0 ]
n_eval_rank2_3___6 [Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb5_in___2 [2*Arg_0+1-Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_0 ]
n_eval_rank2_bb5_in___8 [2*Arg_3+Arg_4-Arg_5-1 ]
n_eval_rank2_bb3_in___21 [Arg_0 ]

MPRF for transition 25:n_eval_rank2_bb2_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___32(Arg_3-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3+Arg_4-1):|:3<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 7<=Arg_2+Arg_5 && 3+Arg_1<=Arg_5 && 6<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && 1+Arg_3<=Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 4<=Arg_2 && 4+Arg_1<=Arg_2 && 7<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && Arg_1<=0 && 3+Arg_1<=Arg_0 && 3<=Arg_0 && Arg_0<=1+Arg_5 && 3<=Arg_0 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0+Arg_4<=Arg_5+1 && 1+Arg_5<=Arg_0+Arg_4 of depth 1:

new bound:

Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0 ]
n_eval_rank2_4___28 [Arg_0-1 ]
n_eval_rank2_4___4 [Arg_0-1 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_0-1 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0-2 ]
n_eval_rank2_bb1_in___18 [Arg_0-1 ]
n_eval_rank2_bb1_in___25 [Arg_0-2 ]
n_eval_rank2_bb2_in___17 [Arg_3-1 ]
n_eval_rank2_bb2_in___24 [Arg_0-2 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3-1 ]
n_eval_rank2__Pcritedge_in___20 [Arg_3-2 ]
n_eval_rank2_bb3_in___32 [Arg_0-1 ]
n_eval_rank2_bb4_in___13 [2*Arg_5+1-Arg_3-2*Arg_4 ]
n_eval_rank2_3___12 [2*Arg_5-Arg_0-2*Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_0-1 ]
n_eval_rank2_3___6 [Arg_0-1 ]
n_eval_rank2_bb4_in___31 [Arg_0-1 ]
n_eval_rank2_3___30 [Arg_0-1 ]
n_eval_rank2_bb5_in___2 [Arg_0-1 ]
n_eval_rank2_bb5_in___26 [Arg_0-1 ]
n_eval_rank2_bb5_in___8 [Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_0-1 ]

MPRF for transition 27:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_4<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_5<Arg_0 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_0+1 ]
n_eval_rank2_4___28 [Arg_5+1-Arg_4 ]
n_eval_rank2_4___4 [Arg_3 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5-Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_3 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5-Arg_4 ]
n_eval_rank2_bb1_in___18 [Arg_0-1 ]
n_eval_rank2_bb1_in___25 [Arg_5-Arg_4 ]
n_eval_rank2_bb2_in___17 [Arg_3 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_5+1-Arg_0-Arg_4 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3-2 ]
n_eval_rank2_bb3_in___15 [Arg_3 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0-1 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___12 [Arg_5+1-Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_0+1 ]
n_eval_rank2_3___6 [Arg_0+1 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb5_in___2 [Arg_0+1 ]
n_eval_rank2_bb5_in___26 [Arg_0+1 ]
n_eval_rank2_bb5_in___8 [Arg_0+1 ]
n_eval_rank2_bb3_in___21 [Arg_0+1 ]

MPRF for transition 28:n_eval_rank2_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1+Arg_4<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_4-1 ]
n_eval_rank2_4___28 [Arg_5 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0+Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0+Arg_4 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb1_in___25 [Arg_5 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_4 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___14 [Arg_5 ]
n_eval_rank2_bb3_in___15 [Arg_5+1 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_5 ]
n_eval_rank2_3___12 [Arg_3+2*Arg_5-2*Arg_0-Arg_4-1 ]
n_eval_rank2_bb4_in___19 [Arg_5 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___2 [Arg_0+Arg_5+1-Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_5 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb3_in___21 [Arg_5 ]

MPRF for transition 29:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2__Pcritedge_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_5<Arg_0 of depth 1:

new bound:

