Initial Problem

Start: n_eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___13, n_eval_nondet_start___20, n_eval_nondet_start___25, n_eval_nondet_start___32, n_eval_nondet_start___5, n_eval_nondet_start___53, n_eval_rank2_11___21, n_eval_rank2_11___6, n_eval_rank2_12___19, n_eval_rank2_12___4, n_eval_rank2_5___14, n_eval_rank2_5___26, n_eval_rank2_5___33, n_eval_rank2_5___54, n_eval_rank2_6___12, n_eval_rank2_6___24, n_eval_rank2_6___31, n_eval_rank2_6___52, n_eval_rank2__Pcritedge1_in___18, n_eval_rank2__Pcritedge1_in___3, n_eval_rank2__Pcritedge1_in___44, n_eval_rank2__Pcritedge1_in___8, n_eval_rank2__Pcritedge_in___11, n_eval_rank2__Pcritedge_in___23, n_eval_rank2__Pcritedge_in___30, n_eval_rank2__Pcritedge_in___35, n_eval_rank2__Pcritedge_in___41, n_eval_rank2__Pcritedge_in___51, n_eval_rank2_bb0_in___60, n_eval_rank2_bb1_in___39, n_eval_rank2_bb1_in___49, n_eval_rank2_bb1_in___59, n_eval_rank2_bb2_in___38, n_eval_rank2_bb2_in___48, n_eval_rank2_bb2_in___58, n_eval_rank2_bb3_in___16, n_eval_rank2_bb3_in___36, n_eval_rank2_bb3_in___42, n_eval_rank2_bb3_in___56, n_eval_rank2_bb4_in___15, n_eval_rank2_bb4_in___34, n_eval_rank2_bb4_in___40, n_eval_rank2_bb4_in___55, n_eval_rank2_bb5_in___10, n_eval_rank2_bb5_in___22, n_eval_rank2_bb5_in___29, n_eval_rank2_bb5_in___50, n_eval_rank2_bb6_in___28, n_eval_rank2_bb6_in___45, n_eval_rank2_bb6_in___9, n_eval_rank2_bb7_in___43, n_eval_rank2_bb7_in___7, n_eval_rank2_bb8_in___17, n_eval_rank2_bb8_in___2, n_eval_rank2_bb9_in___37, n_eval_rank2_bb9_in___47, n_eval_rank2_bb9_in___57, n_eval_rank2_start, n_eval_rank2_stop___1, n_eval_rank2_stop___27, n_eval_rank2_stop___46
Transitions:
0:n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
1:n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___19(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
2:n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8
3:n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___4(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8
4:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=0
5:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_0
6:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8 && Arg_0<=0
7:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8 && 0<Arg_0
8:n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
9:n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___12(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
10:n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
11:n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___24(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
12:n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
13:n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___31(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
14:n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
15:n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___52(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
16:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0
17:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1
18:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0
19:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1
20:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0
21:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1
22:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0
23:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1
24:n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:Arg_0<=0 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
25:n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:Arg_0<=0 && 3+Arg_5<=Arg_8
26:n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:Arg_7<4+Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
27:n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:Arg_8<3+Arg_5
28:n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_1<=0 && 2+Arg_4<=Arg_8 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
29:n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_1<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
30:n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_1<=0 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3
31:n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_7<Arg_3 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
32:n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_7<1+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
33:n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_1<=0 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
34:n_eval_rank2_bb0_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
35:n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3
36:n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_3<2
37:n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3
38:n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_3<2
39:n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && 2<=Arg_3
40:n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_3<2
41:n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:Arg_6<4 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
42:n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:1<=Arg_6 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
43:n_eval_rank2_bb2_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:2<=Arg_6 && Arg_3<=Arg_6 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2
44:n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_4<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7
45:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && Arg_7<1+Arg_4
46:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7
47:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && Arg_7<1+Arg_4
48:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7
49:n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_4<=Arg_7 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7
50:n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
51:n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
52:n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_4<=Arg_7 && Arg_7<4+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
53:n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
54:n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:1+Arg_4<=Arg_7 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
55:n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<5+Arg_4 && 2+Arg_4<=Arg_8 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
56:n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_6<4 && 1<=Arg_6 && 0<Arg_1 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3
57:n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:1<=Arg_6 && 0<Arg_1 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
58:n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<3+Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5
59:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5
60:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && 3+Arg_5<=Arg_8
61:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<3+Arg_5
62:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8
63:n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:4+Arg_4<=Arg_7 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
64:n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_5<=Arg_8
65:n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:4+Arg_4<=Arg_7 && 0<Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7
66:n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:3+Arg_5<=Arg_8 && 0<Arg_0
67:n_eval_rank2_bb9_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<2+Arg_6 && Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
68:n_eval_rank2_bb9_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<2+Arg_6 && 1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
69:n_eval_rank2_bb9_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<2 && Arg_3<=Arg_6 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2
70:n_eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb0_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)

Preprocessing

Found invariant Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_5___33

Found invariant Arg_6<=1 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && Arg_6<=Arg_2 && Arg_2+Arg_6<=2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 for location n_eval_rank2_stop___1

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb8_in___17

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2_bb3_in___16

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 5+Arg_0<=Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 8+Arg_0<=Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2__Pcritedge1_in___3

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb7_in___7

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_nondet_start___53

Found invariant Arg_6<=1 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && Arg_6<=Arg_2 && Arg_2+Arg_6<=2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 for location n_eval_rank2_bb9_in___57

Found invariant Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb1_in___39

Found invariant Arg_8<=1+Arg_5 && 3<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=3 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 6<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 4<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb2_in___38

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_nondet_start___13

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_6___24

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_nondet_start___20

Found invariant Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_nondet_start___32

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2_bb5_in___10

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_11___21

Found invariant Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_1+Arg_6<=3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3+Arg_1<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2__Pcritedge_in___30

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2__Pcritedge_in___51

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb3_in___42

Found invariant Arg_8<=1+Arg_5 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb4_in___34

Found invariant Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=2 && Arg_6+Arg_7<=4 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_4+Arg_7<=4 && Arg_7<=1+Arg_3 && Arg_3+Arg_7<=3 && Arg_7<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=2 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_4+Arg_6<=4 && Arg_6<=1+Arg_3 && Arg_3+Arg_6<=3 && Arg_6<=1+Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_4<=1+Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb9_in___37

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_nondet_start___5

Found invariant 2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 3<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2_bb1_in___49

Found invariant 1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb6_in___28

Found invariant Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb5_in___29

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_12___19

Found invariant 1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2__Pcritedge1_in___44

Found invariant Arg_8<=1+Arg_7 && Arg_8<=1+Arg_5 && Arg_8<=1+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2__Pcritedge_in___41

Found invariant 4<=Arg_7 && 5<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 7<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 6<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 4+Arg_1<=Arg_7 && 1<=Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 3+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2_bb2_in___48

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_bb4_in___55

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb5_in___50

Found invariant Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_6___31

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2_5___14

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_5___54

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 5+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2__Pcritedge1_in___18

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 for location n_eval_rank2_bb4_in___15

Found invariant 1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb7_in___43

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_5___26

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_12___4

Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && 2<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && Arg_3<=Arg_2 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_2 for location n_eval_rank2_bb2_in___58

Found invariant 2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=1+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_1+Arg_4<=2 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=1 && Arg_1+Arg_3<=1 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2_bb9_in___47

Found invariant 3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_6___52

Found invariant Arg_8<=1+Arg_5 && 3<=Arg_8 && 2+Arg_7<=Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && 2+Arg_7<=Arg_5 && Arg_7<=Arg_4 && 1+Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 3+Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 2+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2__Pcritedge_in___35

Found invariant Arg_8<=1+Arg_5 && 3<=Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb3_in___36

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb4_in___40

Found invariant Arg_7<=1+Arg_6 && 2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=Arg_6 && 2<=Arg_3+Arg_6 && 1+Arg_3<=Arg_6 && 2+Arg_1<=Arg_6 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_1+Arg_4<=2 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=1 && Arg_1+Arg_3<=1 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2_stop___46

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb8_in___2

Found invariant 3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_11___6

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_1<=0 && Arg_0+Arg_1<=0 && Arg_0<=0 for location n_eval_rank2__Pcritedge_in___11

Found invariant Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=Arg_2 && Arg_2<=Arg_3 for location n_eval_rank2_bb1_in___59

Found invariant 2<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 for location n_eval_rank2_bb3_in___56

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_nondet_start___25

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb5_in___22

Found invariant 3+Arg_8<=Arg_7 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2_bb6_in___9

Found invariant Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_0<=0 for location n_eval_rank2_6___12

Found invariant 1+Arg_8<=Arg_7 && 2<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3<=Arg_6+Arg_8 && 3<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_bb6_in___45

Found invariant Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=2 && Arg_7<=1+Arg_6 && Arg_6+Arg_7<=3 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_4+Arg_7<=4 && Arg_7<=1+Arg_3 && Arg_3+Arg_7<=3 && Arg_7<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_4+Arg_6<=3 && Arg_6<=1+Arg_3 && Arg_3+Arg_6<=2 && Arg_6<=Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_4<=1+Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 for location n_eval_rank2_stop___27

Found invariant Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 3+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 for location n_eval_rank2__Pcritedge_in___23

Found invariant 3+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 for location n_eval_rank2__Pcritedge1_in___8

Problem after Preprocessing

Start: n_eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___13, n_eval_nondet_start___20, n_eval_nondet_start___25, n_eval_nondet_start___32, n_eval_nondet_start___5, n_eval_nondet_start___53, n_eval_rank2_11___21, n_eval_rank2_11___6, n_eval_rank2_12___19, n_eval_rank2_12___4, n_eval_rank2_5___14, n_eval_rank2_5___26, n_eval_rank2_5___33, n_eval_rank2_5___54, n_eval_rank2_6___12, n_eval_rank2_6___24, n_eval_rank2_6___31, n_eval_rank2_6___52, n_eval_rank2__Pcritedge1_in___18, n_eval_rank2__Pcritedge1_in___3, n_eval_rank2__Pcritedge1_in___44, n_eval_rank2__Pcritedge1_in___8, n_eval_rank2__Pcritedge_in___11, n_eval_rank2__Pcritedge_in___23, n_eval_rank2__Pcritedge_in___30, n_eval_rank2__Pcritedge_in___35, n_eval_rank2__Pcritedge_in___41, n_eval_rank2__Pcritedge_in___51, n_eval_rank2_bb0_in___60, n_eval_rank2_bb1_in___39, n_eval_rank2_bb1_in___49, n_eval_rank2_bb1_in___59, n_eval_rank2_bb2_in___38, n_eval_rank2_bb2_in___48, n_eval_rank2_bb2_in___58, n_eval_rank2_bb3_in___16, n_eval_rank2_bb3_in___36, n_eval_rank2_bb3_in___42, n_eval_rank2_bb3_in___56, n_eval_rank2_bb4_in___15, n_eval_rank2_bb4_in___34, n_eval_rank2_bb4_in___40, n_eval_rank2_bb4_in___55, n_eval_rank2_bb5_in___10, n_eval_rank2_bb5_in___22, n_eval_rank2_bb5_in___29, n_eval_rank2_bb5_in___50, n_eval_rank2_bb6_in___28, n_eval_rank2_bb6_in___45, n_eval_rank2_bb6_in___9, n_eval_rank2_bb7_in___43, n_eval_rank2_bb7_in___7, n_eval_rank2_bb8_in___17, n_eval_rank2_bb8_in___2, n_eval_rank2_bb9_in___37, n_eval_rank2_bb9_in___47, n_eval_rank2_bb9_in___57, n_eval_rank2_start, n_eval_rank2_stop___1, n_eval_rank2_stop___27, n_eval_rank2_stop___46
Transitions:
0:n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
1:n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___19(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
2:n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8
3:n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___4(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8
4:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=0
5:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_0
6:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_5<=Arg_8 && Arg_0<=0
7:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_5<=Arg_8 && 0<Arg_0
8:n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
9:n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___12(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
10:n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
11:n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___24(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
12:n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
13:n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___31(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
14:n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_nondet_start___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
15:n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___52(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
16:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0
17:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1
18:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0
19:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1
20:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0
21:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1
22:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0
23:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1
24:n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 5+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
25:n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 5+Arg_0<=Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 8+Arg_0<=Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 3+Arg_5<=Arg_8
26:n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
27:n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:3+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_8<3+Arg_5
28:n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_1<=0 && Arg_0+Arg_1<=0 && Arg_0<=0 && Arg_1<=0 && 2+Arg_4<=Arg_8 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
29:n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 3+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_1<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
30:n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_1+Arg_6<=3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3+Arg_1<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_1<=0 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3
31:n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 2+Arg_7<=Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && 2+Arg_7<=Arg_5 && Arg_7<=Arg_4 && 1+Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 3+Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 2+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<Arg_3 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
32:n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=1+Arg_5 && Arg_8<=1+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<1+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
33:n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_1<=0 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
34:n_eval_rank2_bb0_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
35:n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3
36:n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_3<2
37:n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 3<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3
38:n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 3<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && Arg_3<2
39:n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && 2<=Arg_3
40:n_eval_rank2_bb1_in___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb9_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=Arg_2 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_3<2
41:n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=3 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 6<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 4<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
42:n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:4<=Arg_7 && 5<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 7<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 6<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 4+Arg_1<=Arg_7 && 1<=Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 3+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && 1<=Arg_6 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
43:n_eval_rank2_bb2_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:Arg_6<=Arg_3 && Arg_6<=Arg_2 && 2<=Arg_6 && 4<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 4<=Arg_2+Arg_6 && Arg_2<=Arg_6 && Arg_3<=Arg_2 && 2<=Arg_3 && 4<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_2 && 2<=Arg_6 && Arg_3<=Arg_6 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2
44:n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7
45:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && Arg_7<1+Arg_4
46:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7
47:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && Arg_7<1+Arg_4
48:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7
49:n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1+Arg_4<=Arg_7 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7
50:n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
51:n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
52:n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 1+Arg_4<=Arg_7 && Arg_7<4+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
53:n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
54:n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
55:n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<5+Arg_4 && 2+Arg_4<=Arg_8 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7
56:n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && 1<=Arg_6 && 0<Arg_1 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3
57:n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 1<=Arg_6 && 0<Arg_1 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6
58:n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<3+Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5
59:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 2<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3<=Arg_6+Arg_8 && 3<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5
60:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 2<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3<=Arg_6+Arg_8 && 3<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && 3+Arg_5<=Arg_8
61:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_8<3+Arg_5
62:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8
63:n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 4+Arg_4<=Arg_7 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4
64:n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8
65:n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 4+Arg_4<=Arg_7 && 0<Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7
66:n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8 && 0<Arg_0
67:n_eval_rank2_bb9_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=2 && Arg_6+Arg_7<=4 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_4+Arg_7<=4 && Arg_7<=1+Arg_3 && Arg_3+Arg_7<=3 && Arg_7<=1+Arg_1 && Arg_6<=Arg_7 && Arg_6<=2 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_4+Arg_6<=4 && Arg_6<=1+Arg_3 && Arg_3+Arg_6<=3 && Arg_6<=1+Arg_1 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_4<=1+Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && Arg_3<=1 && Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<2+Arg_6 && Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
68:n_eval_rank2_bb9_in___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=1+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=Arg_6 && 1+Arg_1<=Arg_6 && Arg_4<=2 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=3 && Arg_1+Arg_4<=2 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && Arg_3<=1 && Arg_1+Arg_3<=1 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && Arg_7<2+Arg_6 && 1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6
69:n_eval_rank2_bb9_in___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_stop___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6<=1 && Arg_6<=Arg_3 && Arg_3+Arg_6<=2 && Arg_6<=Arg_2 && Arg_2+Arg_6<=2 && Arg_3<=Arg_6 && Arg_2<=Arg_6 && Arg_3<=1 && Arg_3<=Arg_2 && Arg_2+Arg_3<=2 && Arg_2<=Arg_3 && Arg_2<=1 && Arg_6<2 && Arg_3<=Arg_6 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2
70:n_eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb0_in___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)

MPRF for transition 1:n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___19(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

3*Arg_2+3 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8-Arg_3-3 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_3-6 ]
n_eval_rank2_6___12 [2*Arg_7-Arg_3-1 ]
n_eval_rank2_6___24 [Arg_8-2 ]
n_eval_rank2_6___31 [Arg_4+2*Arg_6-2 ]
n_eval_rank2_6___52 [Arg_4+2*Arg_6-2 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_3-3 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_3 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_3-1 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_8-Arg_5-4 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+2*Arg_6-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___51 [Arg_4+2*Arg_6-2 ]
n_eval_rank2_bb1_in___39 [4*Arg_3+2*Arg_6-3*Arg_4 ]
n_eval_rank2_bb1_in___49 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_bb2_in___38 [4*Arg_3+2*Arg_6-3*Arg_4 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+2*Arg_6-Arg_4-2 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_3-3 ]
n_eval_rank2__Pcritedge_in___35 [Arg_4+2*Arg_6-2 ]
n_eval_rank2_bb3_in___36 [Arg_4+2*Arg_6-2 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_bb3_in___42 [Arg_4 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-Arg_3-1 ]
n_eval_rank2_5___14 [2*Arg_7-Arg_3-1 ]
n_eval_rank2_bb4_in___34 [Arg_4+2*Arg_7-2*Arg_3 ]
n_eval_rank2_5___33 [Arg_4+2*Arg_7-2*Arg_3 ]
n_eval_rank2_bb4_in___40 [Arg_5 ]
n_eval_rank2_5___26 [Arg_8-2 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6-3 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_3-1 ]
n_eval_rank2_bb5_in___22 [Arg_4 ]
n_eval_rank2_bb5_in___29 [Arg_4 ]
n_eval_rank2_bb5_in___50 [Arg_4+2*Arg_7-2*Arg_3 ]
n_eval_rank2_bb6_in___28 [Arg_4 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-Arg_3-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+Arg_7-Arg_4-4 ]
n_eval_rank2_bb7_in___43 [2*Arg_8+1-Arg_3 ]
n_eval_rank2_11___21 [2*Arg_8+1-Arg_3 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_3-6 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_3-6 ]
n_eval_rank2_bb8_in___17 [2*Arg_8-Arg_3-3 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_3-6 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_3-6 ]

MPRF for transition 3:n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_12___4(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8 of depth 1:

new bound:

3*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_5-1 ]
n_eval_rank2_6___12 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_6___24 [Arg_7+2 ]
n_eval_rank2_6___31 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_6___52 [2*Arg_7+2-Arg_3 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_7-Arg_4-3 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8+5-Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7+1-Arg_5 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+3 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb1_in___39 [Arg_6+Arg_7 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb3_in___16 [2*Arg_7+1-Arg_5 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+2*Arg_8-2*Arg_4-1 ]
n_eval_rank2_bb3_in___42 [Arg_5+3 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___15 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_5___14 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb4_in___34 [2*Arg_3+2*Arg_6-Arg_4-1 ]
n_eval_rank2_5___33 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb4_in___40 [Arg_5+Arg_8+1-Arg_4 ]
n_eval_rank2_5___26 [Arg_5+Arg_8+1-Arg_4 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb5_in___10 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb5_in___22 [Arg_7+2 ]
n_eval_rank2_bb5_in___29 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb5_in___50 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_bb6_in___28 [Arg_8+3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_7+2 ]
n_eval_rank2_bb6_in___45 [2*Arg_8+3-Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_7-Arg_5 ]
n_eval_rank2_bb7_in___43 [2*Arg_8+1-Arg_4 ]
n_eval_rank2_11___21 [2*Arg_8+1-Arg_4 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_5 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_5 ]
n_eval_rank2_bb8_in___17 [Arg_7+Arg_8-Arg_5 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_5-1 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_5 ]

MPRF for transition 4:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<=0 of depth 1:

new bound:

33*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_5-10 ]
n_eval_rank2_6___12 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_6___24 [Arg_8-8 ]
n_eval_rank2_6___31 [Arg_4-2 ]
n_eval_rank2_6___52 [2*Arg_7-Arg_4-8 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_7-Arg_4-12 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_7-Arg_5-10 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_4-8 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7+Arg_8-2*Arg_5-10 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-Arg_4-8 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_bb1_in___39 [2*Arg_7-Arg_3-5 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_6-9 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6-9 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_4-10 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6-5 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_bb3_in___42 [2*Arg_8-Arg_5-6 ]
n_eval_rank2_bb3_in___56 [9*Arg_7-8*Arg_3-7*Arg_6 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_5___14 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_5___33 [Arg_3-3 ]
n_eval_rank2_bb4_in___40 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_5___26 [4*Arg_7+Arg_8-4*Arg_4-12 ]
n_eval_rank2_bb4_in___55 [9*Arg_7-8*Arg_3-7*Arg_6 ]
n_eval_rank2_5___54 [2*Arg_7-Arg_3-7 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_bb5_in___22 [Arg_7+Arg_8-Arg_5-9 ]
n_eval_rank2_bb5_in___29 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_bb5_in___50 [7*Arg_4+2*Arg_7-8*Arg_3 ]
n_eval_rank2_bb6_in___28 [2*Arg_8-Arg_4-6 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-Arg_4-8 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-4 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_11___21 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_5-10 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_5-10 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_5-10 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_5-10 ]

MPRF for transition 5:n_eval_rank2_12___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_0 of depth 1:

new bound:

3*Arg_2+5 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_5-8 ]
n_eval_rank2_12___4 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]
n_eval_rank2_6___12 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_6___24 [Arg_8-4 ]
n_eval_rank2_6___31 [4*Arg_3+4*Arg_6-Arg_4-2*Arg_7-8 ]
n_eval_rank2_6___52 [Arg_3+2*Arg_6-5 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_7-Arg_4-8 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5-6 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_5-4 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7+Arg_8-Arg_5-5 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___51 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb1_in___39 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb1_in___49 [3*Arg_7-Arg_3-Arg_4-Arg_6-4 ]
n_eval_rank2_bb2_in___38 [2*Arg_3+2*Arg_6-Arg_4-4 ]
n_eval_rank2_bb2_in___48 [Arg_3+3*Arg_7-3*Arg_4-Arg_6-2 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_5-6 ]
n_eval_rank2__Pcritedge_in___35 [3*Arg_4+2*Arg_7-4*Arg_3 ]
n_eval_rank2_bb3_in___36 [2*Arg_7-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_8-Arg_5-6 ]
n_eval_rank2_bb3_in___42 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_5___14 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb4_in___34 [3*Arg_4+2*Arg_7-4*Arg_3 ]
n_eval_rank2_5___33 [3*Arg_4+4*Arg_6-2*Arg_7-4 ]
n_eval_rank2_bb4_in___40 [2*Arg_7+Arg_8-Arg_4-Arg_5-6 ]
n_eval_rank2_5___26 [Arg_4+Arg_8-Arg_5-4 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb5_in___22 [Arg_7+Arg_8-Arg_5-5 ]
n_eval_rank2_bb5_in___29 [5*Arg_3+4*Arg_6-Arg_4-3*Arg_7-8 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb6_in___28 [Arg_7-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_7+Arg_8-Arg_4-7 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-Arg_4-4 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_11___21 [2*Arg_7-Arg_4-8 ]
n_eval_rank2_bb7_in___7 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]
n_eval_rank2_11___6 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-Arg_5-9 ]
n_eval_rank2_bb8_in___2 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]
n_eval_rank2_bb6_in___9 [4*Arg_5+2*Arg_8-5*Arg_4-11 ]

MPRF for transition 6:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_5<=Arg_8 && Arg_0<=0 of depth 1:

new bound:

6*Arg_2+6 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_7-2*Arg_4-4 ]
n_eval_rank2_12___4 [4*Arg_8+8-2*Arg_4 ]
n_eval_rank2_6___12 [8*Arg_7-2*Arg_5-4*Arg_8 ]
n_eval_rank2_6___24 [2*Arg_7-2 ]
n_eval_rank2_6___31 [2*Arg_3+4*Arg_6-6 ]
n_eval_rank2_6___52 [2*Arg_4+4*Arg_6-4 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_8-2*Arg_5-8 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_8-2*Arg_4-10 ]
n_eval_rank2__Pcritedge_in___11 [8*Arg_7-2*Arg_5-4*Arg_8 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_5+4*Arg_7-2*Arg_4-2*Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_3+4*Arg_6-2*Arg_4-8 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+4*Arg_6-2*Arg_4-8 ]
n_eval_rank2_bb1_in___39 [Arg_3+3*Arg_5+2*Arg_6+1-2*Arg_8 ]
n_eval_rank2_bb1_in___49 [4*Arg_3+4*Arg_7-6*Arg_4 ]
n_eval_rank2_bb2_in___38 [Arg_4+3*Arg_5+2*Arg_6-2*Arg_8 ]
n_eval_rank2_bb2_in___48 [8*Arg_3+4*Arg_6-6*Arg_4 ]
n_eval_rank2_bb3_in___16 [4*Arg_8-2*Arg_4-8 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+3*Arg_5+2*Arg_6+1-2*Arg_8 ]
n_eval_rank2_bb3_in___36 [Arg_3+3*Arg_5+2*Arg_6+1-2*Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_5+2*Arg_7+2-2*Arg_8 ]
n_eval_rank2_bb3_in___42 [2*Arg_4 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+4*Arg_6-6 ]
n_eval_rank2_bb4_in___15 [4*Arg_8-2*Arg_5-8 ]
n_eval_rank2_5___14 [8*Arg_7-2*Arg_5-4*Arg_8 ]
n_eval_rank2_bb4_in___34 [Arg_3+3*Arg_5+2*Arg_6+1-2*Arg_8 ]
n_eval_rank2_5___33 [Arg_5+2*Arg_6+2*Arg_7-Arg_3-5 ]
n_eval_rank2_bb4_in___40 [2*Arg_4+2*Arg_7+2-2*Arg_8 ]
n_eval_rank2_5___26 [2*Arg_5+2*Arg_7+2-2*Arg_8 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+4*Arg_6-6 ]
n_eval_rank2_5___54 [2*Arg_3+4*Arg_6-6 ]
n_eval_rank2_bb5_in___10 [8*Arg_7-2*Arg_5-4*Arg_8 ]
n_eval_rank2_bb5_in___22 [2*Arg_4 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+4*Arg_6-6 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+4*Arg_6-4 ]
n_eval_rank2_bb6_in___28 [4*Arg_8-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4 ]
n_eval_rank2_bb6_in___45 [4*Arg_7-2*Arg_5-4 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_5-2*Arg_4-2 ]
n_eval_rank2_bb7_in___43 [4*Arg_7-2*Arg_5-4 ]
n_eval_rank2_11___21 [4*Arg_7-2*Arg_5-4 ]
n_eval_rank2_bb7_in___7 [4*Arg_8+8-2*Arg_4 ]
n_eval_rank2_11___6 [4*Arg_8+8-2*Arg_4 ]
n_eval_rank2_bb8_in___17 [4*Arg_8-2*Arg_5 ]
n_eval_rank2_bb8_in___2 [4*Arg_8+8-2*Arg_4 ]
n_eval_rank2_bb6_in___9 [4*Arg_8+8-2*Arg_4 ]

