Initial Problem
Start: n_eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___100, n_eval_nondet_start___111, n_eval_nondet_start___118, n_eval_nondet_start___124, n_eval_nondet_start___13, n_eval_nondet_start___134, n_eval_nondet_start___18, n_eval_nondet_start___22, n_eval_nondet_start___25, n_eval_nondet_start___31, n_eval_nondet_start___33, n_eval_nondet_start___37, n_eval_nondet_start___4, n_eval_nondet_start___41, n_eval_nondet_start___43, n_eval_nondet_start___47, n_eval_nondet_start___52, n_eval_nondet_start___56, n_eval_nondet_start___61, n_eval_nondet_start___65, n_eval_nondet_start___70, n_eval_nondet_start___77, n_eval_nondet_start___85, n_eval_nondet_start___9, n_eval_nondet_start___91, n_eval_nondet_start___93, n_eval_realheapsort_step2_14___101, n_eval_realheapsort_step2_14___119, n_eval_realheapsort_step2_14___78, n_eval_realheapsort_step2_15___117, n_eval_realheapsort_step2_15___76, n_eval_realheapsort_step2_15___99, n_eval_realheapsort_step2_16___116, n_eval_realheapsort_step2_16___75, n_eval_realheapsort_step2_16___98, n_eval_realheapsort_step2_23___10, n_eval_realheapsort_step2_23___112, n_eval_realheapsort_step2_23___19, n_eval_realheapsort_step2_23___34, n_eval_realheapsort_step2_23___44, n_eval_realheapsort_step2_23___53, n_eval_realheapsort_step2_23___62, n_eval_realheapsort_step2_23___71, n_eval_realheapsort_step2_23___94, n_eval_realheapsort_step2_24___110, n_eval_realheapsort_step2_24___17, n_eval_realheapsort_step2_24___32, n_eval_realheapsort_step2_24___42, n_eval_realheapsort_step2_24___51, n_eval_realheapsort_step2_24___60, n_eval_realheapsort_step2_24___69, n_eval_realheapsort_step2_24___8, n_eval_realheapsort_step2_24___92, n_eval_realheapsort_step2_25___109, n_eval_realheapsort_step2_25___16, n_eval_realheapsort_step2_25___30, n_eval_realheapsort_step2_25___40, n_eval_realheapsort_step2_25___50, n_eval_realheapsort_step2_25___59, n_eval_realheapsort_step2_25___68, n_eval_realheapsort_step2_25___7, n_eval_realheapsort_step2_25___90, n_eval_realheapsort_step2_26___14, n_eval_realheapsort_step2_26___23, n_eval_realheapsort_step2_26___26, n_eval_realheapsort_step2_26___38, n_eval_realheapsort_step2_26___48, n_eval_realheapsort_step2_26___5, n_eval_realheapsort_step2_26___57, n_eval_realheapsort_step2_26___66, n_eval_realheapsort_step2_26___86, n_eval_realheapsort_step2_27___12, n_eval_realheapsort_step2_27___21, n_eval_realheapsort_step2_27___24, n_eval_realheapsort_step2_27___3, n_eval_realheapsort_step2_27___36, n_eval_realheapsort_step2_27___46, n_eval_realheapsort_step2_27___55, n_eval_realheapsort_step2_27___64, n_eval_realheapsort_step2_27___84, n_eval_realheapsort_step2_2___125, n_eval_realheapsort_step2_2___135, n_eval_realheapsort_step2_3___123, n_eval_realheapsort_step2_3___133, n_eval_realheapsort_step2_bb0_in___140, n_eval_realheapsort_step2_bb10_in___1, n_eval_realheapsort_step2_bb10_in___106, n_eval_realheapsort_step2_bb10_in___131, n_eval_realheapsort_step2_bb10_in___82, n_eval_realheapsort_step2_bb11_in___128, n_eval_realheapsort_step2_bb11_in___139, n_eval_realheapsort_step2_bb1_in___104, n_eval_realheapsort_step2_bb1_in___129, n_eval_realheapsort_step2_bb1_in___138, n_eval_realheapsort_step2_bb2_in___127, n_eval_realheapsort_step2_bb2_in___136, n_eval_realheapsort_step2_bb3_in___108, n_eval_realheapsort_step2_bb3_in___122, n_eval_realheapsort_step2_bb3_in___132, n_eval_realheapsort_step2_bb3_in___2, n_eval_realheapsort_step2_bb3_in___29, n_eval_realheapsort_step2_bb3_in___83, n_eval_realheapsort_step2_bb3_in___89, n_eval_realheapsort_step2_bb4_in___105, n_eval_realheapsort_step2_bb4_in___130, n_eval_realheapsort_step2_bb4_in___27, n_eval_realheapsort_step2_bb4_in___81, n_eval_realheapsort_step2_bb4_in___87, n_eval_realheapsort_step2_bb5_in___103, n_eval_realheapsort_step2_bb5_in___121, n_eval_realheapsort_step2_bb5_in___80, n_eval_realheapsort_step2_bb6_in___102, n_eval_realheapsort_step2_bb6_in___115, n_eval_realheapsort_step2_bb6_in___120, n_eval_realheapsort_step2_bb6_in___74, n_eval_realheapsort_step2_bb6_in___79, n_eval_realheapsort_step2_bb6_in___97, n_eval_realheapsort_step2_bb7_in___114, n_eval_realheapsort_step2_bb7_in___73, n_eval_realheapsort_step2_bb7_in___96, n_eval_realheapsort_step2_bb8_in___11, n_eval_realheapsort_step2_bb8_in___113, n_eval_realheapsort_step2_bb8_in___20, n_eval_realheapsort_step2_bb8_in___35, n_eval_realheapsort_step2_bb8_in___45, n_eval_realheapsort_step2_bb8_in___54, n_eval_realheapsort_step2_bb8_in___63, n_eval_realheapsort_step2_bb8_in___72, n_eval_realheapsort_step2_bb8_in___95, n_eval_realheapsort_step2_bb9_in___107, n_eval_realheapsort_step2_bb9_in___15, n_eval_realheapsort_step2_bb9_in___28, n_eval_realheapsort_step2_bb9_in___39, n_eval_realheapsort_step2_bb9_in___49, n_eval_realheapsort_step2_bb9_in___58, n_eval_realheapsort_step2_bb9_in___6, n_eval_realheapsort_step2_bb9_in___67, n_eval_realheapsort_step2_bb9_in___88, n_eval_realheapsort_step2_start, n_eval_realheapsort_step2_stop___126, n_eval_realheapsort_step2_stop___137
Transitions:
0:n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___100(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
1:n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___99(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
2:n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
3:n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___117(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
4:n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
5:n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___76(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
6:n_eval_realheapsort_step2_15___117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
7:n_eval_realheapsort_step2_15___117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___116(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
8:n_eval_realheapsort_step2_15___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
9:n_eval_realheapsort_step2_15___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___75(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
10:n_eval_realheapsort_step2_15___99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___100(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
11:n_eval_realheapsort_step2_15___99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___98(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
12:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
13:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
14:n_eval_realheapsort_step2_16___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
15:n_eval_realheapsort_step2_16___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
16:n_eval_realheapsort_step2_16___98(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___97(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
17:n_eval_realheapsort_step2_16___98(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___96(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
18:n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
19:n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
20:n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___111(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
21:n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
22:n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
23:n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
24:n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
25:n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
26:n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
27:n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
28:n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
29:n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
30:n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
31:n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
32:n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
33:n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
34:n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___93(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
35:n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
36:n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___111(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
37:n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
38:n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
39:n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
40:n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
41:n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
42:n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
43:n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
44:n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
45:n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
46:n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
47:n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
48:n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
49:n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
50:n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
51:n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
52:n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
53:n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
54:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
55:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
56:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
57:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
58:n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
59:n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
60:n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
61:n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
62:n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
63:n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
64:n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
65:n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
66:n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
67:n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
68:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
69:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
70:n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
71:n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___88(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
72:n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
73:n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
74:n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
75:n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
76:n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
77:n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
78:n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
79:n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
80:n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
81:n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
82:n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
83:n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
84:n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
85:n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
86:n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
87:n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
88:n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___85(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
89:n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
90:n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
91:n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
92:n_eval_realheapsort_step2_27___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
93:n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
94:n_eval_realheapsort_step2_27___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
95:n_eval_realheapsort_step2_27___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
96:n_eval_realheapsort_step2_27___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
97:n_eval_realheapsort_step2_27___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
98:n_eval_realheapsort_step2_27___84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
99:n_eval_realheapsort_step2_2___125(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___124(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
100:n_eval_realheapsort_step2_2___125(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_3___123(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
101:n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___134(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
102:n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
103:n_eval_realheapsort_step2_3___123(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___122(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
104:n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
105:n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___139(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2
106:n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___138(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7):|:2<Arg_4
107:n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
108:n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
109:n_eval_realheapsort_step2_bb10_in___131(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___129(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
110:n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
111:n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_stop___126(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<2+Arg_6
112:n_eval_realheapsort_step2_bb11_in___139(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_stop___137(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2
113:n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<2+Arg_6
114:n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
115:n_eval_realheapsort_step2_bb1_in___129(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && Arg_4<2+Arg_6
116:n_eval_realheapsort_step2_bb1_in___129(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___127(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
117:n_eval_realheapsort_step2_bb1_in___138(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
118:n_eval_realheapsort_step2_bb2_in___127(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_2___125(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
119:n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
120:n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
121:n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
122:n_eval_realheapsort_step2_bb3_in___122(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___131(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
123:n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___131(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
124:n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
125:n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
126:n_eval_realheapsort_step2_bb3_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
127:n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
128:n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
129:n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
130:n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
131:n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
132:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
133:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
134:n_eval_realheapsort_step2_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
135:n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
136:n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
137:n_eval_realheapsort_step2_bb4_in___87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
138:n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
139:n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
140:n_eval_realheapsort_step2_bb5_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
141:n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
142:n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
143:n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
144:n_eval_realheapsort_step2_bb6_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
145:n_eval_realheapsort_step2_bb6_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
146:n_eval_realheapsort_step2_bb6_in___97(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___95(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
147:n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
148:n_eval_realheapsort_step2_bb7_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
149:n_eval_realheapsort_step2_bb7_in___96(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
150:n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
151:n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
152:n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
153:n_eval_realheapsort_step2_bb8_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
154:n_eval_realheapsort_step2_bb8_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
155:n_eval_realheapsort_step2_bb8_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
156:n_eval_realheapsort_step2_bb8_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
157:n_eval_realheapsort_step2_bb8_in___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
158:n_eval_realheapsort_step2_bb8_in___95(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
159:n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
160:n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
161:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
162:n_eval_realheapsort_step2_bb9_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
163:n_eval_realheapsort_step2_bb9_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
164:n_eval_realheapsort_step2_bb9_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
165:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
166:n_eval_realheapsort_step2_bb9_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
167:n_eval_realheapsort_step2_bb9_in___88(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
168:n_eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___124
n_eval_nondet_start___124
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___125
n_eval_realheapsort_step2_2___125
n_eval_realheapsort_step2_2___125->n_eval_nondet_start___124
t₉₉
τ = Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___123
n_eval_realheapsort_step2_3___123
n_eval_realheapsort_step2_2___125->n_eval_realheapsort_step2_3___123
t₁₀₀
τ = Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___122
n_eval_realheapsort_step2_bb3_in___122
n_eval_realheapsort_step2_3___123->n_eval_realheapsort_step2_bb3_in___122
t₁₀₃
η (Arg_5) = 0
τ = Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___127
n_eval_realheapsort_step2_bb2_in___127
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb2_in___127
t₁₁₆
τ = Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___127->n_eval_realheapsort_step2_2___125
t₁₁₈
τ = Arg_4<3+Arg_6 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___122->n_eval_realheapsort_step2_bb10_in___131
t₁₂₂
τ = Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
Preprocessing
Cut unsatisfiable transition 116: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb2_in___127
Cut unreachable locations [n_eval_nondet_start___124; n_eval_realheapsort_step2_2___125; n_eval_realheapsort_step2_3___123; n_eval_realheapsort_step2_bb2_in___127; n_eval_realheapsort_step2_bb3_in___122] from the program graph
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb7_in___114
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 for location n_eval_nondet_start___43
Found invariant 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_23___53
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_27___12
Found invariant 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___49
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_26___66
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 for location n_eval_realheapsort_step2_24___32
Found invariant Arg_4<=1+Arg_6 for location n_eval_realheapsort_step2_stop___126
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_27___21
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_23___112
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb8_in___95
Found invariant Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___1
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb6_in___74
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb5_in___121
Found invariant 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb6_in___120
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb8_in___72
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb8_in___113
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_nondet_start___118
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_nondet_start___77
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_24___92
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 for location n_eval_nondet_start___41
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_23___94
Found invariant Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb3_in___108
Found invariant 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb4_in___130
Found invariant 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb8_in___54
Found invariant Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb3_in___2
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb7_in___96
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb6_in___97
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb8_in___35
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_24___17
Found invariant 2+Arg_6<=Arg_4 for location n_eval_realheapsort_step2_bb2_in___136
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_15___76
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 for location n_eval_realheapsort_step2_25___30
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_26___5
Found invariant Arg_4<=2 for location n_eval_realheapsort_step2_stop___137
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb3_in___29
Found invariant Arg_1<=Arg_0 for location n_eval_nondet_start___61
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___91
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_27___24
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_24___8
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___67
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb5_in___103
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_nondet_start___9
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___85
Found invariant 1+Arg_0<=Arg_1 for location n_eval_nondet_start___70
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_25___40
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_14___119
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_15___117
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb6_in___115
Found invariant Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb4_in___105
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_24___110
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb9_in___15
Found invariant 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb1_in___129
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___65
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_27___55
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___111
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb8_in___63
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb4_in___27
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb9_in___39
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb6_in___79
Found invariant 1+Arg_3<=Arg_2 for location n_eval_nondet_start___47
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_27___84
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_nondet_start___100
Found invariant Arg_1<=Arg_0 for location n_eval_realheapsort_step2_24___60
Found invariant 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_24___69
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_14___101
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_23___34
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___6
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 for location n_eval_nondet_start___31
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_nondet_start___18
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___107
Found invariant 2+Arg_6<=Arg_4 for location n_eval_realheapsort_step2_2___135
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_23___44
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb4_in___87
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb9_in___58
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_nondet_start___13
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_16___98
Found invariant 2+Arg_6<=Arg_4 for location n_eval_nondet_start___134
Found invariant Arg_4<=1+Arg_6 for location n_eval_realheapsort_step2_bb11_in___128
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_26___26
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb10_in___82
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_15___99
Found invariant 2+Arg_6<=Arg_4 for location n_eval_realheapsort_step2_3___133
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_23___62
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___93
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_25___90
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_27___3
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_26___86
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_nondet_start___33
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_25___7
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_27___36
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb3_in___89
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_nondet_start___25
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_23___10
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_24___42