2*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_3-2 ]
n_eval_rank2_4___28 [2*Arg_3+2 ]
n_eval_rank2_4___4 [2*Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_3-2 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_3-2 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_0 ]
n_eval_rank2_bb1_in___18 [2*Arg_0-4 ]
n_eval_rank2_bb1_in___25 [2*Arg_3+2 ]
n_eval_rank2_bb2_in___17 [2*Arg_3-2 ]
n_eval_rank2_bb2_in___24 [2*Arg_3+2 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_0 ]
n_eval_rank2_bb3_in___15 [2*Arg_0 ]
n_eval_rank2__Pcritedge_in___20 [2*Arg_0-4 ]
n_eval_rank2_bb3_in___32 [2*Arg_3+2 ]
n_eval_rank2_bb4_in___13 [2*Arg_3-2 ]
n_eval_rank2_3___12 [2*Arg_3-2 ]
n_eval_rank2_bb4_in___19 [2*Arg_0 ]
n_eval_rank2_3___6 [2*Arg_0 ]
n_eval_rank2_bb4_in___31 [2*Arg_3+2 ]
n_eval_rank2_3___30 [2*Arg_3+2 ]
n_eval_rank2_bb5_in___2 [2*Arg_3-2 ]
n_eval_rank2_bb5_in___26 [2*Arg_0+4 ]
n_eval_rank2_bb5_in___8 [2*Arg_5-2*Arg_4 ]
n_eval_rank2_bb3_in___21 [2*Arg_0 ]

MPRF for transition 30:n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:0<=Arg_5 && 0<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=2+Arg_5 && 2<=Arg_2+Arg_5 && 1<=Arg_1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_5-Arg_0 ]
n_eval_rank2_4___28 [2*Arg_5-Arg_0 ]
n_eval_rank2_4___4 [2*Arg_5-Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0+2*Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_5-Arg_0 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb1_in___18 [Arg_4+Arg_5+1 ]
n_eval_rank2_bb1_in___25 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_4+Arg_5+1 ]
n_eval_rank2_bb2_in___24 [Arg_3+2*Arg_4-1 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_5+2-Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_0+2*Arg_4+2 ]
n_eval_rank2__Pcritedge_in___20 [2*Arg_5+2-Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3+2*Arg_4-1 ]
n_eval_rank2_bb4_in___13 [2*Arg_5-Arg_0 ]
n_eval_rank2_3___12 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___19 [2*Arg_5-Arg_0 ]
n_eval_rank2_3___6 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+2*Arg_5-2*Arg_0-1 ]
n_eval_rank2_3___30 [Arg_3+2*Arg_5-2*Arg_0-1 ]
n_eval_rank2_bb5_in___2 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___26 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___8 [2*Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___21 [2*Arg_5+2-Arg_0 ]

MPRF for transition 31:n_eval_rank2_bb3_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && Arg_0<=Arg_5 && 1+Arg_0<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0<=Arg_5 && Arg_0<=Arg_5 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_4 ]
n_eval_rank2_4___28 [2*Arg_5+2-Arg_3-Arg_4 ]
n_eval_rank2_4___4 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_5+1-Arg_0-Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5+1 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0+Arg_4+1 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_4 ]
n_eval_rank2_bb1_in___25 [Arg_0+Arg_4 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_4 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4+1 ]
n_eval_rank2__Pcritedge_in___14 [Arg_5+1 ]
n_eval_rank2_bb3_in___15 [Arg_0+Arg_4+1 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5+1 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4+1 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___19 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___6 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___30 [2*Arg_5+1-Arg_0-Arg_4 ]
n_eval_rank2_bb5_in___2 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___26 [2*Arg_5+1-Arg_3-Arg_4 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_5+1 ]

MPRF for transition 32:n_eval_rank2_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 of depth 1:

new bound:

Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_5+1-Arg_4 ]
n_eval_rank2_4___28 [Arg_5+1-Arg_4 ]
n_eval_rank2_4___4 [Arg_3 ]
n_eval_rank2__Pcritedge_in___27 [Arg_0 ]
n_eval_rank2__Pcritedge_in___3 [Arg_3 ]
n_eval_rank2__Pcritedge_in___9 [Arg_0 ]
n_eval_rank2_bb1_in___18 [Arg_0 ]
n_eval_rank2_bb1_in___25 [Arg_0 ]
n_eval_rank2_bb2_in___17 [Arg_3+1 ]
n_eval_rank2_bb2_in___24 [Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3+1 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3 ]
n_eval_rank2_bb4_in___13 [Arg_3+1 ]
n_eval_rank2_3___12 [Arg_3 ]
n_eval_rank2_bb4_in___19 [Arg_3 ]
n_eval_rank2_3___6 [Arg_0+1 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0-Arg_4 ]
n_eval_rank2_bb5_in___2 [Arg_3 ]
n_eval_rank2_bb5_in___26 [Arg_3 ]
n_eval_rank2_bb5_in___8 [Arg_5+1-Arg_4 ]
n_eval_rank2_bb3_in___21 [Arg_3 ]