MPRF for transition 7:n_eval_rank2_12___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 3+Arg_5<=Arg_8 && 0<Arg_0 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_12___4 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_6___12 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_6___24 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_6___31 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_6___52 [Arg_6+Arg_7+1 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_4-1 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5-1 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7+2-Arg_3 ]
n_eval_rank2__Pcritedge_in___51 [Arg_3+Arg_6+Arg_7-Arg_4 ]
n_eval_rank2_bb1_in___39 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_7+2-2*Arg_4 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_4-1 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb3_in___42 [2*Arg_8-Arg_4-1 ]
n_eval_rank2_bb3_in___56 [Arg_6+Arg_7+1 ]
n_eval_rank2_bb4_in___15 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_5___14 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_6 ]
n_eval_rank2_5___33 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_bb4_in___40 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_5___26 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb4_in___55 [Arg_6+Arg_7+1 ]
n_eval_rank2_5___54 [Arg_6+Arg_7+1 ]
n_eval_rank2_bb5_in___10 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb5_in___22 [Arg_7+2 ]
n_eval_rank2_bb5_in___29 [Arg_7+2 ]
n_eval_rank2_bb5_in___50 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_bb6_in___28 [Arg_7+2 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_8+1 ]
n_eval_rank2_bb6_in___45 [2*Arg_8+3-Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb7_in___43 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_11___21 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb7_in___7 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_11___6 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb8_in___17 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb8_in___2 [2*Arg_8-Arg_5-6 ]
n_eval_rank2_bb6_in___9 [2*Arg_8-Arg_5-1 ]

MPRF for transition 9:n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___12(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

8*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_12___4 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_6___12 [4*Arg_4+2*Arg_8-4 ]
n_eval_rank2_6___24 [6*Arg_7-2 ]
n_eval_rank2_6___31 [6*Arg_5-8 ]
n_eval_rank2_6___52 [8*Arg_3+4*Arg_6-2*Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_4+2*Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_5+2*Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_5+2*Arg_7-2 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_4+2*Arg_7+4*Arg_8-4*Arg_5-6 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_4+2*Arg_5 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+4*Arg_4+4*Arg_6-2*Arg_7 ]
n_eval_rank2_bb1_in___39 [6*Arg_5-8 ]
n_eval_rank2_bb1_in___49 [4*Arg_4+2*Arg_7-2 ]
n_eval_rank2_bb2_in___38 [6*Arg_5-8 ]
n_eval_rank2_bb2_in___48 [4*Arg_4+2*Arg_7-2 ]
n_eval_rank2_bb3_in___16 [4*Arg_4+2*Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [6*Arg_5-8 ]
n_eval_rank2_bb3_in___36 [6*Arg_5-8 ]
n_eval_rank2__Pcritedge_in___41 [6*Arg_8-8 ]
n_eval_rank2_bb3_in___42 [6*Arg_7-2 ]
n_eval_rank2_bb3_in___56 [6*Arg_3+2*Arg_6+2 ]
n_eval_rank2_bb4_in___15 [4*Arg_4+2*Arg_8 ]
n_eval_rank2_5___14 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_bb4_in___34 [6*Arg_5-8 ]
n_eval_rank2_5___33 [8*Arg_4+6*Arg_5-8*Arg_3 ]
n_eval_rank2_bb4_in___40 [6*Arg_7-2 ]
n_eval_rank2_5___26 [6*Arg_7-2 ]
n_eval_rank2_bb4_in___55 [8*Arg_3+4*Arg_6-2*Arg_7 ]
n_eval_rank2_5___54 [8*Arg_3+4*Arg_6-2*Arg_7 ]
n_eval_rank2_bb5_in___10 [4*Arg_4+2*Arg_7-2 ]
n_eval_rank2_bb5_in___22 [6*Arg_7-14 ]
n_eval_rank2_bb5_in___29 [6*Arg_5+6*Arg_7-6*Arg_4-26 ]
n_eval_rank2_bb5_in___50 [4*Arg_3+4*Arg_4+4*Arg_6+4-2*Arg_7 ]
n_eval_rank2_bb6_in___28 [6*Arg_7-14 ]
n_eval_rank2__Pcritedge1_in___44 [6*Arg_7-14 ]
n_eval_rank2_bb6_in___45 [4*Arg_5+2*Arg_7-2 ]
n_eval_rank2__Pcritedge1_in___8 [6*Arg_8-8 ]
n_eval_rank2_bb7_in___43 [4*Arg_4+Arg_7+Arg_8-1 ]
n_eval_rank2_11___21 [4*Arg_4+2*Arg_8 ]
n_eval_rank2_bb7_in___7 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_11___6 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_bb8_in___17 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_bb8_in___2 [4*Arg_5+2*Arg_8 ]
n_eval_rank2_bb6_in___9 [4*Arg_5+2*Arg_8 ]

MPRF for transition 11:n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___24(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

3*Arg_2+5 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_6___12 [2*Arg_8-Arg_5-2 ]
n_eval_rank2_6___24 [Arg_8-4 ]
n_eval_rank2_6___31 [Arg_7-1 ]
n_eval_rank2_6___52 [Arg_3+2*Arg_6-5 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_5-2 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5-2 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_8-Arg_4-2 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5+Arg_8-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___51 [Arg_6+Arg_7-4 ]
n_eval_rank2_bb1_in___39 [4*Arg_7-3*Arg_4-2*Arg_6 ]
n_eval_rank2_bb1_in___49 [2*Arg_7-Arg_3-5 ]
n_eval_rank2_bb2_in___38 [4*Arg_3+2*Arg_6-3*Arg_4 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_4-2 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+2*Arg_6-Arg_4-4 ]
n_eval_rank2_bb3_in___36 [3*Arg_4+2*Arg_6-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___41 [Arg_8-3 ]
n_eval_rank2_bb3_in___42 [Arg_8-2 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb4_in___15 [2*Arg_8-Arg_5-2 ]
n_eval_rank2_5___14 [2*Arg_8-Arg_4-2 ]
n_eval_rank2_bb4_in___34 [3*Arg_4+2*Arg_6-2*Arg_3 ]
n_eval_rank2_5___33 [3*Arg_4+2*Arg_7+2-4*Arg_3 ]
n_eval_rank2_bb4_in___40 [Arg_8-2 ]
n_eval_rank2_5___26 [Arg_8-2 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb5_in___10 [2*Arg_8-Arg_4-2 ]
n_eval_rank2_bb5_in___22 [Arg_8-4 ]
n_eval_rank2_bb5_in___29 [Arg_7-1 ]
n_eval_rank2_bb5_in___50 [Arg_6+Arg_7-4 ]
n_eval_rank2_bb6_in___28 [Arg_7-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_8-2 ]
n_eval_rank2_bb6_in___45 [Arg_7+Arg_8-Arg_5-3 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_7+Arg_8-2*Arg_5-8 ]
n_eval_rank2_bb7_in___43 [Arg_7+Arg_8-Arg_5-3 ]
n_eval_rank2_11___21 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_5-3 ]

MPRF for transition 13:n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___31(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

9*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_12___4 [2*Arg_8-Arg_5-5 ]
n_eval_rank2_6___12 [2*Arg_8-Arg_4-5 ]
n_eval_rank2_6___24 [Arg_8-2 ]
n_eval_rank2_6___31 [2*Arg_7-Arg_4-3 ]
n_eval_rank2_6___52 [Arg_4+2*Arg_6-3 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_4-5 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5-5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_4-3 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-Arg_4-3 ]
n_eval_rank2__Pcritedge_in___51 [Arg_4+2*Arg_6-3 ]
n_eval_rank2_bb1_in___39 [Arg_6+Arg_7-3 ]
n_eval_rank2_bb1_in___49 [Arg_4+Arg_6+Arg_7-Arg_3-5 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_4+3*Arg_6-Arg_7-5 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_5-5 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6-3 ]
n_eval_rank2__Pcritedge_in___41 [5*Arg_7+1-Arg_4-3*Arg_8 ]
n_eval_rank2_bb3_in___42 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_bb3_in___56 [4*Arg_4+2*Arg_6-3*Arg_3 ]
n_eval_rank2_bb4_in___15 [2*Arg_8-Arg_4-5 ]
n_eval_rank2_5___14 [2*Arg_8-Arg_5-5 ]
n_eval_rank2_bb4_in___34 [4*Arg_4+3*Arg_6-2*Arg_3-Arg_7 ]
n_eval_rank2_5___33 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_bb4_in___40 [2*Arg_7+Arg_8-Arg_4-Arg_5-4 ]
n_eval_rank2_5___26 [2*Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_bb4_in___55 [4*Arg_4+2*Arg_6-3*Arg_3 ]
n_eval_rank2_5___54 [4*Arg_4+2*Arg_6-3*Arg_3 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_4-3 ]
n_eval_rank2_bb5_in___22 [Arg_8-2 ]
n_eval_rank2_bb5_in___29 [2*Arg_7-Arg_4-3 ]
n_eval_rank2_bb5_in___50 [Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-Arg_5-3 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-Arg_4-3 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8-Arg_5-4 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-Arg_4-3 ]
n_eval_rank2_11___21 [2*Arg_8-Arg_4-1 ]
n_eval_rank2_bb7_in___7 [2*Arg_8-Arg_5-5 ]
n_eval_rank2_11___6 [2*Arg_8-Arg_5-5 ]
n_eval_rank2_bb8_in___17 [2*Arg_8-Arg_5-9 ]
n_eval_rank2_bb8_in___2 [2*Arg_8-Arg_5-5 ]
n_eval_rank2_bb6_in___9 [2*Arg_8-Arg_5-4 ]

MPRF for transition 15:n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_6___52(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

32*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_5+2*Arg_7-12 ]
n_eval_rank2_12___4 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_6___12 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_6___24 [6*Arg_8-22 ]
n_eval_rank2_6___31 [2*Arg_3+4*Arg_4+2*Arg_6-14 ]
n_eval_rank2_6___52 [4*Arg_3+2*Arg_7-12 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_4+2*Arg_8-10 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_4+2*Arg_7-8 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_5+6*Arg_8-4*Arg_7-18 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+4*Arg_4+2*Arg_6-14 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_4+2*Arg_7-8 ]
n_eval_rank2_bb1_in___39 [16*Arg_7+6*Arg_8-16*Arg_4-16*Arg_6 ]
n_eval_rank2_bb1_in___49 [7*Arg_7-Arg_4-5*Arg_6-7 ]
n_eval_rank2_bb2_in___38 [16*Arg_7+6*Arg_8-16*Arg_4-16*Arg_6 ]
n_eval_rank2_bb2_in___48 [6*Arg_3+Arg_6+Arg_7-Arg_4-7 ]
n_eval_rank2_bb3_in___16 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2__Pcritedge_in___35 [6*Arg_8-16 ]
n_eval_rank2_bb3_in___36 [6*Arg_8-16 ]
n_eval_rank2__Pcritedge_in___41 [6*Arg_8-16 ]
n_eval_rank2_bb3_in___42 [6*Arg_5-10 ]
n_eval_rank2_bb3_in___56 [10*Arg_7-2*Arg_3-2*Arg_4-8*Arg_6 ]
n_eval_rank2_bb4_in___15 [4*Arg_4+2*Arg_8-10 ]
n_eval_rank2_5___14 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_bb4_in___34 [6*Arg_8-16 ]
n_eval_rank2_5___33 [6*Arg_4-6 ]
n_eval_rank2_bb4_in___40 [6*Arg_5+6*Arg_8-6*Arg_7-16 ]
n_eval_rank2_5___26 [6*Arg_4+6*Arg_8-6*Arg_7-16 ]
n_eval_rank2_bb4_in___55 [10*Arg_7-2*Arg_3-2*Arg_4-8*Arg_6 ]
n_eval_rank2_5___54 [6*Arg_3+2*Arg_7-2*Arg_4-13 ]
n_eval_rank2_bb5_in___10 [4*Arg_4+2*Arg_8-10 ]
n_eval_rank2_bb5_in___22 [6*Arg_5+6*Arg_8-6*Arg_7-16 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+4*Arg_4+2*Arg_6-14 ]
n_eval_rank2_bb5_in___50 [4*Arg_3+2*Arg_7-12 ]
n_eval_rank2_bb6_in___28 [6*Arg_5-10 ]
n_eval_rank2__Pcritedge1_in___44 [6*Arg_5-10 ]
n_eval_rank2_bb6_in___45 [4*Arg_4+2*Arg_7-8 ]
n_eval_rank2__Pcritedge1_in___8 [6*Arg_5-10 ]
n_eval_rank2_bb7_in___43 [4*Arg_4+2*Arg_7-8 ]
n_eval_rank2_11___21 [4*Arg_5+2*Arg_7-12 ]
n_eval_rank2_bb7_in___7 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_11___6 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_bb8_in___17 [4*Arg_5+2*Arg_7-12 ]
n_eval_rank2_bb8_in___2 [4*Arg_5+2*Arg_8-10 ]
n_eval_rank2_bb6_in___9 [4*Arg_5+2*Arg_8-10 ]

MPRF for transition 16:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0 of depth 1:

new bound:

8*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_5+Arg_8+5 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_6___12 [2*Arg_4+Arg_8+3 ]
n_eval_rank2_6___24 [6*Arg_4+6-3*Arg_7 ]
n_eval_rank2_6___31 [2*Arg_3+Arg_7 ]
n_eval_rank2_6___52 [5*Arg_3+Arg_6-2*Arg_4-1 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_4+Arg_8+3 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+Arg_8+3 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_5+Arg_8+1 ]
n_eval_rank2__Pcritedge_in___23 [6*Arg_4+Arg_7+10-4*Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+Arg_7 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+Arg_7-2*Arg_4 ]
n_eval_rank2_bb1_in___39 [3*Arg_3+Arg_5+Arg_6+4-Arg_8 ]
n_eval_rank2_bb1_in___49 [3*Arg_4+Arg_7+1-Arg_3 ]
n_eval_rank2_bb2_in___38 [3*Arg_3+Arg_6-1 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+Arg_7+5-Arg_4 ]
n_eval_rank2_bb3_in___16 [2*Arg_4+Arg_8+3 ]
n_eval_rank2__Pcritedge_in___35 [3*Arg_3+Arg_6-1 ]
n_eval_rank2_bb3_in___36 [3*Arg_3+Arg_6-1 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_5+3*Arg_8-3*Arg_7 ]
n_eval_rank2_bb3_in___42 [3*Arg_4+3 ]
n_eval_rank2_bb3_in___56 [5*Arg_3+Arg_6-2*Arg_4-1 ]
n_eval_rank2_bb4_in___15 [2*Arg_4+Arg_8+3 ]
n_eval_rank2_5___14 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_bb4_in___34 [3*Arg_3+Arg_6-1 ]
n_eval_rank2_5___33 [2*Arg_3+Arg_7 ]
n_eval_rank2_bb4_in___40 [3*Arg_5+3*Arg_8-3*Arg_7 ]
n_eval_rank2_5___26 [6*Arg_4+3*Arg_8-3*Arg_5-3*Arg_7 ]
n_eval_rank2_bb4_in___55 [5*Arg_3+Arg_6-2*Arg_4-1 ]
n_eval_rank2_5___54 [5*Arg_3+Arg_6-2*Arg_4-1 ]
n_eval_rank2_bb5_in___10 [2*Arg_5+Arg_7+4 ]
n_eval_rank2_bb5_in___22 [6*Arg_5+9-3*Arg_8 ]
n_eval_rank2_bb5_in___29 [Arg_3+2*Arg_4+Arg_6+1 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+Arg_7+4 ]
n_eval_rank2_bb6_in___28 [2*Arg_4+Arg_7+2 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_5+3 ]
n_eval_rank2_bb6_in___45 [2*Arg_4+Arg_7+4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_bb7_in___43 [4*Arg_5+Arg_7+4-2*Arg_4 ]
n_eval_rank2_11___21 [2*Arg_5+Arg_8+5 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_bb8_in___17 [2*Arg_5+Arg_8+5 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_8+3 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_8+3 ]

MPRF for transition 17:n_eval_rank2_6___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_0<=0 && 2+Arg_4<=Arg_8 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1 of depth 1:

new bound:

4*Arg_2+5 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_4+Arg_8+9 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_8+9 ]
n_eval_rank2_6___12 [2*Arg_5+Arg_8+8 ]
n_eval_rank2_6___24 [3*Arg_8+3 ]
n_eval_rank2_6___31 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2_6___52 [3*Arg_3+Arg_6+5 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_5+Arg_8+9 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+Arg_8+8 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_4+Arg_7+3 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7+3*Arg_8-Arg_4 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+2*Arg_4+2*Arg_6+1-Arg_7 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_3+Arg_6 ]
n_eval_rank2_bb1_in___39 [Arg_6+Arg_7+2*Arg_8+4 ]
n_eval_rank2_bb1_in___49 [3*Arg_7+5-2*Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2_bb2_in___48 [3*Arg_7+5-2*Arg_6 ]
n_eval_rank2_bb3_in___16 [2*Arg_4+Arg_8+8 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+2*Arg_7+7 ]
n_eval_rank2_bb3_in___42 [3*Arg_5+9 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+Arg_6+5 ]
n_eval_rank2_bb4_in___15 [2*Arg_4+Arg_8+8 ]
n_eval_rank2_5___14 [2*Arg_5+Arg_8+8 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2_5___33 [Arg_3+2*Arg_6+2*Arg_8+4 ]
n_eval_rank2_bb4_in___40 [3*Arg_7+3*Arg_8-3*Arg_4 ]
n_eval_rank2_5___26 [3*Arg_7+3*Arg_8-3*Arg_5 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+Arg_6+5 ]
n_eval_rank2_5___54 [3*Arg_3+Arg_6+5 ]
n_eval_rank2_bb5_in___10 [2*Arg_5+Arg_8+7 ]
n_eval_rank2_bb5_in___22 [3*Arg_5+9 ]
n_eval_rank2_bb5_in___29 [3*Arg_4+2*Arg_6+2*Arg_8+7-2*Arg_5 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+Arg_7+8 ]
n_eval_rank2_bb6_in___28 [3*Arg_4+9 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_5+9 ]
n_eval_rank2_bb6_in___45 [2*Arg_5+Arg_7+8 ]
n_eval_rank2__Pcritedge1_in___8 [3*Arg_5+9 ]
n_eval_rank2_bb7_in___43 [2*Arg_4+Arg_8+9 ]
n_eval_rank2_11___21 [2*Arg_5+Arg_8+9 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_8+9 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_8+9 ]
n_eval_rank2_bb8_in___17 [2*Arg_4+Arg_8+9 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_8+9 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_8+9 ]

MPRF for transition 18:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=0 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_8+1 ]
n_eval_rank2_12___4 [Arg_7-4 ]
n_eval_rank2_6___12 [5*Arg_4+Arg_7-5*Arg_5 ]
n_eval_rank2_6___24 [Arg_8-1 ]
n_eval_rank2_6___31 [Arg_7 ]
n_eval_rank2_6___52 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8-1 ]
n_eval_rank2__Pcritedge_in___11 [5*Arg_4+Arg_7-5*Arg_5-1 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7 ]
n_eval_rank2_bb1_in___39 [2*Arg_7+1-Arg_4-Arg_6 ]
n_eval_rank2_bb1_in___49 [Arg_7-1 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_6 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_4+2*Arg_6-Arg_7-2 ]
n_eval_rank2_bb3_in___16 [Arg_8-1 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7 ]
n_eval_rank2_bb3_in___42 [3*Arg_7+2-2*Arg_8 ]
n_eval_rank2_bb3_in___56 [Arg_7 ]
n_eval_rank2_bb4_in___15 [Arg_7 ]
n_eval_rank2_5___14 [5*Arg_4+Arg_7-5*Arg_5 ]
n_eval_rank2_bb4_in___34 [Arg_3+Arg_6 ]
n_eval_rank2_5___33 [Arg_3+Arg_6 ]
n_eval_rank2_bb4_in___40 [Arg_4+3*Arg_7+2-Arg_5-2*Arg_8 ]
n_eval_rank2_5___26 [Arg_4+Arg_8-Arg_5-1 ]
n_eval_rank2_bb4_in___55 [Arg_7 ]
n_eval_rank2_5___54 [Arg_7 ]
n_eval_rank2_bb5_in___10 [Arg_8-1 ]
n_eval_rank2_bb5_in___22 [Arg_4+Arg_7-Arg_5 ]
n_eval_rank2_bb5_in___29 [Arg_7 ]
n_eval_rank2_bb5_in___50 [Arg_7 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7-Arg_8-1 ]
n_eval_rank2_bb6_in___45 [Arg_4+2*Arg_7-Arg_5-Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-1 ]
n_eval_rank2_bb7_in___43 [Arg_4+Arg_8+1-Arg_5 ]
n_eval_rank2_11___21 [Arg_4+Arg_8+1-Arg_5 ]
n_eval_rank2_bb7_in___7 [Arg_7-4 ]
n_eval_rank2_11___6 [Arg_7-4 ]
n_eval_rank2_bb8_in___17 [Arg_8+1 ]
n_eval_rank2_bb8_in___2 [Arg_7-4 ]
n_eval_rank2_bb6_in___9 [Arg_7-4 ]

MPRF for transition 19:n_eval_rank2_6___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7-3 ]
n_eval_rank2_12___4 [Arg_7-5 ]
n_eval_rank2_6___12 [Arg_8-4 ]
n_eval_rank2_6___24 [Arg_8-2 ]
n_eval_rank2_6___31 [Arg_4+Arg_6-3 ]
n_eval_rank2_6___52 [Arg_4+Arg_7-Arg_3-1 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8-2 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___11 [Arg_8-4 ]
n_eval_rank2__Pcritedge_in___23 [Arg_8-4 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+Arg_7-Arg_3-2 ]
n_eval_rank2__Pcritedge_in___51 [Arg_4+Arg_7-Arg_3-2 ]
n_eval_rank2_bb1_in___39 [2*Arg_3+Arg_8-2*Arg_4 ]
n_eval_rank2_bb1_in___49 [Arg_3+Arg_4+2*Arg_6-Arg_7-4 ]
n_eval_rank2_bb2_in___38 [2*Arg_3+Arg_8-2*Arg_4 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_4+2*Arg_6-Arg_7-4 ]
n_eval_rank2_bb3_in___16 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___35 [Arg_4+Arg_8-Arg_3-1 ]
n_eval_rank2_bb3_in___36 [Arg_4+Arg_8-Arg_3-1 ]
n_eval_rank2__Pcritedge_in___41 [Arg_8-2 ]
n_eval_rank2_bb3_in___42 [Arg_7-1 ]
n_eval_rank2_bb3_in___56 [Arg_4+Arg_6-2 ]
n_eval_rank2_bb4_in___15 [Arg_8-2 ]
n_eval_rank2_5___14 [Arg_8-2 ]
n_eval_rank2_bb4_in___34 [Arg_4+Arg_6-3 ]
n_eval_rank2_5___33 [Arg_4+Arg_6-3 ]
n_eval_rank2_bb4_in___40 [Arg_7+Arg_8-Arg_4-3 ]
n_eval_rank2_5___26 [Arg_8-2 ]
n_eval_rank2_bb4_in___55 [Arg_4+Arg_7-Arg_3-1 ]
n_eval_rank2_5___54 [Arg_4+Arg_7-Arg_3-1 ]
n_eval_rank2_bb5_in___10 [Arg_7-3 ]
n_eval_rank2_bb5_in___22 [Arg_8-3 ]
n_eval_rank2_bb5_in___29 [Arg_3+Arg_6-4 ]
n_eval_rank2_bb5_in___50 [Arg_4+Arg_7-Arg_3-1 ]
n_eval_rank2_bb6_in___28 [Arg_7-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_7-3 ]
n_eval_rank2_bb6_in___45 [Arg_5+Arg_8-Arg_4-2 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-2 ]
n_eval_rank2_bb7_in___43 [Arg_5+Arg_8-Arg_4-2 ]
n_eval_rank2_11___21 [Arg_7-3 ]
n_eval_rank2_bb7_in___7 [Arg_7-5 ]
n_eval_rank2_11___6 [Arg_7-5 ]
n_eval_rank2_bb8_in___17 [Arg_7-5 ]
n_eval_rank2_bb8_in___2 [Arg_7-5 ]
n_eval_rank2_bb6_in___9 [Arg_7-5 ]

MPRF for transition 20:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0 of depth 1:

new bound:

8*Arg_2+10 {O(n)}

MPRF:

n_eval_rank2_12___19 [5*Arg_7-2*Arg_5-7 ]
n_eval_rank2_12___4 [6*Arg_7-2*Arg_5-Arg_8-20 ]
n_eval_rank2_6___12 [5*Arg_7-2*Arg_5-7 ]
n_eval_rank2_6___24 [3*Arg_8-8 ]
n_eval_rank2_6___31 [2*Arg_3+Arg_4+5*Arg_6-9 ]
n_eval_rank2_6___52 [3*Arg_3+5*Arg_6-10 ]
n_eval_rank2__Pcritedge1_in___18 [5*Arg_8-2*Arg_4-2 ]
n_eval_rank2__Pcritedge1_in___3 [5*Arg_8-2*Arg_5-2 ]
n_eval_rank2__Pcritedge_in___11 [5*Arg_7-2*Arg_4-8 ]
n_eval_rank2__Pcritedge_in___23 [5*Arg_7+3*Arg_8-5*Arg_5-14 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+Arg_4+5*Arg_6-10 ]
n_eval_rank2__Pcritedge_in___51 [5*Arg_7-2*Arg_4-8 ]
n_eval_rank2_bb1_in___39 [Arg_5+4*Arg_7-2*Arg_4-6 ]
n_eval_rank2_bb1_in___49 [Arg_3+6*Arg_7-4*Arg_4-Arg_6-6 ]
n_eval_rank2_bb2_in___38 [4*Arg_3+Arg_5+4*Arg_6-2*Arg_4-6 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+5*Arg_7-5*Arg_4-5 ]
n_eval_rank2_bb3_in___16 [5*Arg_7+3-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___35 [Arg_5+4*Arg_7-2*Arg_4-6 ]
n_eval_rank2_bb3_in___36 [3*Arg_3+Arg_5+5*Arg_6-Arg_7-9 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_4+4*Arg_7-4*Arg_5-6 ]
n_eval_rank2_bb3_in___42 [3*Arg_4-2 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+5*Arg_6-10 ]
n_eval_rank2_bb4_in___15 [5*Arg_7+3-2*Arg_4 ]
n_eval_rank2_5___14 [5*Arg_7-2*Arg_5-7 ]
n_eval_rank2_bb4_in___34 [3*Arg_3+Arg_5+5*Arg_6-Arg_7-9 ]
n_eval_rank2_5___33 [2*Arg_3+Arg_4+5*Arg_6-9 ]
n_eval_rank2_bb4_in___40 [3*Arg_8-8 ]
n_eval_rank2_5___26 [Arg_4+3*Arg_8-Arg_5-8 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+5*Arg_6-10 ]
n_eval_rank2_5___54 [3*Arg_3+5*Arg_6-10 ]
n_eval_rank2_bb5_in___10 [5*Arg_7-2*Arg_4-7 ]
n_eval_rank2_bb5_in___22 [3*Arg_5+3*Arg_8-3*Arg_7-5 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+Arg_4-4 ]
n_eval_rank2_bb5_in___50 [3*Arg_3+5*Arg_6-10 ]
n_eval_rank2_bb6_in___28 [3*Arg_4-2 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_5-2 ]
n_eval_rank2_bb6_in___45 [3*Arg_4+4*Arg_7+Arg_8-5*Arg_5-6 ]
n_eval_rank2__Pcritedge1_in___8 [3*Arg_5+Arg_7-Arg_8-5 ]
n_eval_rank2_bb7_in___43 [3*Arg_4+4*Arg_7+Arg_8-5*Arg_5-6 ]
n_eval_rank2_11___21 [3*Arg_4+5*Arg_7-5*Arg_5-7 ]
n_eval_rank2_bb7_in___7 [6*Arg_7-2*Arg_5-Arg_8-20 ]
n_eval_rank2_11___6 [6*Arg_7-2*Arg_5-Arg_8-20 ]
n_eval_rank2_bb8_in___17 [5*Arg_7-Arg_4-Arg_5-19 ]
n_eval_rank2_bb8_in___2 [6*Arg_7-2*Arg_5-Arg_8-20 ]
n_eval_rank2_bb6_in___9 [6*Arg_7-2*Arg_5-Arg_8-20 ]