Found invariant 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_16___116
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_16___75
Found invariant Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb6_in___102
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_26___14
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_nondet_start___56
Found invariant 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_26___48
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_23___71
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_nondet_start___22
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_23___19
Found invariant 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_26___57
Found invariant 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_27___64
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb4_in___81
Found invariant Arg_1<=Arg_0 for location n_eval_realheapsort_step2_25___59
Found invariant Arg_4<=2 for location n_eval_realheapsort_step2_bb11_in___139
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_25___16
Found invariant 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_25___68
Found invariant 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb10_in___131
Found invariant 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb9_in___28
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_26___38
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___88
Found invariant 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_27___46
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb7_in___73
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_25___109
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 for location n_eval_realheapsort_step2_26___23
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb8_in___45
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb5_in___80
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_bb3_in___83
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb8_in___11
Found invariant Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 for location n_eval_realheapsort_step2_bb8_in___20
Found invariant 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 for location n_eval_nondet_start___37
Found invariant Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 for location n_eval_nondet_start___4
Found invariant 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 for location n_eval_realheapsort_step2_bb3_in___132
Found invariant Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 for location n_eval_realheapsort_step2_14___78
Found invariant Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_realheapsort_step2_bb10_in___106
Found invariant Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 for location n_eval_realheapsort_step2_bb1_in___138
Problem after Preprocessing
Start: n_eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: NoDet0
Locations: n_eval_nondet_start___100, n_eval_nondet_start___111, n_eval_nondet_start___118, n_eval_nondet_start___13, n_eval_nondet_start___134, n_eval_nondet_start___18, n_eval_nondet_start___22, n_eval_nondet_start___25, n_eval_nondet_start___31, n_eval_nondet_start___33, n_eval_nondet_start___37, n_eval_nondet_start___4, n_eval_nondet_start___41, n_eval_nondet_start___43, n_eval_nondet_start___47, n_eval_nondet_start___52, n_eval_nondet_start___56, n_eval_nondet_start___61, n_eval_nondet_start___65, n_eval_nondet_start___70, n_eval_nondet_start___77, n_eval_nondet_start___85, n_eval_nondet_start___9, n_eval_nondet_start___91, n_eval_nondet_start___93, n_eval_realheapsort_step2_14___101, n_eval_realheapsort_step2_14___119, n_eval_realheapsort_step2_14___78, n_eval_realheapsort_step2_15___117, n_eval_realheapsort_step2_15___76, n_eval_realheapsort_step2_15___99, n_eval_realheapsort_step2_16___116, n_eval_realheapsort_step2_16___75, n_eval_realheapsort_step2_16___98, n_eval_realheapsort_step2_23___10, n_eval_realheapsort_step2_23___112, n_eval_realheapsort_step2_23___19, n_eval_realheapsort_step2_23___34, n_eval_realheapsort_step2_23___44, n_eval_realheapsort_step2_23___53, n_eval_realheapsort_step2_23___62, n_eval_realheapsort_step2_23___71, n_eval_realheapsort_step2_23___94, n_eval_realheapsort_step2_24___110, n_eval_realheapsort_step2_24___17, n_eval_realheapsort_step2_24___32, n_eval_realheapsort_step2_24___42, n_eval_realheapsort_step2_24___51, n_eval_realheapsort_step2_24___60, n_eval_realheapsort_step2_24___69, n_eval_realheapsort_step2_24___8, n_eval_realheapsort_step2_24___92, n_eval_realheapsort_step2_25___109, n_eval_realheapsort_step2_25___16, n_eval_realheapsort_step2_25___30, n_eval_realheapsort_step2_25___40, n_eval_realheapsort_step2_25___50, n_eval_realheapsort_step2_25___59, n_eval_realheapsort_step2_25___68, n_eval_realheapsort_step2_25___7, n_eval_realheapsort_step2_25___90, n_eval_realheapsort_step2_26___14, n_eval_realheapsort_step2_26___23, n_eval_realheapsort_step2_26___26, n_eval_realheapsort_step2_26___38, n_eval_realheapsort_step2_26___48, n_eval_realheapsort_step2_26___5, n_eval_realheapsort_step2_26___57, n_eval_realheapsort_step2_26___66, n_eval_realheapsort_step2_26___86, n_eval_realheapsort_step2_27___12, n_eval_realheapsort_step2_27___21, n_eval_realheapsort_step2_27___24, n_eval_realheapsort_step2_27___3, n_eval_realheapsort_step2_27___36, n_eval_realheapsort_step2_27___46, n_eval_realheapsort_step2_27___55, n_eval_realheapsort_step2_27___64, n_eval_realheapsort_step2_27___84, n_eval_realheapsort_step2_2___135, n_eval_realheapsort_step2_3___133, n_eval_realheapsort_step2_bb0_in___140, n_eval_realheapsort_step2_bb10_in___1, n_eval_realheapsort_step2_bb10_in___106, n_eval_realheapsort_step2_bb10_in___131, n_eval_realheapsort_step2_bb10_in___82, n_eval_realheapsort_step2_bb11_in___128, n_eval_realheapsort_step2_bb11_in___139, n_eval_realheapsort_step2_bb1_in___104, n_eval_realheapsort_step2_bb1_in___129, n_eval_realheapsort_step2_bb1_in___138, n_eval_realheapsort_step2_bb2_in___136, n_eval_realheapsort_step2_bb3_in___108, n_eval_realheapsort_step2_bb3_in___132, n_eval_realheapsort_step2_bb3_in___2, n_eval_realheapsort_step2_bb3_in___29, n_eval_realheapsort_step2_bb3_in___83, n_eval_realheapsort_step2_bb3_in___89, n_eval_realheapsort_step2_bb4_in___105, n_eval_realheapsort_step2_bb4_in___130, n_eval_realheapsort_step2_bb4_in___27, n_eval_realheapsort_step2_bb4_in___81, n_eval_realheapsort_step2_bb4_in___87, n_eval_realheapsort_step2_bb5_in___103, n_eval_realheapsort_step2_bb5_in___121, n_eval_realheapsort_step2_bb5_in___80, n_eval_realheapsort_step2_bb6_in___102, n_eval_realheapsort_step2_bb6_in___115, n_eval_realheapsort_step2_bb6_in___120, n_eval_realheapsort_step2_bb6_in___74, n_eval_realheapsort_step2_bb6_in___79, n_eval_realheapsort_step2_bb6_in___97, n_eval_realheapsort_step2_bb7_in___114, n_eval_realheapsort_step2_bb7_in___73, n_eval_realheapsort_step2_bb7_in___96, n_eval_realheapsort_step2_bb8_in___11, n_eval_realheapsort_step2_bb8_in___113, n_eval_realheapsort_step2_bb8_in___20, n_eval_realheapsort_step2_bb8_in___35, n_eval_realheapsort_step2_bb8_in___45, n_eval_realheapsort_step2_bb8_in___54, n_eval_realheapsort_step2_bb8_in___63, n_eval_realheapsort_step2_bb8_in___72, n_eval_realheapsort_step2_bb8_in___95, n_eval_realheapsort_step2_bb9_in___107, n_eval_realheapsort_step2_bb9_in___15, n_eval_realheapsort_step2_bb9_in___28, n_eval_realheapsort_step2_bb9_in___39, n_eval_realheapsort_step2_bb9_in___49, n_eval_realheapsort_step2_bb9_in___58, n_eval_realheapsort_step2_bb9_in___6, n_eval_realheapsort_step2_bb9_in___67, n_eval_realheapsort_step2_bb9_in___88, n_eval_realheapsort_step2_start, n_eval_realheapsort_step2_stop___126, n_eval_realheapsort_step2_stop___137
Transitions:
0:n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___100(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
1:n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___99(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
2:n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
3:n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___117(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
4:n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
5:n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___76(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
6:n_eval_realheapsort_step2_15___117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
7:n_eval_realheapsort_step2_15___117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___116(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
8:n_eval_realheapsort_step2_15___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___77(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
9:n_eval_realheapsort_step2_15___76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___75(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
10:n_eval_realheapsort_step2_15___99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___100(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
11:n_eval_realheapsort_step2_15___99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___98(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
12:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
13:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
14:n_eval_realheapsort_step2_16___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
15:n_eval_realheapsort_step2_16___75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
16:n_eval_realheapsort_step2_16___98(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___97(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
17:n_eval_realheapsort_step2_16___98(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___96(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
18:n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
19:n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
20:n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___111(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
21:n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
22:n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
23:n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
24:n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
25:n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
26:n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
27:n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
28:n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
29:n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
30:n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
31:n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
32:n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
33:n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
34:n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___93(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
35:n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
36:n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___111(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
37:n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
38:n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
39:n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
40:n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
41:n_eval_realheapsort_step2_24___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
42:n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
43:n_eval_realheapsort_step2_24___42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
44:n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
45:n_eval_realheapsort_step2_24___51(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
46:n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
47:n_eval_realheapsort_step2_24___60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
48:n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
49:n_eval_realheapsort_step2_24___69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
50:n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
51:n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
52:n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
53:n_eval_realheapsort_step2_24___92(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
54:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
55:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
56:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
57:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
58:n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
59:n_eval_realheapsort_step2_25___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
60:n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
61:n_eval_realheapsort_step2_25___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
62:n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
63:n_eval_realheapsort_step2_25___50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
64:n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
65:n_eval_realheapsort_step2_25___59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
66:n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
67:n_eval_realheapsort_step2_25___68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
68:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
69:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
70:n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
71:n_eval_realheapsort_step2_25___90(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___88(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
72:n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
73:n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
74:n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
75:n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
76:n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
77:n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
78:n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
79:n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
80:n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
81:n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
82:n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
83:n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
84:n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
85:n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
86:n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
87:n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
88:n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___85(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
89:n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
90:n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
91:n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
92:n_eval_realheapsort_step2_27___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
93:n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
94:n_eval_realheapsort_step2_27___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
95:n_eval_realheapsort_step2_27___46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
96:n_eval_realheapsort_step2_27___55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
97:n_eval_realheapsort_step2_27___64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
98:n_eval_realheapsort_step2_27___84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
101:n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_nondet_start___134(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
102:n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
104:n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
105:n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___139(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2
106:n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___138(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7):|:2<Arg_4
107:n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
108:n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
109:n_eval_realheapsort_step2_bb10_in___131(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___129(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
110:n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
111:n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_stop___126(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
112:n_eval_realheapsort_step2_bb11_in___139(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_stop___137(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=2 && Arg_4<=2
113:n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<2+Arg_6
114:n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4
115:n_eval_realheapsort_step2_bb1_in___129(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb11_in___128(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
117:n_eval_realheapsort_step2_bb1_in___138(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
119:n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
120:n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
121:n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
123:n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___131(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
124:n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
125:n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
126:n_eval_realheapsort_step2_bb3_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
127:n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
128:n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
129:n_eval_realheapsort_step2_bb3_in___89(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
130:n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
131:n_eval_realheapsort_step2_bb4_in___105(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
132:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
133:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
134:n_eval_realheapsort_step2_bb4_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
135:n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
136:n_eval_realheapsort_step2_bb4_in___81(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
137:n_eval_realheapsort_step2_bb4_in___87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
138:n_eval_realheapsort_step2_bb5_in___103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___101(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
139:n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
140:n_eval_realheapsort_step2_bb5_in___80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
141:n_eval_realheapsort_step2_bb6_in___102(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
142:n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
143:n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
144:n_eval_realheapsort_step2_bb6_in___74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
145:n_eval_realheapsort_step2_bb6_in___79(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
146:n_eval_realheapsort_step2_bb6_in___97(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___95(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
147:n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
148:n_eval_realheapsort_step2_bb7_in___73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
149:n_eval_realheapsort_step2_bb7_in___96(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
150:n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
151:n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
152:n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
153:n_eval_realheapsort_step2_bb8_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
154:n_eval_realheapsort_step2_bb8_in___45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
155:n_eval_realheapsort_step2_bb8_in___54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
156:n_eval_realheapsort_step2_bb8_in___63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
157:n_eval_realheapsort_step2_bb8_in___72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
158:n_eval_realheapsort_step2_bb8_in___95(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___94(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
159:n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
160:n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
161:n_eval_realheapsort_step2_bb9_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
162:n_eval_realheapsort_step2_bb9_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
163:n_eval_realheapsort_step2_bb9_in___49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
164:n_eval_realheapsort_step2_bb9_in___58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
165:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
166:n_eval_realheapsort_step2_bb9_in___67(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
167:n_eval_realheapsort_step2_bb9_in___88(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
168:n_eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb0_in___140(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 3:n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_15___117(NoDet0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
2*Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-4*Arg_5-4*Arg_6-6 ]
n_eval_realheapsort_step2_24___42 [4*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___51 [4*Arg_5+6 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___92 [4*Arg_4+Arg_7-4*Arg_5-2*Arg_6-1 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-6 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-2 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-1 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___24 [4*Arg_4+6 ]
n_eval_realheapsort_step2_27___3 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___84 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [4*Arg_5+8 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7+6 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4+2*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___44 [4*Arg_4+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___53 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4+Arg_7-2*Arg_5-2*Arg_6-1 ]
n_eval_realheapsort_step2_23___94 [4*Arg_4+Arg_7-4*Arg_5-2*Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [-4*Arg_6-6 ]
n_eval_realheapsort_step2_26___26 [4*Arg_4-4*Arg_5-4*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-2 ]
n_eval_realheapsort_step2_26___38 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-2*Arg_6-1 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 7:n_eval_realheapsort_step2_15___117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_16___116(Arg_0,NoDet0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
2*Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4+1-2*Arg_6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___42 [4*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___92 [4*Arg_5+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-6*Arg_6-Arg_7-11 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-2 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-1 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___3 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___36 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___84 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [10*Arg_4-12*Arg_5-6*Arg_6-12 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [6 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5-2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___34 [4*Arg_5+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4+2*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___44 [4*Arg_4+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4+2*Arg_5+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___94 [4*Arg_4+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [-2*Arg_5-6*Arg_6-12 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-4*Arg_5-6*Arg_6-12 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_26___38 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-1 ]
n_eval_realheapsort_step2_26___86 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-1 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 12:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-4*Arg_5-2*Arg_6-7 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_7-2 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6-7*Arg_7 ]
n_eval_realheapsort_step2_24___92 [10*Arg_4+Arg_5+1-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [2*Arg_5-1 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6-7*Arg_7 ]
n_eval_realheapsort_step2_25___90 [11*Arg_4+1-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-1 ]
n_eval_realheapsort_step2_27___36 [Arg_7-Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [-Arg_5 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4+4*Arg_5-Arg_6-4*Arg_7-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6-7*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+2*Arg_6+5 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___71 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_5+Arg_7-2*Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_26___38 [Arg_7-Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_5-1 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-7*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [11*Arg_4+1-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_26___86 [11*Arg_5+1-Arg_6-5*Arg_7 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 13:n_eval_realheapsort_step2_16___116(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4+12*Arg_7-12*Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___32 [12*Arg_4-12*Arg_5-2*Arg_6-7 ]
n_eval_realheapsort_step2_24___42 [Arg_7-Arg_5-Arg_6-6 ]
n_eval_realheapsort_step2_24___51 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [6*Arg_4-6*Arg_6-18 ]
n_eval_realheapsort_step2_24___92 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_25___40 [Arg_7-Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_25___50 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [6*Arg_4-6*Arg_6-19*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4+12*Arg_7-12*Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [4*Arg_4-4*Arg_6-12 ]