MPRF for transition 33:n_eval_rank2_bb4_in___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_4-1 ]
n_eval_rank2_4___28 [Arg_5 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb1_in___18 [Arg_5 ]
n_eval_rank2_bb1_in___25 [Arg_5 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2__Pcritedge_in___14 [Arg_5 ]
n_eval_rank2_bb3_in___15 [Arg_5 ]
n_eval_rank2__Pcritedge_in___20 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_3___12 [Arg_3+Arg_4-1 ]
n_eval_rank2_bb4_in___19 [Arg_5+1 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___2 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb5_in___26 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb3_in___21 [Arg_3+Arg_5-Arg_0 ]

MPRF for transition 34:n_eval_rank2_bb4_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_3___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_0 && 0<=Arg_4 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_5 ]
n_eval_rank2_4___28 [Arg_0+Arg_4-1 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5-1 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_5 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb1_in___25 [Arg_5-1 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_4 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4-1 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___15 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5 ]
n_eval_rank2_bb3_in___32 [Arg_0+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_5 ]
n_eval_rank2_bb4_in___19 [Arg_5 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_5 ]
n_eval_rank2_3___30 [Arg_5-1 ]
n_eval_rank2_bb5_in___2 [Arg_5 ]
n_eval_rank2_bb5_in___26 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb5_in___8 [Arg_5 ]
n_eval_rank2_bb3_in___21 [Arg_5 ]

MPRF for transition 35:n_eval_rank2_bb5_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 3<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_4___28 [Arg_5 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb1_in___18 [Arg_5 ]
n_eval_rank2_bb1_in___25 [Arg_5 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_5+1-Arg_0 ]
n_eval_rank2__Pcritedge_in___14 [Arg_3+Arg_4 ]
n_eval_rank2_bb3_in___15 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___20 [Arg_0-1 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___12 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb4_in___19 [Arg_5 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___2 [Arg_5 ]
n_eval_rank2_bb5_in___26 [Arg_5 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb3_in___21 [Arg_5 ]

MPRF for transition 36:n_eval_rank2_bb5_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:2<=Arg_5 && 2<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 0<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=Arg_4 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [Arg_3+Arg_4-1 ]
n_eval_rank2_4___28 [Arg_5 ]
n_eval_rank2_4___4 [Arg_5 ]
n_eval_rank2__Pcritedge_in___27 [Arg_5 ]
n_eval_rank2__Pcritedge_in___3 [Arg_5 ]
n_eval_rank2__Pcritedge_in___9 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb1_in___18 [Arg_0+Arg_4-1 ]
n_eval_rank2_bb1_in___25 [Arg_5 ]
n_eval_rank2_bb2_in___17 [Arg_3+Arg_4 ]
n_eval_rank2_bb2_in___24 [Arg_3+Arg_4 ]
n_eval_rank2__Pcritedge_in___14 [Arg_5 ]
n_eval_rank2_bb3_in___15 [Arg_5 ]
n_eval_rank2__Pcritedge_in___20 [Arg_5 ]
n_eval_rank2_bb3_in___32 [Arg_3+Arg_4 ]
n_eval_rank2_bb4_in___13 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_3___12 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb4_in___19 [Arg_5 ]
n_eval_rank2_3___6 [Arg_5 ]
n_eval_rank2_bb4_in___31 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_3___30 [Arg_3+Arg_5-Arg_0 ]
n_eval_rank2_bb5_in___2 [Arg_5 ]
n_eval_rank2_bb5_in___26 [Arg_5 ]
n_eval_rank2_bb5_in___8 [Arg_3+Arg_5-Arg_0-1 ]
n_eval_rank2_bb3_in___21 [Arg_5 ]