MPRF for transition 21:n_eval_rank2_6___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1 of depth 1:

new bound:

17*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8+1-Arg_4 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_5 ]
n_eval_rank2_6___12 [2*Arg_8-Arg_4 ]
n_eval_rank2_6___24 [Arg_5+2 ]
n_eval_rank2_6___31 [4*Arg_3+Arg_6+Arg_7-4*Arg_4-2 ]
n_eval_rank2_6___52 [2*Arg_7-Arg_4 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_5 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_5 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+2 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_3+Arg_7-4*Arg_4-1 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb1_in___39 [Arg_4+2*Arg_7-2*Arg_3 ]
n_eval_rank2_bb1_in___49 [4*Arg_7-2*Arg_3-Arg_4-2*Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_4+2*Arg_6 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_6+Arg_7-Arg_4 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_4 ]
n_eval_rank2__Pcritedge_in___35 [Arg_4+2*Arg_6+2 ]
n_eval_rank2_bb3_in___36 [Arg_4+2*Arg_6+2 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7+Arg_8+1-Arg_5 ]
n_eval_rank2_bb3_in___42 [Arg_7+Arg_8+3-Arg_4 ]
n_eval_rank2_bb3_in___56 [5*Arg_7-4*Arg_4-3*Arg_6 ]
n_eval_rank2_bb4_in___15 [2*Arg_8-Arg_5 ]
n_eval_rank2_5___14 [2*Arg_8-Arg_5 ]
n_eval_rank2_bb4_in___34 [Arg_4+2*Arg_6+2 ]
n_eval_rank2_5___33 [5*Arg_3+2*Arg_6-4*Arg_4-3 ]
n_eval_rank2_bb4_in___40 [Arg_5+Arg_8+1-Arg_7 ]
n_eval_rank2_5___26 [2*Arg_5+3-Arg_7 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+2*Arg_7-4*Arg_4-3 ]
n_eval_rank2_5___54 [3*Arg_3+2*Arg_7-4*Arg_4-3 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb5_in___22 [Arg_4+2*Arg_7+4-2*Arg_8 ]
n_eval_rank2_bb5_in___29 [4*Arg_3+Arg_6+Arg_7-4*Arg_4-4 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_4+3*Arg_7-4*Arg_5-Arg_8-1 ]
n_eval_rank2_bb6_in___45 [Arg_7+Arg_8+1-Arg_5 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8+6-Arg_5 ]
n_eval_rank2_bb7_in___43 [Arg_7+Arg_8-Arg_5 ]
n_eval_rank2_11___21 [Arg_7+Arg_8-Arg_5 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_5 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_5 ]
n_eval_rank2_bb8_in___17 [2*Arg_8+1-Arg_4 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_5 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_5 ]

MPRF for transition 22:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_1<=0 of depth 1:

new bound:

4*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-5 ]
n_eval_rank2_12___4 [Arg_5+2*Arg_8-Arg_4 ]
n_eval_rank2_6___12 [2*Arg_7-1 ]
n_eval_rank2_6___24 [2*Arg_5+2*Arg_7-2*Arg_8-1 ]
n_eval_rank2_6___31 [2*Arg_4+1 ]
n_eval_rank2_6___52 [2*Arg_7-5 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-3 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_5+2*Arg_8-Arg_4-4 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-1 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7-5 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_4+2*Arg_7-2*Arg_3-4 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-6 ]
n_eval_rank2_bb1_in___39 [2*Arg_5-3 ]
n_eval_rank2_bb1_in___49 [3*Arg_3+3*Arg_6-Arg_7-6 ]
n_eval_rank2_bb2_in___38 [2*Arg_5-3 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+3*Arg_6-Arg_7-6 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-3 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_5-3 ]
n_eval_rank2_bb3_in___36 [2*Arg_5-3 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_5-3 ]
n_eval_rank2_bb3_in___42 [2*Arg_5-3 ]
n_eval_rank2_bb3_in___56 [2*Arg_7-4 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-1 ]
n_eval_rank2_5___14 [2*Arg_7-1 ]
n_eval_rank2_bb4_in___34 [2*Arg_4+1 ]
n_eval_rank2_5___33 [2*Arg_4+1 ]
n_eval_rank2_bb4_in___40 [2*Arg_4+2*Arg_7-2*Arg_8-1 ]
n_eval_rank2_5___26 [2*Arg_4+2*Arg_7-2*Arg_8-1 ]
n_eval_rank2_bb4_in___55 [2*Arg_7-4 ]
n_eval_rank2_5___54 [2*Arg_7-5 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-1 ]
n_eval_rank2_bb5_in___22 [3*Arg_4+2*Arg_5+2-Arg_7-2*Arg_8 ]
n_eval_rank2_bb5_in___29 [2*Arg_4+1 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-5 ]
n_eval_rank2_bb6_in___28 [3*Arg_4+Arg_7-Arg_5-Arg_8-4 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_5-3 ]
n_eval_rank2_bb6_in___45 [Arg_7+Arg_8-4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+1 ]
n_eval_rank2_bb7_in___43 [Arg_7+Arg_8-4 ]
n_eval_rank2_11___21 [2*Arg_7-5 ]
n_eval_rank2_bb7_in___7 [Arg_5+2*Arg_8-Arg_4 ]
n_eval_rank2_11___6 [Arg_5+2*Arg_8-Arg_4 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-5 ]
n_eval_rank2_bb8_in___2 [Arg_5+2*Arg_8-Arg_4 ]
n_eval_rank2_bb6_in___9 [Arg_5+2*Arg_8-Arg_4 ]

MPRF for transition 23:n_eval_rank2_6___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && 0<Arg_1 of depth 1:

new bound:

2*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7+4 ]
n_eval_rank2_12___4 [Arg_7 ]
n_eval_rank2_6___12 [Arg_7+4 ]
n_eval_rank2_6___24 [Arg_4+5 ]
n_eval_rank2_6___31 [4*Arg_3+Arg_6-3*Arg_4 ]
n_eval_rank2_6___52 [Arg_3+Arg_6+4 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+3 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_7 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7+4 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+Arg_7+4-Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_3+Arg_7-4*Arg_4 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7+4 ]
n_eval_rank2_bb1_in___39 [2*Arg_7+4-Arg_3-Arg_6 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_7+6-2*Arg_4-Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_6+3 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_7+6-2*Arg_4-Arg_6 ]
n_eval_rank2_bb3_in___16 [Arg_7+4 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_7+5-Arg_3-Arg_6 ]
n_eval_rank2_bb3_in___36 [2*Arg_7+5-Arg_3-Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7+4 ]
n_eval_rank2_bb3_in___42 [Arg_7+4 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6+4 ]
n_eval_rank2_bb4_in___15 [Arg_7+4 ]
n_eval_rank2_5___14 [Arg_7+4 ]
n_eval_rank2_bb4_in___34 [2*Arg_3+2*Arg_7+2-3*Arg_4-Arg_6 ]
n_eval_rank2_5___33 [2*Arg_3+2*Arg_7+2-3*Arg_4-Arg_6 ]
n_eval_rank2_bb4_in___40 [Arg_7+4 ]
n_eval_rank2_5___26 [Arg_5+5 ]
n_eval_rank2_bb4_in___55 [Arg_3+Arg_6+4 ]
n_eval_rank2_5___54 [Arg_3+Arg_6+4 ]
n_eval_rank2_bb5_in___10 [Arg_7+4 ]
n_eval_rank2_bb5_in___22 [Arg_4+5 ]
n_eval_rank2_bb5_in___29 [4*Arg_3+Arg_6-3*Arg_4 ]
n_eval_rank2_bb5_in___50 [Arg_7+4 ]
n_eval_rank2_bb6_in___28 [6*Arg_4+5-5*Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [7*Arg_8+9-6*Arg_7 ]
n_eval_rank2_bb6_in___45 [2*Arg_5+2*Arg_7+3-2*Arg_4-Arg_8 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8+3 ]
n_eval_rank2_bb7_in___43 [Arg_8+5 ]
n_eval_rank2_11___21 [2*Arg_5+Arg_8+5-2*Arg_4 ]
n_eval_rank2_bb7_in___7 [Arg_7 ]
n_eval_rank2_11___6 [Arg_7 ]
n_eval_rank2_bb8_in___17 [Arg_7 ]
n_eval_rank2_bb8_in___2 [Arg_7 ]
n_eval_rank2_bb6_in___9 [Arg_7 ]

MPRF for transition 24:n_eval_rank2__Pcritedge1_in___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 5+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 3+Arg_4<=Arg_8 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_8+1 ]
n_eval_rank2_12___4 [Arg_7 ]
n_eval_rank2_6___12 [Arg_8-1 ]
n_eval_rank2_6___24 [Arg_5+1 ]
n_eval_rank2_6___31 [Arg_5+1 ]
n_eval_rank2_6___52 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+Arg_7+2-Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7 ]
n_eval_rank2_bb1_in___39 [Arg_4+Arg_5-Arg_3 ]
n_eval_rank2_bb1_in___49 [Arg_7 ]
n_eval_rank2_bb2_in___38 [Arg_4+Arg_5-Arg_3 ]
n_eval_rank2_bb2_in___48 [Arg_7 ]
n_eval_rank2_bb3_in___16 [Arg_8-1 ]
n_eval_rank2__Pcritedge_in___35 [Arg_5+1 ]
n_eval_rank2_bb3_in___36 [Arg_5+1 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+1 ]
n_eval_rank2_bb3_in___42 [Arg_4+1 ]
n_eval_rank2_bb3_in___56 [Arg_7 ]
n_eval_rank2_bb4_in___15 [Arg_8-1 ]
n_eval_rank2_5___14 [Arg_8-1 ]
n_eval_rank2_bb4_in___34 [Arg_5+1 ]
n_eval_rank2_5___33 [Arg_5+1 ]
n_eval_rank2_bb4_in___40 [Arg_4+1 ]
n_eval_rank2_5___26 [Arg_4+1 ]
n_eval_rank2_bb4_in___55 [Arg_7 ]
n_eval_rank2_5___54 [Arg_7 ]
n_eval_rank2_bb5_in___10 [Arg_8-1 ]
n_eval_rank2_bb5_in___22 [Arg_8-1 ]
n_eval_rank2_bb5_in___29 [Arg_5+1 ]
n_eval_rank2_bb5_in___50 [Arg_7 ]
n_eval_rank2_bb6_in___28 [Arg_4+1 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5+1 ]
n_eval_rank2_bb6_in___45 [Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+1 ]
n_eval_rank2_bb7_in___43 [Arg_8+1 ]
n_eval_rank2_11___21 [Arg_8+1 ]
n_eval_rank2_bb7_in___7 [Arg_7 ]
n_eval_rank2_11___6 [Arg_7 ]
n_eval_rank2_bb8_in___17 [Arg_8+1 ]
n_eval_rank2_bb8_in___2 [Arg_7 ]
n_eval_rank2_bb6_in___9 [Arg_7 ]

MPRF for transition 25:n_eval_rank2__Pcritedge1_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 5+Arg_0<=Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 8+Arg_0<=Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 2+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && Arg_0<=0 && 3+Arg_5<=Arg_8 of depth 1:

new bound:

9*Arg_2+21 {O(n)}

MPRF:

n_eval_rank2_12___19 [6*Arg_8-3*Arg_5-12 ]
n_eval_rank2_12___4 [6*Arg_8-3*Arg_5-23 ]
n_eval_rank2_6___12 [6*Arg_8-3*Arg_4-24 ]
n_eval_rank2_6___24 [3*Arg_7+3*Arg_8-3*Arg_4-21 ]
n_eval_rank2_6___31 [15*Arg_7-9*Arg_3-3*Arg_4-9*Arg_6-9 ]
n_eval_rank2_6___52 [6*Arg_7-3*Arg_4-18 ]
n_eval_rank2__Pcritedge1_in___18 [6*Arg_8-3*Arg_5-24 ]
n_eval_rank2__Pcritedge1_in___3 [6*Arg_8-3*Arg_5-23 ]
n_eval_rank2__Pcritedge_in___11 [6*Arg_8-3*Arg_4-24 ]
n_eval_rank2__Pcritedge_in___23 [6*Arg_7-3*Arg_5-18 ]
n_eval_rank2__Pcritedge_in___30 [15*Arg_7-9*Arg_3-3*Arg_4-9*Arg_6-9 ]
n_eval_rank2__Pcritedge_in___51 [6*Arg_7-3*Arg_4-18 ]
n_eval_rank2_bb1_in___39 [Arg_4+Arg_5+2*Arg_6+Arg_8-12 ]
n_eval_rank2_bb1_in___49 [Arg_3+7*Arg_7-5*Arg_4-Arg_6-16 ]
n_eval_rank2_bb2_in___38 [Arg_4+Arg_5+2*Arg_6+Arg_8-12 ]
n_eval_rank2_bb2_in___48 [8*Arg_3+6*Arg_6-5*Arg_4-16 ]
n_eval_rank2_bb3_in___16 [6*Arg_8-3*Arg_5-24 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+Arg_5+2*Arg_6+Arg_8-Arg_4-12 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_5+2*Arg_6+Arg_8-11 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_7-9 ]
n_eval_rank2_bb3_in___42 [3*Arg_7-9 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+6*Arg_6-21 ]
n_eval_rank2_bb4_in___15 [6*Arg_8-3*Arg_4-24 ]
n_eval_rank2_5___14 [6*Arg_8-3*Arg_5-24 ]
n_eval_rank2_bb4_in___34 [15*Arg_7-12*Arg_3-11*Arg_6 ]
n_eval_rank2_5___33 [15*Arg_7-12*Arg_4-9*Arg_6-18 ]
n_eval_rank2_bb4_in___40 [3*Arg_7+3*Arg_8-3*Arg_5-21 ]
n_eval_rank2_5___26 [3*Arg_7+3*Arg_8-3*Arg_5-21 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+6*Arg_6-21 ]
n_eval_rank2_5___54 [3*Arg_3+6*Arg_6-21 ]
n_eval_rank2_bb5_in___10 [6*Arg_8-3*Arg_4-24 ]
n_eval_rank2_bb5_in___22 [3*Arg_7+3*Arg_8-3*Arg_5-21 ]
n_eval_rank2_bb5_in___29 [15*Arg_7-9*Arg_3-3*Arg_4-9*Arg_6-9 ]
n_eval_rank2_bb5_in___50 [6*Arg_7-3*Arg_3-15 ]
n_eval_rank2_bb6_in___28 [3*Arg_7-15 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_8-12 ]
n_eval_rank2_bb6_in___45 [6*Arg_8-3*Arg_4-12 ]
n_eval_rank2__Pcritedge1_in___8 [6*Arg_8-3*Arg_5-8 ]
n_eval_rank2_bb7_in___43 [6*Arg_8-3*Arg_4-12 ]
n_eval_rank2_11___21 [6*Arg_8-3*Arg_4-12 ]
n_eval_rank2_bb7_in___7 [6*Arg_8-3*Arg_5-8 ]
n_eval_rank2_11___6 [6*Arg_8-3*Arg_5-23 ]
n_eval_rank2_bb8_in___17 [6*Arg_8-3*Arg_5-12 ]
n_eval_rank2_bb8_in___2 [6*Arg_8-3*Arg_5-23 ]
n_eval_rank2_bb6_in___9 [6*Arg_8-3*Arg_5-8 ]

MPRF for transition 26:n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

7*Arg_2+11 {O(n)}

MPRF:

n_eval_rank2_12___19 [3*Arg_4+2*Arg_7+1 ]
n_eval_rank2_12___4 [3*Arg_5+2*Arg_8+3 ]
n_eval_rank2_6___12 [3*Arg_4+3*Arg_8-Arg_7 ]
n_eval_rank2_6___24 [4*Arg_4+Arg_7+4 ]
n_eval_rank2_6___31 [5*Arg_4+Arg_6+6 ]
n_eval_rank2_6___52 [3*Arg_4+2*Arg_7+3 ]
n_eval_rank2__Pcritedge1_in___18 [3*Arg_5+2*Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___3 [3*Arg_5+2*Arg_8+1 ]
n_eval_rank2__Pcritedge_in___11 [3*Arg_4+3*Arg_8-Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_5+2*Arg_7+5-Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_3+Arg_7+2 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_3+3*Arg_4+3*Arg_6-Arg_7 ]
n_eval_rank2_bb1_in___39 [8*Arg_4+Arg_6-3*Arg_3 ]
n_eval_rank2_bb1_in___49 [5*Arg_4+Arg_6+Arg_7+1-Arg_3 ]
n_eval_rank2_bb2_in___38 [5*Arg_3+8*Arg_4+9*Arg_6-8*Arg_7 ]
n_eval_rank2_bb2_in___48 [5*Arg_4+2*Arg_6+1 ]
n_eval_rank2_bb3_in___16 [3*Arg_5+2*Arg_7+3 ]
n_eval_rank2__Pcritedge_in___35 [3*Arg_3+Arg_4+Arg_7+1 ]
n_eval_rank2_bb3_in___36 [4*Arg_3+Arg_4+Arg_6+2 ]
n_eval_rank2__Pcritedge_in___41 [4*Arg_4+Arg_7+4 ]
n_eval_rank2_bb3_in___42 [4*Arg_4+Arg_7+4 ]
n_eval_rank2_bb3_in___56 [3*Arg_4+2*Arg_7+11 ]
n_eval_rank2_bb4_in___15 [3*Arg_4+3*Arg_8-Arg_7 ]
n_eval_rank2_5___14 [3*Arg_5+3*Arg_8-Arg_7 ]
n_eval_rank2_bb4_in___34 [4*Arg_3+Arg_4+Arg_6+2 ]
n_eval_rank2_5___33 [4*Arg_3+Arg_4+Arg_6+2 ]
n_eval_rank2_bb4_in___40 [5*Arg_7 ]
n_eval_rank2_5___26 [4*Arg_5+5*Arg_7+8-4*Arg_8 ]
n_eval_rank2_bb4_in___55 [3*Arg_4+2*Arg_7+3 ]
n_eval_rank2_5___54 [3*Arg_4+2*Arg_7+3 ]
n_eval_rank2_bb5_in___10 [3*Arg_5+2*Arg_7+3 ]
n_eval_rank2_bb5_in___22 [4*Arg_5+Arg_7+4 ]
n_eval_rank2_bb5_in___29 [Arg_3+4*Arg_4+Arg_6+5 ]
n_eval_rank2_bb5_in___50 [3*Arg_4+2*Arg_7+3 ]
n_eval_rank2_bb6_in___28 [4*Arg_5+Arg_7+4 ]
n_eval_rank2__Pcritedge1_in___44 [4*Arg_5+Arg_7+3 ]
n_eval_rank2_bb6_in___45 [3*Arg_4+2*Arg_7+3 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_5+Arg_8+3 ]
n_eval_rank2_bb7_in___43 [3*Arg_4+2*Arg_7+1 ]
n_eval_rank2_11___21 [3*Arg_5+2*Arg_7+1 ]
n_eval_rank2_bb7_in___7 [3*Arg_5+2*Arg_8+3 ]
n_eval_rank2_11___6 [3*Arg_5+2*Arg_8+3 ]
n_eval_rank2_bb8_in___17 [3*Arg_4+2*Arg_7+1 ]
n_eval_rank2_bb8_in___2 [3*Arg_5+2*Arg_8+2 ]
n_eval_rank2_bb6_in___9 [3*Arg_5+2*Arg_8+3 ]

MPRF for transition 27:n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_5,Arg_5,Arg_6,Arg_8-1,Arg_8):|:3+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_8<3+Arg_5 of depth 1:

new bound:

2*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7+5 ]
n_eval_rank2_12___4 [Arg_7+5 ]
n_eval_rank2_6___12 [Arg_8+4 ]
n_eval_rank2_6___24 [Arg_7+4 ]
n_eval_rank2_6___31 [Arg_3+Arg_6+3 ]
n_eval_rank2_6___52 [Arg_4+Arg_6+5 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+4 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8+4 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_8-3*Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7+4 ]
n_eval_rank2__Pcritedge_in___30 [Arg_3+Arg_6+3 ]
n_eval_rank2__Pcritedge_in___51 [Arg_4+Arg_6+5 ]
n_eval_rank2_bb1_in___39 [2*Arg_4+3*Arg_7-4*Arg_3-Arg_6 ]
n_eval_rank2_bb1_in___49 [3*Arg_4+2*Arg_6+1-Arg_3-Arg_7 ]
n_eval_rank2_bb2_in___38 [2*Arg_4+2*Arg_6-Arg_3 ]
n_eval_rank2_bb2_in___48 [3*Arg_4+Arg_6+1-2*Arg_3 ]
n_eval_rank2_bb3_in___16 [Arg_8+4 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+2*Arg_6+1-Arg_4 ]
n_eval_rank2_bb3_in___36 [Arg_4+2*Arg_6+3 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_8+1-Arg_4 ]
n_eval_rank2_bb3_in___42 [2*Arg_8+1-Arg_5 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6+4 ]
n_eval_rank2_bb4_in___15 [Arg_8+4 ]
n_eval_rank2_5___14 [Arg_8+4 ]
n_eval_rank2_bb4_in___34 [Arg_4+2*Arg_6+3 ]
n_eval_rank2_5___33 [Arg_3+Arg_4+2*Arg_6+3-Arg_7 ]
n_eval_rank2_bb4_in___40 [5*Arg_7-3*Arg_4-Arg_5 ]
n_eval_rank2_5___26 [Arg_7+4*Arg_8-4*Arg_5-4 ]
n_eval_rank2_bb4_in___55 [Arg_3+Arg_6+4 ]
n_eval_rank2_5___54 [Arg_3+Arg_6+4 ]
n_eval_rank2_bb5_in___10 [Arg_8+4 ]
n_eval_rank2_bb5_in___22 [Arg_4+Arg_8+3-Arg_5 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_6+4 ]
n_eval_rank2_bb5_in___50 [Arg_4+Arg_6+5 ]
n_eval_rank2_bb6_in___28 [Arg_5+5 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_bb6_in___45 [Arg_7+5 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_7+Arg_8+3-Arg_5 ]
n_eval_rank2_bb7_in___43 [Arg_7+5 ]
n_eval_rank2_11___21 [Arg_7+5 ]
n_eval_rank2_bb7_in___7 [Arg_7+5 ]
n_eval_rank2_11___6 [Arg_7+5 ]
n_eval_rank2_bb8_in___17 [Arg_7+5 ]
n_eval_rank2_bb8_in___2 [Arg_7+5 ]
n_eval_rank2_bb6_in___9 [Arg_7+5 ]

MPRF for transition 28:n_eval_rank2__Pcritedge_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && 2+Arg_0<=Arg_3 && Arg_1<=0 && Arg_0+Arg_1<=0 && Arg_0<=0 && Arg_1<=0 && 2+Arg_4<=Arg_8 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 of depth 1:

new bound:

5*Arg_2+7 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_3-4 ]
n_eval_rank2_12___4 [2*Arg_8-Arg_3 ]
n_eval_rank2_6___12 [2*Arg_7-Arg_3-3 ]
n_eval_rank2_6___24 [Arg_5+1 ]
n_eval_rank2_6___31 [Arg_4+1 ]
n_eval_rank2_6___52 [2*Arg_7-Arg_4-5 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_3-2 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_3 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_3-3 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+1 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+2*Arg_7-2*Arg_3-3 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-Arg_4-5 ]
n_eval_rank2_bb1_in___39 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_bb1_in___49 [2*Arg_7-Arg_3-6 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6-2 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6-6 ]
n_eval_rank2_bb3_in___16 [2*Arg_7-Arg_3 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_bb3_in___36 [2*Arg_4+2*Arg_6-Arg_3 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_8-Arg_4-3 ]
n_eval_rank2_bb3_in___42 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+2*Arg_6-Arg_4-7 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-Arg_3 ]
n_eval_rank2_5___14 [2*Arg_7-Arg_3-3 ]
n_eval_rank2_bb4_in___34 [2*Arg_4+2*Arg_6-Arg_3 ]
n_eval_rank2_5___33 [Arg_4+2*Arg_6-1 ]
n_eval_rank2_bb4_in___40 [Arg_5+1 ]
n_eval_rank2_5___26 [Arg_4+1 ]
n_eval_rank2_bb4_in___55 [2*Arg_7-Arg_4-5 ]
n_eval_rank2_5___54 [2*Arg_7-Arg_4-5 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_3-4 ]
n_eval_rank2_bb5_in___22 [Arg_4+1 ]
n_eval_rank2_bb5_in___29 [Arg_4+1 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-Arg_4-5 ]
n_eval_rank2_bb6_in___28 [Arg_5+1 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7-Arg_5-5 ]
n_eval_rank2_bb6_in___45 [2*Arg_8-Arg_3-2 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8-Arg_3 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-Arg_3-4 ]
n_eval_rank2_11___21 [2*Arg_7-Arg_3-4 ]
n_eval_rank2_bb7_in___7 [2*Arg_8-Arg_3 ]
n_eval_rank2_11___6 [2*Arg_8-Arg_3 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-Arg_3-4 ]
n_eval_rank2_bb8_in___2 [2*Arg_8-Arg_3 ]
n_eval_rank2_bb6_in___9 [2*Arg_8-Arg_3 ]

MPRF for transition 29:n_eval_rank2__Pcritedge_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 3+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 1+Arg_1<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_7<4+Arg_4 && 1+Arg_4<=Arg_7 && Arg_1<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 of depth 1:

new bound:

6*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_12___4 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_6___12 [6*Arg_8-2*Arg_3-2*Arg_7-2 ]
n_eval_rank2_6___24 [8*Arg_7-6*Arg_4 ]
n_eval_rank2_6___31 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_6___52 [2*Arg_4+4*Arg_6+2 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_8-2*Arg_3 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_7+2-2*Arg_5 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7+6 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+4*Arg_6-2*Arg_4-2 ]
n_eval_rank2_bb1_in___39 [Arg_3+Arg_6+Arg_7+2*Arg_8+8-2*Arg_5 ]
n_eval_rank2_bb1_in___49 [4*Arg_7+1-Arg_3-Arg_4 ]
n_eval_rank2_bb2_in___38 [2*Arg_3+2*Arg_6+8 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_bb3_in___16 [4*Arg_8-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+Arg_6+Arg_7+2*Arg_8+7-2*Arg_5 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_6+Arg_7+9 ]
n_eval_rank2__Pcritedge_in___41 [5*Arg_7+11-2*Arg_5-Arg_8 ]
n_eval_rank2_bb3_in___42 [5*Arg_7+11-2*Arg_4-Arg_8 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_bb4_in___15 [6*Arg_8-2*Arg_3-2*Arg_7-2 ]
n_eval_rank2_5___14 [6*Arg_8-2*Arg_3-2*Arg_7-2 ]
n_eval_rank2_bb4_in___34 [10*Arg_3+Arg_6+Arg_7-9*Arg_4 ]
n_eval_rank2_5___33 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb4_in___40 [13*Arg_7-10*Arg_4-Arg_8-3 ]
n_eval_rank2_5___26 [8*Arg_7+2-5*Arg_4-Arg_8 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_5___54 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_bb5_in___10 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb5_in___22 [9*Arg_7-7*Arg_4-3 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+4*Arg_6 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+4*Arg_6+2 ]
n_eval_rank2_bb6_in___28 [4*Arg_7+2-2*Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [4*Arg_8+6-2*Arg_5 ]
n_eval_rank2_bb6_in___45 [4*Arg_8+8-2*Arg_3 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_7+4-2*Arg_5 ]
n_eval_rank2_bb7_in___43 [4*Arg_8+8-2*Arg_3 ]
n_eval_rank2_11___21 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb7_in___7 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_11___6 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb8_in___17 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb8_in___2 [4*Arg_7+4-2*Arg_3 ]
n_eval_rank2_bb6_in___9 [4*Arg_7+4-2*Arg_3 ]

MPRF for transition 30:n_eval_rank2__Pcritedge_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4+Arg_1<=Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_1+Arg_6<=3 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 3+Arg_1<=Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_1<=0 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 of depth 1:

new bound:

2*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7+3 ]
n_eval_rank2_12___4 [Arg_7+3 ]
n_eval_rank2_6___12 [Arg_7+3 ]
n_eval_rank2_6___24 [Arg_8+1 ]
n_eval_rank2_6___31 [Arg_4+Arg_7+4-Arg_3 ]
n_eval_rank2_6___52 [Arg_7+3 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+2 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8+2 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7+2 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7+2 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+2*Arg_7+5-2*Arg_3-Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7+3 ]
n_eval_rank2_bb1_in___39 [2*Arg_7+2-Arg_3-Arg_6 ]
n_eval_rank2_bb1_in___49 [3*Arg_4+Arg_7-3*Arg_3-1 ]
n_eval_rank2_bb2_in___38 [2*Arg_7+2-Arg_3-Arg_6 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_7+3-Arg_4 ]
n_eval_rank2_bb3_in___16 [Arg_8+2 ]
n_eval_rank2__Pcritedge_in___35 [3*Arg_3+3*Arg_6-2*Arg_7 ]
n_eval_rank2_bb3_in___36 [3*Arg_3+3*Arg_6-2*Arg_7 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7+2 ]
n_eval_rank2_bb3_in___42 [2*Arg_8-Arg_7 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6+2 ]
n_eval_rank2_bb4_in___15 [Arg_7+3 ]
n_eval_rank2_5___14 [Arg_7+3 ]
n_eval_rank2_bb4_in___34 [3*Arg_3+3*Arg_6-2*Arg_7 ]
n_eval_rank2_5___33 [Arg_7+3 ]
n_eval_rank2_bb4_in___40 [2*Arg_8-Arg_7 ]
n_eval_rank2_5___26 [Arg_4+Arg_8+2-Arg_7 ]
n_eval_rank2_bb4_in___55 [Arg_7+3 ]
n_eval_rank2_5___54 [Arg_7+3 ]
n_eval_rank2_bb5_in___10 [Arg_7+3 ]
n_eval_rank2_bb5_in___22 [2*Arg_7+Arg_8-2*Arg_4-1 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_7+4-Arg_3 ]
n_eval_rank2_bb5_in___50 [Arg_7+3 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-Arg_4-1 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7-Arg_4-1 ]
n_eval_rank2_bb6_in___45 [2*Arg_5+Arg_7+3-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8+6 ]
n_eval_rank2_bb7_in___43 [2*Arg_5+2*Arg_7+2-2*Arg_4-Arg_8 ]
n_eval_rank2_11___21 [Arg_7+3 ]
n_eval_rank2_bb7_in___7 [Arg_7+3 ]
n_eval_rank2_11___6 [Arg_7+3 ]
n_eval_rank2_bb8_in___17 [Arg_7+3 ]
n_eval_rank2_bb8_in___2 [Arg_7+3 ]
n_eval_rank2_bb6_in___9 [Arg_7+3 ]

MPRF for transition 31:n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 2+Arg_7<=Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && 2+Arg_7<=Arg_5 && Arg_7<=Arg_4 && 1+Arg_7<=Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 3+Arg_6<=Arg_5 && 1+Arg_6<=Arg_4 && 2+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<Arg_3 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

24*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_5+2*Arg_8+12 ]
n_eval_rank2_12___4 [4*Arg_5+2*Arg_8+9 ]
n_eval_rank2_6___12 [3*Arg_4+Arg_5+2*Arg_8+8 ]
n_eval_rank2_6___24 [6*Arg_8-10 ]
n_eval_rank2_6___31 [6*Arg_3 ]
n_eval_rank2_6___52 [10*Arg_3+6*Arg_6-4*Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_4+2*Arg_8+8 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_5+2*Arg_8+9 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_4+2*Arg_8+8 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7+6*Arg_8-2*Arg_4-12 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_3+2*Arg_7-4 ]
n_eval_rank2__Pcritedge_in___51 [10*Arg_3+6*Arg_6-4*Arg_7 ]
n_eval_rank2_bb1_in___39 [6*Arg_4-6 ]
n_eval_rank2_bb1_in___49 [Arg_3+6*Arg_4+3*Arg_6-Arg_7-2 ]
n_eval_rank2_bb2_in___38 [6*Arg_3 ]
n_eval_rank2_bb2_in___48 [6*Arg_3+6*Arg_4+8*Arg_6-6*Arg_7-2 ]
n_eval_rank2_bb3_in___16 [4*Arg_4+2*Arg_8+8 ]
n_eval_rank2__Pcritedge_in___35 [6*Arg_4-5 ]
n_eval_rank2_bb3_in___36 [6*Arg_3 ]
n_eval_rank2__Pcritedge_in___41 [6*Arg_4+6*Arg_7-6*Arg_8 ]
n_eval_rank2_bb3_in___42 [5*Arg_5+Arg_7+1 ]
n_eval_rank2_bb3_in___56 [10*Arg_3+6*Arg_6-4*Arg_7 ]
n_eval_rank2_bb4_in___15 [4*Arg_5+2*Arg_8+8 ]
n_eval_rank2_5___14 [3*Arg_4+Arg_5+2*Arg_8+8 ]
n_eval_rank2_bb4_in___34 [6*Arg_3 ]
n_eval_rank2_5___33 [6*Arg_3 ]
n_eval_rank2_bb4_in___40 [5*Arg_5+Arg_7+6*Arg_8-6*Arg_4-11 ]
n_eval_rank2_5___26 [5*Arg_5+Arg_7+6*Arg_8-6*Arg_4-11 ]
n_eval_rank2_bb4_in___55 [10*Arg_3+6*Arg_6-4*Arg_7 ]
n_eval_rank2_5___54 [10*Arg_3+6*Arg_6-4*Arg_7 ]
n_eval_rank2_bb5_in___10 [4*Arg_4+2*Arg_7+10 ]
n_eval_rank2_bb5_in___22 [3*Arg_7+6*Arg_8-3*Arg_4-13 ]
n_eval_rank2_bb5_in___29 [6*Arg_3 ]
n_eval_rank2_bb5_in___50 [6*Arg_3+4*Arg_4+6*Arg_6+4-4*Arg_7 ]
n_eval_rank2_bb6_in___28 [6*Arg_5+2 ]
n_eval_rank2__Pcritedge1_in___44 [6*Arg_5+2 ]
n_eval_rank2_bb6_in___45 [3*Arg_4+Arg_5+3*Arg_7+9-Arg_8 ]
n_eval_rank2__Pcritedge1_in___8 [5*Arg_5+Arg_8 ]
n_eval_rank2_bb7_in___43 [3*Arg_4+Arg_5+3*Arg_7+9-Arg_8 ]
n_eval_rank2_11___21 [4*Arg_5+2*Arg_8+12 ]
n_eval_rank2_bb7_in___7 [4*Arg_5+2*Arg_8+9 ]
n_eval_rank2_11___6 [4*Arg_5+2*Arg_8+9 ]
n_eval_rank2_bb8_in___17 [4*Arg_5+2*Arg_8+12 ]
n_eval_rank2_bb8_in___2 [4*Arg_5+2*Arg_8+9 ]
n_eval_rank2_bb6_in___9 [4*Arg_5+2*Arg_8+9 ]

MPRF for transition 32:n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=1+Arg_5 && Arg_8<=1+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<1+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

5*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_12___4 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_6___12 [2*Arg_8-Arg_5-2 ]
n_eval_rank2_6___24 [Arg_8 ]
n_eval_rank2_6___31 [2*Arg_7-Arg_4 ]
n_eval_rank2_6___52 [2*Arg_7-Arg_4 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8+2-Arg_5 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8+2-Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_4 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7-Arg_4 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-Arg_4 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb1_in___39 [Arg_5+2*Arg_7+1-Arg_4-Arg_8 ]
n_eval_rank2_bb1_in___49 [Arg_6+Arg_7-1 ]
n_eval_rank2_bb2_in___38 [Arg_5+2*Arg_7+1-Arg_4-Arg_8 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_6-1 ]
n_eval_rank2_bb3_in___16 [10*Arg_8-Arg_5-8*Arg_7-6 ]
n_eval_rank2__Pcritedge_in___35 [Arg_5+3*Arg_7+2-Arg_3-Arg_4-Arg_6-Arg_8 ]
n_eval_rank2_bb3_in___36 [Arg_5+3*Arg_7+2-Arg_3-Arg_4-Arg_6-Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7+1 ]
n_eval_rank2_bb3_in___42 [Arg_4+2 ]
n_eval_rank2_bb3_in___56 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb4_in___15 [2*Arg_8+2-Arg_4 ]
n_eval_rank2_5___14 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_bb4_in___34 [3*Arg_7+1-Arg_3-Arg_4-Arg_6 ]
n_eval_rank2_5___33 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb4_in___40 [Arg_4+Arg_8+1-Arg_7 ]
n_eval_rank2_5___26 [Arg_4+Arg_8-Arg_5 ]
n_eval_rank2_bb4_in___55 [2*Arg_7-Arg_4 ]
n_eval_rank2_5___54 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-Arg_5 ]
n_eval_rank2_bb5_in___22 [Arg_5+Arg_8+1-Arg_7 ]
n_eval_rank2_bb5_in___29 [Arg_4+2 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-Arg_4 ]
n_eval_rank2_bb6_in___28 [Arg_4+2 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5+Arg_8+3-Arg_7 ]
n_eval_rank2_bb6_in___45 [3*Arg_5+2*Arg_7-4*Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_bb7_in___43 [3*Arg_5+2*Arg_7-4*Arg_4 ]
n_eval_rank2_11___21 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_bb7_in___7 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_11___6 [2*Arg_8+2-Arg_5 ]
n_eval_rank2_bb8_in___17 [2*Arg_8-Arg_5 ]
n_eval_rank2_bb8_in___2 [2*Arg_8-Arg_5 ]
n_eval_rank2_bb6_in___9 [2*Arg_8+2-Arg_5 ]

MPRF for transition 33:n_eval_rank2__Pcritedge_in___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_4-1,Arg_4,Arg_5,Arg_7+1-Arg_4,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3+Arg_1<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && Arg_1<=0 && 1<=Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

4*Arg_2+7 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-5 ]
n_eval_rank2_12___4 [2*Arg_7-9 ]
n_eval_rank2_6___12 [2*Arg_7-5 ]
n_eval_rank2_6___24 [2*Arg_7-5 ]
n_eval_rank2_6___31 [2*Arg_5-3 ]
n_eval_rank2_6___52 [2*Arg_3+2*Arg_4+4*Arg_6-2*Arg_7-7 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-7 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-7 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-5 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7-7 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_8-5 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_4+2*Arg_6-5 ]
n_eval_rank2_bb1_in___39 [2*Arg_5-3 ]
n_eval_rank2_bb1_in___49 [Arg_3+5*Arg_7-4*Arg_4-3*Arg_6-3 ]
n_eval_rank2_bb2_in___38 [2*Arg_5-3 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+4*Arg_7-4*Arg_4-2*Arg_6-3 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-7 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_5-3 ]
n_eval_rank2_bb3_in___36 [2*Arg_5-3 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_4-3 ]
n_eval_rank2_bb3_in___42 [2*Arg_8-3 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+2*Arg_6-7 ]
n_eval_rank2_bb4_in___15 [2*Arg_7-5 ]
n_eval_rank2_5___14 [2*Arg_7-5 ]
n_eval_rank2_bb4_in___34 [2*Arg_5-3 ]
n_eval_rank2_5___33 [2*Arg_5-3 ]
n_eval_rank2_bb4_in___40 [2*Arg_7-5 ]
n_eval_rank2_5___26 [2*Arg_7-5 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+2*Arg_6-7 ]
n_eval_rank2_5___54 [2*Arg_3+2*Arg_4+4*Arg_6-2*Arg_7-7 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-5 ]
n_eval_rank2_bb5_in___22 [2*Arg_7-5 ]
n_eval_rank2_bb5_in___29 [2*Arg_5-3 ]
n_eval_rank2_bb5_in___50 [2*Arg_3+2*Arg_4+4*Arg_6-2*Arg_7-7 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-5 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_8-3 ]
n_eval_rank2_bb6_in___45 [2*Arg_4+2*Arg_7-2*Arg_5-5 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_7-9 ]
n_eval_rank2_bb7_in___43 [2*Arg_5+2*Arg_8-2*Arg_4-3 ]
n_eval_rank2_11___21 [2*Arg_7-5 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-9 ]
n_eval_rank2_11___6 [2*Arg_7-9 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-5 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-9 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-9 ]

MPRF for transition 35:n_eval_rank2_bb1_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 1<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 1<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 1<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 2<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 2<=Arg_1+Arg_4 && 0<=Arg_3 && 1<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3 of depth 1:

new bound:

6*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_5+2*Arg_8-1 ]
n_eval_rank2_12___4 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_6___12 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_6___24 [4*Arg_4-1 ]
n_eval_rank2_6___31 [Arg_4+3*Arg_5-4 ]
n_eval_rank2_6___52 [4*Arg_3+2*Arg_6-7 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_4+2*Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_7-6 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+3*Arg_5-4 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+2*Arg_6-8 ]
n_eval_rank2_bb1_in___39 [Arg_3+3*Arg_5-4 ]
n_eval_rank2_bb1_in___49 [2*Arg_3+Arg_4+Arg_6+Arg_7-3 ]
n_eval_rank2_bb2_in___38 [Arg_3+3*Arg_5-5 ]
n_eval_rank2_bb2_in___48 [6*Arg_3+2*Arg_6-2*Arg_4 ]
n_eval_rank2_bb3_in___16 [2*Arg_4+2*Arg_7-3 ]
n_eval_rank2__Pcritedge_in___35 [Arg_4+3*Arg_5-5 ]
n_eval_rank2_bb3_in___36 [Arg_4+3*Arg_5-4 ]
n_eval_rank2__Pcritedge_in___41 [Arg_4+3*Arg_5-5 ]
n_eval_rank2_bb3_in___42 [2*Arg_5+3*Arg_8-Arg_7-6 ]
n_eval_rank2_bb3_in___56 [4*Arg_3+2*Arg_6-2 ]
n_eval_rank2_bb4_in___15 [2*Arg_4+2*Arg_8-5 ]
n_eval_rank2_5___14 [2*Arg_4+2*Arg_8-5 ]
n_eval_rank2_bb4_in___34 [Arg_4+3*Arg_5-4 ]
n_eval_rank2_5___33 [Arg_4+3*Arg_5-4 ]
n_eval_rank2_bb4_in___40 [4*Arg_5+3*Arg_8-3*Arg_7-4 ]
n_eval_rank2_5___26 [4*Arg_4+3*Arg_8-3*Arg_7-4 ]
n_eval_rank2_bb4_in___55 [4*Arg_3+2*Arg_6-7 ]
n_eval_rank2_5___54 [4*Arg_3+2*Arg_6-7 ]
n_eval_rank2_bb5_in___10 [2*Arg_4+2*Arg_7-3 ]
n_eval_rank2_bb5_in___22 [4*Arg_4+2*Arg_7-2*Arg_5-7 ]
n_eval_rank2_bb5_in___29 [Arg_4+3*Arg_5-7 ]
n_eval_rank2_bb5_in___50 [4*Arg_3+2*Arg_6-7 ]
n_eval_rank2_bb6_in___28 [2*Arg_4+2*Arg_8-5 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4+2*Arg_8-5 ]
n_eval_rank2_bb6_in___45 [2*Arg_5+Arg_7+Arg_8-2 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_bb7_in___43 [2*Arg_5+Arg_7+Arg_8-2 ]
n_eval_rank2_11___21 [2*Arg_4+2*Arg_8-1 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_11___6 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_bb8_in___17 [2*Arg_5+2*Arg_8-1 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+2*Arg_8-5 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+2*Arg_8-5 ]

MPRF for transition 37:n_eval_rank2_bb1_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 2+Arg_1<=Arg_7 && 3<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && Arg_4<=1+Arg_3 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 0<=Arg_3 && Arg_1<=Arg_3 && Arg_1<=0 && 1<=Arg_6 && Arg_3+Arg_6<=Arg_7 && Arg_7<=Arg_3+Arg_6 && 1+Arg_3<=Arg_4 && Arg_4<=1+Arg_3 && 2<=Arg_3 of depth 1:

new bound:

10*Arg_2+6 {O(n)}

MPRF:

n_eval_rank2_12___19 [6*Arg_7-2*Arg_5-6 ]
n_eval_rank2_12___4 [7*Arg_7-2*Arg_5-Arg_8-9 ]
n_eval_rank2_6___12 [6*Arg_8-2*Arg_4 ]
n_eval_rank2_6___24 [4*Arg_4+12 ]
n_eval_rank2_6___31 [2*Arg_3+8*Arg_5+4*Arg_7+24-2*Arg_4-2*Arg_6-8*Arg_8 ]
n_eval_rank2_6___52 [2*Arg_6+4*Arg_7+6 ]
n_eval_rank2__Pcritedge1_in___18 [6*Arg_8-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___3 [6*Arg_8+12-2*Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [6*Arg_8-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_4+2*Arg_8+10-2*Arg_7 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+4*Arg_7+16-2*Arg_4-2*Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [Arg_3+2*Arg_6+4*Arg_7+5-Arg_4 ]
n_eval_rank2_bb1_in___39 [8*Arg_5+4*Arg_6+4*Arg_7+16-8*Arg_8 ]
n_eval_rank2_bb1_in___49 [6*Arg_7+6-2*Arg_4 ]
n_eval_rank2_bb2_in___38 [4*Arg_3+8*Arg_5+8*Arg_6+16-8*Arg_8 ]
n_eval_rank2_bb2_in___48 [6*Arg_7+4-2*Arg_4 ]
n_eval_rank2_bb3_in___16 [6*Arg_8-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___35 [4*Arg_3+8*Arg_5+8*Arg_6+16-8*Arg_8 ]
n_eval_rank2_bb3_in___36 [4*Arg_3+8*Arg_5+8*Arg_6+16-8*Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [4*Arg_4+12 ]
n_eval_rank2_bb3_in___42 [4*Arg_4+12 ]
n_eval_rank2_bb3_in___56 [2*Arg_6+4*Arg_7+6 ]
n_eval_rank2_bb4_in___15 [6*Arg_8-2*Arg_5 ]
n_eval_rank2_5___14 [Arg_4+7*Arg_8-3*Arg_5-Arg_7-1 ]
n_eval_rank2_bb4_in___34 [8*Arg_5+8*Arg_7+24-4*Arg_3-8*Arg_8 ]
n_eval_rank2_5___33 [4*Arg_3+8*Arg_5+4*Arg_7+22-4*Arg_4-2*Arg_6-8*Arg_8 ]
n_eval_rank2_bb4_in___40 [4*Arg_4+12 ]
n_eval_rank2_5___26 [4*Arg_4+12 ]
n_eval_rank2_bb4_in___55 [2*Arg_6+4*Arg_7+6 ]
n_eval_rank2_5___54 [2*Arg_6+4*Arg_7+6 ]
n_eval_rank2_bb5_in___10 [6*Arg_7+6-2*Arg_4 ]
n_eval_rank2_bb5_in___22 [4*Arg_4+12 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+4*Arg_4+8*Arg_5+30-2*Arg_6-2*Arg_7-8*Arg_8 ]
n_eval_rank2_bb5_in___50 [6*Arg_7+8-2*Arg_3 ]
n_eval_rank2_bb6_in___28 [4*Arg_5+12 ]
n_eval_rank2__Pcritedge1_in___44 [4*Arg_5+12 ]
n_eval_rank2_bb6_in___45 [6*Arg_7+6-2*Arg_5 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_5+12 ]
n_eval_rank2_bb7_in___43 [6*Arg_7+6-2*Arg_5 ]
n_eval_rank2_11___21 [6*Arg_7-2*Arg_4-6 ]
n_eval_rank2_bb7_in___7 [7*Arg_7-2*Arg_5-Arg_8-9 ]
n_eval_rank2_11___6 [7*Arg_7-2*Arg_5-Arg_8-9 ]
n_eval_rank2_bb8_in___17 [6*Arg_7-2*Arg_5-6 ]
n_eval_rank2_bb8_in___2 [7*Arg_7-2*Arg_5-Arg_8-9 ]
n_eval_rank2_bb6_in___9 [7*Arg_7-2*Arg_5-Arg_8-9 ]

MPRF for transition 41:n_eval_rank2_bb2_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 1+Arg_7<=Arg_8 && 1+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_7<=1+Arg_3 && Arg_6<=Arg_7 && Arg_6<=3 && Arg_6<=Arg_5 && Arg_6<=Arg_4 && Arg_6<=1+Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 6<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 4<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6 of depth 1:

new bound:

4*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_5+Arg_7 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_8+1 ]
n_eval_rank2_6___12 [Arg_4+Arg_5+Arg_7 ]
n_eval_rank2_6___24 [3*Arg_7-2 ]
n_eval_rank2_6___31 [Arg_3+3*Arg_5+Arg_6-Arg_8-4 ]
n_eval_rank2_6___52 [2*Arg_4+Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_5+Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+Arg_8+1 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_4+Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_4+Arg_8-1 ]
n_eval_rank2__Pcritedge_in___30 [Arg_3+2*Arg_4+Arg_5+Arg_6-Arg_8 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_4+Arg_7 ]
n_eval_rank2_bb1_in___39 [Arg_3+3*Arg_5+2-Arg_8 ]
n_eval_rank2_bb1_in___49 [4*Arg_7+2-Arg_3-3*Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_3+3*Arg_5+2-Arg_8 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+Arg_6+2 ]
n_eval_rank2_bb3_in___16 [2*Arg_5+Arg_7+2 ]
n_eval_rank2__Pcritedge_in___35 [Arg_4+3*Arg_5+Arg_7+3-Arg_3-Arg_6-Arg_8 ]
n_eval_rank2_bb3_in___36 [3*Arg_5+Arg_7+2-Arg_6-Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [Arg_4+3*Arg_5+1-Arg_8 ]
n_eval_rank2_bb3_in___42 [3*Arg_5+Arg_8-Arg_7 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_4+Arg_6+4 ]
n_eval_rank2_bb4_in___15 [2*Arg_5+Arg_7+2 ]
n_eval_rank2_5___14 [2*Arg_4+Arg_7 ]
n_eval_rank2_bb4_in___34 [3*Arg_5+Arg_7+2-Arg_6-Arg_8 ]
n_eval_rank2_5___33 [Arg_3+3*Arg_5+2-Arg_6-Arg_8 ]
n_eval_rank2_bb4_in___40 [3*Arg_5+Arg_8-Arg_7 ]
n_eval_rank2_5___26 [3*Arg_7+Arg_8-Arg_5-4 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_4+Arg_6+4 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_4+Arg_6+4 ]
n_eval_rank2_bb5_in___10 [Arg_4+Arg_5+Arg_7 ]
n_eval_rank2_bb5_in___22 [3*Arg_4+3*Arg_8-3*Arg_5-5 ]
n_eval_rank2_bb5_in___29 [Arg_4+3*Arg_5-Arg_8-2 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+Arg_7 ]
n_eval_rank2_bb6_in___28 [3*Arg_5+1 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_5+1 ]
n_eval_rank2_bb6_in___45 [2*Arg_4+Arg_7 ]
n_eval_rank2__Pcritedge1_in___8 [3*Arg_5+1 ]
n_eval_rank2_bb7_in___43 [2*Arg_4+Arg_7 ]
n_eval_rank2_11___21 [2*Arg_4+Arg_7 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_8+1 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_8+1 ]
n_eval_rank2_bb8_in___17 [2*Arg_5+Arg_8+1 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_8+1 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_8+1 ]

MPRF for transition 42:n_eval_rank2_bb2_in___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3-1,Arg_5,Arg_6,Arg_3+Arg_6-1,Arg_8):|:4<=Arg_7 && 5<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 7<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 6<=Arg_3+Arg_7 && 2+Arg_3<=Arg_7 && 4+Arg_1<=Arg_7 && 1<=Arg_6 && 4<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 1+Arg_1<=Arg_6 && Arg_4<=1+Arg_3 && 3<=Arg_4 && 5<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 3+Arg_1<=Arg_4 && 2<=Arg_3 && 2+Arg_1<=Arg_3 && Arg_1<=0 && 1<=Arg_6 && 3<=Arg_4 && Arg_3+1<=Arg_4 && Arg_4<=1+Arg_3 && Arg_4+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_4+Arg_6 of depth 1:

new bound:

7*Arg_2+8 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_12___4 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_6___12 [4*Arg_7-Arg_4-5 ]
n_eval_rank2_6___24 [3*Arg_7-4 ]
n_eval_rank2_6___31 [Arg_3+5*Arg_4+7*Arg_6-3*Arg_7 ]
n_eval_rank2_6___52 [14*Arg_7+6-11*Arg_3-10*Arg_6 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_8-Arg_4-1 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_8-Arg_5-9 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_7-Arg_4-5 ]
n_eval_rank2__Pcritedge_in___23 [5*Arg_5-Arg_4-Arg_7 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_7-Arg_4-5 ]
n_eval_rank2__Pcritedge_in___51 [15*Arg_7+6-11*Arg_3-Arg_4-11*Arg_6 ]
n_eval_rank2_bb1_in___39 [3*Arg_3+7*Arg_7+3-7*Arg_4-Arg_6 ]
n_eval_rank2_bb1_in___49 [2*Arg_3+3*Arg_6+Arg_7-6 ]
n_eval_rank2_bb2_in___38 [10*Arg_3+6*Arg_6+3-7*Arg_4 ]
n_eval_rank2_bb2_in___48 [4*Arg_7-Arg_3-7 ]
n_eval_rank2_bb3_in___16 [6*Arg_7-Arg_4-2*Arg_8-3 ]
n_eval_rank2__Pcritedge_in___35 [7*Arg_3+7*Arg_6-3*Arg_4-Arg_7-8 ]
n_eval_rank2_bb3_in___36 [3*Arg_3+Arg_4+7*Arg_6-Arg_7-4 ]
n_eval_rank2__Pcritedge_in___41 [4*Arg_8-Arg_4-5 ]
n_eval_rank2_bb3_in___42 [5*Arg_8-Arg_5-Arg_7-6 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+4*Arg_6-8 ]
n_eval_rank2_bb4_in___15 [6*Arg_7-Arg_5-2*Arg_8-3 ]
n_eval_rank2_5___14 [10*Arg_7+1-Arg_4-6*Arg_8 ]
n_eval_rank2_bb4_in___34 [4*Arg_3+7*Arg_6-Arg_7-5 ]
n_eval_rank2_5___33 [4*Arg_3+2*Arg_4+7*Arg_6-3*Arg_7-3 ]
n_eval_rank2_bb4_in___40 [7*Arg_4+5*Arg_8-8*Arg_5-Arg_7-6 ]
n_eval_rank2_5___26 [Arg_7+2*Arg_8-2 ]
n_eval_rank2_bb4_in___55 [14*Arg_4+4*Arg_6+6-11*Arg_3 ]
n_eval_rank2_5___54 [14*Arg_7+6-11*Arg_3-10*Arg_6 ]
n_eval_rank2_bb5_in___10 [4*Arg_7-Arg_4-5 ]
n_eval_rank2_bb5_in___22 [Arg_5+3*Arg_7-Arg_8-2 ]
n_eval_rank2_bb5_in___29 [6*Arg_3+5*Arg_4+7*Arg_6-8*Arg_7 ]
n_eval_rank2_bb5_in___50 [4*Arg_7-Arg_3-4 ]
n_eval_rank2_bb6_in___28 [Arg_5+2*Arg_7-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_4+4*Arg_8-2*Arg_5-5 ]
n_eval_rank2_bb6_in___45 [4*Arg_7-Arg_5-5 ]
n_eval_rank2__Pcritedge1_in___8 [4*Arg_8+8-Arg_5 ]
n_eval_rank2_bb7_in___43 [4*Arg_8-Arg_5-1 ]
n_eval_rank2_11___21 [4*Arg_7-Arg_4-5 ]
n_eval_rank2_bb7_in___7 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_11___6 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_bb8_in___17 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_bb8_in___2 [4*Arg_7-Arg_5-5 ]
n_eval_rank2_bb6_in___9 [4*Arg_7-Arg_5-4 ]

MPRF for transition 44:n_eval_rank2_bb3_in___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7 of depth 1:

new bound:

10*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_12___4 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_6___12 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_6___24 [2*Arg_4+2 ]
n_eval_rank2_6___31 [Arg_3+Arg_5+4*Arg_6-5 ]
n_eval_rank2_6___52 [4*Arg_7-2*Arg_4-2 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_7-2*Arg_3 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_8+4-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_7-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_4+4*Arg_7+6-4*Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_7-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb1_in___39 [3*Arg_4+3*Arg_5+4*Arg_6-2*Arg_7-2*Arg_8 ]
n_eval_rank2_bb1_in___49 [4*Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb2_in___38 [3*Arg_4+3*Arg_5+2*Arg_6-2*Arg_3-2*Arg_8 ]
n_eval_rank2_bb2_in___48 [4*Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb3_in___16 [4*Arg_7+8-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+3*Arg_5+2*Arg_6+2-Arg_4-2*Arg_8 ]
n_eval_rank2_bb3_in___36 [Arg_3+3*Arg_5+2*Arg_6+3-2*Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_5+2*Arg_7+4-Arg_4-2*Arg_8 ]
n_eval_rank2_bb3_in___42 [2*Arg_4+2 ]
n_eval_rank2_bb3_in___56 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb4_in___15 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_5___14 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb4_in___34 [Arg_3+Arg_5+2*Arg_6+1 ]
n_eval_rank2_5___33 [Arg_5+2*Arg_6+2*Arg_7-Arg_3-3 ]
n_eval_rank2_bb4_in___40 [2*Arg_7 ]
n_eval_rank2_5___26 [2*Arg_5+2*Arg_7+4-2*Arg_8 ]
n_eval_rank2_bb4_in___55 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_5___54 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb5_in___10 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb5_in___22 [2*Arg_5+2 ]
n_eval_rank2_bb5_in___29 [2*Arg_3 ]
n_eval_rank2_bb5_in___50 [4*Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb6_in___28 [2*Arg_5+2 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4+2 ]
n_eval_rank2_bb6_in___45 [4*Arg_7-2*Arg_3 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_4+2*Arg_5+2*Arg_7-2*Arg_3-2*Arg_8-2 ]
n_eval_rank2_bb7_in___43 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_11___21 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb7_in___7 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_11___6 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb8_in___17 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb8_in___2 [4*Arg_7-2*Arg_3 ]
n_eval_rank2_bb6_in___9 [4*Arg_7-2*Arg_3 ]

MPRF for transition 45:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && Arg_7<1+Arg_4 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7 ]
n_eval_rank2_12___4 [Arg_8 ]
n_eval_rank2_6___12 [Arg_8 ]
n_eval_rank2_6___24 [Arg_5+1 ]
n_eval_rank2_6___31 [Arg_7+3-Arg_6 ]
n_eval_rank2_6___52 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [Arg_8 ]
n_eval_rank2__Pcritedge_in___23 [Arg_8-1 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7+3-Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7 ]
n_eval_rank2_bb1_in___39 [2*Arg_3+Arg_4+2*Arg_6+1-2*Arg_7 ]
n_eval_rank2_bb1_in___49 [Arg_7 ]
n_eval_rank2_bb2_in___38 [Arg_3+2 ]
n_eval_rank2_bb2_in___48 [Arg_7 ]
n_eval_rank2_bb3_in___16 [Arg_5+2*Arg_8-Arg_4-Arg_7-1 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+1 ]
n_eval_rank2_bb3_in___36 [Arg_3+2 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+1 ]
n_eval_rank2_bb3_in___42 [Arg_4+Arg_8-Arg_7 ]
n_eval_rank2_bb3_in___56 [Arg_7 ]
n_eval_rank2_bb4_in___15 [Arg_8 ]
n_eval_rank2_5___14 [Arg_8 ]
n_eval_rank2_bb4_in___34 [Arg_3+2 ]
n_eval_rank2_5___33 [Arg_3+2 ]
n_eval_rank2_bb4_in___40 [Arg_5+Arg_8-Arg_7 ]
n_eval_rank2_5___26 [Arg_5+Arg_8-Arg_7 ]
n_eval_rank2_bb4_in___55 [Arg_7 ]
n_eval_rank2_5___54 [Arg_7 ]
n_eval_rank2_bb5_in___10 [Arg_7 ]
n_eval_rank2_bb5_in___22 [Arg_4+1 ]
n_eval_rank2_bb5_in___29 [Arg_4+1 ]
n_eval_rank2_bb5_in___50 [Arg_7 ]
n_eval_rank2_bb6_in___28 [2*Arg_4+1-Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5+1 ]
n_eval_rank2_bb6_in___45 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8+1 ]
n_eval_rank2_bb7_in___43 [Arg_7 ]
n_eval_rank2_11___21 [Arg_7 ]
n_eval_rank2_bb7_in___7 [Arg_8+1 ]
n_eval_rank2_11___6 [Arg_8 ]
n_eval_rank2_bb8_in___17 [Arg_7 ]
n_eval_rank2_bb8_in___2 [Arg_8 ]
n_eval_rank2_bb6_in___9 [Arg_8+1 ]

MPRF for transition 46:n_eval_rank2_bb3_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 1+Arg_6<=Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7 of depth 1:

new bound:

3*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8+3-Arg_5 ]
n_eval_rank2_12___4 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_6___12 [2*Arg_8-Arg_4-1 ]
n_eval_rank2_6___24 [Arg_8+5 ]
n_eval_rank2_6___31 [2*Arg_3+2*Arg_6+2-Arg_7 ]
n_eval_rank2_6___52 [4*Arg_7+4-3*Arg_3-2*Arg_6 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8+3-Arg_4 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_7-Arg_5-7 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+Arg_8+1-Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_7+4-3*Arg_3-2*Arg_6 ]
n_eval_rank2_bb1_in___39 [Arg_5+2*Arg_7+5-Arg_4-Arg_8 ]
n_eval_rank2_bb1_in___49 [7*Arg_4+3*Arg_6-5*Arg_3-Arg_7-7 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_5+2*Arg_6+4-Arg_8 ]
n_eval_rank2_bb2_in___48 [Arg_3+7*Arg_4+9*Arg_6-7*Arg_7-7 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_4-1 ]
n_eval_rank2__Pcritedge_in___35 [Arg_5+2*Arg_7+6-Arg_3-Arg_8 ]
n_eval_rank2_bb3_in___36 [2*Arg_3+Arg_5+2*Arg_6+3-Arg_4-Arg_8 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+2*Arg_7+5-Arg_4-Arg_8 ]
n_eval_rank2_bb3_in___42 [Arg_4+3*Arg_8+2-2*Arg_5-Arg_7 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___15 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_5___14 [Arg_5+2*Arg_8-2*Arg_4-1 ]
n_eval_rank2_bb4_in___34 [2*Arg_3+2*Arg_6+1-Arg_4 ]
n_eval_rank2_5___33 [2*Arg_3+2*Arg_6+2-Arg_7 ]
n_eval_rank2_bb4_in___40 [3*Arg_7+Arg_8+2-Arg_4-2*Arg_5 ]
n_eval_rank2_5___26 [Arg_5+Arg_8+5-Arg_4 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6 ]
n_eval_rank2_5___54 [4*Arg_7+4-3*Arg_3-2*Arg_6 ]
n_eval_rank2_bb5_in___10 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb5_in___22 [Arg_7+4 ]
n_eval_rank2_bb5_in___29 [Arg_7+4 ]
n_eval_rank2_bb5_in___50 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb6_in___28 [2*Arg_7+3-Arg_8 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb6_in___45 [2*Arg_7+1-Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8+3-Arg_5 ]
n_eval_rank2_bb7_in___43 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_11___21 [2*Arg_8+3-Arg_4 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_11___6 [2*Arg_7-Arg_5-3 ]
n_eval_rank2_bb8_in___17 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-Arg_5-3 ]

MPRF for transition 47:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && Arg_7<1+Arg_4 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7 ]
n_eval_rank2_12___4 [Arg_7-2 ]
n_eval_rank2_6___12 [Arg_8+1 ]
n_eval_rank2_6___24 [Arg_8-2 ]
n_eval_rank2_6___31 [Arg_4+Arg_6-1 ]
n_eval_rank2_6___52 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8+1 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8+1 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___23 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+Arg_6-1 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7-1 ]
n_eval_rank2_bb1_in___39 [Arg_7-1 ]
n_eval_rank2_bb1_in___49 [2*Arg_7-Arg_3-Arg_6-1 ]
n_eval_rank2_bb2_in___38 [3*Arg_3+Arg_6-2*Arg_4 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb3_in___16 [Arg_8+1 ]
n_eval_rank2__Pcritedge_in___35 [Arg_7-1 ]
n_eval_rank2_bb3_in___36 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_5-Arg_4-1 ]
n_eval_rank2_bb3_in___42 [2*Arg_5-Arg_4 ]
n_eval_rank2_bb3_in___56 [Arg_7 ]
n_eval_rank2_bb4_in___15 [Arg_8+1 ]
n_eval_rank2_5___14 [Arg_8+1 ]
n_eval_rank2_bb4_in___34 [Arg_4+Arg_7-Arg_3 ]
n_eval_rank2_5___33 [Arg_4+Arg_6-1 ]
n_eval_rank2_bb4_in___40 [Arg_4+Arg_8-Arg_7-1 ]
n_eval_rank2_5___26 [Arg_5+Arg_8-Arg_7-1 ]
n_eval_rank2_bb4_in___55 [Arg_7 ]
n_eval_rank2_5___54 [Arg_7 ]
n_eval_rank2_bb5_in___10 [Arg_8+1 ]
n_eval_rank2_bb5_in___22 [Arg_5+Arg_8-Arg_7-1 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_6-1 ]
n_eval_rank2_bb5_in___50 [Arg_7 ]
n_eval_rank2_bb6_in___28 [Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5+13*Arg_8+13-13*Arg_7 ]
n_eval_rank2_bb6_in___45 [11*Arg_4+16*Arg_8+16-11*Arg_5-15*Arg_7 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+Arg_7-Arg_8-3 ]
n_eval_rank2_bb7_in___43 [11*Arg_4+Arg_8+1-11*Arg_5 ]
n_eval_rank2_11___21 [11*Arg_4+Arg_7-11*Arg_5 ]
n_eval_rank2_bb7_in___7 [Arg_7-2 ]
n_eval_rank2_11___6 [Arg_7-2 ]
n_eval_rank2_bb8_in___17 [Arg_7 ]
n_eval_rank2_bb8_in___2 [Arg_7-2 ]
n_eval_rank2_bb6_in___9 [Arg_7-2 ]

MPRF for transition 48:n_eval_rank2_bb3_in___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && 1<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 1<=Arg_4+Arg_7 && Arg_4<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=2+Arg_7 && 1<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<4+Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 1+Arg_7<=Arg_8 && Arg_8<=1+Arg_7 && 1+Arg_4<=Arg_7 of depth 1:

new bound:

4*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8 ]
n_eval_rank2_12___4 [2*Arg_7-2 ]
n_eval_rank2_6___12 [2*Arg_7 ]
n_eval_rank2_6___24 [2*Arg_8+1 ]
n_eval_rank2_6___31 [2*Arg_8+2 ]
n_eval_rank2_6___52 [2*Arg_4+2*Arg_6 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_4+2*Arg_7+2-2*Arg_3 ]
n_eval_rank2_bb1_in___39 [2*Arg_8+2 ]
n_eval_rank2_bb1_in___49 [2*Arg_7 ]
n_eval_rank2_bb2_in___38 [2*Arg_8+2 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+2*Arg_7+2-2*Arg_4 ]
n_eval_rank2_bb3_in___16 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_8+2 ]
n_eval_rank2_bb3_in___36 [2*Arg_8+2 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_8+2 ]
n_eval_rank2_bb3_in___42 [2*Arg_7+4 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___15 [2*Arg_7 ]
n_eval_rank2_5___14 [2*Arg_7 ]
n_eval_rank2_bb4_in___34 [2*Arg_8+2 ]
n_eval_rank2_5___33 [2*Arg_8+2 ]
n_eval_rank2_bb4_in___40 [2*Arg_5+2*Arg_7+3-2*Arg_4 ]
n_eval_rank2_5___26 [2*Arg_7+2*Arg_8-2*Arg_4-1 ]
n_eval_rank2_bb4_in___55 [2*Arg_4+2*Arg_6 ]
n_eval_rank2_5___54 [2*Arg_4+2*Arg_6 ]
n_eval_rank2_bb5_in___10 [2*Arg_7 ]
n_eval_rank2_bb5_in___22 [2*Arg_8+1 ]
n_eval_rank2_bb5_in___29 [2*Arg_8+2 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+2*Arg_7+2-2*Arg_3 ]
n_eval_rank2_bb6_in___28 [2*Arg_8+2 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_8+2 ]
n_eval_rank2_bb6_in___45 [2*Arg_7 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8+2 ]
n_eval_rank2_bb7_in___43 [2*Arg_7 ]
n_eval_rank2_11___21 [2*Arg_8 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-2 ]
n_eval_rank2_11___6 [2*Arg_7-2 ]
n_eval_rank2_bb8_in___17 [2*Arg_8 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-2 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-2 ]

MPRF for transition 49:n_eval_rank2_bb3_in___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:2<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && 1+Arg_4<=Arg_7 && Arg_3+Arg_6<=1+Arg_7 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=1+Arg_4 && 1+Arg_4<=Arg_3 && 1+Arg_4<=Arg_7 && 1+Arg_4<=Arg_7 of depth 1:

new bound:

18*Arg_2+12 {O(n)}

MPRF:

n_eval_rank2_12___19 [10*Arg_8+5-2*Arg_5 ]
n_eval_rank2_12___4 [11*Arg_7-2*Arg_5-Arg_8-33 ]
n_eval_rank2_6___12 [10*Arg_7-2*Arg_4 ]
n_eval_rank2_6___24 [8*Arg_4 ]
n_eval_rank2_6___31 [4*Arg_5+4*Arg_7 ]
n_eval_rank2_6___52 [3*Arg_4+10*Arg_7-5*Arg_3 ]
n_eval_rank2__Pcritedge1_in___18 [10*Arg_8+5-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___3 [11*Arg_7-2*Arg_5-Arg_8-33 ]
n_eval_rank2__Pcritedge_in___11 [10*Arg_7-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___23 [10*Arg_8-2*Arg_5-20 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_5+10*Arg_7-4*Arg_3-2*Arg_4-14 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_4+10*Arg_7-5*Arg_3-5 ]
n_eval_rank2_bb1_in___39 [4*Arg_7+4*Arg_8-4 ]
n_eval_rank2_bb1_in___49 [10*Arg_7-2*Arg_4-10 ]
n_eval_rank2_bb2_in___38 [4*Arg_3+4*Arg_7+4*Arg_8-4*Arg_4 ]
n_eval_rank2_bb2_in___48 [10*Arg_7-2*Arg_4-10 ]
n_eval_rank2_bb3_in___16 [3*Arg_4+10*Arg_7-5*Arg_5 ]
n_eval_rank2__Pcritedge_in___35 [4*Arg_4+4*Arg_7+4*Arg_8-4*Arg_3 ]
n_eval_rank2_bb3_in___36 [4*Arg_4+4*Arg_5+4*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [8*Arg_8-8 ]
n_eval_rank2_bb3_in___42 [8*Arg_4 ]
n_eval_rank2_bb3_in___56 [8*Arg_3+10*Arg_6-12 ]
n_eval_rank2_bb4_in___15 [3*Arg_4+7*Arg_7+3*Arg_8-5*Arg_5-3 ]
n_eval_rank2_5___14 [Arg_4+10*Arg_7-3*Arg_5 ]
n_eval_rank2_bb4_in___34 [4*Arg_4+4*Arg_5+4*Arg_6 ]
n_eval_rank2_5___33 [4*Arg_5+4*Arg_7 ]
n_eval_rank2_bb4_in___40 [8*Arg_7-8 ]
n_eval_rank2_5___26 [8*Arg_4+3*Arg_7+3-3*Arg_8 ]
n_eval_rank2_bb4_in___55 [8*Arg_3+10*Arg_6-13 ]
n_eval_rank2_5___54 [3*Arg_4+10*Arg_7-5*Arg_3 ]
n_eval_rank2_bb5_in___10 [10*Arg_7-2*Arg_5 ]
n_eval_rank2_bb5_in___22 [8*Arg_4+6*Arg_7+6-6*Arg_8 ]
n_eval_rank2_bb5_in___29 [4*Arg_5+6*Arg_7-2*Arg_4-14 ]
n_eval_rank2_bb5_in___50 [3*Arg_4+10*Arg_7-5*Arg_3 ]
n_eval_rank2_bb6_in___28 [2*Arg_5+6*Arg_7-6 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4+6*Arg_8 ]
n_eval_rank2_bb6_in___45 [10*Arg_7-2*Arg_5-5 ]
n_eval_rank2__Pcritedge1_in___8 [8*Arg_5 ]
n_eval_rank2_bb7_in___43 [10*Arg_7-2*Arg_5-5 ]
n_eval_rank2_11___21 [10*Arg_8+5-2*Arg_4 ]
n_eval_rank2_bb7_in___7 [11*Arg_7-2*Arg_5-Arg_8-33 ]
n_eval_rank2_11___6 [11*Arg_7-2*Arg_5-Arg_8-33 ]
n_eval_rank2_bb8_in___17 [10*Arg_8+5-2*Arg_5 ]
n_eval_rank2_bb8_in___2 [11*Arg_7-2*Arg_5-Arg_8-33 ]
n_eval_rank2_bb6_in___9 [11*Arg_7-2*Arg_5-Arg_8-33 ]

MPRF for transition 50:n_eval_rank2_bb4_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

6*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [3*Arg_8+6 ]
n_eval_rank2_12___4 [3*Arg_7 ]
n_eval_rank2_6___12 [3*Arg_8 ]
n_eval_rank2_6___24 [3*Arg_8 ]
n_eval_rank2_6___31 [3*Arg_4+12-Arg_6 ]
n_eval_rank2_6___52 [3*Arg_7+3 ]
n_eval_rank2__Pcritedge1_in___18 [3*Arg_8+6 ]
n_eval_rank2__Pcritedge1_in___3 [3*Arg_7 ]
n_eval_rank2__Pcritedge_in___11 [3*Arg_8 ]
n_eval_rank2__Pcritedge_in___23 [3*Arg_8-3 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_7+1-Arg_3-Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_7 ]
n_eval_rank2_bb1_in___39 [Arg_4+2*Arg_5+Arg_8+5-Arg_7 ]
n_eval_rank2_bb1_in___49 [3*Arg_7 ]
n_eval_rank2_bb2_in___38 [Arg_4+3*Arg_5+5-Arg_7 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+3*Arg_6 ]
n_eval_rank2_bb3_in___16 [Arg_4+3*Arg_7+9-Arg_5 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_5+Arg_8+4-Arg_7 ]
n_eval_rank2_bb3_in___36 [Arg_3+3*Arg_5+5-Arg_7 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_4+6 ]
n_eval_rank2_bb3_in___42 [3*Arg_5+6 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+3*Arg_6 ]
n_eval_rank2_bb4_in___15 [3*Arg_7+9 ]
n_eval_rank2_5___14 [3*Arg_7+3 ]
n_eval_rank2_bb4_in___34 [3*Arg_5+6-Arg_6 ]
n_eval_rank2_5___33 [3*Arg_5+6-Arg_6 ]
n_eval_rank2_bb4_in___40 [3*Arg_5+3*Arg_8+3-3*Arg_7 ]
n_eval_rank2_5___26 [3*Arg_5+3*Arg_8+3-3*Arg_7 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+3*Arg_6 ]
n_eval_rank2_5___54 [3*Arg_7+3 ]
n_eval_rank2_bb5_in___10 [3*Arg_7+3 ]
n_eval_rank2_bb5_in___22 [3*Arg_8 ]
n_eval_rank2_bb5_in___29 [3*Arg_4+3*Arg_5+12-Arg_6-3*Arg_8 ]
n_eval_rank2_bb5_in___50 [3*Arg_7+3 ]
n_eval_rank2_bb6_in___28 [3*Arg_4+6 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_5+6 ]
n_eval_rank2_bb6_in___45 [3*Arg_7+3 ]
n_eval_rank2__Pcritedge1_in___8 [3*Arg_8+6 ]
n_eval_rank2_bb7_in___43 [3*Arg_8+6 ]
n_eval_rank2_11___21 [3*Arg_8+6 ]
n_eval_rank2_bb7_in___7 [3*Arg_7 ]
n_eval_rank2_11___6 [3*Arg_7 ]
n_eval_rank2_bb8_in___17 [3*Arg_8+6 ]
n_eval_rank2_bb8_in___2 [3*Arg_7 ]
n_eval_rank2_bb6_in___9 [3*Arg_7 ]

MPRF for transition 51:n_eval_rank2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_5 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3+Arg_6<=Arg_8 && 6<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_7<3+Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

3*Arg_2+4 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_12___4 [Arg_5+2*Arg_8-2*Arg_3 ]
n_eval_rank2_6___12 [Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_6___24 [Arg_8-3 ]
n_eval_rank2_6___31 [Arg_3+2*Arg_6-4 ]
n_eval_rank2_6___52 [2*Arg_7-Arg_3-2 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_4+2*Arg_8-2*Arg_3 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_5+2*Arg_8-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-Arg_5-3 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+Arg_8-Arg_5-3 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-Arg_4-3 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-Arg_4-3 ]
n_eval_rank2_bb1_in___39 [3*Arg_7-2*Arg_4-Arg_6 ]
n_eval_rank2_bb1_in___49 [2*Arg_3+Arg_6+Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6-2 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+2*Arg_6-2*Arg_4-2 ]
n_eval_rank2_bb3_in___16 [Arg_4+2*Arg_8-2*Arg_3 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+Arg_6+Arg_7-Arg_4-2 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_6+Arg_7-Arg_4-2 ]
n_eval_rank2__Pcritedge_in___41 [Arg_4+Arg_7-Arg_8 ]
n_eval_rank2_bb3_in___42 [Arg_5+Arg_7-Arg_8 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6-4 ]
n_eval_rank2_bb4_in___15 [Arg_5+2*Arg_7-2*Arg_3 ]
n_eval_rank2_5___14 [Arg_5+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_bb4_in___34 [Arg_4+2*Arg_7+1-2*Arg_3 ]
n_eval_rank2_5___33 [Arg_4+2*Arg_7-2*Arg_3 ]
n_eval_rank2_bb4_in___40 [2*Arg_4+1-Arg_8 ]
n_eval_rank2_5___26 [2*Arg_4+Arg_8-2*Arg_5-3 ]
n_eval_rank2_bb4_in___55 [Arg_3+2*Arg_6-4 ]
n_eval_rank2_5___54 [Arg_3+2*Arg_6-4 ]
n_eval_rank2_bb5_in___10 [Arg_5+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_bb5_in___22 [Arg_7+Arg_8-Arg_5-4 ]
n_eval_rank2_bb5_in___29 [Arg_6+Arg_7-3 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-Arg_3-2 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-Arg_8-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_4-1 ]
n_eval_rank2_bb6_in___45 [Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5-1 ]
n_eval_rank2_bb7_in___43 [Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_11___21 [Arg_5+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_bb7_in___7 [Arg_5+2*Arg_8-2*Arg_3 ]
n_eval_rank2_11___6 [Arg_5+2*Arg_8-2*Arg_3 ]
n_eval_rank2_bb8_in___17 [Arg_4+2*Arg_8+1-2*Arg_3 ]
n_eval_rank2_bb8_in___2 [Arg_5+2*Arg_8-2*Arg_3 ]
n_eval_rank2_bb6_in___9 [Arg_5+2*Arg_8-2*Arg_3 ]

MPRF for transition 52:n_eval_rank2_bb4_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 1+Arg_4<=Arg_7 && Arg_7<4+Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