n_eval_realheapsort_step2_23___10 [6*Arg_4-6*Arg_6-18*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___35 [12*Arg_5+10*Arg_6+29 ]
n_eval_realheapsort_step2_23___34 [12*Arg_4+10*Arg_6+29 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_7-Arg_5-Arg_6-6 ]
n_eval_realheapsort_step2_23___44 [Arg_7-Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___54 [12*Arg_7-22*Arg_5-13 ]
n_eval_realheapsort_step2_23___53 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-Arg_4-Arg_6-6 ]
n_eval_realheapsort_step2_26___38 [Arg_4+Arg_7-2*Arg_5-Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___49 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_26___48 [Arg_4+2*Arg_5-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [6*Arg_4-6*Arg_6-19*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 19:n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
2*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___32 [4*Arg_5 ]
n_eval_realheapsort_step2_24___42 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4+12*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___8 [0 ]
n_eval_realheapsort_step2_24___92 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-12 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4+12*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___7 [0 ]
n_eval_realheapsort_step2_25___90 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-Arg_7-4 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_27___24 [14*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_27___3 [0 ]
n_eval_realheapsort_step2_27___36 [Arg_7-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4+12*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___84 [Arg_7-2*Arg_6-7 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_4-4*Arg_5-4*Arg_6-12 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [2 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___11 [2 ]
n_eval_realheapsort_step2_23___10 [1 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___44 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___94 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-Arg_7-4 ]
n_eval_realheapsort_step2_bb9_in___28 [14*Arg_4+10*Arg_6+30 ]
n_eval_realheapsort_step2_26___26 [14*Arg_5+10*Arg_6+30 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___38 [Arg_7-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4+12*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4+12*Arg_5-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_26___5 [0 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___86 [Arg_7-2*Arg_6-7 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 21:n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_5-2*Arg_4-1 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___92 [Arg_7-Arg_5-Arg_6-5 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_25___40 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_7-Arg_5-Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-1 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___64 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___71 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_5-Arg_7 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___57 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___86 [Arg_4-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 23:n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,NoDet0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
6*Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_15___76 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_15___99 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_16___116 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_16___75 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_16___98 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_24___110 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_24___17 [6*Arg_4-6*Arg_6-2 ]
n_eval_realheapsort_step2_24___32 [12*Arg_4+12 ]
n_eval_realheapsort_step2_24___42 [6*Arg_5+3*Arg_7-6*Arg_4-6*Arg_6-12 ]
n_eval_realheapsort_step2_24___51 [4*Arg_4+4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_24___60 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_24___69 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_24___8 [12*Arg_7 ]
n_eval_realheapsort_step2_24___92 [3*Arg_7-6*Arg_6-9 ]
n_eval_realheapsort_step2_25___109 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_25___16 [6*Arg_4-6*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___30 [12*Arg_5+12 ]
n_eval_realheapsort_step2_25___40 [3*Arg_7-6*Arg_6-12 ]
n_eval_realheapsort_step2_25___50 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_25___59 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_25___68 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_25___7 [12 ]
n_eval_realheapsort_step2_25___90 [3*Arg_7-6*Arg_6-9 ]
n_eval_realheapsort_step2_27___12 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___21 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_27___24 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___3 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___36 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___46 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___55 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___64 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_27___84 [3*Arg_7-6*Arg_6-9 ]
n_eval_realheapsort_step2_3___133 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_2___135 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___108 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___132 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___1 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___29 [12*Arg_4+12 ]
n_eval_realheapsort_step2_bb10_in___82 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___83 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___89 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___105 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___130 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [12*Arg_4+12 ]
n_eval_realheapsort_step2_bb4_in___81 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___87 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___103 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_14___101 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___121 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_14___119 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_14___78 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___102 [12*Arg_5+12 ]
n_eval_realheapsort_step2_bb6_in___115 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [12 ]
n_eval_realheapsort_step2_bb6_in___74 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___79 [12*Arg_7+12 ]
n_eval_realheapsort_step2_bb6_in___97 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___114 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___96 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___11 [12*Arg_7 ]
n_eval_realheapsort_step2_23___10 [12 ]
n_eval_realheapsort_step2_bb8_in___113 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_23___112 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_23___19 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [12*Arg_4+12 ]
n_eval_realheapsort_step2_23___34 [12*Arg_4+12 ]
n_eval_realheapsort_step2_bb8_in___45 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_23___44 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___54 [12*Arg_5+12 ]
n_eval_realheapsort_step2_23___53 [4*Arg_4+4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_23___62 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___72 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_23___71 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___95 [6*Arg_4+3*Arg_7-6*Arg_5-6*Arg_6-9 ]
n_eval_realheapsort_step2_23___94 [3*Arg_7-6*Arg_6-9 ]
n_eval_realheapsort_step2_bb9_in___107 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_26___23 [6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [6*Arg_4-6*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___14 [6*Arg_4-6*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [12*Arg_5+12 ]
n_eval_realheapsort_step2_26___26 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___39 [3*Arg_7-6*Arg_6-12 ]
n_eval_realheapsort_step2_26___38 [6*Arg_5-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___49 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_26___48 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___58 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_26___57 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___6 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_26___5 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___67 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_26___66 [6*Arg_4-6*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___88 [3*Arg_7-6*Arg_6-9 ]
n_eval_realheapsort_step2_26___86 [3*Arg_7-6*Arg_6-9 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 37:n_eval_realheapsort_step2_24___110(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_24___32 [2*Arg_5-1 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [-Arg_7 ]
n_eval_realheapsort_step2_24___92 [9*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_25___30 [3*Arg_5+Arg_6+2 ]
n_eval_realheapsort_step2_25___40 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___7 [-Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [Arg_4+Arg_7-Arg_6-6 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___36 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_7-Arg_5-Arg_6-5 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_23___10 [-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [9*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___94 [9*Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_26___14 [Arg_4+Arg_7-Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___28 [3*Arg_5+Arg_6+2 ]
n_eval_realheapsort_step2_26___26 [3*Arg_5-3*Arg_4-2*Arg_6-7 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_26___5 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_26___86 [Arg_7-Arg_5-Arg_6-5 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 39:n_eval_realheapsort_step2_24___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
4*Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_15___76 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_16___75 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___17 [4*Arg_4-4*Arg_6-3 ]
n_eval_realheapsort_step2_24___32 [8*Arg_5+8 ]
n_eval_realheapsort_step2_24___42 [3*Arg_7-2*Arg_4-4*Arg_6-10 ]
n_eval_realheapsort_step2_24___51 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___60 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___92 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_25___109 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___16 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_25___30 [8*Arg_5+8 ]
n_eval_realheapsort_step2_25___40 [2*Arg_7-4*Arg_6-8 ]
n_eval_realheapsort_step2_25___50 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___59 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_25___7 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___90 [6*Arg_4-4*Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_27___12 [4*Arg_4-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___21 [4*Arg_4-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___24 [12*Arg_4-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___3 [12*Arg_7 ]
n_eval_realheapsort_step2_27___36 [8*Arg_5-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___46 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___55 [4*Arg_4+4*Arg_5-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___64 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [2*Arg_7-4*Arg_6-6 ]
n_eval_realheapsort_step2_3___133 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_2___135 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [8*Arg_5+8 ]
n_eval_realheapsort_step2_bb10_in___82 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [5*Arg_5-Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [8*Arg_4+8 ]
n_eval_realheapsort_step2_bb4_in___81 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_14___119 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [8*Arg_5+8 ]
n_eval_realheapsort_step2_bb6_in___115 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [12 ]
n_eval_realheapsort_step2_bb6_in___74 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [8*Arg_7+8 ]
n_eval_realheapsort_step2_bb6_in___97 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___10 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___112 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___19 [4*Arg_4-4*Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___35 [8*Arg_5+8 ]
n_eval_realheapsort_step2_23___34 [8*Arg_5+8 ]
n_eval_realheapsort_step2_bb8_in___45 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [3*Arg_7-2*Arg_4-4*Arg_6-10 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___53 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [4*Arg_5-4*Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [5*Arg_5-Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [4*Arg_4-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___23 [4*Arg_4-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_26___14 [4*Arg_4-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [12*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___26 [12*Arg_4-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_7-4*Arg_6-8 ]
n_eval_realheapsort_step2_26___38 [8*Arg_5-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___49 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___48 [4*Arg_4+8*Arg_5-4*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___58 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [4*Arg_4+4*Arg_5-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [4*Arg_4+12*Arg_7-4*Arg_6-12 ]
n_eval_realheapsort_step2_26___5 [12*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_26___66 [4*Arg_4-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [6*Arg_4-4*Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_26___86 [2*Arg_7-4*Arg_6-6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 51:n_eval_realheapsort_step2_24___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,NoDet0,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
3*Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_15___76 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_15___99 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_16___116 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_16___75 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_16___98 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_24___110 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_24___17 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_24___32 [-6*Arg_6-12 ]
n_eval_realheapsort_step2_24___42 [Arg_4+Arg_7-3*Arg_6-5 ]
n_eval_realheapsort_step2_24___51 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___60 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_24___69 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___8 [7 ]
n_eval_realheapsort_step2_24___92 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_25___109 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_25___16 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-6*Arg_6-12 ]
n_eval_realheapsort_step2_25___40 [Arg_4+Arg_7-3*Arg_6-5 ]
n_eval_realheapsort_step2_25___50 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_25___59 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_25___68 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_25___7 [6 ]
n_eval_realheapsort_step2_25___90 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_27___12 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_27___21 [3*Arg_4-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_27___24 [9*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_27___3 [3*Arg_4-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_27___36 [2*Arg_7-Arg_4-3*Arg_6-7 ]
n_eval_realheapsort_step2_27___46 [3*Arg_7+3 ]
n_eval_realheapsort_step2_27___55 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_27___64 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_27___84 [Arg_4+Arg_7-3*Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_2___135 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___108 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___132 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [3*Arg_4-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___29 [6*Arg_4+6 ]
n_eval_realheapsort_step2_bb10_in___82 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___83 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___89 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___105 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___130 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [6*Arg_5+6 ]
n_eval_realheapsort_step2_bb4_in___81 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___87 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___103 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_14___101 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___121 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_14___119 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_14___78 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___102 [6*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___115 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [9 ]
n_eval_realheapsort_step2_bb6_in___74 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___79 [6*Arg_7+6 ]
n_eval_realheapsort_step2_bb6_in___97 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___114 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___96 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___11 [9 ]
n_eval_realheapsort_step2_23___10 [7 ]
n_eval_realheapsort_step2_bb8_in___113 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_23___112 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_23___19 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [6*Arg_5+6 ]
n_eval_realheapsort_step2_23___34 [-6*Arg_6-12 ]
n_eval_realheapsort_step2_bb8_in___45 [3*Arg_4+Arg_7-2*Arg_5-3*Arg_6-5 ]
n_eval_realheapsort_step2_23___44 [Arg_5+Arg_7-3*Arg_6-5 ]
n_eval_realheapsort_step2_bb8_in___54 [12*Arg_5+9-3*Arg_7 ]
n_eval_realheapsort_step2_23___53 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_23___62 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___72 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_23___71 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_23___94 [3*Arg_5-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___107 [3*Arg_4-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___23 [3*Arg_4-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [3*Arg_4-3*Arg_6 ]
n_eval_realheapsort_step2_26___14 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___26 [9*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4+Arg_7-3*Arg_6-5 ]
n_eval_realheapsort_step2_26___38 [Arg_5+Arg_7-3*Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___49 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___48 [12*Arg_5+9-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___58 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_26___57 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [3*Arg_4-3*Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___67 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___66 [3*Arg_4+6*Arg_5-3*Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [3*Arg_5+Arg_7-2*Arg_4-3*Arg_6-4 ]
n_eval_realheapsort_step2_26___86 [Arg_4+Arg_7-3*Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 54:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4+Arg_7-4*Arg_5-2 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4+6*Arg_5-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [0 ]
n_eval_realheapsort_step2_24___92 [9*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___30 [Arg_7-2 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [0 ]
n_eval_realheapsort_step2_25___90 [7*Arg_4-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [0 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_23___10 [0 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___35 [Arg_7-2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+4*Arg_6+Arg_7+10 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___53 [Arg_4+6*Arg_5-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [9*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___94 [9*Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_26___14 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [0 ]
n_eval_realheapsort_step2_26___5 [0 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [7*Arg_4-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_26___86 [Arg_4-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 55:n_eval_realheapsort_step2_25___109(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2 of depth 1:
new bound:
2*Arg_4+6 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-2 ]
n_eval_realheapsort_step2_24___42 [2*Arg_4+2*Arg_5-2*Arg_6-Arg_7-6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___92 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___30 [4*Arg_5-2 ]
n_eval_realheapsort_step2_25___40 [4*Arg_4-2*Arg_6-Arg_7-6 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___90 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_27___24 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___3 [-2 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___84 [18*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___2 [-2 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7-2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_4-2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4+2*Arg_5-2*Arg_6-Arg_7-6 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5-2 ]
n_eval_realheapsort_step2_23___53 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+Arg_7-2*Arg_5-2*Arg_6-10 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4+2*Arg_7-4*Arg_5-2*Arg_6-10 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_5-2 ]
n_eval_realheapsort_step2_26___26 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___38 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6-8 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 56:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4-2*Arg_5-2*Arg_6-7 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [0 ]
n_eval_realheapsort_step2_24___92 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_25___40 [3*Arg_4-Arg_6-Arg_7-2 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [0 ]
n_eval_realheapsort_step2_25___90 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-3*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_23___10 [0 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_23___62 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4+2*Arg_5-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_23___94 [3*Arg_5-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5-Arg_4-2*Arg_6-7 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___57 [Arg_4+4*Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_26___86 [Arg_4-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 57:n_eval_realheapsort_step2_25___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2 of depth 1:
new bound:
2*Arg_4+6 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4+2-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_5-4*Arg_4-4*Arg_6-14 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___92 [18*Arg_5-16*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-14 ]
n_eval_realheapsort_step2_25___40 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___90 [18*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___3 [-2 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___84 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___120 [-2 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7-2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4+Arg_7-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4+2-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5-4*Arg_4-4*Arg_6-14 ]
n_eval_realheapsort_step2_23___34 [4*Arg_5-4*Arg_4-4*Arg_6-14 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5-2 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4+2*Arg_7-4*Arg_5-2*Arg_6-10 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___38 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6-8 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 68:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3 of depth 1:
new bound:
2*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_5 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_24___8 [1 ]
n_eval_realheapsort_step2_24___92 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-12 ]
n_eval_realheapsort_step2_25___40 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___7 [1 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-7 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___3 [2*Arg_4-2*Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___84 [Arg_7-2*Arg_6-7 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-5*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-5 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [2 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___11 [2 ]
n_eval_realheapsort_step2_23___10 [1 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___94 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-2*Arg_7-4 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4-2*Arg_5-4*Arg_6-12 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___38 [2*Arg_5-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_26___5 [2*Arg_4-2*Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-2*Arg_6-7 ]