MPRF for transition 37:n_eval_rank2_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> n_eval_rank2_bb3_in___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1):|:1<=Arg_5 && 1<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 5<=Arg_2+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && 2+Arg_4<=Arg_3 && 4+Arg_4<=Arg_2 && 1+Arg_4<=Arg_0 && 0<=Arg_4 && 2<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 1<=Arg_1+Arg_4 && 1<=Arg_0+Arg_4 && 2+Arg_3<=Arg_2 && Arg_3<=1+Arg_0 && 2<=Arg_3 && 6<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 4<=Arg_2 && 5<=Arg_1+Arg_2 && 5<=Arg_0+Arg_2 && 3+Arg_0<=Arg_2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_0<=Arg_5 && 0<Arg_1 && Arg_0+Arg_4<=Arg_5 && Arg_5<=Arg_0+Arg_4 && Arg_0+1<=Arg_3 && Arg_3<=1+Arg_0 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_4___10 [2*Arg_3-3 ]
n_eval_rank2_4___28 [2*Arg_5-2*Arg_4 ]
n_eval_rank2_4___4 [2*Arg_3-4 ]
n_eval_rank2__Pcritedge_in___27 [2*Arg_5-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___3 [2*Arg_3-4 ]
n_eval_rank2__Pcritedge_in___9 [2*Arg_3-3 ]
n_eval_rank2_bb1_in___18 [2*Arg_0-2 ]
n_eval_rank2_bb1_in___25 [2*Arg_0-2 ]
n_eval_rank2_bb2_in___17 [2*Arg_3 ]
n_eval_rank2_bb2_in___24 [2*Arg_3 ]
n_eval_rank2__Pcritedge_in___14 [2*Arg_3-4 ]
n_eval_rank2_bb3_in___15 [2*Arg_3-3 ]
n_eval_rank2__Pcritedge_in___20 [2*Arg_0-2 ]
n_eval_rank2_bb3_in___32 [2*Arg_3 ]
n_eval_rank2_bb4_in___13 [2*Arg_3-3 ]
n_eval_rank2_3___12 [2*Arg_3-3 ]
n_eval_rank2_bb4_in___19 [2*Arg_0-2 ]
n_eval_rank2_3___6 [2*Arg_3-4 ]
n_eval_rank2_bb4_in___31 [2*Arg_3+2*Arg_5-2*Arg_0-2*Arg_4 ]
n_eval_rank2_3___30 [2*Arg_3+2*Arg_5-2*Arg_0-2*Arg_4 ]
n_eval_rank2_bb5_in___2 [2*Arg_3-4 ]
n_eval_rank2_bb5_in___26 [3*Arg_3+Arg_4-Arg_5-3 ]
n_eval_rank2_bb5_in___8 [2*Arg_3-3 ]
n_eval_rank2_bb3_in___21 [3*Arg_3-Arg_0-5 ]

All Bounds

Timebounds

Overall timebound:53*Arg_2+35 {O(n)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11: 1 {O(1)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10: 3*Arg_2+2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29: 1 {O(1)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28: Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5: 1 {O(1)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4: 4*Arg_2+4 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9: Arg_2+3 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8: 2*Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27: 2*Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26: 2*Arg_2+2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3: Arg_2+1 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2: 2*Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18: Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18: 3*Arg_2+1 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25: Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25: 2*Arg_2+1 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25: 2*Arg_2+1 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35: 1 {O(1)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17: Arg_2+1 {O(n)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16: 1 {O(1)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24: 2*Arg_2+1 {O(n)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23: 1 {O(1)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34: 1 {O(1)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33: 1 {O(1)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15: Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32: Arg_2+1 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32: 1 {O(1)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14: Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13: 2*Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20: 2*Arg_2+2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19: 3*Arg_2+1 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31: 2*Arg_2+1 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12: Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6: 2*Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30: 2*Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7: 1 {O(1)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22: 1 {O(1)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1: 1 {O(1)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36: 1 {O(1)}

Costbounds

Overall costbound: 53*Arg_2+35 {O(n)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11: 1 {O(1)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10: 3*Arg_2+2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29: 1 {O(1)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28: Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5: 1 {O(1)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4: 4*Arg_2+4 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9: Arg_2+3 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8: 2*Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27: 2*Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26: 2*Arg_2+2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3: Arg_2+1 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2: 2*Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18: Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18: 3*Arg_2+1 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25: Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25: 2*Arg_2+1 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25: 2*Arg_2+1 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35: 1 {O(1)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17: Arg_2+1 {O(n)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16: 1 {O(1)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24: 2*Arg_2+1 {O(n)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23: 1 {O(1)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34: 1 {O(1)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33: 1 {O(1)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15: Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32: Arg_2+1 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32: 1 {O(1)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14: Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13: 2*Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20: 2*Arg_2+2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19: 3*Arg_2+1 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31: 2*Arg_2+1 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12: Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6: 2*Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30: 2*Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21: 2*Arg_2 {O(n)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7: 1 {O(1)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22: 1 {O(1)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1: 1 {O(1)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36: 1 {O(1)}