4*Arg_2+3 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-1 ]
n_eval_rank2_12___4 [2*Arg_7-2 ]
n_eval_rank2_6___12 [2*Arg_7 ]
n_eval_rank2_6___24 [2*Arg_7-3 ]
n_eval_rank2_6___31 [2*Arg_3+1 ]
n_eval_rank2_6___52 [2*Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7-3 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-3 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7-3 ]
n_eval_rank2_bb1_in___39 [Arg_5+Arg_7+Arg_8-Arg_3-Arg_6-1 ]
n_eval_rank2_bb1_in___49 [Arg_3+3*Arg_7-2*Arg_4-Arg_6-1 ]
n_eval_rank2_bb2_in___38 [Arg_5+Arg_8-1 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+2*Arg_7-2*Arg_4-1 ]
n_eval_rank2_bb3_in___16 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [Arg_5+Arg_8-1 ]
n_eval_rank2_bb3_in___36 [Arg_5+Arg_8-1 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+Arg_8-1 ]
n_eval_rank2_bb3_in___42 [2*Arg_5+Arg_8-Arg_4-1 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb4_in___15 [2*Arg_8 ]
n_eval_rank2_5___14 [2*Arg_7 ]
n_eval_rank2_bb4_in___34 [Arg_3+Arg_5 ]
n_eval_rank2_5___33 [2*Arg_3+1 ]
n_eval_rank2_bb4_in___40 [2*Arg_7-2 ]
n_eval_rank2_5___26 [2*Arg_7-3 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+2*Arg_6-3 ]
n_eval_rank2_5___54 [2*Arg_3+2*Arg_6-3 ]
n_eval_rank2_bb5_in___10 [2*Arg_8-2 ]
n_eval_rank2_bb5_in___22 [Arg_4+Arg_7-2 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_7+3-Arg_6 ]
n_eval_rank2_bb5_in___50 [2*Arg_7-1 ]
n_eval_rank2_bb6_in___28 [Arg_4+Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_4+Arg_8-1 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+Arg_8-1 ]
n_eval_rank2_bb7_in___43 [2*Arg_8+1 ]
n_eval_rank2_11___21 [2*Arg_7-1 ]
n_eval_rank2_bb7_in___7 [2*Arg_7-2 ]
n_eval_rank2_11___6 [2*Arg_7-2 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-1 ]
n_eval_rank2_bb8_in___2 [2*Arg_7-2 ]
n_eval_rank2_bb6_in___9 [2*Arg_7-2 ]

MPRF for transition 53:n_eval_rank2_bb4_in___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_5___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_3 && Arg_3<=Arg_7 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

2*Arg_2+3 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7-3 ]
n_eval_rank2_12___4 [Arg_7-7 ]
n_eval_rank2_6___12 [Arg_7-3 ]
n_eval_rank2_6___24 [Arg_7-3 ]
n_eval_rank2_6___31 [Arg_6+Arg_7-4 ]
n_eval_rank2_6___52 [3*Arg_4+Arg_7-3*Arg_3 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8-2 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_7-7 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7-3 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7-3 ]
n_eval_rank2__Pcritedge_in___30 [Arg_3+Arg_6-4 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_4+Arg_7-3*Arg_3 ]
n_eval_rank2_bb1_in___39 [2*Arg_7-Arg_4-4 ]
n_eval_rank2_bb1_in___49 [Arg_7-3 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_7-2*Arg_4-3 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_6-3 ]
n_eval_rank2_bb3_in___16 [Arg_7-3 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_6-5 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6-5 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7-Arg_5-4 ]
n_eval_rank2_bb3_in___42 [Arg_8-4 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6-3 ]
n_eval_rank2_bb4_in___15 [Arg_7-3 ]
n_eval_rank2_5___14 [2*Arg_7-Arg_8-2 ]
n_eval_rank2_bb4_in___34 [Arg_4+2*Arg_6-4 ]
n_eval_rank2_5___33 [Arg_6+Arg_7-4 ]
n_eval_rank2_bb4_in___40 [Arg_7-3 ]
n_eval_rank2_5___26 [Arg_7-3 ]
n_eval_rank2_bb4_in___55 [Arg_7-2 ]
n_eval_rank2_5___54 [Arg_7-3 ]
n_eval_rank2_bb5_in___10 [Arg_7-3 ]
n_eval_rank2_bb5_in___22 [4*Arg_7-3*Arg_8 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_6-3 ]
n_eval_rank2_bb5_in___50 [3*Arg_4+Arg_7-3*Arg_3 ]
n_eval_rank2_bb6_in___28 [Arg_5-2 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_8-4 ]
n_eval_rank2_bb6_in___45 [Arg_8-2 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-4 ]
n_eval_rank2_bb7_in___43 [Arg_8-2 ]
n_eval_rank2_11___21 [Arg_5+Arg_7-Arg_4-3 ]
n_eval_rank2_bb7_in___7 [Arg_7-7 ]
n_eval_rank2_11___6 [Arg_7-7 ]
n_eval_rank2_bb8_in___17 [Arg_7-7 ]
n_eval_rank2_bb8_in___2 [Arg_7-7 ]
n_eval_rank2_bb6_in___9 [Arg_7-7 ]

MPRF for transition 54:n_eval_rank2_bb5_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_7 && 4<=Arg_8 && 7<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 4+Arg_0<=Arg_8 && 3<=Arg_7 && 5<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 2+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 3+Arg_0<=Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_0<=Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1+Arg_0<=Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_0<=Arg_3 && 1<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=0 && 1+Arg_4<=Arg_7 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 of depth 1:

new bound:

4*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_8+1 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-3 ]
n_eval_rank2_6___12 [2*Arg_7 ]
n_eval_rank2_6___24 [3*Arg_8-Arg_7-4 ]
n_eval_rank2_6___31 [2*Arg_5+1 ]
n_eval_rank2_6___52 [Arg_4+Arg_6+Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_4+Arg_5+2-Arg_7 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_5+2*Arg_7-2*Arg_3-3 ]
n_eval_rank2__Pcritedge_in___51 [Arg_3+Arg_6+Arg_7-2 ]
n_eval_rank2_bb1_in___39 [2*Arg_5+1 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_7-Arg_4 ]
n_eval_rank2_bb2_in___38 [2*Arg_5+1 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+Arg_6+Arg_7-Arg_4 ]
n_eval_rank2_bb3_in___16 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+2*Arg_5+Arg_6-Arg_7 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_5+Arg_6-Arg_7 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_4+1 ]
n_eval_rank2_bb3_in___42 [2*Arg_5+1 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_4+2*Arg_6 ]
n_eval_rank2_bb4_in___15 [Arg_5+Arg_7+Arg_8-Arg_4 ]
n_eval_rank2_5___14 [2*Arg_7 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_5+Arg_6-Arg_7 ]
n_eval_rank2_5___33 [Arg_3+2*Arg_5+Arg_6-Arg_7 ]
n_eval_rank2_bb4_in___40 [2*Arg_5+Arg_8-Arg_7 ]
n_eval_rank2_5___26 [2*Arg_4+Arg_8-Arg_7 ]
n_eval_rank2_bb4_in___55 [Arg_3+Arg_4+2*Arg_6 ]
n_eval_rank2_5___54 [Arg_3+Arg_4+2*Arg_6-1 ]
n_eval_rank2_bb5_in___10 [2*Arg_7 ]
n_eval_rank2_bb5_in___22 [3*Arg_4+2-Arg_7 ]
n_eval_rank2_bb5_in___29 [2*Arg_7+5-2*Arg_6 ]
n_eval_rank2_bb5_in___50 [Arg_4+2*Arg_7-Arg_3 ]
n_eval_rank2_bb6_in___28 [2*Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___44 [5*Arg_5+1-3*Arg_4 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+2*Arg_8-2*Arg_4 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-1 ]
n_eval_rank2_11___21 [2*Arg_7-1 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-3 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-3 ]
n_eval_rank2_bb8_in___17 [2*Arg_8+1 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-3 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-3 ]

MPRF for transition 55:n_eval_rank2_bb5_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 3<=Arg_8 && 5<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && 2+Arg_5<=Arg_8 && 4<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 5<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 4<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=1+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<5+Arg_4 && 2+Arg_4<=Arg_8 && 0<Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7+1<=Arg_8 && Arg_8<=1+Arg_7 of depth 1:

new bound:

2*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_7 ]
n_eval_rank2_12___4 [Arg_8 ]
n_eval_rank2_6___12 [Arg_8-1 ]
n_eval_rank2_6___24 [Arg_7-1 ]
n_eval_rank2_6___31 [Arg_7-1 ]
n_eval_rank2_6___52 [Arg_4+Arg_6 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7+Arg_8-Arg_5-3 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___51 [Arg_4+Arg_6 ]
n_eval_rank2_bb1_in___39 [3*Arg_7-Arg_3-Arg_4-2*Arg_6 ]
n_eval_rank2_bb1_in___49 [2*Arg_4+Arg_6-Arg_3-3 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+Arg_6-Arg_4 ]
n_eval_rank2_bb3_in___16 [Arg_7 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+Arg_6-2 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_6-2 ]
n_eval_rank2__Pcritedge_in___41 [Arg_8-2 ]
n_eval_rank2_bb3_in___42 [4*Arg_4+2*Arg_8-4*Arg_5-Arg_7-3 ]
n_eval_rank2_bb3_in___56 [Arg_7 ]
n_eval_rank2_bb4_in___15 [Arg_8-1 ]
n_eval_rank2_5___14 [Arg_8-1 ]
n_eval_rank2_bb4_in___34 [Arg_3+Arg_6-2 ]
n_eval_rank2_5___33 [Arg_7-1 ]
n_eval_rank2_bb4_in___40 [2*Arg_4+2*Arg_8-2*Arg_5-Arg_7-3 ]
n_eval_rank2_5___26 [3*Arg_7+1-2*Arg_8 ]
n_eval_rank2_bb4_in___55 [Arg_3+Arg_6-1 ]
n_eval_rank2_5___54 [Arg_4+Arg_6 ]
n_eval_rank2_bb5_in___10 [Arg_7 ]
n_eval_rank2_bb5_in___22 [Arg_7-1 ]
n_eval_rank2_bb5_in___29 [2*Arg_7-Arg_4-Arg_6-1 ]
n_eval_rank2_bb5_in___50 [Arg_4+Arg_7+1-Arg_3 ]
n_eval_rank2_bb6_in___28 [Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4+Arg_8-2*Arg_5-2 ]
n_eval_rank2_bb6_in___45 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-2 ]
n_eval_rank2_bb7_in___43 [Arg_7 ]
n_eval_rank2_11___21 [Arg_7 ]
n_eval_rank2_bb7_in___7 [Arg_8 ]
n_eval_rank2_11___6 [Arg_8 ]
n_eval_rank2_bb8_in___17 [Arg_7 ]
n_eval_rank2_bb8_in___2 [Arg_8 ]
n_eval_rank2_bb6_in___9 [Arg_8 ]

MPRF for transition 56:n_eval_rank2_bb5_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:Arg_8<=1+Arg_5 && 4<=Arg_8 && 6<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 4<=Arg_6+Arg_8 && 3+Arg_6<=Arg_8 && 7<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 2+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 1+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && Arg_7<=1+Arg_5 && Arg_7<=3+Arg_4 && Arg_7<=2+Arg_3 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 5<=Arg_5+Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_6<=3 && 2+Arg_6<=Arg_5 && Arg_6<=Arg_4 && 1+Arg_6<=Arg_3 && Arg_6<=2+Arg_1 && 4<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 3<=Arg_5 && 4<=Arg_4+Arg_5 && 2+Arg_4<=Arg_5 && 5<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_6<4 && 1<=Arg_6 && 0<Arg_1 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 of depth 1:

new bound:

2*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_8 ]
n_eval_rank2_12___4 [Arg_7-1 ]
n_eval_rank2_6___12 [Arg_8 ]
n_eval_rank2_6___24 [Arg_8-2 ]
n_eval_rank2_6___31 [Arg_8-1 ]
n_eval_rank2_6___52 [Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8 ]
n_eval_rank2__Pcritedge_in___11 [Arg_8 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7+Arg_8-Arg_5-2 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7-1 ]
n_eval_rank2_bb1_in___39 [Arg_8-1 ]
n_eval_rank2_bb1_in___49 [Arg_3+Arg_6-2 ]
n_eval_rank2_bb2_in___38 [Arg_8-1 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_6-2 ]
n_eval_rank2_bb3_in___16 [Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [Arg_8-1 ]
n_eval_rank2_bb3_in___36 [Arg_8-1 ]
n_eval_rank2__Pcritedge_in___41 [Arg_8-1 ]
n_eval_rank2_bb3_in___42 [Arg_4 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6-2 ]
n_eval_rank2_bb4_in___15 [Arg_8 ]
n_eval_rank2_5___14 [Arg_8 ]
n_eval_rank2_bb4_in___34 [Arg_8-1 ]
n_eval_rank2_5___33 [Arg_8-1 ]
n_eval_rank2_bb4_in___40 [Arg_4 ]
n_eval_rank2_5___26 [Arg_8-2 ]
n_eval_rank2_bb4_in___55 [Arg_7-1 ]
n_eval_rank2_5___54 [Arg_7-1 ]
n_eval_rank2_bb5_in___10 [Arg_7 ]
n_eval_rank2_bb5_in___22 [Arg_8-2 ]
n_eval_rank2_bb5_in___29 [Arg_8-1 ]
n_eval_rank2_bb5_in___50 [Arg_7-1 ]
n_eval_rank2_bb6_in___28 [Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_5 ]
n_eval_rank2_bb6_in___45 [Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+Arg_7-Arg_8-1 ]
n_eval_rank2_bb7_in___43 [Arg_7-1 ]
n_eval_rank2_11___21 [Arg_7-1 ]
n_eval_rank2_bb7_in___7 [Arg_7-1 ]
n_eval_rank2_11___6 [Arg_7-1 ]
n_eval_rank2_bb8_in___17 [Arg_8 ]
n_eval_rank2_bb8_in___2 [Arg_7-1 ]
n_eval_rank2_bb6_in___9 [Arg_7-1 ]

MPRF for transition 57:n_eval_rank2_bb5_in___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7,Arg_7-1):|:3<=Arg_7 && 4<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 1+Arg_4<=Arg_3 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 1<=Arg_6 && 0<Arg_1 && Arg_3<=Arg_4+1 && 1+Arg_4<=Arg_3 && Arg_3+Arg_6<=Arg_7+1 && 1+Arg_7<=Arg_3+Arg_6 of depth 1:

new bound:

4*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-2 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_6___12 [2*Arg_7 ]
n_eval_rank2_6___24 [2*Arg_8-4 ]
n_eval_rank2_6___31 [2*Arg_3+2 ]
n_eval_rank2_6___52 [2*Arg_7 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+2*Arg_8-2*Arg_4-1 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7-2 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_8-4 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_7-2 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7 ]
n_eval_rank2_bb1_in___39 [2*Arg_7 ]
n_eval_rank2_bb1_in___49 [2*Arg_4+2*Arg_6-4 ]
n_eval_rank2_bb2_in___38 [2*Arg_3+2*Arg_6 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+2*Arg_4+4*Arg_6-2*Arg_7-4 ]
n_eval_rank2_bb3_in___16 [2*Arg_8 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+2*Arg_6 ]
n_eval_rank2_bb3_in___36 [2*Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_5 ]
n_eval_rank2_bb3_in___42 [2*Arg_5 ]
n_eval_rank2_bb3_in___56 [2*Arg_7 ]
n_eval_rank2_bb4_in___15 [2*Arg_7 ]
n_eval_rank2_5___14 [2*Arg_7 ]
n_eval_rank2_bb4_in___34 [2*Arg_7+2 ]
n_eval_rank2_5___33 [2*Arg_3+2 ]
n_eval_rank2_bb4_in___40 [2*Arg_5+2*Arg_8-2*Arg_7-2 ]
n_eval_rank2_5___26 [2*Arg_5+2*Arg_8-2*Arg_7-2 ]
n_eval_rank2_bb4_in___55 [2*Arg_7 ]
n_eval_rank2_5___54 [2*Arg_7 ]
n_eval_rank2_bb5_in___10 [2*Arg_7-2 ]
n_eval_rank2_bb5_in___22 [2*Arg_5 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+2 ]
n_eval_rank2_bb5_in___50 [2*Arg_7 ]
n_eval_rank2_bb6_in___28 [2*Arg_5 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_5 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-2 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-2 ]
n_eval_rank2_11___21 [2*Arg_7-2 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_bb8_in___17 [2*Arg_5+2*Arg_7-2*Arg_4-2 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_7+Arg_8-2*Arg_4-4 ]

MPRF for transition 58:n_eval_rank2_bb6_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && Arg_8<=2+Arg_5 && Arg_8<=2+Arg_4 && 1<=Arg_8 && 3<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 2<=Arg_6+Arg_8 && 2<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 2<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 3<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 2<=Arg_1+Arg_8 && Arg_7<=3+Arg_5 && Arg_7<=3+Arg_4 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 4<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 3<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_8<3+Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5 of depth 1:

new bound:

6*Arg_2+11 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_8-2*Arg_4-5 ]
n_eval_rank2_12___4 [5*Arg_7-2*Arg_5-Arg_8-22 ]
n_eval_rank2_6___12 [Arg_7+3*Arg_8-2*Arg_4-12 ]
n_eval_rank2_6___24 [Arg_4+Arg_8-3 ]
n_eval_rank2_6___31 [2*Arg_4+2*Arg_6-3 ]
n_eval_rank2_6___52 [4*Arg_7-2*Arg_4-9 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_8-2*Arg_5-13 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_8-2*Arg_5-13 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_7-2*Arg_4-9 ]
n_eval_rank2__Pcritedge_in___23 [Arg_4+4*Arg_7+1-3*Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_3+2*Arg_6-5 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_7-2*Arg_4-9 ]
n_eval_rank2_bb1_in___39 [Arg_4+Arg_6+Arg_7+Arg_8-Arg_3-7 ]
n_eval_rank2_bb1_in___49 [Arg_6+3*Arg_7-Arg_4-10 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_6+Arg_7+Arg_8-Arg_4-5 ]
n_eval_rank2_bb2_in___48 [13*Arg_3+4*Arg_6-11*Arg_4 ]
n_eval_rank2_bb3_in___16 [4*Arg_8-2*Arg_5-13 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_7+Arg_8-Arg_4-5 ]
n_eval_rank2_bb3_in___36 [Arg_4+2*Arg_7+Arg_8-2*Arg_3-3 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7+Arg_8-Arg_4-5 ]
n_eval_rank2_bb3_in___42 [2*Arg_7+Arg_8-Arg_4-5 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+4*Arg_6-11 ]
n_eval_rank2_bb4_in___15 [4*Arg_8-2*Arg_4-13 ]
n_eval_rank2_5___14 [Arg_7+3*Arg_8-2*Arg_5-12 ]
n_eval_rank2_bb4_in___34 [2*Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_5___33 [2*Arg_4+2*Arg_7-2*Arg_3-1 ]
n_eval_rank2_bb4_in___40 [Arg_7+Arg_8-4 ]
n_eval_rank2_5___26 [Arg_5+Arg_7-2 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+4*Arg_6-11 ]
n_eval_rank2_5___54 [2*Arg_3+4*Arg_6-11 ]
n_eval_rank2_bb5_in___10 [Arg_7+3*Arg_8-2*Arg_5-12 ]
n_eval_rank2_bb5_in___22 [Arg_4+Arg_8-3 ]
n_eval_rank2_bb5_in___29 [2*Arg_4+Arg_6+Arg_7-Arg_3-2 ]
n_eval_rank2_bb5_in___50 [4*Arg_7-2*Arg_4-9 ]
n_eval_rank2_bb6_in___28 [Arg_5+Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_8-5 ]
n_eval_rank2_bb6_in___45 [4*Arg_7-2*Arg_4-9 ]
n_eval_rank2__Pcritedge1_in___8 [3*Arg_8-Arg_5-7 ]
n_eval_rank2_bb7_in___43 [4*Arg_7-2*Arg_5-9 ]
n_eval_rank2_11___21 [4*Arg_8-2*Arg_5-5 ]
n_eval_rank2_bb7_in___7 [5*Arg_7-2*Arg_5-Arg_8-22 ]
n_eval_rank2_11___6 [5*Arg_7-2*Arg_5-Arg_8-22 ]
n_eval_rank2_bb8_in___17 [4*Arg_8-2*Arg_4-9 ]
n_eval_rank2_bb8_in___2 [5*Arg_7-2*Arg_5-Arg_8-22 ]
n_eval_rank2_bb6_in___9 [5*Arg_7-2*Arg_5-Arg_8-22 ]

MPRF for transition 59:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 2<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3<=Arg_6+Arg_8 && 3<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && Arg_8<3+Arg_5 of depth 1:

new bound:

3*Arg_2 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_12___4 [2*Arg_8-Arg_5 ]
n_eval_rank2_6___12 [Arg_4+2*Arg_7+2-2*Arg_5 ]
n_eval_rank2_6___24 [Arg_7+2 ]
n_eval_rank2_6___31 [Arg_3+2*Arg_6 ]
n_eval_rank2_6___52 [2*Arg_7+2-Arg_3 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_8-Arg_4 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_8-Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_7+1-Arg_5 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5+2*Arg_7+3-Arg_4-Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb1_in___39 [Arg_6+Arg_7 ]
n_eval_rank2_bb1_in___49 [Arg_4+2*Arg_6-1 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_4+3*Arg_6-Arg_7-1 ]
n_eval_rank2_bb3_in___16 [2*Arg_8-Arg_5 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+2*Arg_6-Arg_4-1 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb3_in___42 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb3_in___56 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___15 [Arg_4+2*Arg_7+2-2*Arg_5 ]
n_eval_rank2_5___14 [Arg_4+2*Arg_7+2-2*Arg_5 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_6 ]
n_eval_rank2_5___33 [Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___40 [2*Arg_8-Arg_4-1 ]
n_eval_rank2_5___26 [2*Arg_7+1-Arg_5 ]
n_eval_rank2_bb4_in___55 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_5___54 [2*Arg_7+2-Arg_3 ]
n_eval_rank2_bb5_in___10 [Arg_4+Arg_7+Arg_8+1-2*Arg_5 ]
n_eval_rank2_bb5_in___22 [Arg_5+Arg_8-Arg_4-1 ]
n_eval_rank2_bb5_in___29 [Arg_3+2*Arg_6+Arg_7-Arg_4-3 ]
n_eval_rank2_bb5_in___50 [2*Arg_7+1-Arg_4 ]
n_eval_rank2_bb6_in___28 [Arg_7 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_8-Arg_4-1 ]
n_eval_rank2_bb6_in___45 [2*Arg_7-Arg_5-2 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8-Arg_5-1 ]
n_eval_rank2_bb7_in___43 [2*Arg_7-Arg_5-2 ]
n_eval_rank2_11___21 [2*Arg_7-Arg_5-2 ]
n_eval_rank2_bb7_in___7 [2*Arg_8-Arg_5 ]
n_eval_rank2_11___6 [2*Arg_8-Arg_5 ]
n_eval_rank2_bb8_in___17 [2*Arg_7-Arg_4-2 ]
n_eval_rank2_bb8_in___2 [2*Arg_8-Arg_5 ]
n_eval_rank2_bb6_in___9 [2*Arg_8-Arg_5 ]

MPRF for transition 60:n_eval_rank2_bb6_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 2<=Arg_8 && 5<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 3<=Arg_6+Arg_8 && 3<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=1+Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_7 && 4<=Arg_6+Arg_7 && 4<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 5<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 4<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=1+Arg_8 && 1+Arg_8<=Arg_7 && 3+Arg_5<=Arg_8 of depth 1:

new bound:

3*Arg_2+7 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_5+Arg_7+8 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_8+9-Arg_4 ]
n_eval_rank2_6___12 [Arg_4+Arg_7+9 ]
n_eval_rank2_6___24 [2*Arg_7+8 ]
n_eval_rank2_6___31 [14*Arg_3+Arg_7-13*Arg_4-2*Arg_6 ]
n_eval_rank2_6___52 [2*Arg_3+Arg_6+7 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_4+Arg_7+7 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_5+Arg_8+8 ]
n_eval_rank2__Pcritedge_in___11 [Arg_5+Arg_7+6 ]
n_eval_rank2__Pcritedge_in___23 [2*Arg_7+5 ]
n_eval_rank2__Pcritedge_in___30 [3*Arg_3+Arg_7+11-2*Arg_4-2*Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [2*Arg_3+Arg_6+7 ]
n_eval_rank2_bb1_in___39 [12*Arg_4+2*Arg_5+2*Arg_6-10*Arg_3-2*Arg_8-1 ]
n_eval_rank2_bb1_in___49 [Arg_3+Arg_7+7 ]
n_eval_rank2_bb2_in___38 [12*Arg_4+2*Arg_6-10*Arg_3-3 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+Arg_7+8-Arg_4 ]
n_eval_rank2_bb3_in___16 [Arg_5+Arg_7+9 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_7+11 ]
n_eval_rank2_bb3_in___36 [Arg_4+4*Arg_7+14-3*Arg_3-2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [2*Arg_5+2*Arg_7+12-2*Arg_8 ]
n_eval_rank2_bb3_in___42 [2*Arg_5+10 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+Arg_6+7 ]
n_eval_rank2_bb4_in___15 [Arg_4+9*Arg_8-8*Arg_7 ]
n_eval_rank2_5___14 [Arg_5+8*Arg_8+1-7*Arg_7 ]
n_eval_rank2_bb4_in___34 [14*Arg_3+4*Arg_7-16*Arg_4-2*Arg_6-3 ]
n_eval_rank2_5___33 [14*Arg_3+3*Arg_7-15*Arg_4-2*Arg_6-2 ]
n_eval_rank2_bb4_in___40 [2*Arg_5+2*Arg_7+8-2*Arg_4 ]
n_eval_rank2_5___26 [2*Arg_5+2*Arg_7+8-2*Arg_4 ]
n_eval_rank2_bb4_in___55 [9*Arg_3+8*Arg_6-7*Arg_7 ]
n_eval_rank2_5___54 [9*Arg_3+8*Arg_6-7*Arg_7 ]
n_eval_rank2_bb5_in___10 [Arg_4+Arg_8+8 ]
n_eval_rank2_bb5_in___22 [2*Arg_5+8*Arg_8+2-8*Arg_7 ]
n_eval_rank2_bb5_in___29 [14*Arg_3+Arg_7-13*Arg_4-2*Arg_6 ]
n_eval_rank2_bb5_in___50 [Arg_3+Arg_7+8 ]
n_eval_rank2_bb6_in___28 [2*Arg_5+10 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4+10*Arg_7-10*Arg_8 ]
n_eval_rank2_bb6_in___45 [Arg_5+Arg_8+10 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+10 ]
n_eval_rank2_bb7_in___43 [Arg_5+Arg_8+9 ]
n_eval_rank2_11___21 [Arg_5+Arg_7+8 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_8+9-Arg_4 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_8+9-Arg_4 ]
n_eval_rank2_bb8_in___17 [Arg_5+Arg_7+8 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_8+9-Arg_4 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_8+9-Arg_4 ]

MPRF for transition 61:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2__Pcritedge1_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && Arg_8<3+Arg_5 of depth 1:

new bound:

4*Arg_2+9 {O(n)}

MPRF:

n_eval_rank2_12___19 [2*Arg_4+Arg_7-6 ]
n_eval_rank2_12___4 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_6___12 [2*Arg_4+Arg_7-4 ]
n_eval_rank2_6___24 [3*Arg_4-10 ]
n_eval_rank2_6___31 [3*Arg_4+Arg_6-11 ]
n_eval_rank2_6___52 [3*Arg_3+Arg_6-9 ]
n_eval_rank2__Pcritedge1_in___18 [2*Arg_5+Arg_8-5 ]
n_eval_rank2__Pcritedge1_in___3 [2*Arg_5+Arg_8-5 ]
n_eval_rank2__Pcritedge_in___11 [2*Arg_5+Arg_7-11 ]
n_eval_rank2__Pcritedge_in___23 [3*Arg_5-10 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_4+Arg_7-11 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_3+Arg_6-9 ]
n_eval_rank2_bb1_in___39 [3*Arg_6+3*Arg_7-15 ]
n_eval_rank2_bb1_in___49 [2*Arg_4+Arg_7-11 ]
n_eval_rank2_bb2_in___38 [3*Arg_3+3*Arg_6+3*Arg_7-3*Arg_4-12 ]
n_eval_rank2_bb2_in___48 [Arg_3+2*Arg_4+Arg_6-11 ]
n_eval_rank2_bb3_in___16 [2*Arg_4+Arg_8-5 ]
n_eval_rank2__Pcritedge_in___35 [6*Arg_7-3*Arg_3-9 ]
n_eval_rank2_bb3_in___36 [6*Arg_7-3*Arg_3-9 ]
n_eval_rank2__Pcritedge_in___41 [3*Arg_5-12 ]
n_eval_rank2_bb3_in___42 [2*Arg_4+Arg_8-12 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+Arg_6-9 ]
n_eval_rank2_bb4_in___15 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_5___14 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_bb4_in___34 [6*Arg_7-3*Arg_4-12 ]
n_eval_rank2_5___33 [3*Arg_4+6*Arg_7-6*Arg_3-6 ]
n_eval_rank2_bb4_in___40 [2*Arg_5+12*Arg_7-11*Arg_8 ]
n_eval_rank2_5___26 [3*Arg_5-10 ]
n_eval_rank2_bb4_in___55 [9*Arg_4+Arg_6-6*Arg_3 ]
n_eval_rank2_5___54 [9*Arg_4+Arg_6-6*Arg_3 ]
n_eval_rank2_bb5_in___10 [2*Arg_5+Arg_7-4 ]
n_eval_rank2_bb5_in___22 [3*Arg_5-10 ]
n_eval_rank2_bb5_in___29 [3*Arg_4+Arg_6-11 ]
n_eval_rank2_bb5_in___50 [3*Arg_3+Arg_6-9 ]
n_eval_rank2_bb6_in___28 [3*Arg_5-10 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_4-10 ]
n_eval_rank2_bb6_in___45 [2*Arg_5+Arg_7-6 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_5+Arg_8-12 ]
n_eval_rank2_bb7_in___43 [2*Arg_5+Arg_7-6 ]
n_eval_rank2_11___21 [2*Arg_5+Arg_7-6 ]
n_eval_rank2_bb7_in___7 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_11___6 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_bb8_in___17 [2*Arg_4+Arg_8-5 ]
n_eval_rank2_bb8_in___2 [2*Arg_5+Arg_8-5 ]
n_eval_rank2_bb6_in___9 [2*Arg_5+Arg_8-5 ]

MPRF for transition 62:n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 2<=Arg_8 && 7<=Arg_7+Arg_8 && 4<=Arg_6+Arg_8 && 4<=Arg_5+Arg_8 && Arg_5<=Arg_8 && 3<=Arg_4+Arg_8 && 1+Arg_4<=Arg_8 && 4<=Arg_3+Arg_8 && Arg_3<=Arg_8 && 3<=Arg_1+Arg_8 && 3<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 7<=Arg_5+Arg_7 && 3+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8 of depth 1:

new bound:

9*Arg_2+32 {O(n)}

MPRF:

n_eval_rank2_12___19 [15*Arg_7-3*Arg_5-9*Arg_8-38 ]
n_eval_rank2_12___4 [6*Arg_8-3*Arg_4-38 ]
n_eval_rank2_6___12 [6*Arg_7-3*Arg_4-29 ]
n_eval_rank2_6___24 [3*Arg_8-25 ]
n_eval_rank2_6___31 [Arg_3+2*Arg_5+2*Arg_6-22 ]
n_eval_rank2_6___52 [3*Arg_3+6*Arg_6-32 ]
n_eval_rank2__Pcritedge1_in___18 [15*Arg_7-3*Arg_4-9*Arg_8-50 ]
n_eval_rank2__Pcritedge1_in___3 [6*Arg_8-3*Arg_5-35 ]
n_eval_rank2__Pcritedge_in___11 [6*Arg_7-3*Arg_4-29 ]
n_eval_rank2__Pcritedge_in___23 [3*Arg_7-26 ]
n_eval_rank2__Pcritedge_in___30 [2*Arg_5+6*Arg_7-2*Arg_3-3*Arg_4-4*Arg_6-19 ]
n_eval_rank2__Pcritedge_in___51 [6*Arg_3+6*Arg_6-3*Arg_4-35 ]
n_eval_rank2_bb1_in___39 [23*Arg_3+2*Arg_5+2*Arg_6-22*Arg_4 ]
n_eval_rank2_bb1_in___49 [6*Arg_7-3*Arg_4-29 ]
n_eval_rank2_bb2_in___38 [Arg_3+2*Arg_5+2*Arg_6-22 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+3*Arg_6+3*Arg_7-3*Arg_4-29 ]
n_eval_rank2_bb3_in___16 [6*Arg_7-3*Arg_4-29 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_5+2*Arg_7-Arg_4-21 ]
n_eval_rank2_bb3_in___36 [Arg_3+2*Arg_5+2*Arg_6-22 ]
n_eval_rank2__Pcritedge_in___41 [Arg_4+2*Arg_7-21 ]
n_eval_rank2_bb3_in___42 [Arg_5+2*Arg_8-23 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+6*Arg_6-32 ]
n_eval_rank2_bb4_in___15 [6*Arg_7-3*Arg_5-29 ]
n_eval_rank2_5___14 [6*Arg_7-3*Arg_5-29 ]
n_eval_rank2_bb4_in___34 [Arg_3+2*Arg_5+2*Arg_6-22 ]
n_eval_rank2_5___33 [2*Arg_5+2*Arg_7-Arg_3-20 ]
n_eval_rank2_bb4_in___40 [3*Arg_8-25 ]
n_eval_rank2_5___26 [3*Arg_8-25 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+6*Arg_6-32 ]
n_eval_rank2_5___54 [3*Arg_3+6*Arg_6-32 ]
n_eval_rank2_bb5_in___10 [6*Arg_7-3*Arg_5-29 ]
n_eval_rank2_bb5_in___22 [3*Arg_4+3*Arg_7-3*Arg_5-22 ]
n_eval_rank2_bb5_in___29 [3*Arg_4+2*Arg_5+4*Arg_6-2*Arg_7-25 ]
n_eval_rank2_bb5_in___50 [6*Arg_7-3*Arg_4-29 ]
n_eval_rank2_bb6_in___28 [3*Arg_5+6*Arg_8-6*Arg_7-13 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_4+6*Arg_8-4*Arg_7-19 ]
n_eval_rank2_bb6_in___45 [6*Arg_8-3*Arg_5-23 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+5*Arg_8-3*Arg_4-26 ]
n_eval_rank2_bb7_in___43 [15*Arg_7-3*Arg_4-9*Arg_8-38 ]
n_eval_rank2_11___21 [15*Arg_7-3*Arg_4-9*Arg_8-38 ]
n_eval_rank2_bb7_in___7 [6*Arg_8-3*Arg_4-38 ]
n_eval_rank2_11___6 [6*Arg_8-3*Arg_4-38 ]
n_eval_rank2_bb8_in___17 [15*Arg_7-3*Arg_4-9*Arg_8-38 ]
n_eval_rank2_bb8_in___2 [6*Arg_8-3*Arg_4-38 ]
n_eval_rank2_bb6_in___9 [6*Arg_8-3*Arg_4-26 ]

MPRF for transition 63:n_eval_rank2_bb7_in___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1<=Arg_1 && 4+Arg_4<=Arg_7 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:

new bound:

9*Arg_2+12 {O(n)}

MPRF:

n_eval_rank2_12___19 [6*Arg_8-3*Arg_4-15 ]
n_eval_rank2_12___4 [6*Arg_8-3*Arg_5 ]
n_eval_rank2_6___12 [6*Arg_7-3*Arg_4-9 ]
n_eval_rank2_6___24 [3*Arg_7 ]
n_eval_rank2_6___31 [3*Arg_3+2*Arg_6 ]
n_eval_rank2_6___52 [3*Arg_4+6*Arg_6-9 ]
n_eval_rank2__Pcritedge1_in___18 [6*Arg_8-3*Arg_4-15 ]
n_eval_rank2__Pcritedge1_in___3 [6*Arg_8-3*Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [6*Arg_7-3*Arg_4-9 ]
n_eval_rank2__Pcritedge_in___23 [3*Arg_5+6*Arg_7+3-3*Arg_4-3*Arg_8 ]
n_eval_rank2__Pcritedge_in___30 [3*Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___51 [3*Arg_4+6*Arg_6-9 ]
n_eval_rank2_bb1_in___39 [3*Arg_7-Arg_6 ]
n_eval_rank2_bb1_in___49 [3*Arg_6+3*Arg_7-12 ]
n_eval_rank2_bb2_in___38 [3*Arg_3+3*Arg_7+3-3*Arg_4-Arg_6 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+6*Arg_6-12 ]
n_eval_rank2_bb3_in___16 [6*Arg_8-3*Arg_4-15 ]
n_eval_rank2__Pcritedge_in___35 [3*Arg_3+2*Arg_6 ]
n_eval_rank2_bb3_in___36 [3*Arg_3+2*Arg_6 ]
n_eval_rank2__Pcritedge_in___41 [Arg_5+2*Arg_8-3 ]
n_eval_rank2_bb3_in___42 [3*Arg_7 ]
n_eval_rank2_bb3_in___56 [3*Arg_3+6*Arg_6-12 ]
n_eval_rank2_bb4_in___15 [6*Arg_8-3*Arg_5-15 ]
n_eval_rank2_5___14 [6*Arg_8-3*Arg_5-15 ]
n_eval_rank2_bb4_in___34 [3*Arg_3+2*Arg_6 ]
n_eval_rank2_5___33 [3*Arg_3+2*Arg_6 ]
n_eval_rank2_bb4_in___40 [3*Arg_7 ]
n_eval_rank2_5___26 [3*Arg_7 ]
n_eval_rank2_bb4_in___55 [3*Arg_3+6*Arg_6-12 ]
n_eval_rank2_5___54 [3*Arg_3+6*Arg_6-12 ]
n_eval_rank2_bb5_in___10 [6*Arg_7-3*Arg_4-9 ]
n_eval_rank2_bb5_in___22 [3*Arg_7 ]
n_eval_rank2_bb5_in___29 [2*Arg_3+3*Arg_4+2*Arg_6+1-2*Arg_7 ]
n_eval_rank2_bb5_in___50 [3*Arg_4+6*Arg_6-9 ]
n_eval_rank2_bb6_in___28 [3*Arg_4+3 ]
n_eval_rank2__Pcritedge1_in___44 [3*Arg_8-3 ]
n_eval_rank2_bb6_in___45 [6*Arg_8-3*Arg_5-3 ]
n_eval_rank2__Pcritedge1_in___8 [6*Arg_8-3*Arg_5-3 ]
n_eval_rank2_bb7_in___43 [6*Arg_8-3*Arg_4-3 ]
n_eval_rank2_11___21 [6*Arg_8-3*Arg_5-15 ]
n_eval_rank2_bb7_in___7 [6*Arg_8-3*Arg_5 ]
n_eval_rank2_11___6 [6*Arg_8-3*Arg_5 ]
n_eval_rank2_bb8_in___17 [6*Arg_8-3*Arg_4-15 ]
n_eval_rank2_bb8_in___2 [6*Arg_8-3*Arg_5 ]
n_eval_rank2_bb6_in___9 [6*Arg_8-3*Arg_5 ]

MPRF for transition 64:n_eval_rank2_bb7_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_11___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8 of depth 1:

new bound:

3*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_5+Arg_7-2 ]
n_eval_rank2_12___4 [Arg_5+Arg_8-3 ]
n_eval_rank2_6___12 [Arg_4+Arg_7-2 ]
n_eval_rank2_6___24 [Arg_7+Arg_8-4 ]
n_eval_rank2_6___31 [Arg_3+Arg_4+Arg_6-3 ]
n_eval_rank2_6___52 [2*Arg_3+Arg_6-4 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_4+Arg_7-4 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_5+Arg_8-3 ]
n_eval_rank2__Pcritedge_in___11 [Arg_5+Arg_7-2 ]
n_eval_rank2__Pcritedge_in___23 [Arg_5+Arg_7-2 ]
n_eval_rank2__Pcritedge_in___30 [Arg_4+Arg_7-2 ]
n_eval_rank2__Pcritedge_in___51 [Arg_3+Arg_4+Arg_6-3 ]
n_eval_rank2_bb1_in___39 [Arg_4+3*Arg_5+Arg_7-3*Arg_8-2 ]
n_eval_rank2_bb1_in___49 [Arg_3+2*Arg_7-Arg_4-Arg_6 ]
n_eval_rank2_bb2_in___38 [Arg_4+Arg_7-5 ]
n_eval_rank2_bb2_in___48 [3*Arg_3+Arg_6-Arg_4 ]
n_eval_rank2_bb3_in___16 [Arg_5+Arg_8-3 ]
n_eval_rank2__Pcritedge_in___35 [2*Arg_3+3*Arg_5+Arg_6-3*Arg_8-4 ]
n_eval_rank2_bb3_in___36 [2*Arg_3+Arg_6-4 ]
n_eval_rank2__Pcritedge_in___41 [4*Arg_4+Arg_7-3*Arg_8-2 ]
n_eval_rank2_bb3_in___42 [Arg_4+Arg_7-2 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+Arg_6-1 ]
n_eval_rank2_bb4_in___15 [Arg_4+Arg_7-2 ]
n_eval_rank2_5___14 [Arg_5+Arg_7-2 ]
n_eval_rank2_bb4_in___34 [2*Arg_3+Arg_6-4 ]
n_eval_rank2_5___33 [Arg_3+Arg_4+Arg_6-3 ]
n_eval_rank2_bb4_in___40 [Arg_4+Arg_7-2 ]
n_eval_rank2_5___26 [Arg_4+Arg_7-2 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+Arg_6-1 ]
n_eval_rank2_5___54 [2*Arg_3+Arg_6-1 ]
n_eval_rank2_bb5_in___10 [Arg_5+Arg_7-2 ]
n_eval_rank2_bb5_in___22 [Arg_7+Arg_8-4 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_7-2 ]
n_eval_rank2_bb5_in___50 [2*Arg_3+Arg_6-4 ]
n_eval_rank2_bb6_in___28 [Arg_4+Arg_7-2 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_4-1 ]
n_eval_rank2_bb6_in___45 [Arg_4+Arg_8-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_5+Arg_8-2 ]
n_eval_rank2_bb7_in___43 [Arg_4+Arg_7-2 ]
n_eval_rank2_11___21 [Arg_5+Arg_7-2 ]
n_eval_rank2_bb7_in___7 [Arg_5+Arg_8-2 ]
n_eval_rank2_11___6 [Arg_5+Arg_8-3 ]
n_eval_rank2_bb8_in___17 [Arg_4+Arg_8-1 ]
n_eval_rank2_bb8_in___2 [Arg_5+Arg_8-3 ]
n_eval_rank2_bb6_in___9 [Arg_5+Arg_8-2 ]

MPRF for transition 65:n_eval_rank2_bb8_in___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:1+Arg_8<=Arg_7 && 4<=Arg_8 && 9<=Arg_7+Arg_8 && Arg_7<=1+Arg_8 && 6<=Arg_6+Arg_8 && 5<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 5<=Arg_4+Arg_8 && 3+Arg_4<=Arg_8 && 6<=Arg_3+Arg_8 && 2+Arg_3<=Arg_8 && 5<=Arg_1+Arg_8 && 5<=Arg_0+Arg_8 && 5<=Arg_7 && 7<=Arg_6+Arg_7 && 6<=Arg_5+Arg_7 && 4+Arg_5<=Arg_7 && 6<=Arg_4+Arg_7 && 4+Arg_4<=Arg_7 && 7<=Arg_3+Arg_7 && 3+Arg_3<=Arg_7 && 6<=Arg_1+Arg_7 && 6<=Arg_0+Arg_7 && 1<=Arg_6 && 3<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && Arg_5<=Arg_4 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 2<=Arg_1+Arg_5 && 2<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 4+Arg_4<=Arg_7 && 0<Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_7<=Arg_8+1 && 1+Arg_8<=Arg_7 of depth 1:

new bound:

2*Arg_2+1 {O(n)}

MPRF:

n_eval_rank2_12___19 [Arg_8 ]
n_eval_rank2_12___4 [Arg_7-5 ]
n_eval_rank2_6___12 [Arg_7-1 ]
n_eval_rank2_6___24 [Arg_4+Arg_5+Arg_7+3-2*Arg_8 ]
n_eval_rank2_6___31 [Arg_7 ]
n_eval_rank2_6___52 [Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___18 [Arg_8 ]
n_eval_rank2__Pcritedge1_in___3 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___11 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___23 [Arg_7-1 ]
n_eval_rank2__Pcritedge_in___30 [Arg_7 ]
n_eval_rank2__Pcritedge_in___51 [Arg_7-1 ]
n_eval_rank2_bb1_in___39 [Arg_7-1 ]
n_eval_rank2_bb1_in___49 [2*Arg_7-Arg_3-Arg_6-1 ]
n_eval_rank2_bb2_in___38 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb2_in___48 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb3_in___16 [Arg_8-2 ]
n_eval_rank2__Pcritedge_in___35 [Arg_3+Arg_6-2 ]
n_eval_rank2_bb3_in___36 [Arg_3+Arg_6-1 ]
n_eval_rank2__Pcritedge_in___41 [Arg_7-1 ]
n_eval_rank2_bb3_in___42 [Arg_7-1 ]
n_eval_rank2_bb3_in___56 [Arg_3+Arg_6-1 ]
n_eval_rank2_bb4_in___15 [Arg_7-1 ]
n_eval_rank2_5___14 [Arg_7-1 ]
n_eval_rank2_bb4_in___34 [Arg_4+Arg_6 ]
n_eval_rank2_5___33 [Arg_7 ]
n_eval_rank2_bb4_in___40 [Arg_7+Arg_8-Arg_5-3 ]
n_eval_rank2_5___26 [2*Arg_4+Arg_7+3-2*Arg_8 ]
n_eval_rank2_bb4_in___55 [Arg_7 ]
n_eval_rank2_5___54 [Arg_7-1 ]
n_eval_rank2_bb5_in___10 [Arg_7-1 ]
n_eval_rank2_bb5_in___22 [Arg_5+Arg_8-Arg_4-2 ]
n_eval_rank2_bb5_in___29 [Arg_4+Arg_6+3*Arg_8-3*Arg_5-3 ]
n_eval_rank2_bb5_in___50 [Arg_7-1 ]
n_eval_rank2_bb6_in___28 [Arg_7-3 ]
n_eval_rank2__Pcritedge1_in___44 [Arg_7-3 ]
n_eval_rank2_bb6_in___45 [Arg_7-1 ]
n_eval_rank2__Pcritedge1_in___8 [Arg_8-2 ]
n_eval_rank2_bb7_in___43 [Arg_7-1 ]
n_eval_rank2_11___21 [Arg_8 ]
n_eval_rank2_bb7_in___7 [Arg_7-5 ]
n_eval_rank2_11___6 [Arg_7-5 ]
n_eval_rank2_bb8_in___17 [Arg_7-4 ]
n_eval_rank2_bb8_in___2 [Arg_7-5 ]
n_eval_rank2_bb6_in___9 [Arg_7-5 ]

MPRF for transition 66:n_eval_rank2_bb8_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_rank2_bb6_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8-2):|:3+Arg_8<=Arg_7 && 5<=Arg_8 && 13<=Arg_7+Arg_8 && 7<=Arg_6+Arg_8 && 7<=Arg_5+Arg_8 && 3+Arg_5<=Arg_8 && 6<=Arg_4+Arg_8 && 4+Arg_4<=Arg_8 && 7<=Arg_3+Arg_8 && 3+Arg_3<=Arg_8 && 6<=Arg_1+Arg_8 && 6<=Arg_0+Arg_8 && 8<=Arg_7 && 10<=Arg_6+Arg_7 && 10<=Arg_5+Arg_7 && 6+Arg_5<=Arg_7 && 9<=Arg_4+Arg_7 && 7+Arg_4<=Arg_7 && 10<=Arg_3+Arg_7 && 6+Arg_3<=Arg_7 && 9<=Arg_1+Arg_7 && 9<=Arg_0+Arg_7 && 1<=Arg_6 && 4<=Arg_5+Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_3+Arg_6 && 2<=Arg_1+Arg_6 && 2<=Arg_0+Arg_6 && 2<=Arg_5 && 3<=Arg_4+Arg_5 && 1+Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 3<=Arg_0+Arg_5 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && Arg_3<=1+Arg_4 && 2<=Arg_1+Arg_4 && 2<=Arg_0+Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && 1<=Arg_0 && 3+Arg_5<=Arg_8 && 0<Arg_0 of depth 1:

new bound:

6*Arg_2+2 {O(n)}

MPRF:

n_eval_rank2_12___19 [4*Arg_7-2*Arg_5 ]
n_eval_rank2_12___4 [4*Arg_8-2*Arg_5 ]
n_eval_rank2_6___12 [4*Arg_7-2*Arg_5 ]
n_eval_rank2_6___24 [4*Arg_8-2*Arg_4-4 ]
n_eval_rank2_6___31 [4*Arg_7+2-2*Arg_3 ]
n_eval_rank2_6___52 [2*Arg_4+4*Arg_6 ]
n_eval_rank2__Pcritedge1_in___18 [4*Arg_8+4-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___3 [4*Arg_8-2*Arg_5 ]
n_eval_rank2__Pcritedge_in___11 [4*Arg_7-2*Arg_5 ]
n_eval_rank2__Pcritedge_in___23 [4*Arg_7-2*Arg_5 ]
n_eval_rank2__Pcritedge_in___30 [4*Arg_7-2*Arg_4 ]
n_eval_rank2__Pcritedge_in___51 [4*Arg_3+4*Arg_6-2*Arg_4-4 ]
n_eval_rank2_bb1_in___39 [2*Arg_6+2*Arg_7-2 ]
n_eval_rank2_bb1_in___49 [4*Arg_7-2*Arg_4 ]
n_eval_rank2_bb2_in___38 [2*Arg_6+2*Arg_7-2 ]
n_eval_rank2_bb2_in___48 [2*Arg_3+4*Arg_6-2 ]
n_eval_rank2_bb3_in___16 [4*Arg_8-2*Arg_5-4 ]
n_eval_rank2__Pcritedge_in___35 [4*Arg_7+2-2*Arg_3 ]
n_eval_rank2_bb3_in___36 [2*Arg_3+4*Arg_6-2 ]
n_eval_rank2__Pcritedge_in___41 [4*Arg_7-2*Arg_4 ]
n_eval_rank2_bb3_in___42 [2*Arg_7+2 ]
n_eval_rank2_bb3_in___56 [2*Arg_3+4*Arg_6-2 ]
n_eval_rank2_bb4_in___15 [4*Arg_8-2*Arg_5-4 ]
n_eval_rank2_5___14 [Arg_4+4*Arg_8-3*Arg_5-4 ]
n_eval_rank2_bb4_in___34 [4*Arg_7+2-2*Arg_3 ]
n_eval_rank2_5___33 [4*Arg_7+2-2*Arg_3 ]
n_eval_rank2_bb4_in___40 [2*Arg_7+2 ]
n_eval_rank2_5___26 [2*Arg_4+4 ]
n_eval_rank2_bb4_in___55 [2*Arg_3+4*Arg_6-2 ]
n_eval_rank2_5___54 [2*Arg_3+4*Arg_6-2 ]
n_eval_rank2_bb5_in___10 [4*Arg_7-2*Arg_4 ]
n_eval_rank2_bb5_in___22 [4*Arg_8-2*Arg_7-2 ]
n_eval_rank2_bb5_in___29 [4*Arg_7-2*Arg_4 ]
n_eval_rank2_bb5_in___50 [2*Arg_4+4*Arg_6 ]
n_eval_rank2_bb6_in___28 [2*Arg_4+4 ]
n_eval_rank2__Pcritedge1_in___44 [2*Arg_5+4 ]
n_eval_rank2_bb6_in___45 [4*Arg_7-2*Arg_4 ]
n_eval_rank2__Pcritedge1_in___8 [2*Arg_8 ]
n_eval_rank2_bb7_in___43 [4*Arg_7-2*Arg_5 ]
n_eval_rank2_11___21 [4*Arg_7-2*Arg_5 ]
n_eval_rank2_bb7_in___7 [4*Arg_8-2*Arg_5 ]
n_eval_rank2_11___6 [4*Arg_8-2*Arg_5 ]
n_eval_rank2_bb8_in___17 [4*Arg_7-2*Arg_5 ]
n_eval_rank2_bb8_in___2 [4*Arg_8-2*Arg_5 ]
n_eval_rank2_bb6_in___9 [4*Arg_8-2*Arg_5 ]

All Bounds

Timebounds

Overall timebound:354*Arg_2+235 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20: 1 {O(1)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19: 3*Arg_2+3 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5: 1 {O(1)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4: 3*Arg_2 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18: 33*Arg_2 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17: 3*Arg_2+5 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3: 6*Arg_2+6 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2: 3*Arg_2+1 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13: 1 {O(1)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12: 8*Arg_2+2 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25: 1 {O(1)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24: 3*Arg_2+5 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32: 1 {O(1)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31: 9*Arg_2 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53: 1 {O(1)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52: 32*Arg_2 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11: 8*Arg_2+1 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10: 4*Arg_2+5 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23: 2*Arg_2 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22: 2*Arg_2+2 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30: 8*Arg_2+10 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29: 17*Arg_2 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51: 4*Arg_2+4 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50: 2*Arg_2+4 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16: 2*Arg_2 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16: 9*Arg_2+21 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42: 7*Arg_2+11 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42: 2*Arg_2+4 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49: 5*Arg_2+7 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49: 6*Arg_2 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49: 2*Arg_2+2 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39: 24*Arg_2 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39: 5*Arg_2 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49: 4*Arg_2+7 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59: 1 {O(1)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38: 6*Arg_2+2 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37: 1 {O(1)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48: 10*Arg_2+6 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47: 1 {O(1)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58: 1 {O(1)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57: 1 {O(1)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36: 4*Arg_2+4 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56: 7*Arg_2+8 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56: 1 {O(1)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15: 10*Arg_2 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35: 2*Arg_2 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34: 3*Arg_2 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41: 2*Arg_2 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40: 4*Arg_2 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55: 18*Arg_2+12 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14: 6*Arg_2 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33: 3*Arg_2+4 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26: 4*Arg_2+3 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54: 2*Arg_2+3 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45: 4*Arg_2 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28: 2*Arg_2 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28: 2*Arg_2+2 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45: 4*Arg_2 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44: 6*Arg_2+11 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44: 3*Arg_2 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43: 3*Arg_2+7 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8: 4*Arg_2+9 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7: 9*Arg_2+32 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21: 9*Arg_2+12 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6: 3*Arg_2+1 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9: 2*Arg_2+1 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9: 6*Arg_2+2 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27: 1 {O(1)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46: 1 {O(1)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1: 1 {O(1)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60: 1 {O(1)}