n_eval_realheapsort_step2_26___86 [Arg_7-2*Arg_6-7 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 69:n_eval_realheapsort_step2_25___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2 of depth 1:
new bound:
2*Arg_4+6 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4+6*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4+10 ]
n_eval_realheapsort_step2_24___42 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_24___8 [11*Arg_7 ]
n_eval_realheapsort_step2_24___92 [2*Arg_5+Arg_7+3-2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_25___30 [4*Arg_5+10 ]
n_eval_realheapsort_step2_25___40 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_25___7 [11 ]
n_eval_realheapsort_step2_25___90 [Arg_7+3-2*Arg_6 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4+2*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_27___24 [4*Arg_5+10 ]
n_eval_realheapsort_step2_27___3 [4*Arg_4-4*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_7+2-2*Arg_6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_7+8 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_27___84 [Arg_7+3-2*Arg_6 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [4*Arg_4-4*Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_4-2*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5+10 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4+10 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+10 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [12 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7+10 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [12 ]
n_eval_realheapsort_step2_23___10 [11*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4+6*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4+6-2*Arg_6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4+3*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5+10 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+10 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5+4-2*Arg_6 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+10 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_7+3-2*Arg_6 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5+Arg_7+3-2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4+6*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4+3*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4+2*Arg_7-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [4*Arg_5+10 ]
n_eval_realheapsort_step2_26___26 [4*Arg_5+10 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5+Arg_7+2-2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___38 [Arg_7+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4+2*Arg_7+2-4*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_26___48 [2*Arg_7+8 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [4*Arg_4-4*Arg_6-2 ]
n_eval_realheapsort_step2_26___5 [4*Arg_4-4*Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4+4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7+3-2*Arg_6 ]
n_eval_realheapsort_step2_26___86 [Arg_7+3-2*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 73:n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___17 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_24___32 [2*Arg_5-1 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___92 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___40 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-1 ]
n_eval_realheapsort_step2_27___36 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [9*Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-4*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb3_in___29 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___71 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_5+Arg_7-2*Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_26___86 [9*Arg_4-Arg_6-4*Arg_7 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 75:n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
2*Arg_4+6 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_15___99 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-4*Arg_5-4*Arg_6-14 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___92 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-14 ]
n_eval_realheapsort_step2_25___40 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___90 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___24 [Arg_7-2*Arg_6-9 ]
n_eval_realheapsort_step2_27___3 [-2 ]
n_eval_realheapsort_step2_27___36 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_27___84 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___2 [6-8*Arg_5 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7-2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_4-2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4-4*Arg_5-4*Arg_6-14 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_7-2*Arg_5-4*Arg_6-15 ]
n_eval_realheapsort_step2_26___26 [Arg_7-2*Arg_6-9 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___38 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6-8 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 83:n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
2*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4+2 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [2 ]
n_eval_realheapsort_step2_24___92 [Arg_7-2*Arg_6-5 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-10 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___7 [2*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [0 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-6*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5+2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4+2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [2 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [2 ]
n_eval_realheapsort_step2_23___10 [2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_4+2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_5+2 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+2 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4-2*Arg_5-4*Arg_6-10 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-2*Arg_6-6 ]
n_eval_realheapsort_step2_26___38 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [2 ]
n_eval_realheapsort_step2_26___5 [2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-2*Arg_6-5 ]
n_eval_realheapsort_step2_26___86 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-5 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 90:n_eval_realheapsort_step2_27___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4-1 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [-Arg_7 ]
n_eval_realheapsort_step2_24___92 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5-1 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___7 [-Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_27___3 [-Arg_7 ]
n_eval_realheapsort_step2_27___36 [5*Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [-Arg_5 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_23___10 [-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_4-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-3*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_26___14 [Arg_4+3*Arg_7-Arg_6-9 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5-1 ]
n_eval_realheapsort_step2_26___26 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_bb9_in___39 [4*Arg_4+Arg_5-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___38 [5*Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [-Arg_7 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 91:n_eval_realheapsort_step2_27___21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
2*Arg_4+6 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_15___99 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___32 [4*Arg_5-4*Arg_4-4*Arg_6-14 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_24___92 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-14 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-10 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_25___90 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_27___24 [Arg_7-2*Arg_6-9 ]
n_eval_realheapsort_step2_27___3 [-2 ]
n_eval_realheapsort_step2_27___36 [Arg_7-2*Arg_6-10 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_27___84 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-8*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_4-2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_5-2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___11 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5-2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_5-4*Arg_4-4*Arg_6-14 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___54 [20*Arg_5+6-8*Arg_7 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_23___94 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-6*Arg_7 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4-2*Arg_5-4*Arg_6-14 ]
n_eval_realheapsort_step2_26___26 [Arg_7-2*Arg_6-9 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-2*Arg_6-10 ]
n_eval_realheapsort_step2_26___38 [Arg_7-2*Arg_6-10 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4+16*Arg_5-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6-8*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6-8 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-8 ]
n_eval_realheapsort_step2_26___86 [2*Arg_5-2*Arg_6-8 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 93:n_eval_realheapsort_step2_27___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
2*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-4*Arg_5-4*Arg_6-10 ]
n_eval_realheapsort_step2_24___42 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_24___92 [Arg_7-2*Arg_6-5 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-10 ]
n_eval_realheapsort_step2_25___40 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [2 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___84 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_4+2 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6-6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_5+2 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_4+2 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [2 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7+2 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_23___10 [Arg_6+5*Arg_7-Arg_4 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5+2 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+2 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [-4*Arg_6-10 ]
n_eval_realheapsort_step2_26___26 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4+4*Arg_5-2*Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_7 ]
n_eval_realheapsort_step2_26___5 [2 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4+8*Arg_5-2*Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 102:n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 of depth 1:
new bound:
4*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_15___76 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_15___99 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_16___116 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_16___75 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_16___98 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_24___110 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___17 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___32 [8*Arg_4+12 ]
n_eval_realheapsort_step2_24___42 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___51 [12*Arg_7-16*Arg_5 ]
n_eval_realheapsort_step2_24___60 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___69 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___8 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___92 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___109 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___16 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___30 [8*Arg_5+12 ]
n_eval_realheapsort_step2_25___40 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_25___50 [12*Arg_7-16*Arg_5 ]
n_eval_realheapsort_step2_25___59 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___68 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___7 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___90 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_27___12 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___21 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___24 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___3 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___36 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_27___46 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___55 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___64 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___84 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_3___133 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_2___135 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb10_in___82 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb4_in___81 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_14___101 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_14___119 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_14___78 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb6_in___115 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [12 ]
n_eval_realheapsort_step2_bb6_in___74 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [8*Arg_5+12 ]
n_eval_realheapsort_step2_bb6_in___97 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___10 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___112 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___19 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [8*Arg_4+12 ]
n_eval_realheapsort_step2_23___34 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb8_in___45 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___44 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [8*Arg_5+12 ]
n_eval_realheapsort_step2_23___53 [12*Arg_7-16*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___63 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___62 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___71 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___94 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___23 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___14 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [8*Arg_5+12 ]
n_eval_realheapsort_step2_26___26 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___39 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_26___38 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [12*Arg_7-16*Arg_5 ]
n_eval_realheapsort_step2_26___48 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___57 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___5 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___66 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_26___86 [4*Arg_5-4*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 104:n_eval_realheapsort_step2_3___133(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 of depth 1:
new bound:
Arg_4+1 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___32 [Arg_5+Arg_6+Arg_7+5 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_5+3 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___92 [3*Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___30 [Arg_7+2 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_7-Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_3___133 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_4-Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [Arg_4+Arg_5+3 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [3 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [3 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [Arg_4+Arg_5+3 ]
n_eval_realheapsort_step2_23___34 [Arg_4+Arg_6+Arg_7+5 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+3 ]
n_eval_realheapsort_step2_23___53 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4+2*Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___94 [Arg_4+2*Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5+Arg_6+Arg_7+5 ]
n_eval_realheapsort_step2_26___26 [Arg_4+2*Arg_5+Arg_6+6 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___5 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 107:n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4+3 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___92 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5+3 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___3 [Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [3 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7+3 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_4+3 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___44 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5+3 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 114:n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 of depth 1:
new bound:
Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___76 [Arg_4+2*Arg_5-Arg_6-2*Arg_7-2 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___32 [2*Arg_5+1 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___51 [2*Arg_5+1 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___92 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-5 ]
n_eval_realheapsort_step2_25___40 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___3 [Arg_4+Arg_7-Arg_6-3 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [1 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4+2*Arg_7-2*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4+2*Arg_7-2*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4+2*Arg_7-2*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_14___78 [Arg_4+2*Arg_7-2*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___120 [1 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7+1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_4+1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___44 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+1 ]
n_eval_realheapsort_step2_23___53 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5-Arg_4-2*Arg_6-5 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_4+Arg_7-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 119:n_eval_realheapsort_step2_bb2_in___136(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_2___135(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 of depth 1:
new bound:
Arg_4+1 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4+1 ]
n_eval_realheapsort_step2_24___42 [11*Arg_4+8-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_24___51 [Arg_7 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___8 [1 ]
n_eval_realheapsort_step2_24___92 [11*Arg_5+3-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5+1 ]
n_eval_realheapsort_step2_25___40 [11*Arg_5+8-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_25___50 [Arg_7 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___7 [Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [10*Arg_4+8*Arg_6+25 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4+10*Arg_7-10*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___27 [10*Arg_5+8*Arg_6+25 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4+10*Arg_7-10*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___87 [11*Arg_5-10*Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_14___101 [11*Arg_5-10*Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___78 [Arg_4+10*Arg_5-Arg_6-10*Arg_7-2 ]
n_eval_realheapsort_step2_bb6_in___102 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___120 [1 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___79 [10*Arg_7+1-8*Arg_5 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___11 [1 ]
n_eval_realheapsort_step2_23___10 [1 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___44 [11*Arg_5+8-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+1 ]
n_eval_realheapsort_step2_23___53 [Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___95 [11*Arg_5+3-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_23___94 [11*Arg_4+3-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [11*Arg_5+8-Arg_6-5*Arg_7 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_7 ]
n_eval_realheapsort_step2_26___48 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_4+Arg_7-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___86 [Arg_4-Arg_6-2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 124:n_eval_realheapsort_step2_bb3_in___132(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4 of depth 1:
new bound:
Arg_4+1 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4+3 ]
n_eval_realheapsort_step2_24___42 [3*Arg_4+2-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___8 [3*Arg_7 ]
n_eval_realheapsort_step2_24___92 [3*Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5+3 ]
n_eval_realheapsort_step2_25___40 [3*Arg_5+2-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___7 [3*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4+3 ]
n_eval_realheapsort_step2_27___3 [3*Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___84 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_3___133 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4+1-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [3*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5+3 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_14___101 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [3*Arg_5+3-Arg_4 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [3 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [3 ]
n_eval_realheapsort_step2_23___10 [3*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [3*Arg_5+3-Arg_4 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb8_in___45 [3*Arg_5+2-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___44 [3*Arg_4+2-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [3*Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___94 [2*Arg_4+Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5+3 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb9_in___39 [3*Arg_5+2-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [3*Arg_7 ]
n_eval_realheapsort_step2_26___5 [3*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___86 [Arg_4-Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 125:n_eval_realheapsort_step2_bb3_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6 of depth 1:
new bound:
Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___32 [-2*Arg_6-5 ]
n_eval_realheapsort_step2_24___42 [Arg_7-Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___92 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-5 ]
n_eval_realheapsort_step2_25___40 [Arg_7-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___90 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___3 [2*Arg_6+4*Arg_7+3-2*Arg_4 ]
n_eval_realheapsort_step2_27___36 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_6+4-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_14___101 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___120 [Arg_6+4-Arg_4 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7+1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_4+1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4-2*Arg_5-2*Arg_6-5 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4+Arg_7-2*Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_7-Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+1 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___94 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_4-Arg_5-2*Arg_6-5 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_6+7*Arg_7-2*Arg_4 ]
n_eval_realheapsort_step2_26___5 [2*Arg_6+4*Arg_7+3-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 132:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4 of depth 1:
new bound:
2*Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4+6 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-2 ]
n_eval_realheapsort_step2_24___51 [6*Arg_7-8*Arg_5 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___92 [2*Arg_5+Arg_7-2*Arg_4-2*Arg_6-1 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-6 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_6-2 ]
n_eval_realheapsort_step2_25___50 [6*Arg_7-8*Arg_5 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-1 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___3 [6*Arg_7 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___84 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [6*Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_4-4*Arg_5-4*Arg_6-6 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [6 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7+6 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___34 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___44 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___53 [6*Arg_7-8*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___38 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [6*Arg_7-8*Arg_5 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [6*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___86 [2*Arg_5-2*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 133:n_eval_realheapsort_step2_bb4_in___130(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4-2*Arg_5-3,Arg_7):|:3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_15___99 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_16___116 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_16___98 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_24___110 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_24___32 [2*Arg_5+Arg_7+4-2*Arg_4 ]
n_eval_realheapsort_step2_24___42 [3*Arg_4+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___51 [2*Arg_5+5 ]
n_eval_realheapsort_step2_24___60 [Arg_4+Arg_7-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_24___69 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_24___8 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_24___92 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_25___109 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4+Arg_7-Arg_6 ]