Sizebounds

0: n_eval_rank2_3___12->n_eval_nondet_start___11, Arg_0: Arg_2 {O(n)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11, Arg_2: Arg_2 {O(n)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11, Arg_3: 2*Arg_2 {O(n)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11, Arg_4: 0 {O(1)}
0: n_eval_rank2_3___12->n_eval_nondet_start___11, Arg_5: 3*Arg_2 {O(n)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10, Arg_0: Arg_2 {O(n)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10, Arg_2: Arg_2 {O(n)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10, Arg_3: 2*Arg_2 {O(n)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10, Arg_4: 0 {O(1)}
1: n_eval_rank2_3___12->n_eval_rank2_4___10, Arg_5: 3*Arg_2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29, Arg_0: Arg_2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29, Arg_2: Arg_2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29, Arg_3: 4*Arg_2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29, Arg_4: 6*Arg_2 {O(n)}
2: n_eval_rank2_3___30->n_eval_nondet_start___29, Arg_5: 3*Arg_2 {O(n)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28, Arg_0: Arg_2 {O(n)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28, Arg_2: Arg_2 {O(n)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28, Arg_3: 4*Arg_2 {O(n)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28, Arg_4: 6*Arg_2 {O(n)}
3: n_eval_rank2_3___30->n_eval_rank2_4___28, Arg_5: 3*Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5, Arg_0: Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5, Arg_2: Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5, Arg_3: 6*Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5, Arg_4: 6*Arg_2 {O(n)}
4: n_eval_rank2_3___6->n_eval_nondet_start___5, Arg_5: 3*Arg_2 {O(n)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4, Arg_0: Arg_2 {O(n)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4, Arg_2: Arg_2 {O(n)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4, Arg_3: 6*Arg_2 {O(n)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4, Arg_4: 6*Arg_2 {O(n)}
5: n_eval_rank2_3___6->n_eval_rank2_4___4, Arg_5: 3*Arg_2 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9, Arg_0: Arg_2 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9, Arg_2: Arg_2 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9, Arg_3: 2*Arg_2 {O(n)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9, Arg_4: 0 {O(1)}
6: n_eval_rank2_4___10->n_eval_rank2__Pcritedge_in___9, Arg_5: 3*Arg_2 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8, Arg_0: Arg_2 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8, Arg_2: Arg_2 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8, Arg_3: 2*Arg_2 {O(n)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8, Arg_4: 0 {O(1)}
7: n_eval_rank2_4___10->n_eval_rank2_bb5_in___8, Arg_5: 3*Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27, Arg_0: Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27, Arg_2: Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27, Arg_3: 4*Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27, Arg_4: 6*Arg_2 {O(n)}
8: n_eval_rank2_4___28->n_eval_rank2__Pcritedge_in___27, Arg_5: 3*Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26, Arg_0: Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26, Arg_2: Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26, Arg_3: 4*Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26, Arg_4: 6*Arg_2 {O(n)}
9: n_eval_rank2_4___28->n_eval_rank2_bb5_in___26, Arg_5: 3*Arg_2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3, Arg_0: Arg_2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3, Arg_2: Arg_2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3, Arg_3: 6*Arg_2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3, Arg_4: 6*Arg_2 {O(n)}
10: n_eval_rank2_4___4->n_eval_rank2__Pcritedge_in___3, Arg_5: 3*Arg_2 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2, Arg_0: Arg_2 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2, Arg_2: Arg_2 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2, Arg_3: 6*Arg_2 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2, Arg_4: 6*Arg_2 {O(n)}
11: n_eval_rank2_4___4->n_eval_rank2_bb5_in___2, Arg_5: 3*Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18, Arg_0: Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18, Arg_2: Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18, Arg_3: Arg_2 {O(n)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18, Arg_4: 0 {O(1)}
12: n_eval_rank2__Pcritedge_in___14->n_eval_rank2_bb1_in___18, Arg_5: 3*Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18, Arg_0: Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18, Arg_2: Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18, Arg_3: Arg_2 {O(n)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18, Arg_4: 0 {O(1)}
13: n_eval_rank2__Pcritedge_in___20->n_eval_rank2_bb1_in___18, Arg_5: 3*Arg_2 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25, Arg_0: Arg_2 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25, Arg_2: Arg_2 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25, Arg_3: Arg_2 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25, Arg_4: 6*Arg_2 {O(n)}