Costbounds

Overall costbound: 354*Arg_2+235 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20: 1 {O(1)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19: 3*Arg_2+3 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5: 1 {O(1)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4: 3*Arg_2 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18: 33*Arg_2 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17: 3*Arg_2+5 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3: 6*Arg_2+6 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2: 3*Arg_2+1 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13: 1 {O(1)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12: 8*Arg_2+2 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25: 1 {O(1)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24: 3*Arg_2+5 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32: 1 {O(1)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31: 9*Arg_2 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53: 1 {O(1)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52: 32*Arg_2 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11: 8*Arg_2+1 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10: 4*Arg_2+5 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23: 2*Arg_2 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22: 2*Arg_2+2 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30: 8*Arg_2+10 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29: 17*Arg_2 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51: 4*Arg_2+4 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50: 2*Arg_2+4 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16: 2*Arg_2 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16: 9*Arg_2+21 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42: 7*Arg_2+11 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42: 2*Arg_2+4 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49: 5*Arg_2+7 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49: 6*Arg_2 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49: 2*Arg_2+2 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39: 24*Arg_2 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39: 5*Arg_2 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49: 4*Arg_2+7 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59: 1 {O(1)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38: 6*Arg_2+2 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37: 1 {O(1)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48: 10*Arg_2+6 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47: 1 {O(1)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58: 1 {O(1)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57: 1 {O(1)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36: 4*Arg_2+4 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56: 7*Arg_2+8 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56: 1 {O(1)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15: 10*Arg_2 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35: 2*Arg_2 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34: 3*Arg_2 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41: 2*Arg_2 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40: 4*Arg_2 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55: 18*Arg_2+12 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14: 6*Arg_2 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33: 3*Arg_2+4 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26: 4*Arg_2+3 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54: 2*Arg_2+3 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45: 4*Arg_2 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28: 2*Arg_2 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28: 2*Arg_2+2 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45: 4*Arg_2 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44: 6*Arg_2+11 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44: 3*Arg_2 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43: 3*Arg_2+7 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8: 4*Arg_2+9 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7: 9*Arg_2+32 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21: 9*Arg_2+12 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6: 3*Arg_2+1 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9: 2*Arg_2+1 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9: 6*Arg_2+2 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27: 1 {O(1)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46: 1 {O(1)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1: 1 {O(1)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60: 1 {O(1)}

Sizebounds

0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_2: Arg_2 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_3: 10*Arg_2+3 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_4: 10*Arg_2+3 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_5: 10*Arg_2+3 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_6: 11*Arg_2+17 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_7: 6*Arg_2+4 {O(n)}
0: n_eval_rank2_11___21->n_eval_nondet_start___20, Arg_8: 12*Arg_2+8 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_2: Arg_2 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_3: 10*Arg_2+3 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_4: 10*Arg_2+3 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_5: 10*Arg_2+3 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_6: 11*Arg_2+17 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_7: 6*Arg_2+4 {O(n)}
1: n_eval_rank2_11___21->n_eval_rank2_12___19, Arg_8: 12*Arg_2+8 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_2: Arg_2 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_3: 10*Arg_2+3 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_4: 10*Arg_2+3 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_5: 10*Arg_2+3 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_6: 11*Arg_2+17 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_7: 6*Arg_2+4 {O(n)}
2: n_eval_rank2_11___6->n_eval_nondet_start___5, Arg_8: 12*Arg_2+8 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_2: Arg_2 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_3: 10*Arg_2+3 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_4: 10*Arg_2+3 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_5: 10*Arg_2+3 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_6: 11*Arg_2+17 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_7: 6*Arg_2+4 {O(n)}
3: n_eval_rank2_11___6->n_eval_rank2_12___4, Arg_8: 12*Arg_2+8 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_2: Arg_2 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_3: 10*Arg_2+3 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_4: 10*Arg_2+3 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_5: 10*Arg_2+3 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_6: 11*Arg_2+17 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_7: 6*Arg_2+4 {O(n)}
4: n_eval_rank2_12___19->n_eval_rank2__Pcritedge1_in___18, Arg_8: 12*Arg_2+8 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_2: Arg_2 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_3: 10*Arg_2+3 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_4: 10*Arg_2+3 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_5: 10*Arg_2+3 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_6: 11*Arg_2+17 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_7: 6*Arg_2+4 {O(n)}
5: n_eval_rank2_12___19->n_eval_rank2_bb8_in___17, Arg_8: 12*Arg_2+8 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_2: Arg_2 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_3: 10*Arg_2+3 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_4: 10*Arg_2+3 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_5: 10*Arg_2+3 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_6: 11*Arg_2+17 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_7: 6*Arg_2+4 {O(n)}
6: n_eval_rank2_12___4->n_eval_rank2__Pcritedge1_in___3, Arg_8: 12*Arg_2+8 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_2: Arg_2 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_3: 10*Arg_2+3 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_4: 10*Arg_2+3 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_5: 10*Arg_2+3 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_6: 11*Arg_2+17 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_7: 6*Arg_2+4 {O(n)}
7: n_eval_rank2_12___4->n_eval_rank2_bb8_in___2, Arg_8: 12*Arg_2+8 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_2: Arg_2 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_3: 10*Arg_2+3 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_4: 10*Arg_2+3 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_5: 20*Arg_2+6 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_6: 11*Arg_2+17 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_7: 6*Arg_2+4 {O(n)}
8: n_eval_rank2_5___14->n_eval_nondet_start___13, Arg_8: 24*Arg_2+16 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_2: Arg_2 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_3: 10*Arg_2+3 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_4: 10*Arg_2+3 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_5: 20*Arg_2+6 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_6: 11*Arg_2+17 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_7: 6*Arg_2+4 {O(n)}
9: n_eval_rank2_5___14->n_eval_rank2_6___12, Arg_8: 24*Arg_2+16 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_2: Arg_2 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_3: 50*Arg_2+15 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_4: 10*Arg_2+3 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_5: 50*Arg_2+15 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_6: 44*Arg_2+71 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_7: 6*Arg_2+4 {O(n)}
10: n_eval_rank2_5___26->n_eval_nondet_start___25, Arg_8: 48*Arg_2+32 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_2: Arg_2 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_3: 50*Arg_2+15 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_4: 10*Arg_2+3 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_5: 50*Arg_2+15 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_6: 44*Arg_2+71 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_7: 6*Arg_2+4 {O(n)}
11: n_eval_rank2_5___26->n_eval_rank2_6___24, Arg_8: 48*Arg_2+32 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_2: Arg_2 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_3: 10*Arg_2+3 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_4: 10*Arg_2+3 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_5: 50*Arg_2+15 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_6: 3 {O(1)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_7: 6*Arg_2+4 {O(n)}
12: n_eval_rank2_5___33->n_eval_nondet_start___32, Arg_8: 48*Arg_2+32 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_2: Arg_2 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_3: 10*Arg_2+3 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_4: 10*Arg_2+3 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_5: 50*Arg_2+15 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_6: 3 {O(1)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_7: 6*Arg_2+4 {O(n)}
13: n_eval_rank2_5___33->n_eval_rank2_6___31, Arg_8: 48*Arg_2+32 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_2: Arg_2 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_3: 10*Arg_2+3 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_4: 10*Arg_2+3 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_6: 11*Arg_2+17 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_7: 6*Arg_2+4 {O(n)}
14: n_eval_rank2_5___54->n_eval_nondet_start___53, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_2: Arg_2 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_3: 10*Arg_2+3 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_4: 10*Arg_2+3 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_6: 11*Arg_2+17 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_7: 6*Arg_2+4 {O(n)}
15: n_eval_rank2_5___54->n_eval_rank2_6___52, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_2: Arg_2 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_3: 10*Arg_2+3 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_4: 10*Arg_2+3 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_5: 20*Arg_2+6 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_6: 11*Arg_2+17 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_7: 6*Arg_2+4 {O(n)}
16: n_eval_rank2_6___12->n_eval_rank2__Pcritedge_in___11, Arg_8: 24*Arg_2+16 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_2: Arg_2 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_3: 10*Arg_2+3 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_4: 10*Arg_2+3 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_5: 20*Arg_2+6 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_6: 11*Arg_2+17 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_7: 6*Arg_2+4 {O(n)}
17: n_eval_rank2_6___12->n_eval_rank2_bb5_in___10, Arg_8: 24*Arg_2+16 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_2: Arg_2 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_3: 50*Arg_2+15 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_4: 10*Arg_2+3 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_5: 50*Arg_2+15 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_6: 44*Arg_2+71 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_7: 6*Arg_2+4 {O(n)}
18: n_eval_rank2_6___24->n_eval_rank2__Pcritedge_in___23, Arg_8: 48*Arg_2+32 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_2: Arg_2 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_3: 50*Arg_2+15 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_4: 10*Arg_2+3 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_5: 50*Arg_2+15 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_6: 44*Arg_2+71 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_7: 6*Arg_2+4 {O(n)}
19: n_eval_rank2_6___24->n_eval_rank2_bb5_in___22, Arg_8: 48*Arg_2+32 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_2: Arg_2 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_3: 10*Arg_2+3 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_4: 10*Arg_2+3 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_5: 50*Arg_2+15 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_6: 3 {O(1)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_7: 6*Arg_2+4 {O(n)}
20: n_eval_rank2_6___31->n_eval_rank2__Pcritedge_in___30, Arg_8: 48*Arg_2+32 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_2: Arg_2 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_3: 10*Arg_2+3 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_4: 10*Arg_2+3 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_5: 50*Arg_2+15 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_6: 3 {O(1)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_7: 6*Arg_2+4 {O(n)}
21: n_eval_rank2_6___31->n_eval_rank2_bb5_in___29, Arg_8: 48*Arg_2+32 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_2: Arg_2 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_3: 10*Arg_2+3 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_4: 10*Arg_2+3 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_6: 11*Arg_2+17 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_7: 6*Arg_2+4 {O(n)}
22: n_eval_rank2_6___52->n_eval_rank2__Pcritedge_in___51, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_2: Arg_2 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_3: 10*Arg_2+3 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_4: 10*Arg_2+3 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_6: 11*Arg_2+17 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_7: 6*Arg_2+4 {O(n)}
23: n_eval_rank2_6___52->n_eval_rank2_bb5_in___50, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_2: Arg_2 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_3: 10*Arg_2+3 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_4: 10*Arg_2+3 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_5: 10*Arg_2+3 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_6: 11*Arg_2+17 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_7: 6*Arg_2+4 {O(n)}
24: n_eval_rank2__Pcritedge1_in___18->n_eval_rank2_bb3_in___16, Arg_8: 12*Arg_2+8 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_2: Arg_2 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_3: 10*Arg_2+3 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_4: 10*Arg_2+3 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_5: 10*Arg_2+3 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_6: 11*Arg_2+17 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_7: 6*Arg_2+4 {O(n)}
25: n_eval_rank2__Pcritedge1_in___3->n_eval_rank2_bb3_in___16, Arg_8: 12*Arg_2+8 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_2: Arg_2 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_3: 50*Arg_2+15 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_4: 10*Arg_2+3 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_5: 40*Arg_2+12 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_6: 44*Arg_2+71 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_7: 6*Arg_2+4 {O(n)}
26: n_eval_rank2__Pcritedge1_in___44->n_eval_rank2_bb3_in___42, Arg_8: 24*Arg_2+16 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_2: Arg_2 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_3: 20*Arg_2+6 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_4: 10*Arg_2+3 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_5: 10*Arg_2+3 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_6: 22*Arg_2+34 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_7: 6*Arg_2+4 {O(n)}
27: n_eval_rank2__Pcritedge1_in___8->n_eval_rank2_bb3_in___42, Arg_8: 24*Arg_2+16 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_2: Arg_2 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_3: 10*Arg_2+3 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_4: 10*Arg_2+3 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_5: 20*Arg_2+6 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_6: 6*Arg_2+4 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_7: 6*Arg_2+4 {O(n)}
28: n_eval_rank2__Pcritedge_in___11->n_eval_rank2_bb1_in___49, Arg_8: 24*Arg_2+16 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_2: Arg_2 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_3: 10*Arg_2+3 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_4: 10*Arg_2+3 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_5: 50*Arg_2+15 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_6: 2 {O(1)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_7: 6*Arg_2+4 {O(n)}
29: n_eval_rank2__Pcritedge_in___23->n_eval_rank2_bb1_in___49, Arg_8: 48*Arg_2+32 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_2: Arg_2 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_3: 10*Arg_2+3 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_4: 10*Arg_2+3 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_5: 50*Arg_2+15 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_6: 4 {O(1)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_7: 6*Arg_2+4 {O(n)}
30: n_eval_rank2__Pcritedge_in___30->n_eval_rank2_bb1_in___49, Arg_8: 48*Arg_2+32 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_2: Arg_2 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_3: 10*Arg_2+3 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_4: 10*Arg_2+3 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_5: 50*Arg_2+15 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_6: 2 {O(1)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_7: 6*Arg_2+4 {O(n)}
31: n_eval_rank2__Pcritedge_in___35->n_eval_rank2_bb1_in___39, Arg_8: 48*Arg_2+32 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_2: Arg_2 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_3: 10*Arg_2+3 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_4: 10*Arg_2+3 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_5: 50*Arg_2+15 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_6: 1 {O(1)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_7: 6*Arg_2+4 {O(n)}
32: n_eval_rank2__Pcritedge_in___41->n_eval_rank2_bb1_in___39, Arg_8: 48*Arg_2+32 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_2: Arg_2 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_3: 10*Arg_2+3 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_4: 10*Arg_2+3 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_6: 11*Arg_2+17 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_7: 6*Arg_2+4 {O(n)}
33: n_eval_rank2__Pcritedge_in___51->n_eval_rank2_bb1_in___49, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_0: Arg_0 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_1: Arg_1 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_2: Arg_2 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_3: Arg_2 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_4: Arg_4 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_5: Arg_5 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_6: Arg_2 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_7: Arg_7 {O(n)}
34: n_eval_rank2_bb0_in___60->n_eval_rank2_bb1_in___59, Arg_8: Arg_8 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_2: Arg_2 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_3: 10*Arg_2+3 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_4: 20*Arg_2+6 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_5: 50*Arg_2+15 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_6: 2 {O(1)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_7: 6*Arg_2+4 {O(n)}
35: n_eval_rank2_bb1_in___39->n_eval_rank2_bb2_in___38, Arg_8: 48*Arg_2+32 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_2: 2*Arg_2 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_3: 1 {O(1)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_4: 2 {O(1)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_5: 100*Arg_2+30 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_6: 3 {O(1)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_7: 12*Arg_2+8 {O(n)}
36: n_eval_rank2_bb1_in___39->n_eval_rank2_bb9_in___37, Arg_8: 96*Arg_2+64 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_2: Arg_2 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_3: 10*Arg_2+3 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_4: 40*Arg_2+12 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_6: 11*Arg_2+17 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_7: 6*Arg_2+4 {O(n)}
37: n_eval_rank2_bb1_in___49->n_eval_rank2_bb2_in___48, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_2: 4*Arg_2 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_3: 1 {O(1)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_4: 2 {O(1)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_5: 240*Arg_2+Arg_5+72 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_6: 17*Arg_2+27 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_7: 24*Arg_2+16 {O(n)}
38: n_eval_rank2_bb1_in___49->n_eval_rank2_bb9_in___47, Arg_8: 240*Arg_2+Arg_8+160 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_0: Arg_0 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_1: Arg_1 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_2: Arg_2 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_3: Arg_2 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_4: Arg_4 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_5: Arg_5 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_6: Arg_2 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_7: Arg_7 {O(n)}
39: n_eval_rank2_bb1_in___59->n_eval_rank2_bb2_in___58, Arg_8: Arg_8 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_0: Arg_0 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_1: Arg_1 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_2: Arg_2 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_3: Arg_2 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_4: Arg_4 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_5: Arg_5 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_6: Arg_2 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_7: Arg_7 {O(n)}
40: n_eval_rank2_bb1_in___59->n_eval_rank2_bb9_in___57, Arg_8: Arg_8 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_2: Arg_2 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_3: 10*Arg_2+3 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_4: 10*Arg_2+3 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_5: 50*Arg_2+15 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_6: 2 {O(1)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_7: 6*Arg_2+4 {O(n)}
41: n_eval_rank2_bb2_in___38->n_eval_rank2_bb3_in___36, Arg_8: 48*Arg_2+32 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_2: Arg_2 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_3: 10*Arg_2+3 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_4: 10*Arg_2+3 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_6: 11*Arg_2+17 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_7: 6*Arg_2+4 {O(n)}
42: n_eval_rank2_bb2_in___48->n_eval_rank2_bb3_in___56, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_0: Arg_0 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_1: Arg_1 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_2: Arg_2 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_3: Arg_2 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_4: Arg_2 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_5: Arg_5 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_6: Arg_2 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_7: 2*Arg_2 {O(n)}
43: n_eval_rank2_bb2_in___58->n_eval_rank2_bb3_in___56, Arg_8: Arg_8 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_2: Arg_2 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_3: 10*Arg_2+3 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_4: 10*Arg_2+3 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_5: 20*Arg_2+6 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_6: 11*Arg_2+17 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_7: 6*Arg_2+4 {O(n)}
44: n_eval_rank2_bb3_in___16->n_eval_rank2_bb4_in___15, Arg_8: 24*Arg_2+16 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_2: Arg_2 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_3: 10*Arg_2+3 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_4: 10*Arg_2+3 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_5: 50*Arg_2+15 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_6: 2 {O(1)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_7: 6*Arg_2+4 {O(n)}
45: n_eval_rank2_bb3_in___36->n_eval_rank2__Pcritedge_in___35, Arg_8: 48*Arg_2+32 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_2: Arg_2 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_3: 10*Arg_2+3 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_4: 10*Arg_2+3 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_5: 50*Arg_2+15 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_6: 3 {O(1)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_7: 6*Arg_2+4 {O(n)}
46: n_eval_rank2_bb3_in___36->n_eval_rank2_bb4_in___34, Arg_8: 48*Arg_2+32 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_2: Arg_2 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_3: 70*Arg_2+21 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_4: 10*Arg_2+3 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_5: 50*Arg_2+15 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_6: 66*Arg_2+105 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_7: 6*Arg_2+4 {O(n)}
47: n_eval_rank2_bb3_in___42->n_eval_rank2__Pcritedge_in___41, Arg_8: 48*Arg_2+32 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_2: Arg_2 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_3: 50*Arg_2+15 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_4: 10*Arg_2+3 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_5: 50*Arg_2+15 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_6: 44*Arg_2+71 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_7: 6*Arg_2+4 {O(n)}
48: n_eval_rank2_bb3_in___42->n_eval_rank2_bb4_in___40, Arg_8: 48*Arg_2+32 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_2: Arg_2 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_3: 10*Arg_2+3 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_4: 10*Arg_2+3 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_6: 11*Arg_2+17 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_7: 6*Arg_2+4 {O(n)}
49: n_eval_rank2_bb3_in___56->n_eval_rank2_bb4_in___55, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_2: Arg_2 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_3: 10*Arg_2+3 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_4: 10*Arg_2+3 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_5: 20*Arg_2+6 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_6: 11*Arg_2+17 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_7: 6*Arg_2+4 {O(n)}
50: n_eval_rank2_bb4_in___15->n_eval_rank2_5___14, Arg_8: 24*Arg_2+16 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_2: Arg_2 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_3: 10*Arg_2+3 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_4: 10*Arg_2+3 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_5: 50*Arg_2+15 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_6: 3 {O(1)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_7: 6*Arg_2+4 {O(n)}
51: n_eval_rank2_bb4_in___34->n_eval_rank2_5___33, Arg_8: 48*Arg_2+32 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_2: Arg_2 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_3: 50*Arg_2+15 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_4: 10*Arg_2+3 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_5: 50*Arg_2+15 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_6: 44*Arg_2+71 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_7: 6*Arg_2+4 {O(n)}
52: n_eval_rank2_bb4_in___40->n_eval_rank2_5___26, Arg_8: 48*Arg_2+32 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_2: Arg_2 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_3: 10*Arg_2+3 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_4: 10*Arg_2+3 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_5: 120*Arg_2+Arg_5+36 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_6: 11*Arg_2+17 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_7: 6*Arg_2+4 {O(n)}
53: n_eval_rank2_bb4_in___55->n_eval_rank2_5___54, Arg_8: 120*Arg_2+Arg_8+80 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_2: Arg_2 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_3: 10*Arg_2+3 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_4: 10*Arg_2+3 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_5: 10*Arg_2+3 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_6: 11*Arg_2+17 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_7: 6*Arg_2+4 {O(n)}
54: n_eval_rank2_bb5_in___10->n_eval_rank2_bb6_in___45, Arg_8: 6*Arg_2+4 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_2: Arg_2 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_3: 50*Arg_2+15 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_4: 10*Arg_2+3 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_5: 10*Arg_2+3 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_6: 44*Arg_2+71 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_7: 6*Arg_2+4 {O(n)}
55: n_eval_rank2_bb5_in___22->n_eval_rank2_bb6_in___28, Arg_8: 6*Arg_2+4 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_2: Arg_2 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_3: 10*Arg_2+3 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_4: 10*Arg_2+3 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_5: 10*Arg_2+3 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_6: 3 {O(1)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_7: 6*Arg_2+4 {O(n)}
56: n_eval_rank2_bb5_in___29->n_eval_rank2_bb6_in___28, Arg_8: 6*Arg_2+4 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_2: Arg_2 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_3: 10*Arg_2+3 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_4: 10*Arg_2+3 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_5: 10*Arg_2+3 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_6: 11*Arg_2+17 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_7: 6*Arg_2+4 {O(n)}
57: n_eval_rank2_bb5_in___50->n_eval_rank2_bb6_in___45, Arg_8: 6*Arg_2+4 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_2: Arg_2 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_3: 50*Arg_2+15 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_4: 10*Arg_2+3 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_5: 20*Arg_2+6 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_6: 44*Arg_2+71 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_7: 6*Arg_2+4 {O(n)}
58: n_eval_rank2_bb6_in___28->n_eval_rank2__Pcritedge1_in___44, Arg_8: 12*Arg_2+8 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_2: Arg_2 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_3: 20*Arg_2+6 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_4: 10*Arg_2+3 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_5: 20*Arg_2+6 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_6: 22*Arg_2+34 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_7: 6*Arg_2+4 {O(n)}
59: n_eval_rank2_bb6_in___45->n_eval_rank2__Pcritedge1_in___44, Arg_8: 12*Arg_2+8 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_2: Arg_2 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_3: 10*Arg_2+3 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_4: 10*Arg_2+3 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_5: 10*Arg_2+3 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_6: 11*Arg_2+17 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_7: 6*Arg_2+4 {O(n)}
60: n_eval_rank2_bb6_in___45->n_eval_rank2_bb7_in___43, Arg_8: 12*Arg_2+8 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_2: Arg_2 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_3: 20*Arg_2+6 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_4: 20*Arg_2+6 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_5: 10*Arg_2+3 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_6: 22*Arg_2+34 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_7: 6*Arg_2+4 {O(n)}
61: n_eval_rank2_bb6_in___9->n_eval_rank2__Pcritedge1_in___8, Arg_8: 24*Arg_2+16 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_2: Arg_2 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_3: 10*Arg_2+3 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_4: 10*Arg_2+3 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_5: 10*Arg_2+3 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_6: 11*Arg_2+17 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_7: 6*Arg_2+4 {O(n)}
62: n_eval_rank2_bb6_in___9->n_eval_rank2_bb7_in___7, Arg_8: 12*Arg_2+8 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_2: Arg_2 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_3: 10*Arg_2+3 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_4: 10*Arg_2+3 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_5: 10*Arg_2+3 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_6: 11*Arg_2+17 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_7: 6*Arg_2+4 {O(n)}
63: n_eval_rank2_bb7_in___43->n_eval_rank2_11___21, Arg_8: 12*Arg_2+8 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_2: Arg_2 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_3: 10*Arg_2+3 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_4: 10*Arg_2+3 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_5: 10*Arg_2+3 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_6: 11*Arg_2+17 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_7: 6*Arg_2+4 {O(n)}
64: n_eval_rank2_bb7_in___7->n_eval_rank2_11___6, Arg_8: 12*Arg_2+8 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_2: Arg_2 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_3: 10*Arg_2+3 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_4: 10*Arg_2+3 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_5: 10*Arg_2+3 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_6: 11*Arg_2+17 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_7: 6*Arg_2+4 {O(n)}
65: n_eval_rank2_bb8_in___17->n_eval_rank2_bb6_in___9, Arg_8: 12*Arg_2+8 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_2: Arg_2 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_3: 10*Arg_2+3 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_4: 10*Arg_2+3 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_5: 10*Arg_2+3 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_6: 11*Arg_2+17 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_7: 6*Arg_2+4 {O(n)}
66: n_eval_rank2_bb8_in___2->n_eval_rank2_bb6_in___9, Arg_8: 12*Arg_2+8 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_2: 2*Arg_2 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_3: 1 {O(1)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_4: 2 {O(1)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_5: 100*Arg_2+30 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_6: 3 {O(1)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_7: 12*Arg_2+8 {O(n)}
67: n_eval_rank2_bb9_in___37->n_eval_rank2_stop___27, Arg_8: 96*Arg_2+64 {O(n)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_2: 4*Arg_2 {O(n)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_3: 1 {O(1)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_4: 2 {O(1)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_5: 240*Arg_2+Arg_5+72 {O(n)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_6: 17*Arg_2+27 {O(n)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_7: 24*Arg_2+16 {O(n)}
68: n_eval_rank2_bb9_in___47->n_eval_rank2_stop___46, Arg_8: 240*Arg_2+Arg_8+160 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_0: Arg_0 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_1: Arg_1 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_2: Arg_2 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_3: Arg_2 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_4: Arg_4 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_5: Arg_5 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_6: Arg_2 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_7: Arg_7 {O(n)}
69: n_eval_rank2_bb9_in___57->n_eval_rank2_stop___1, Arg_8: Arg_8 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_0: Arg_0 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_1: Arg_1 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_2: Arg_2 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_3: Arg_3 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_4: Arg_4 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_5: Arg_5 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_6: Arg_6 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_7: Arg_7 {O(n)}
70: n_eval_rank2_start->n_eval_rank2_bb0_in___60, Arg_8: Arg_8 {O(n)}