n_eval_realheapsort_step2_25___30 [Arg_7+4 ]
n_eval_realheapsort_step2_25___40 [3*Arg_4+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___50 [2*Arg_5+5 ]
n_eval_realheapsort_step2_25___59 [Arg_4+Arg_7-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_25___68 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_25___7 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_27___12 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_27___21 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_5+5 ]
n_eval_realheapsort_step2_27___3 [5 ]
n_eval_realheapsort_step2_27___36 [3*Arg_4+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___46 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_27___55 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_27___64 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_27___84 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_3___133 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+5 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4+5 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_14___101 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4+3-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_14___78 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+5 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [5 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7+5 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [5*Arg_7 ]
n_eval_realheapsort_step2_23___10 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-2*Arg_4-2*Arg_6-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5+Arg_7+4-2*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_4+2*Arg_5+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___44 [3*Arg_4+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+5 ]
n_eval_realheapsort_step2_23___53 [2*Arg_5+5 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_23___62 [Arg_4+Arg_7-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_23___71 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_23___94 [Arg_5+2-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4+Arg_7-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5+Arg_7+4-2*Arg_4 ]
n_eval_realheapsort_step2_26___26 [2*Arg_5+5 ]
n_eval_realheapsort_step2_bb9_in___39 [3*Arg_4+4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___38 [4*Arg_5+4-Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_26___48 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4+Arg_7-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_26___57 [Arg_4+Arg_7-2*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4+2*Arg_7-Arg_6 ]
n_eval_realheapsort_step2_26___5 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_26___66 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4+2-Arg_6 ]
n_eval_realheapsort_step2_26___86 [Arg_4+2-Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 139:n_eval_realheapsort_step2_bb5_in___121(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_14___119(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
12*Arg_4+12 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_15___76 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_15___99 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_16___116 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_16___75 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_16___98 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___110 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___17 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___32 [24*Arg_4+36 ]
n_eval_realheapsort_step2_24___42 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___51 [36*Arg_7-48*Arg_5 ]
n_eval_realheapsort_step2_24___60 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___69 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___8 [36 ]
n_eval_realheapsort_step2_24___92 [6*Arg_7-12*Arg_6-6 ]
n_eval_realheapsort_step2_25___109 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___16 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___30 [24*Arg_4+36 ]
n_eval_realheapsort_step2_25___40 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_25___50 [36*Arg_7-48*Arg_5 ]
n_eval_realheapsort_step2_25___59 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___68 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___7 [36*Arg_7 ]
n_eval_realheapsort_step2_25___90 [6*Arg_7-12*Arg_6-6 ]
n_eval_realheapsort_step2_27___12 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___21 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___24 [24*Arg_5+36 ]
n_eval_realheapsort_step2_27___3 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___36 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_27___46 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___55 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___64 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___84 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_3___133 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_2___135 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [24*Arg_5+36 ]
n_eval_realheapsort_step2_bb10_in___82 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [24*Arg_5+36 ]
n_eval_realheapsort_step2_bb4_in___81 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_14___101 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_14___119 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_14___78 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [24*Arg_4+36 ]
n_eval_realheapsort_step2_bb6_in___115 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [36 ]
n_eval_realheapsort_step2_bb6_in___74 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [24*Arg_7+36 ]
n_eval_realheapsort_step2_bb6_in___97 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [36 ]
n_eval_realheapsort_step2_23___10 [36 ]
n_eval_realheapsort_step2_bb8_in___113 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___112 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___19 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [24*Arg_4+36 ]
n_eval_realheapsort_step2_23___34 [24*Arg_4+36 ]
n_eval_realheapsort_step2_bb8_in___45 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_23___44 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [24*Arg_5+36 ]
n_eval_realheapsort_step2_23___53 [36*Arg_7-48*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___63 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___62 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___71 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_23___94 [6*Arg_7-12*Arg_6-6 ]
n_eval_realheapsort_step2_bb9_in___107 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___23 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___14 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [24*Arg_4+36 ]
n_eval_realheapsort_step2_26___26 [24*Arg_5+36 ]
n_eval_realheapsort_step2_bb9_in___39 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_26___38 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [12*Arg_4+36*Arg_7-72*Arg_5-12*Arg_6-36 ]
n_eval_realheapsort_step2_26___48 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___57 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [36*Arg_7 ]
n_eval_realheapsort_step2_26___5 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___66 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [6*Arg_7-12*Arg_6-6 ]
n_eval_realheapsort_step2_26___86 [12*Arg_5+6*Arg_7-12*Arg_4-12*Arg_6-6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 142:n_eval_realheapsort_step2_bb6_in___115(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
12*Arg_4+12 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_15___76 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_15___99 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_16___116 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_16___75 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_16___98 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_24___110 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___17 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___32 [24*Arg_5+36 ]
n_eval_realheapsort_step2_24___42 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___51 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___60 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___69 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_24___8 [36*Arg_7 ]
n_eval_realheapsort_step2_24___92 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_25___109 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___16 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___30 [24*Arg_5+36 ]
n_eval_realheapsort_step2_25___40 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_25___50 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___59 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___68 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___7 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_25___90 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_27___12 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___21 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___24 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_27___3 [36 ]
n_eval_realheapsort_step2_27___36 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_27___46 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___55 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___64 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_27___84 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_3___133 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_2___135 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [36 ]
n_eval_realheapsort_step2_bb10_in___1 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [24*Arg_4+36 ]
n_eval_realheapsort_step2_bb10_in___82 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [24*Arg_5+36 ]
n_eval_realheapsort_step2_bb4_in___81 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_14___101 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_14___119 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_14___78 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [12*Arg_4+12*Arg_5+36 ]
n_eval_realheapsort_step2_bb6_in___115 [12*Arg_4+12-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [36 ]
n_eval_realheapsort_step2_bb6_in___74 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [24*Arg_7+36 ]
n_eval_realheapsort_step2_bb6_in___97 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [36 ]
n_eval_realheapsort_step2_23___10 [36*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___113 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___112 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___19 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [12*Arg_4+12*Arg_5+36 ]
n_eval_realheapsort_step2_23___34 [24*Arg_5+36 ]
n_eval_realheapsort_step2_bb8_in___45 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_23___44 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___53 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___62 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_23___71 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_23___94 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___23 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___14 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [24*Arg_5-12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___26 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___39 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_26___38 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___48 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___57 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___5 [36 ]
n_eval_realheapsort_step2_bb9_in___67 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_26___66 [12*Arg_4-12*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [12*Arg_5-12*Arg_6 ]
n_eval_realheapsort_step2_26___86 [12*Arg_4-12*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 143:n_eval_realheapsort_step2_bb6_in___120(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+1):|:3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
6*Arg_4+12 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_15___76 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_15___99 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_16___116 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_16___75 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_16___98 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_24___110 [6*Arg_4+6*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_24___17 [6*Arg_4+3*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_24___32 [12*Arg_5+24 ]
n_eval_realheapsort_step2_24___42 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_24___51 [10*Arg_4-8*Arg_5-10*Arg_6-6 ]
n_eval_realheapsort_step2_24___60 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_24___69 [6*Arg_4+6*Arg_7-12*Arg_5-6*Arg_6 ]
n_eval_realheapsort_step2_24___8 [8*Arg_4-8*Arg_6 ]
n_eval_realheapsort_step2_24___92 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___109 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___16 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-12*Arg_6-12 ]
n_eval_realheapsort_step2_25___40 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___50 [10*Arg_4-8*Arg_5-10*Arg_6-6 ]
n_eval_realheapsort_step2_25___59 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___68 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_25___7 [8*Arg_4-8*Arg_6 ]
n_eval_realheapsort_step2_25___90 [3*Arg_7+3-6*Arg_6 ]
n_eval_realheapsort_step2_27___12 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___21 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___24 [6*Arg_4-6*Arg_5-12*Arg_6-12 ]
n_eval_realheapsort_step2_27___3 [6*Arg_4+6*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_27___36 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___46 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___55 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___64 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_27___84 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_3___133 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_2___135 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [12*Arg_5+24 ]
n_eval_realheapsort_step2_bb10_in___82 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [6*Arg_4+24*Arg_7+6-24*Arg_5-6*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [6*Arg_4+12-6*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [12*Arg_5+24 ]
n_eval_realheapsort_step2_bb4_in___81 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_14___101 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_14___119 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_14___78 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [6*Arg_4+6*Arg_5+24 ]
n_eval_realheapsort_step2_bb6_in___115 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [30 ]
n_eval_realheapsort_step2_bb6_in___74 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [12*Arg_7+24 ]
n_eval_realheapsort_step2_bb6_in___97 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [24 ]
n_eval_realheapsort_step2_23___10 [8*Arg_4-8*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_23___112 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [6*Arg_4+3*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_23___19 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [6*Arg_4+6*Arg_5+24 ]
n_eval_realheapsort_step2_23___34 [12*Arg_4+24 ]
n_eval_realheapsort_step2_bb8_in___45 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_23___44 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___54 [12*Arg_4-12*Arg_6-6*Arg_7-6 ]
n_eval_realheapsort_step2_23___53 [10*Arg_4-8*Arg_5-10*Arg_6-6 ]
n_eval_realheapsort_step2_bb8_in___63 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_23___62 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_23___71 [6*Arg_4+6*Arg_7-12*Arg_5-6*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_23___94 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [6*Arg_4+6*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_26___23 [6*Arg_4+6*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [6*Arg_4+3*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_26___14 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [-12*Arg_6-12 ]
n_eval_realheapsort_step2_26___26 [6*Arg_4-6*Arg_5-12*Arg_6-12 ]
n_eval_realheapsort_step2_bb9_in___39 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_26___38 [6*Arg_5+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___49 [10*Arg_4-8*Arg_5-10*Arg_6-6 ]
n_eval_realheapsort_step2_26___48 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_26___57 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [8*Arg_4-8*Arg_6 ]
n_eval_realheapsort_step2_26___5 [6*Arg_4+6*Arg_7-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_26___66 [6*Arg_4+6-6*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [6*Arg_5+3*Arg_7+3-6*Arg_4-6*Arg_6 ]
n_eval_realheapsort_step2_26___86 [6*Arg_5+3*Arg_7+3-6*Arg_4-6*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 147:n_eval_realheapsort_step2_bb7_in___114(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,2*Arg_5+2):|:4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
2*Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_15___76 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_15___99 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___116 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_16___75 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_16___98 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___110 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___17 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___32 [4*Arg_4-4*Arg_5-4*Arg_6-6 ]
n_eval_realheapsort_step2_24___42 [4*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___51 [2*Arg_7+4 ]
n_eval_realheapsort_step2_24___60 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___69 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___92 [4*Arg_4+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___16 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___30 [-4*Arg_6-6 ]
n_eval_realheapsort_step2_25___40 [4*Arg_4+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___50 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___59 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___68 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___90 [Arg_7-2*Arg_6-1 ]
n_eval_realheapsort_step2_27___12 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___21 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___3 [6 ]
n_eval_realheapsort_step2_27___36 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_27___46 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___55 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___64 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_27___84 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_3___133 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_2___135 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb4_in___81 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_14___101 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_14___119 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_14___78 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [4*Arg_5+6 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [6 ]
n_eval_realheapsort_step2_bb6_in___74 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [4*Arg_7+6 ]
n_eval_realheapsort_step2_bb6_in___97 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_4+2-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___19 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___34 [4*Arg_4+6 ]
n_eval_realheapsort_step2_bb8_in___45 [4*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___44 [4*Arg_4+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___54 [4*Arg_5+6 ]
n_eval_realheapsort_step2_23___53 [2*Arg_7+4 ]
n_eval_realheapsort_step2_bb8_in___63 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___62 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___71 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_4+2*Arg_5+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___94 [4*Arg_5+1-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___23 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___14 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4-2*Arg_5-4*Arg_6-6 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___39 [4*Arg_4+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___38 [2*Arg_4+2*Arg_5+2-2*Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___49 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___48 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___58 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___57 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [6 ]
n_eval_realheapsort_step2_bb9_in___67 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___66 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_26___86 [2*Arg_4-2*Arg_6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 150:n_eval_realheapsort_step2_bb8_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___32 [2*Arg_5+2 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___60 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___92 [Arg_4+2*Arg_5-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5+2 ]
n_eval_realheapsort_step2_25___40 [Arg_7-Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_25___50 [Arg_4+2*Arg_5-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___59 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___90 [3*Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___24 [2*Arg_4+2 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___55 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_14___101 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [3 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___11 [3 ]
n_eval_realheapsort_step2_23___10 [2 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5+2 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_23___44 [2*Arg_5-Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_4+2*Arg_7-4*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_23___62 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_23___94 [2*Arg_5+Arg_7-3*Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5+2 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_26___38 [Arg_5+2*Arg_7-4*Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4+2*Arg_5-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_26___57 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-1 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 151:n_eval_realheapsort_step2_bb8_in___113(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___112(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4-1 ]
n_eval_realheapsort_step2_24___42 [3*Arg_4-Arg_6-Arg_7-2 ]
n_eval_realheapsort_step2_24___51 [Arg_7-2 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___8 [Arg_6+2*Arg_7-Arg_4 ]
n_eval_realheapsort_step2_24___92 [3*Arg_5-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_25___40 [Arg_7-Arg_5-Arg_6-6 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___7 [Arg_6+2-Arg_4 ]
n_eval_realheapsort_step2_25___90 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_27___12 [Arg_4+Arg_7-Arg_6-5 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-1 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-4*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [Arg_6+2-Arg_4 ]
n_eval_realheapsort_step2_23___10 [Arg_6+2*Arg_7-Arg_4 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_4-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4+2*Arg_5-Arg_6-Arg_7-2 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_7-2 ]
n_eval_realheapsort_step2_23___53 [Arg_7-2 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___95 [3*Arg_5-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_23___94 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-Arg_7-1 ]
n_eval_realheapsort_step2_bb9_in___28 [-2*Arg_6-7 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_4-Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_6+2*Arg_7-Arg_4 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___88 [3*Arg_4-Arg_6-Arg_7-3 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-4 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 152:n_eval_realheapsort_step2_bb8_in___20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_23___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
Arg_4+3 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_15___99 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_16___98 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4-1 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___69 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_24___8 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_24___92 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___30 [2*Arg_5-1 ]
n_eval_realheapsort_step2_25___40 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___68 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___7 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___3 [-1 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_27___64 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___2 [-1 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-4*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5-1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_23___10 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4-1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___54 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_23___71 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-3*Arg_7-1 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___48 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___5 [-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_26___66 [Arg_4+8*Arg_5-Arg_6-4*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_7-Arg_4-Arg_6-5 ]