14: n_eval_rank2__Pcritedge_in___27->n_eval_rank2_bb1_in___25, Arg_5: 3*Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25, Arg_0: Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25, Arg_2: Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25, Arg_3: Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25, Arg_4: 3*Arg_2 {O(n)}
15: n_eval_rank2__Pcritedge_in___3->n_eval_rank2_bb1_in___25, Arg_5: 3*Arg_2 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25, Arg_0: Arg_2 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25, Arg_2: Arg_2 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25, Arg_3: Arg_2 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25, Arg_4: Arg_2 {O(n)}
16: n_eval_rank2__Pcritedge_in___9->n_eval_rank2_bb1_in___25, Arg_5: 3*Arg_2 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_0: Arg_0 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_1: Arg_1 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_2: Arg_2 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_3: Arg_2 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_4: Arg_2 {O(n)}
17: n_eval_rank2_bb0_in___36->n_eval_rank2_bb1_in___35, Arg_5: Arg_5 {O(n)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17, Arg_0: Arg_2 {O(n)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17, Arg_2: Arg_2 {O(n)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17, Arg_3: 2*Arg_2 {O(n)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17, Arg_4: 0 {O(1)}
18: n_eval_rank2_bb1_in___18->n_eval_rank2_bb2_in___17, Arg_5: 3*Arg_2 {O(n)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16, Arg_0: 2 {O(1)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16, Arg_2: 2*Arg_2 {O(n)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16, Arg_3: 1 {O(1)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16, Arg_4: 0 {O(1)}
19: n_eval_rank2_bb1_in___18->n_eval_rank2_bb6_in___16, Arg_5: 6*Arg_2 {O(n)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24, Arg_0: Arg_2 {O(n)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24, Arg_2: Arg_2 {O(n)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24, Arg_3: 3*Arg_2 {O(n)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24, Arg_4: 6*Arg_2 {O(n)}
20: n_eval_rank2_bb1_in___25->n_eval_rank2_bb2_in___24, Arg_5: 3*Arg_2 {O(n)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23, Arg_0: 2 {O(1)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23, Arg_2: 3*Arg_2 {O(n)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23, Arg_3: 1 {O(1)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23, Arg_4: 10*Arg_2 {O(n)}
21: n_eval_rank2_bb1_in___25->n_eval_rank2_bb6_in___23, Arg_5: 9*Arg_2 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_0: Arg_0 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_1: Arg_1 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_2: Arg_2 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_3: Arg_2 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_4: Arg_2 {O(n)}
22: n_eval_rank2_bb1_in___35->n_eval_rank2_bb2_in___34, Arg_5: Arg_5 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_0: Arg_0 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_1: Arg_1 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_2: Arg_2 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_3: Arg_2 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_4: Arg_2 {O(n)}
23: n_eval_rank2_bb1_in___35->n_eval_rank2_bb6_in___33, Arg_5: Arg_5 {O(n)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15, Arg_0: Arg_2 {O(n)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15, Arg_2: Arg_2 {O(n)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15, Arg_3: 2*Arg_2 {O(n)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15, Arg_4: 0 {O(1)}
24: n_eval_rank2_bb2_in___17->n_eval_rank2_bb3_in___15, Arg_5: 3*Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32, Arg_0: Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32, Arg_2: Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32, Arg_3: 3*Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32, Arg_4: 6*Arg_2 {O(n)}
25: n_eval_rank2_bb2_in___24->n_eval_rank2_bb3_in___32, Arg_5: 3*Arg_2 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_0: Arg_2 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_1: Arg_1 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_2: Arg_2 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_3: Arg_2 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_4: Arg_2 {O(n)}
26: n_eval_rank2_bb2_in___34->n_eval_rank2_bb3_in___32, Arg_5: 2*Arg_2 {O(n)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14, Arg_0: Arg_2 {O(n)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14, Arg_2: Arg_2 {O(n)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14, Arg_3: 2*Arg_2 {O(n)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14, Arg_4: 0 {O(1)}