n_eval_realheapsort_step2_26___86 [Arg_7-Arg_5-Arg_6-5 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 159:n_eval_realheapsort_step2_bb9_in___107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
4*Arg_4+4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_15___76 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_15___99 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_16___116 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_16___75 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_16___98 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___110 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_24___17 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_24___32 [8*Arg_4+12 ]
n_eval_realheapsort_step2_24___42 [2*Arg_5+Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_24___51 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___60 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___69 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_24___8 [12*Arg_7 ]
n_eval_realheapsort_step2_24___92 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_25___109 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_25___16 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_25___30 [8*Arg_5+12 ]
n_eval_realheapsort_step2_25___40 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___50 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___59 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___68 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_25___7 [12 ]
n_eval_realheapsort_step2_25___90 [2*Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_27___12 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___21 [4*Arg_4+2*Arg_7-4*Arg_6 ]
n_eval_realheapsort_step2_27___24 [2*Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_27___3 [12*Arg_7 ]
n_eval_realheapsort_step2_27___36 [2*Arg_7-4*Arg_6-4 ]
n_eval_realheapsort_step2_27___46 [8*Arg_5+12 ]
n_eval_realheapsort_step2_27___55 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___64 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_27___84 [2*Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_3___133 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_2___135 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___108 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___132 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [12 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___29 [8*Arg_5+12 ]
n_eval_realheapsort_step2_bb10_in___82 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___83 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb3_in___89 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___105 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___130 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb4_in___81 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb4_in___87 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___103 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_14___101 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___121 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_14___119 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_14___78 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___102 [8*Arg_5+12 ]
n_eval_realheapsort_step2_bb6_in___115 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [12 ]
n_eval_realheapsort_step2_bb6_in___74 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___79 [8*Arg_7+12 ]
n_eval_realheapsort_step2_bb6_in___97 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___114 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb7_in___96 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___11 [12 ]
n_eval_realheapsort_step2_23___10 [12 ]
n_eval_realheapsort_step2_bb8_in___113 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_23___112 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [4*Arg_4+Arg_7-4*Arg_6 ]
n_eval_realheapsort_step2_23___19 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___35 [8*Arg_5+12 ]
n_eval_realheapsort_step2_23___34 [8*Arg_4+12 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_5+Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_23___44 [2*Arg_4+Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___54 [8*Arg_5+12 ]
n_eval_realheapsort_step2_23___53 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___62 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___72 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_23___71 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___95 [4*Arg_5-4*Arg_6 ]
n_eval_realheapsort_step2_23___94 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___107 [4*Arg_4+4-4*Arg_6 ]
n_eval_realheapsort_step2_26___23 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [4*Arg_4+2-4*Arg_6 ]
n_eval_realheapsort_step2_26___14 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___28 [8*Arg_5+2*Arg_7-8*Arg_4-4*Arg_6-2 ]
n_eval_realheapsort_step2_26___26 [2*Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___38 [2*Arg_7-4*Arg_6-4 ]
n_eval_realheapsort_step2_bb9_in___49 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___48 [8*Arg_5+12 ]
n_eval_realheapsort_step2_bb9_in___58 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___57 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___6 [12*Arg_7 ]
n_eval_realheapsort_step2_26___5 [12*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_26___66 [4*Arg_4-4*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_7-4*Arg_6-2 ]
n_eval_realheapsort_step2_26___86 [2*Arg_7-4*Arg_6-2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 160:n_eval_realheapsort_step2_bb9_in___15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_24___17 [Arg_4+Arg_7-Arg_6-2 ]
n_eval_realheapsort_step2_24___32 [-2*Arg_6-4 ]
n_eval_realheapsort_step2_24___42 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___51 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_24___8 [2 ]
n_eval_realheapsort_step2_24___92 [3*Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_25___16 [Arg_4+Arg_7-Arg_6-2 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-4 ]
n_eval_realheapsort_step2_25___40 [3*Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___50 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_25___7 [2*Arg_7 ]
n_eval_realheapsort_step2_25___90 [3*Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_27___24 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_27___46 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4+2 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb6_in___120 [3 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_5+2 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___11 [2 ]
n_eval_realheapsort_step2_23___10 [2 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_23___19 [Arg_4+Arg_7-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5-2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_23___34 [2*Arg_5-2*Arg_4-2*Arg_6-4 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+2 ]
n_eval_realheapsort_step2_23___53 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb8_in___95 [3*Arg_5-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_23___94 [2*Arg_4+Arg_5-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___28 [-2*Arg_6-4 ]
n_eval_realheapsort_step2_26___26 [Arg_5-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___39 [3*Arg_4+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___38 [3*Arg_5+1-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___48 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_4+2*Arg_7-Arg_6-3 ]
n_eval_realheapsort_step2_26___5 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-1 ]
n_eval_realheapsort_step2_bb9_in___88 [3*Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___86 [3*Arg_5-Arg_6-Arg_7 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 165:n_eval_realheapsort_step2_bb9_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_26___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 of depth 1:
new bound:
Arg_4+2 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___76 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_15___99 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_16___116 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___75 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_16___98 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___110 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4-2*Arg_5-2*Arg_6-5 ]
n_eval_realheapsort_step2_24___42 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___51 [Arg_7 ]
n_eval_realheapsort_step2_24___60 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___69 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___8 [1 ]
n_eval_realheapsort_step2_24___92 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___109 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_25___30 [-2*Arg_6-5 ]
n_eval_realheapsort_step2_25___40 [Arg_7-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_25___50 [Arg_7 ]
n_eval_realheapsort_step2_25___59 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___68 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___7 [Arg_7 ]
n_eval_realheapsort_step2_25___90 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___12 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_27___21 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_27___24 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___3 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_27___36 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_27___46 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_27___55 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___64 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_27___84 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_3___133 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb1_in___104 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb2_in___136 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_2___135 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___106 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___108 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___132 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_4-3*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb10_in___82 [Arg_4-Arg_6-3 ]
n_eval_realheapsort_step2_bb3_in___83 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb3_in___89 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___105 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___130 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb4_in___81 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___87 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___103 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_14___101 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___121 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___119 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb5_in___80 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_14___78 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___102 [2*Arg_5+1 ]
n_eval_realheapsort_step2_bb6_in___115 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___120 [1 ]
n_eval_realheapsort_step2_bb6_in___74 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_7+1 ]
n_eval_realheapsort_step2_bb6_in___97 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___114 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___73 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb7_in___96 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___11 [1 ]
n_eval_realheapsort_step2_23___10 [1 ]
n_eval_realheapsort_step2_bb8_in___113 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___112 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb8_in___20 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___19 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5+1 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb8_in___45 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___44 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_5+1 ]
n_eval_realheapsort_step2_23___53 [Arg_7 ]
n_eval_realheapsort_step2_bb8_in___63 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___62 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___71 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___95 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_23___94 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_4-Arg_6-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_26___14 [Arg_4-Arg_6-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___26 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [Arg_7-Arg_4-Arg_6-4 ]
n_eval_realheapsort_step2_26___38 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___49 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_26___48 [Arg_4+Arg_7-2*Arg_5-Arg_6-3 ]
n_eval_realheapsort_step2_bb9_in___58 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___57 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___6 [1 ]
n_eval_realheapsort_step2_26___5 [0 ]
n_eval_realheapsort_step2_bb9_in___67 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_26___66 [Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___88 [Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___86 [Arg_5-Arg_6-2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 108:n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 of depth 1:
new bound:
2*Arg_4*Arg_4+12*Arg_4+13 {O(n^2)}
MPRF:
n_eval_realheapsort_step2_15___117 [1 ]
n_eval_realheapsort_step2_15___76 [2 ]
n_eval_realheapsort_step2_15___99 [2 ]
n_eval_realheapsort_step2_16___116 [1 ]
n_eval_realheapsort_step2_16___75 [2 ]
n_eval_realheapsort_step2_16___98 [2 ]
n_eval_realheapsort_step2_23___10 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_23___112 [2*Arg_7 ]
n_eval_realheapsort_step2_23___19 [2 ]
n_eval_realheapsort_step2_24___110 [2*Arg_7 ]
n_eval_realheapsort_step2_24___17 [2 ]
n_eval_realheapsort_step2_24___32 [2*Arg_4+2*Arg_5+2*Arg_6+9-Arg_7 ]
n_eval_realheapsort_step2_24___42 [Arg_7-2*Arg_4 ]
n_eval_realheapsort_step2_24___51 [2 ]
n_eval_realheapsort_step2_24___60 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_24___69 [2 ]
n_eval_realheapsort_step2_24___8 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_24___92 [2*Arg_7-4*Arg_4 ]
n_eval_realheapsort_step2_25___109 [2 ]
n_eval_realheapsort_step2_25___16 [2 ]
n_eval_realheapsort_step2_25___30 [4*Arg_4+2*Arg_6+9-Arg_7 ]
n_eval_realheapsort_step2_25___40 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_25___50 [2 ]
n_eval_realheapsort_step2_25___59 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_25___68 [2 ]
n_eval_realheapsort_step2_25___7 [Arg_6+5-Arg_4 ]
n_eval_realheapsort_step2_25___90 [2*Arg_7-4*Arg_5 ]
n_eval_realheapsort_step2_27___12 [Arg_7 ]
n_eval_realheapsort_step2_27___21 [2*Arg_7 ]
n_eval_realheapsort_step2_27___24 [2 ]
n_eval_realheapsort_step2_27___3 [Arg_6+4-Arg_4 ]
n_eval_realheapsort_step2_27___36 [2 ]
n_eval_realheapsort_step2_27___46 [2 ]
n_eval_realheapsort_step2_27___55 [2 ]
n_eval_realheapsort_step2_27___64 [2 ]
n_eval_realheapsort_step2_27___84 [2 ]
n_eval_realheapsort_step2_3___133 [1 ]
n_eval_realheapsort_step2_bb1_in___104 [1 ]
n_eval_realheapsort_step2_bb2_in___136 [1 ]
n_eval_realheapsort_step2_2___135 [1 ]
n_eval_realheapsort_step2_bb10_in___106 [2 ]
n_eval_realheapsort_step2_bb3_in___108 [2 ]
n_eval_realheapsort_step2_bb3_in___132 [1 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_6+3*Arg_7+1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___1 [1 ]
n_eval_realheapsort_step2_bb3_in___29 [2*Arg_4+2*Arg_6+8 ]
n_eval_realheapsort_step2_bb10_in___82 [1 ]
n_eval_realheapsort_step2_bb3_in___83 [2 ]
n_eval_realheapsort_step2_bb3_in___89 [2 ]
n_eval_realheapsort_step2_bb4_in___105 [2 ]
n_eval_realheapsort_step2_bb4_in___130 [1 ]
n_eval_realheapsort_step2_bb4_in___27 [2*Arg_5+2*Arg_6+8 ]
n_eval_realheapsort_step2_bb4_in___81 [2 ]
n_eval_realheapsort_step2_bb4_in___87 [2 ]
n_eval_realheapsort_step2_bb5_in___103 [2 ]
n_eval_realheapsort_step2_14___101 [2 ]
n_eval_realheapsort_step2_bb5_in___121 [1 ]
n_eval_realheapsort_step2_14___119 [1 ]
n_eval_realheapsort_step2_bb5_in___80 [2 ]
n_eval_realheapsort_step2_14___78 [2 ]
n_eval_realheapsort_step2_bb6_in___102 [2 ]
n_eval_realheapsort_step2_bb6_in___115 [1 ]
n_eval_realheapsort_step2_bb8_in___113 [1 ]
n_eval_realheapsort_step2_bb6_in___120 [1 ]
n_eval_realheapsort_step2_bb8_in___11 [1 ]
n_eval_realheapsort_step2_bb6_in___74 [2 ]
n_eval_realheapsort_step2_bb6_in___79 [2 ]
n_eval_realheapsort_step2_bb6_in___97 [4*Arg_5+2-4*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___114 [1 ]
n_eval_realheapsort_step2_bb8_in___20 [1 ]
n_eval_realheapsort_step2_bb7_in___73 [2 ]
n_eval_realheapsort_step2_bb7_in___96 [2*Arg_4+2-2*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___35 [2*Arg_5+2*Arg_6+8 ]
n_eval_realheapsort_step2_23___34 [2*Arg_4+2*Arg_5+2*Arg_6+9-Arg_7 ]
n_eval_realheapsort_step2_bb8_in___45 [2*Arg_4+2-2*Arg_5 ]
n_eval_realheapsort_step2_23___44 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___54 [2 ]
n_eval_realheapsort_step2_23___53 [2 ]
n_eval_realheapsort_step2_bb8_in___63 [2 ]
n_eval_realheapsort_step2_23___62 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___72 [2 ]
n_eval_realheapsort_step2_23___71 [2 ]
n_eval_realheapsort_step2_bb8_in___95 [2*Arg_7-4*Arg_4 ]
n_eval_realheapsort_step2_23___94 [2*Arg_7-4*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___107 [2*Arg_7 ]
n_eval_realheapsort_step2_26___23 [2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [2 ]
n_eval_realheapsort_step2_26___14 [Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_5+3-Arg_7 ]
n_eval_realheapsort_step2_26___26 [2*Arg_4+3-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___39 [2 ]
n_eval_realheapsort_step2_26___38 [2 ]
n_eval_realheapsort_step2_bb9_in___49 [2 ]
n_eval_realheapsort_step2_26___48 [2 ]
n_eval_realheapsort_step2_bb9_in___58 [2 ]
n_eval_realheapsort_step2_26___57 [2 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_6+4*Arg_7-Arg_4 ]
n_eval_realheapsort_step2_26___5 [Arg_6+4-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___67 [2 ]
n_eval_realheapsort_step2_26___66 [2 ]
n_eval_realheapsort_step2_bb9_in___88 [2*Arg_7-4*Arg_4 ]
n_eval_realheapsort_step2_26___86 [2 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 110:n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 of depth 1:
new bound:
2*Arg_4*Arg_4+17*Arg_4+30 {O(n^2)}
MPRF:
n_eval_realheapsort_step2_15___117 [0 ]
n_eval_realheapsort_step2_15___76 [1 ]
n_eval_realheapsort_step2_15___99 [1 ]
n_eval_realheapsort_step2_16___116 [0 ]
n_eval_realheapsort_step2_16___75 [1 ]
n_eval_realheapsort_step2_16___98 [1 ]
n_eval_realheapsort_step2_23___10 [Arg_6+3*Arg_7+1-Arg_4 ]
n_eval_realheapsort_step2_23___112 [Arg_7 ]
n_eval_realheapsort_step2_23___19 [5-2*Arg_7 ]
n_eval_realheapsort_step2_24___110 [Arg_7 ]
n_eval_realheapsort_step2_24___17 [5-2*Arg_7 ]
n_eval_realheapsort_step2_24___32 [-Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_24___42 [1 ]
n_eval_realheapsort_step2_24___51 [1 ]
n_eval_realheapsort_step2_24___60 [1 ]
n_eval_realheapsort_step2_24___69 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_24___8 [Arg_6+3*Arg_7+1-Arg_4 ]
n_eval_realheapsort_step2_24___92 [1 ]
n_eval_realheapsort_step2_25___109 [3-2*Arg_7 ]
n_eval_realheapsort_step2_25___16 [3-Arg_7 ]
n_eval_realheapsort_step2_25___30 [-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_25___40 [1 ]
n_eval_realheapsort_step2_25___50 [1 ]
n_eval_realheapsort_step2_25___59 [1 ]
n_eval_realheapsort_step2_25___68 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_25___7 [Arg_6+Arg_7+3-Arg_4 ]
n_eval_realheapsort_step2_25___90 [1 ]
n_eval_realheapsort_step2_27___12 [3-Arg_7 ]
n_eval_realheapsort_step2_27___21 [3-2*Arg_7 ]
n_eval_realheapsort_step2_27___24 [Arg_4+Arg_6+4 ]
n_eval_realheapsort_step2_27___3 [Arg_6+Arg_7+2-Arg_4 ]
n_eval_realheapsort_step2_27___36 [1 ]
n_eval_realheapsort_step2_27___46 [1 ]
n_eval_realheapsort_step2_27___55 [1 ]
n_eval_realheapsort_step2_27___64 [1 ]
n_eval_realheapsort_step2_27___84 [1 ]
n_eval_realheapsort_step2_3___133 [0 ]
n_eval_realheapsort_step2_bb1_in___104 [0 ]
n_eval_realheapsort_step2_bb2_in___136 [0 ]
n_eval_realheapsort_step2_2___135 [0 ]
n_eval_realheapsort_step2_bb10_in___106 [0 ]
n_eval_realheapsort_step2_bb3_in___108 [1 ]
n_eval_realheapsort_step2_bb3_in___132 [0 ]
n_eval_realheapsort_step2_bb3_in___2 [Arg_6+Arg_7+2-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___1 [0 ]
n_eval_realheapsort_step2_bb3_in___29 [-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb10_in___82 [1 ]
n_eval_realheapsort_step2_bb3_in___83 [1 ]
n_eval_realheapsort_step2_bb3_in___89 [1 ]
n_eval_realheapsort_step2_bb4_in___105 [1 ]
n_eval_realheapsort_step2_bb4_in___130 [0 ]
n_eval_realheapsort_step2_bb4_in___27 [-Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb4_in___81 [1 ]
n_eval_realheapsort_step2_bb4_in___87 [1 ]
n_eval_realheapsort_step2_bb5_in___103 [1 ]
n_eval_realheapsort_step2_14___101 [1 ]
n_eval_realheapsort_step2_bb5_in___121 [0 ]
n_eval_realheapsort_step2_14___119 [0 ]
n_eval_realheapsort_step2_bb5_in___80 [1 ]
n_eval_realheapsort_step2_14___78 [1 ]
n_eval_realheapsort_step2_bb6_in___102 [1 ]
n_eval_realheapsort_step2_bb6_in___115 [0 ]
n_eval_realheapsort_step2_bb8_in___113 [0 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [1 ]
n_eval_realheapsort_step2_bb6_in___79 [1 ]
n_eval_realheapsort_step2_bb6_in___97 [1 ]
n_eval_realheapsort_step2_bb7_in___114 [0 ]
n_eval_realheapsort_step2_bb8_in___20 [0 ]
n_eval_realheapsort_step2_bb7_in___73 [1 ]
n_eval_realheapsort_step2_bb7_in___96 [1 ]
n_eval_realheapsort_step2_bb8_in___35 [-Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_23___34 [-Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_bb8_in___45 [1 ]
n_eval_realheapsort_step2_23___44 [1 ]
n_eval_realheapsort_step2_bb8_in___54 [1 ]
n_eval_realheapsort_step2_23___53 [1 ]
n_eval_realheapsort_step2_bb8_in___63 [1 ]
n_eval_realheapsort_step2_23___62 [1 ]
n_eval_realheapsort_step2_bb8_in___72 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_23___71 [Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_bb8_in___95 [1 ]
n_eval_realheapsort_step2_23___94 [1 ]
n_eval_realheapsort_step2_bb9_in___107 [3-2*Arg_7 ]
n_eval_realheapsort_step2_26___23 [3-2*Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [3-Arg_7 ]
n_eval_realheapsort_step2_26___14 [3-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [2*Arg_4+Arg_6+4-Arg_5 ]
n_eval_realheapsort_step2_26___26 [Arg_5+Arg_6+4 ]
n_eval_realheapsort_step2_bb9_in___39 [2*Arg_5+3-Arg_7 ]
n_eval_realheapsort_step2_26___38 [1 ]
n_eval_realheapsort_step2_bb9_in___49 [1 ]
n_eval_realheapsort_step2_26___48 [1 ]
n_eval_realheapsort_step2_bb9_in___58 [1 ]
n_eval_realheapsort_step2_26___57 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_6+Arg_7+2-Arg_4 ]
n_eval_realheapsort_step2_26___5 [Arg_6+Arg_7+2-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___67 [1 ]
n_eval_realheapsort_step2_26___66 [1 ]
n_eval_realheapsort_step2_bb9_in___88 [1 ]
n_eval_realheapsort_step2_26___86 [1 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 120:n_eval_realheapsort_step2_bb3_in___108(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6 of depth 1:
new bound:
5*Arg_4+12 {O(n)}
MPRF:
n_eval_realheapsort_step2_15___117 [0 ]
n_eval_realheapsort_step2_15___76 [1 ]
n_eval_realheapsort_step2_15___99 [1 ]
n_eval_realheapsort_step2_16___116 [0 ]
n_eval_realheapsort_step2_16___75 [1 ]
n_eval_realheapsort_step2_16___98 [1 ]
n_eval_realheapsort_step2_23___10 [1 ]
n_eval_realheapsort_step2_23___112 [Arg_7 ]
n_eval_realheapsort_step2_23___19 [Arg_7-1 ]
n_eval_realheapsort_step2_24___110 [Arg_7 ]
n_eval_realheapsort_step2_24___17 [Arg_7-1 ]
n_eval_realheapsort_step2_24___32 [1 ]
n_eval_realheapsort_step2_24___42 [1 ]
n_eval_realheapsort_step2_24___51 [1 ]
n_eval_realheapsort_step2_24___60 [1 ]
n_eval_realheapsort_step2_24___69 [1 ]
n_eval_realheapsort_step2_24___8 [1 ]
n_eval_realheapsort_step2_24___92 [1 ]
n_eval_realheapsort_step2_25___109 [Arg_7 ]
n_eval_realheapsort_step2_25___16 [Arg_7-1 ]
n_eval_realheapsort_step2_25___30 [1 ]
n_eval_realheapsort_step2_25___40 [1 ]
n_eval_realheapsort_step2_25___50 [1 ]
n_eval_realheapsort_step2_25___59 [1 ]
n_eval_realheapsort_step2_25___68 [1 ]
n_eval_realheapsort_step2_25___7 [Arg_7 ]
n_eval_realheapsort_step2_25___90 [1 ]
n_eval_realheapsort_step2_27___12 [3-Arg_7 ]
n_eval_realheapsort_step2_27___21 [Arg_7 ]
n_eval_realheapsort_step2_27___24 [1 ]
n_eval_realheapsort_step2_27___3 [0 ]
n_eval_realheapsort_step2_27___36 [1 ]
n_eval_realheapsort_step2_27___46 [1 ]
n_eval_realheapsort_step2_27___55 [1 ]
n_eval_realheapsort_step2_27___64 [1 ]
n_eval_realheapsort_step2_27___84 [1 ]
n_eval_realheapsort_step2_3___133 [0 ]
n_eval_realheapsort_step2_bb1_in___104 [0 ]
n_eval_realheapsort_step2_bb2_in___136 [0 ]
n_eval_realheapsort_step2_2___135 [0 ]
n_eval_realheapsort_step2_bb10_in___106 [0 ]
n_eval_realheapsort_step2_bb3_in___108 [1 ]
n_eval_realheapsort_step2_bb3_in___132 [0 ]
n_eval_realheapsort_step2_bb3_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___1 [0 ]
n_eval_realheapsort_step2_bb3_in___29 [1 ]
n_eval_realheapsort_step2_bb10_in___82 [2*Arg_7-2*Arg_5 ]
n_eval_realheapsort_step2_bb3_in___83 [2*Arg_7+1-2*Arg_5 ]
n_eval_realheapsort_step2_bb3_in___89 [1 ]
n_eval_realheapsort_step2_bb4_in___105 [1 ]
n_eval_realheapsort_step2_bb4_in___130 [0 ]
n_eval_realheapsort_step2_bb4_in___27 [1 ]
n_eval_realheapsort_step2_bb4_in___81 [1 ]
n_eval_realheapsort_step2_bb4_in___87 [1 ]
n_eval_realheapsort_step2_bb5_in___103 [1 ]
n_eval_realheapsort_step2_14___101 [1 ]
n_eval_realheapsort_step2_bb5_in___121 [0 ]
n_eval_realheapsort_step2_14___119 [0 ]
n_eval_realheapsort_step2_bb5_in___80 [1 ]
n_eval_realheapsort_step2_14___78 [1 ]
n_eval_realheapsort_step2_bb6_in___102 [1 ]
n_eval_realheapsort_step2_bb6_in___115 [0 ]
n_eval_realheapsort_step2_bb8_in___113 [0 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [1 ]
n_eval_realheapsort_step2_bb6_in___79 [1 ]
n_eval_realheapsort_step2_bb6_in___97 [1 ]
n_eval_realheapsort_step2_bb7_in___114 [0 ]
n_eval_realheapsort_step2_bb8_in___20 [0 ]
n_eval_realheapsort_step2_bb7_in___73 [1 ]
n_eval_realheapsort_step2_bb7_in___96 [1 ]
n_eval_realheapsort_step2_bb8_in___35 [1 ]
n_eval_realheapsort_step2_23___34 [1 ]
n_eval_realheapsort_step2_bb8_in___45 [1 ]
n_eval_realheapsort_step2_23___44 [1 ]
n_eval_realheapsort_step2_bb8_in___54 [1 ]
n_eval_realheapsort_step2_23___53 [1 ]
n_eval_realheapsort_step2_bb8_in___63 [1 ]
n_eval_realheapsort_step2_23___62 [1 ]
n_eval_realheapsort_step2_bb8_in___72 [1 ]
n_eval_realheapsort_step2_23___71 [1 ]
n_eval_realheapsort_step2_bb8_in___95 [1 ]
n_eval_realheapsort_step2_23___94 [1 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_7 ]
n_eval_realheapsort_step2_26___23 [Arg_7 ]
n_eval_realheapsort_step2_bb9_in___15 [Arg_7-1 ]
n_eval_realheapsort_step2_26___14 [3-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [1 ]
n_eval_realheapsort_step2_26___26 [1 ]
n_eval_realheapsort_step2_bb9_in___39 [1 ]
n_eval_realheapsort_step2_26___38 [1 ]
n_eval_realheapsort_step2_bb9_in___49 [1 ]
n_eval_realheapsort_step2_26___48 [1 ]
n_eval_realheapsort_step2_bb9_in___58 [1 ]
n_eval_realheapsort_step2_26___57 [1 ]
n_eval_realheapsort_step2_bb9_in___6 [Arg_7 ]
n_eval_realheapsort_step2_26___5 [Arg_7 ]
n_eval_realheapsort_step2_bb9_in___67 [1 ]
n_eval_realheapsort_step2_26___66 [1 ]
n_eval_realheapsort_step2_bb9_in___88 [1 ]
n_eval_realheapsort_step2_26___86 [1 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
MPRF for transition 127:n_eval_realheapsort_step2_bb3_in___83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb10_in___82(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6 of depth 1:
new bound:
4*Arg_4*Arg_4+22*Arg_4+48 {O(n^2)}
MPRF:
n_eval_realheapsort_step2_15___117 [0 ]
n_eval_realheapsort_step2_15___76 [6 ]
n_eval_realheapsort_step2_15___99 [6 ]
n_eval_realheapsort_step2_16___116 [0 ]
n_eval_realheapsort_step2_16___75 [6 ]
n_eval_realheapsort_step2_16___98 [6 ]
n_eval_realheapsort_step2_23___10 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_23___112 [6 ]
n_eval_realheapsort_step2_23___19 [8-Arg_7 ]
n_eval_realheapsort_step2_24___110 [6 ]
n_eval_realheapsort_step2_24___17 [8-Arg_7 ]
n_eval_realheapsort_step2_24___32 [5*Arg_7-11*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_24___42 [6 ]
n_eval_realheapsort_step2_24___51 [2*Arg_4-4*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_24___60 [6 ]
n_eval_realheapsort_step2_24___69 [6 ]
n_eval_realheapsort_step2_24___8 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_24___92 [6 ]
n_eval_realheapsort_step2_25___109 [Arg_7+5 ]
n_eval_realheapsort_step2_25___16 [8-Arg_7 ]
n_eval_realheapsort_step2_25___30 [5*Arg_7-11*Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_25___40 [6 ]
n_eval_realheapsort_step2_25___50 [6 ]
n_eval_realheapsort_step2_25___59 [6 ]
n_eval_realheapsort_step2_25___68 [6 ]
n_eval_realheapsort_step2_25___7 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_25___90 [6 ]
n_eval_realheapsort_step2_27___12 [8-Arg_7 ]
n_eval_realheapsort_step2_27___21 [6 ]
n_eval_realheapsort_step2_27___24 [3-Arg_5-Arg_6 ]
n_eval_realheapsort_step2_27___3 [0 ]
n_eval_realheapsort_step2_27___36 [6 ]
n_eval_realheapsort_step2_27___46 [6 ]
n_eval_realheapsort_step2_27___55 [6 ]
n_eval_realheapsort_step2_27___64 [6 ]
n_eval_realheapsort_step2_27___84 [6 ]
n_eval_realheapsort_step2_3___133 [0 ]
n_eval_realheapsort_step2_bb1_in___104 [0 ]
n_eval_realheapsort_step2_bb2_in___136 [0 ]
n_eval_realheapsort_step2_2___135 [0 ]
n_eval_realheapsort_step2_bb10_in___106 [0 ]
n_eval_realheapsort_step2_bb3_in___108 [6 ]
n_eval_realheapsort_step2_bb3_in___132 [0 ]
n_eval_realheapsort_step2_bb3_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___1 [0 ]
n_eval_realheapsort_step2_bb3_in___29 [6 ]
n_eval_realheapsort_step2_bb10_in___82 [0 ]
n_eval_realheapsort_step2_bb3_in___83 [6 ]
n_eval_realheapsort_step2_bb3_in___89 [6 ]
n_eval_realheapsort_step2_bb4_in___105 [6 ]
n_eval_realheapsort_step2_bb4_in___130 [0 ]
n_eval_realheapsort_step2_bb4_in___27 [6 ]
n_eval_realheapsort_step2_bb4_in___81 [6 ]
n_eval_realheapsort_step2_bb4_in___87 [6 ]
n_eval_realheapsort_step2_bb5_in___103 [6 ]
n_eval_realheapsort_step2_14___101 [6 ]
n_eval_realheapsort_step2_bb5_in___121 [0 ]
n_eval_realheapsort_step2_14___119 [0 ]
n_eval_realheapsort_step2_bb5_in___80 [6 ]
n_eval_realheapsort_step2_14___78 [6 ]
n_eval_realheapsort_step2_bb6_in___102 [6 ]
n_eval_realheapsort_step2_bb6_in___115 [2*Arg_0+2-2*Arg_1 ]
n_eval_realheapsort_step2_bb8_in___113 [2*Arg_0+2*Arg_7-2*Arg_1 ]
n_eval_realheapsort_step2_bb6_in___120 [0 ]
n_eval_realheapsort_step2_bb8_in___11 [0 ]
n_eval_realheapsort_step2_bb6_in___74 [6 ]
n_eval_realheapsort_step2_bb6_in___79 [2*Arg_4-4*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb6_in___97 [6 ]
n_eval_realheapsort_step2_bb7_in___114 [0 ]
n_eval_realheapsort_step2_bb8_in___20 [0 ]
n_eval_realheapsort_step2_bb7_in___73 [6 ]
n_eval_realheapsort_step2_bb7_in___96 [6 ]
n_eval_realheapsort_step2_bb8_in___35 [6 ]
n_eval_realheapsort_step2_23___34 [10*Arg_4+3-11*Arg_5-Arg_6 ]
n_eval_realheapsort_step2_bb8_in___45 [6 ]
n_eval_realheapsort_step2_23___44 [6 ]
n_eval_realheapsort_step2_bb8_in___54 [2*Arg_4-4*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_23___53 [2*Arg_4-4*Arg_5-2*Arg_6 ]
n_eval_realheapsort_step2_bb8_in___63 [6 ]
n_eval_realheapsort_step2_23___62 [6 ]
n_eval_realheapsort_step2_bb8_in___72 [6 ]
n_eval_realheapsort_step2_23___71 [6 ]
n_eval_realheapsort_step2_bb8_in___95 [6 ]
n_eval_realheapsort_step2_23___94 [6 ]
n_eval_realheapsort_step2_bb9_in___107 [Arg_7+5 ]
n_eval_realheapsort_step2_26___23 [6 ]
n_eval_realheapsort_step2_bb9_in___15 [8-Arg_7 ]
n_eval_realheapsort_step2_26___14 [8-Arg_7 ]
n_eval_realheapsort_step2_bb9_in___28 [5*Arg_7-11*Arg_5-Arg_6-2 ]
n_eval_realheapsort_step2_26___26 [5*Arg_7-11*Arg_4-Arg_6-2 ]
n_eval_realheapsort_step2_bb9_in___39 [6 ]
n_eval_realheapsort_step2_26___38 [6 ]
n_eval_realheapsort_step2_bb9_in___49 [6 ]
n_eval_realheapsort_step2_26___48 [6 ]
n_eval_realheapsort_step2_bb9_in___58 [6 ]
n_eval_realheapsort_step2_26___57 [6 ]
n_eval_realheapsort_step2_bb9_in___6 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_26___5 [2*Arg_4-2*Arg_6 ]
n_eval_realheapsort_step2_bb9_in___67 [6 ]
n_eval_realheapsort_step2_26___66 [6 ]
n_eval_realheapsort_step2_bb9_in___88 [6 ]
n_eval_realheapsort_step2_26___86 [6 ]
Show Graph
G
n_eval_nondet_start___100
n_eval_nondet_start___100
n_eval_nondet_start___111
n_eval_nondet_start___111
n_eval_nondet_start___118
n_eval_nondet_start___118
n_eval_nondet_start___13
n_eval_nondet_start___13
n_eval_nondet_start___134
n_eval_nondet_start___134
n_eval_nondet_start___18
n_eval_nondet_start___18
n_eval_nondet_start___22
n_eval_nondet_start___22
n_eval_nondet_start___25
n_eval_nondet_start___25
n_eval_nondet_start___31
n_eval_nondet_start___31
n_eval_nondet_start___33
n_eval_nondet_start___33
n_eval_nondet_start___37
n_eval_nondet_start___37
n_eval_nondet_start___4
n_eval_nondet_start___4
n_eval_nondet_start___41
n_eval_nondet_start___41
n_eval_nondet_start___43
n_eval_nondet_start___43
n_eval_nondet_start___47
n_eval_nondet_start___47
n_eval_nondet_start___52
n_eval_nondet_start___52
n_eval_nondet_start___56
n_eval_nondet_start___56
n_eval_nondet_start___61
n_eval_nondet_start___61
n_eval_nondet_start___65
n_eval_nondet_start___65
n_eval_nondet_start___70
n_eval_nondet_start___70
n_eval_nondet_start___77
n_eval_nondet_start___77
n_eval_nondet_start___85
n_eval_nondet_start___85
n_eval_nondet_start___9
n_eval_nondet_start___9
n_eval_nondet_start___91
n_eval_nondet_start___91
n_eval_nondet_start___93
n_eval_nondet_start___93
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101
n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100
t₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_15___99
n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99
t₁
η (Arg_0) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119
n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118
t₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_15___117
n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117
t₃
η (Arg_0) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78
n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77
t₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_15___76
n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76
t₅
η (Arg_0) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118
t₆
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_16___116
n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116
t₇
η (Arg_1) = NoDet0
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77
t₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_16___75
n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75
t₉
η (Arg_1) = NoDet0
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100
t₁₀
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_16___98
n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98
t₁₁
η (Arg_1) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_bb6_in___115
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115
t₁₂
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_bb7_in___114
n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114
t₁₃
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_bb6_in___74
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74
t₁₄
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_bb7_in___73
n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73
t₁₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_1<=Arg_0
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_bb6_in___97
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97
t₁₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_0<Arg_1
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_bb7_in___96
n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96
t₁₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_1<=Arg_0
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10
n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9
t₁₈
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_24___8
n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8
t₁₉
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112
n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111
t₂₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_24___110
n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110
t₂₁
η (Arg_2) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19
n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18
t₂₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_24___17
n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17
t₂₃
η (Arg_2) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34
n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33
t₂₄
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_24___32
n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32
t₂₅
η (Arg_2) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44
n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43
t₂₆
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_24___42
n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42
t₂₇
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53
n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52
t₂₈
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_24___51
n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51
t₂₉
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62
n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61
t₃₀
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_24___60
n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60
t₃₁
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71
n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70
t₃₂
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_24___69
n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69
t₃₃
η (Arg_2) = NoDet0
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94
n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93
t₃₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_24___92
n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92
t₃₅
η (Arg_2) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111
t₃₆
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_25___109
n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109
t₃₇
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18
t₃₈
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_25___16
n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16
t₃₉
η (Arg_3) = NoDet0
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31
t₄₀
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_25___30
n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30
t₄₁
η (Arg_3) = NoDet0
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41
t₄₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_25___40
n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40
t₄₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4
n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52
t₄₄
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_25___50
n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50
t₄₅
η (Arg_3) = NoDet0
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61
t₄₆
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_25___59
n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59
t₄₇
η (Arg_3) = NoDet0
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70
t₄₈
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_25___68
n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68
t₄₉
η (Arg_3) = NoDet0
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9
t₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_25___7
n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7
t₅₁
η (Arg_3) = NoDet0
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91
t₅₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_25___90
n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90
t₅₃
η (Arg_3) = NoDet0
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_bb3_in___108
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108
t₅₄
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_bb9_in___107
n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107
t₅₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108
t₅₆
η (Arg_5) = Arg_4
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_bb9_in___15
n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15
t₅₇
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_bb3_in___29
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29
t₅₈
η (Arg_5) = Arg_4
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_bb9_in___28
n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28
t₅₉
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_bb3_in___89
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89
t₆₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_bb9_in___39
n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39
t₆₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108
t₆₂
η (Arg_5) = Arg_4
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_bb9_in___49
n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49
t₆₃
τ = Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108
t₆₄
η (Arg_5) = Arg_4
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_bb9_in___58
n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58
t₆₅
τ = Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108
t₆₆
η (Arg_5) = Arg_4
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_bb9_in___67
n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67
t₆₇
τ = 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108
t₆₈
η (Arg_5) = Arg_4
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_bb9_in___6
n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6
t₆₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7 && Arg_3<Arg_2
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89
t₇₀
η (Arg_5) = Arg_4
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_2<=Arg_3
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_bb9_in___88
n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88
t₇₁
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_3<Arg_2
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14
n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13
t₇₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_27___12
n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12
t₇₃
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23
n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22
t₇₄
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_27___21
n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21
t₇₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26
n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25
t₇₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_27___24
n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24
t₇₇
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38
n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37
t₇₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_27___36
n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36
t₇₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48
n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47
t₈₀
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_27___46
n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46
t₈₁
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5
n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4
t₈₂
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_27___3
n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3
t₈₃
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57
n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56
t₈₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_27___55
n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55
t₈₅
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66
n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65
t₈₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_27___64
n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64
t₈₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86
n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85
t₈₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_27___84
n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84
t₈₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_bb3_in___83
n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83
t₉₀
η (Arg_5) = Arg_7
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83
t₉₁
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83
t₉₂
η (Arg_5) = Arg_7
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_bb3_in___2
n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2
t₉₃
η (Arg_5) = Arg_7
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83
t₉₄
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83
t₉₅
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83
t₉₆
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83
t₉₇
η (Arg_5) = Arg_7
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83
t₉₈
η (Arg_5) = Arg_7
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135
n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134
t₁₀₁
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_3___133
n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133
t₁₀₂
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_bb3_in___132
n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132
t₁₀₄
η (Arg_5) = 0
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb0_in___140
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb11_in___139
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139
t₁₀₅
τ = Arg_4<=2
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb1_in___138
n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138
t₁₀₆
η (Arg_6) = 0
τ = 2<Arg_4
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb1_in___104
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104
t₁₀₇
η (Arg_6) = Arg_6+1
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106
n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104
t₁₀₈
η (Arg_6) = Arg_6+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb10_in___131
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb1_in___129
n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129
t₁₀₉
η (Arg_6) = Arg_6+1
τ = 2+Arg_6<=Arg_4 && Arg_4<=2+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82
n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104
t₁₁₀
η (Arg_6) = Arg_6+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_bb11_in___128
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_stop___126
n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126
t₁₁₁
τ = Arg_4<=1+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_stop___137
n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137
t₁₁₂
τ = Arg_4<=2 && Arg_4<=2
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128
t₁₁₃
τ = Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb2_in___136
n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136
t₁₁₄
τ = 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128
t₁₁₅
τ = 1+Arg_6<=Arg_4 && Arg_4<=1+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+Arg_6 && Arg_4<2+Arg_6
n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136
t₁₁₇
τ = Arg_6<=0 && 3+Arg_6<=Arg_4 && 0<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135
t₁₁₉
τ = 2+Arg_6<=Arg_4 && 2+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106
t₁₂₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb4_in___105
n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105
t₁₂₁
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131
t₁₂₃
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb4_in___130
n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130
t₁₂₄
τ = 2+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1
t₁₂₅
τ = Arg_7<=1 && Arg_7<=Arg_5 && Arg_5+Arg_7<=2 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=1 && 1<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_4<3+2*Arg_5+Arg_6 && Arg_4<=2+2*Arg_5+Arg_6 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb4_in___27
n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27
t₁₂₆
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82
t₁₂₇
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<3+2*Arg_5+Arg_6
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb4_in___81
n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81
t₁₂₈
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb4_in___87
n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87
t₁₂₉
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_2<=Arg_3 && 3+2*Arg_5+Arg_6<=Arg_4 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb5_in___103
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103
t₁₃₀
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb6_in___102
n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102
t₁₃₁
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<=0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb5_in___121
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121
t₁₃₂
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb6_in___120
n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120
t₁₃₃
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102
t₁₃₄
η (Arg_6) = Arg_4-2*Arg_5-3
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb5_in___80
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80
t₁₃₅
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb6_in___79
n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79
t₁₃₆
η (Arg_6) = Arg_4-2*Arg_5-3
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103
t₁₃₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 3+2*Arg_5+Arg_6<Arg_4
n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101
t₁₃₈
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119
t₁₃₉
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78
t₁₄₀
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb8_in___35
n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35
t₁₄₁
η (Arg_7) = 2*Arg_5+1
τ = Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb8_in___113
n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113
t₁₄₂
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb8_in___11
n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11
t₁₄₃
η (Arg_7) = 2*Arg_5+1
τ = 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb8_in___72
n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72
t₁₄₄
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb8_in___54
n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54
t₁₄₅
η (Arg_7) = 2*Arg_5+1
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb8_in___95
n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95
t₁₄₆
η (Arg_7) = 2*Arg_5+1
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb8_in___20
n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20
t₁₄₇
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb8_in___63
n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63
t₁₄₈
η (Arg_7) = 2*Arg_5+2
τ = Arg_7<=Arg_5 && Arg_5<=Arg_7 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=Arg_7 && Arg_7<=Arg_5
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb8_in___45
n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45
t₁₄₉
η (Arg_7) = 2*Arg_5+2
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10
t₁₅₀
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && Arg_5<=0 && 0<=Arg_5 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112
t₁₅₁
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19
t₁₅₂
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34
t₁₅₃