27: n_eval_rank2_bb3_in___15->n_eval_rank2__Pcritedge_in___14, Arg_5: 3*Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13, Arg_0: Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13, Arg_2: Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13, Arg_3: 2*Arg_2 {O(n)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13, Arg_4: 0 {O(1)}
28: n_eval_rank2_bb3_in___15->n_eval_rank2_bb4_in___13, Arg_5: 3*Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20, Arg_0: Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20, Arg_2: Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20, Arg_3: 12*Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20, Arg_4: 12*Arg_2 {O(n)}
29: n_eval_rank2_bb3_in___21->n_eval_rank2__Pcritedge_in___20, Arg_5: 3*Arg_2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19, Arg_0: Arg_2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19, Arg_2: Arg_2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19, Arg_3: 6*Arg_2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19, Arg_4: 6*Arg_2 {O(n)}
30: n_eval_rank2_bb3_in___21->n_eval_rank2_bb4_in___19, Arg_5: 3*Arg_2 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31, Arg_0: Arg_2 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31, Arg_2: Arg_2 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31, Arg_3: 4*Arg_2 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31, Arg_4: 6*Arg_2 {O(n)}
31: n_eval_rank2_bb3_in___32->n_eval_rank2_bb4_in___31, Arg_5: 3*Arg_2 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12, Arg_0: Arg_2 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12, Arg_2: Arg_2 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12, Arg_3: 2*Arg_2 {O(n)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12, Arg_4: 0 {O(1)}
32: n_eval_rank2_bb4_in___13->n_eval_rank2_3___12, Arg_5: 3*Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6, Arg_0: Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6, Arg_2: Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6, Arg_3: 6*Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6, Arg_4: 6*Arg_2 {O(n)}
33: n_eval_rank2_bb4_in___19->n_eval_rank2_3___6, Arg_5: 3*Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30, Arg_0: Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30, Arg_2: Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30, Arg_3: 4*Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30, Arg_4: 6*Arg_2 {O(n)}
34: n_eval_rank2_bb4_in___31->n_eval_rank2_3___30, Arg_5: 3*Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21, Arg_0: Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21, Arg_2: Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21, Arg_3: 6*Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21, Arg_4: 6*Arg_2 {O(n)}
35: n_eval_rank2_bb5_in___2->n_eval_rank2_bb3_in___21, Arg_5: 3*Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21, Arg_0: Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21, Arg_2: Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21, Arg_3: 4*Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21, Arg_4: 6*Arg_2 {O(n)}
36: n_eval_rank2_bb5_in___26->n_eval_rank2_bb3_in___21, Arg_5: 3*Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21, Arg_0: Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21, Arg_2: Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21, Arg_3: 2*Arg_2 {O(n)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21, Arg_4: 0 {O(1)}
37: n_eval_rank2_bb5_in___8->n_eval_rank2_bb3_in___21, Arg_5: 3*Arg_2 {O(n)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7, Arg_0: 2 {O(1)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7, Arg_2: 2*Arg_2 {O(n)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7, Arg_3: 1 {O(1)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7, Arg_4: 0 {O(1)}
38: n_eval_rank2_bb6_in___16->n_eval_rank2_stop___7, Arg_5: 6*Arg_2 {O(n)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22, Arg_0: 2 {O(1)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22, Arg_2: 3*Arg_2 {O(n)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22, Arg_3: 1 {O(1)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22, Arg_4: 10*Arg_2 {O(n)}
39: n_eval_rank2_bb6_in___23->n_eval_rank2_stop___22, Arg_5: 9*Arg_2 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_0: Arg_0 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_1: Arg_1 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_2: Arg_2 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_3: Arg_2 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_4: Arg_2 {O(n)}
40: n_eval_rank2_bb6_in___33->n_eval_rank2_stop___1, Arg_5: Arg_5 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_0: Arg_0 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_1: Arg_1 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_2: Arg_2 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_3: Arg_3 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_4: Arg_4 {O(n)}
41: n_eval_rank2_start->n_eval_rank2_bb0_in___36, Arg_5: Arg_5 {O(n)}