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44
t₁₅₄
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_1<=Arg_0 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53
t₁₅₅
τ = 1+Arg_3<=Arg_2 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62
t₁₅₆
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71
t₁₅₇
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94
t₁₅₈
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && Arg_2<=Arg_3 && 3+Arg_4+Arg_6<0 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23
t₁₅₉
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14
t₁₆₀
τ = Arg_7<=2 && Arg_7<=2+Arg_5 && Arg_5+Arg_7<=2 && 2<=Arg_7 && 2<=Arg_5+Arg_7 && 2+Arg_5<=Arg_7 && 4+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=2 && 2<=Arg_7
n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26
t₁₆₁
τ = 3+Arg_5+Arg_6<=0 && 3+Arg_4+Arg_6<=0 && 0<=3+Arg_5+Arg_6 && 0<=3+Arg_4+Arg_6 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4+Arg_6+3<=0 && 0<=3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4
n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38
t₁₆₂
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_4+2<=Arg_7 && Arg_7<=2+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48
t₁₆₃
τ = 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5 && Arg_4<=2*Arg_5+Arg_6+3 && 3+2*Arg_5+Arg_6<=Arg_4
n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57
t₁₆₄
τ = 1+Arg_3<=Arg_2 && Arg_1<=Arg_0 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && Arg_1<=Arg_0 && 2*Arg_5+2<=Arg_7 && Arg_7<=2+2*Arg_5
n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5
t₁₆₅
τ = Arg_7<=1 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=1 && 1<=Arg_7 && 1<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3+Arg_6<=Arg_4 && Arg_4<=3+Arg_6 && Arg_5<=0 && 0<=Arg_5 && 1+Arg_3<=Arg_2 && Arg_3<Arg_2 && Arg_4<=Arg_6+3 && 3+Arg_6<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_7<=1 && 1<=Arg_7
n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66
t₁₆₆
τ = 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+2*Arg_5+Arg_6<Arg_4 && Arg_3<Arg_2 && 2*Arg_5+1<=Arg_7 && Arg_7<=1+2*Arg_5
n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86
t₁₆₇
τ = 4+Arg_5+Arg_6<=0 && 4+Arg_4+Arg_6<=0 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_2 && 1+Arg_0<=Arg_1 && Arg_0<Arg_1 && 3+Arg_4+Arg_6<0 && Arg_3<Arg_2 && 2*Arg_4+1<=Arg_7 && Arg_7<=1+2*Arg_4 && Arg_4<=Arg_5 && Arg_5<=Arg_4
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start
n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140
t₁₆₈
knowledge_propagation leads to new time bound 5*Arg_4+12 {O(n)} for transition 108:n_eval_realheapsort_step2_bb10_in___106(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_realheapsort_step2_bb1_in___104(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_3 && 0<3+Arg_4+Arg_6 && Arg_4<=Arg_5 && Arg_5<=Arg_4
All Bounds
Timebounds
Overall timebound:inf {Infinity}
0: n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100: 1 {O(1)}
1: n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99: inf {Infinity}
2: n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118: 1 {O(1)}
3: n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117: 2*Arg_4+2 {O(n)}
4: n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77: 1 {O(1)}
5: n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76: inf {Infinity}
6: n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118: 1 {O(1)}
7: n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116: 2*Arg_4+2 {O(n)}
8: n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77: 1 {O(1)}
9: n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75: inf {Infinity}
10: n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100: 1 {O(1)}
11: n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98: inf {Infinity}
12: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115: Arg_4+3 {O(n)}
13: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114: Arg_4+3 {O(n)}
14: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74: inf {Infinity}
15: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73: inf {Infinity}
16: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97: inf {Infinity}
17: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96: inf {Infinity}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9: 1 {O(1)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8: 2*Arg_4+4 {O(n)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111: 1 {O(1)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110: Arg_4+3 {O(n)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18: 1 {O(1)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17: 6*Arg_4 {O(n)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33: 1 {O(1)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32: inf {Infinity}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43: 1 {O(1)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42: inf {Infinity}
28: n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52: 1 {O(1)}
29: n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51: inf {Infinity}
30: n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61: 1 {O(1)}
31: n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60: inf {Infinity}
32: n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70: 1 {O(1)}
33: n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69: inf {Infinity}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93: 1 {O(1)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92: inf {Infinity}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111: 1 {O(1)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109: Arg_4+3 {O(n)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18: 1 {O(1)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16: 4*Arg_4 {O(n)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31: 1 {O(1)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30: inf {Infinity}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41: 1 {O(1)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40: inf {Infinity}
44: n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52: 1 {O(1)}
45: n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50: inf {Infinity}
46: n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61: 1 {O(1)}
47: n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59: inf {Infinity}
48: n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70: 1 {O(1)}
49: n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68: inf {Infinity}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9: 1 {O(1)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7: 3*Arg_4 {O(n)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91: 1 {O(1)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90: inf {Infinity}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108: Arg_4+3 {O(n)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107: 2*Arg_4+6 {O(n)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108: Arg_4+3 {O(n)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15: 2*Arg_4+6 {O(n)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29: inf {Infinity}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28: inf {Infinity}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89: inf {Infinity}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39: inf {Infinity}
62: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
63: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49: inf {Infinity}
64: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
65: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58: inf {Infinity}
66: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
67: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67: inf {Infinity}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108: 2*Arg_4+4 {O(n)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6: 2*Arg_4+6 {O(n)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89: inf {Infinity}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88: inf {Infinity}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13: 1 {O(1)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12: Arg_4+3 {O(n)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22: 1 {O(1)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21: 2*Arg_4+6 {O(n)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25: 1 {O(1)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24: inf {Infinity}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37: 1 {O(1)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36: inf {Infinity}
80: n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47: 1 {O(1)}
81: n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46: inf {Infinity}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4: 1 {O(1)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3: 2*Arg_4+4 {O(n)}
84: n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56: 1 {O(1)}
85: n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55: inf {Infinity}
86: n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65: 1 {O(1)}
87: n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64: inf {Infinity}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85: 1 {O(1)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84: inf {Infinity}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83: Arg_4+3 {O(n)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83: 2*Arg_4+6 {O(n)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2: 2*Arg_4+4 {O(n)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
95: n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
96: n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
97: n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
101: n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134: 1 {O(1)}
102: n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133: 4*Arg_4+4 {O(n)}
104: n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132: Arg_4+1 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139: 1 {O(1)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138: 1 {O(1)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104: Arg_4 {O(n)}
108: n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104: 5*Arg_4+12 {O(n)}
109: n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129: 1 {O(1)}
110: n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104: 2*Arg_4*Arg_4+17*Arg_4+30 {O(n^2)}
111: n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126: 1 {O(1)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137: 1 {O(1)}
113: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128: 1 {O(1)}
114: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136: Arg_4+2 {O(n)}
115: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128: 1 {O(1)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136: 1 {O(1)}
119: n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135: Arg_4+1 {O(n)}
120: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106: 5*Arg_4+12 {O(n)}
121: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105: inf {Infinity}
123: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131: 1 {O(1)}
124: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130: Arg_4+1 {O(n)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1: Arg_4+2 {O(n)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27: inf {Infinity}
127: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82: 4*Arg_4*Arg_4+22*Arg_4+48 {O(n^2)}
128: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81: inf {Infinity}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87: inf {Infinity}
130: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103: inf {Infinity}
131: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102: inf {Infinity}
132: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121: 2*Arg_4+2 {O(n)}
133: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120: Arg_4+3 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102: inf {Infinity}
135: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80: inf {Infinity}
136: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79: inf {Infinity}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103: inf {Infinity}
138: n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101: inf {Infinity}
139: n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119: 12*Arg_4+12 {O(n)}
140: n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78: inf {Infinity}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35: inf {Infinity}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113: 12*Arg_4+12 {O(n)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11: 6*Arg_4+12 {O(n)}
144: n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72: inf {Infinity}
145: n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54: inf {Infinity}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95: inf {Infinity}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20: 2*Arg_4+2 {O(n)}
148: n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63: inf {Infinity}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45: inf {Infinity}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10: Arg_4 {O(n)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112: Arg_4+3 {O(n)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19: Arg_4+3 {O(n)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34: inf {Infinity}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44: inf {Infinity}
155: n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53: inf {Infinity}
156: n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62: inf {Infinity}
157: n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71: inf {Infinity}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94: inf {Infinity}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23: 4*Arg_4+4 {O(n)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14: Arg_4 {O(n)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26: inf {Infinity}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38: inf {Infinity}
163: n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48: inf {Infinity}
164: n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57: inf {Infinity}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5: Arg_4+2 {O(n)}
166: n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66: inf {Infinity}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86: inf {Infinity}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
0: n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100: 1 {O(1)}
1: n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99: inf {Infinity}
2: n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118: 1 {O(1)}
3: n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117: 2*Arg_4+2 {O(n)}
4: n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77: 1 {O(1)}
5: n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76: inf {Infinity}
6: n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118: 1 {O(1)}
7: n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116: 2*Arg_4+2 {O(n)}
8: n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77: 1 {O(1)}
9: n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75: inf {Infinity}
10: n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100: 1 {O(1)}
11: n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98: inf {Infinity}
12: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115: Arg_4+3 {O(n)}
13: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114: Arg_4+3 {O(n)}
14: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74: inf {Infinity}
15: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73: inf {Infinity}
16: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97: inf {Infinity}
17: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96: inf {Infinity}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9: 1 {O(1)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8: 2*Arg_4+4 {O(n)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111: 1 {O(1)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110: Arg_4+3 {O(n)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18: 1 {O(1)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17: 6*Arg_4 {O(n)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33: 1 {O(1)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32: inf {Infinity}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43: 1 {O(1)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42: inf {Infinity}
28: n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52: 1 {O(1)}
29: n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51: inf {Infinity}
30: n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61: 1 {O(1)}
31: n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60: inf {Infinity}
32: n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70: 1 {O(1)}
33: n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69: inf {Infinity}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93: 1 {O(1)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92: inf {Infinity}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111: 1 {O(1)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109: Arg_4+3 {O(n)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18: 1 {O(1)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16: 4*Arg_4 {O(n)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31: 1 {O(1)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30: inf {Infinity}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41: 1 {O(1)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40: inf {Infinity}
44: n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52: 1 {O(1)}
45: n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50: inf {Infinity}
46: n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61: 1 {O(1)}
47: n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59: inf {Infinity}
48: n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70: 1 {O(1)}
49: n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68: inf {Infinity}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9: 1 {O(1)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7: 3*Arg_4 {O(n)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91: 1 {O(1)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90: inf {Infinity}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108: Arg_4+3 {O(n)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107: 2*Arg_4+6 {O(n)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108: Arg_4+3 {O(n)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15: 2*Arg_4+6 {O(n)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29: inf {Infinity}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28: inf {Infinity}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89: inf {Infinity}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39: inf {Infinity}
62: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
63: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49: inf {Infinity}
64: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
65: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58: inf {Infinity}
66: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108: inf {Infinity}
67: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67: inf {Infinity}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108: 2*Arg_4+4 {O(n)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6: 2*Arg_4+6 {O(n)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89: inf {Infinity}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88: inf {Infinity}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13: 1 {O(1)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12: Arg_4+3 {O(n)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22: 1 {O(1)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21: 2*Arg_4+6 {O(n)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25: 1 {O(1)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24: inf {Infinity}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37: 1 {O(1)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36: inf {Infinity}
80: n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47: 1 {O(1)}
81: n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46: inf {Infinity}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4: 1 {O(1)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3: 2*Arg_4+4 {O(n)}
84: n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56: 1 {O(1)}
85: n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55: inf {Infinity}
86: n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65: 1 {O(1)}
87: n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64: inf {Infinity}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85: 1 {O(1)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84: inf {Infinity}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83: Arg_4+3 {O(n)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83: 2*Arg_4+6 {O(n)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2: 2*Arg_4+4 {O(n)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
95: n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
96: n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
97: n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83: inf {Infinity}
101: n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134: 1 {O(1)}
102: n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133: 4*Arg_4+4 {O(n)}
104: n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132: Arg_4+1 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139: 1 {O(1)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138: 1 {O(1)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104: Arg_4 {O(n)}
108: n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104: 5*Arg_4+12 {O(n)}
109: n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129: 1 {O(1)}
110: n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104: 2*Arg_4*Arg_4+17*Arg_4+30 {O(n^2)}
111: n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126: 1 {O(1)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137: 1 {O(1)}
113: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128: 1 {O(1)}
114: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136: Arg_4+2 {O(n)}
115: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128: 1 {O(1)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136: 1 {O(1)}
119: n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135: Arg_4+1 {O(n)}
120: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106: 5*Arg_4+12 {O(n)}
121: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105: inf {Infinity}
123: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131: 1 {O(1)}
124: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130: Arg_4+1 {O(n)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1: Arg_4+2 {O(n)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27: inf {Infinity}
127: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82: 4*Arg_4*Arg_4+22*Arg_4+48 {O(n^2)}
128: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81: inf {Infinity}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87: inf {Infinity}
130: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103: inf {Infinity}
131: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102: inf {Infinity}
132: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121: 2*Arg_4+2 {O(n)}
133: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120: Arg_4+3 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102: inf {Infinity}
135: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80: inf {Infinity}
136: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79: inf {Infinity}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103: inf {Infinity}
138: n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101: inf {Infinity}
139: n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119: 12*Arg_4+12 {O(n)}
140: n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78: inf {Infinity}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35: inf {Infinity}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113: 12*Arg_4+12 {O(n)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11: 6*Arg_4+12 {O(n)}
144: n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72: inf {Infinity}
145: n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54: inf {Infinity}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95: inf {Infinity}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20: 2*Arg_4+2 {O(n)}
148: n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63: inf {Infinity}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45: inf {Infinity}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10: Arg_4 {O(n)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112: Arg_4+3 {O(n)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19: Arg_4+3 {O(n)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34: inf {Infinity}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44: inf {Infinity}
155: n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53: inf {Infinity}
156: n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62: inf {Infinity}
157: n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71: inf {Infinity}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94: inf {Infinity}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23: 4*Arg_4+4 {O(n)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14: Arg_4 {O(n)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26: inf {Infinity}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38: inf {Infinity}
163: n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48: inf {Infinity}
164: n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57: inf {Infinity}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5: Arg_4+2 {O(n)}
166: n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66: inf {Infinity}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86: inf {Infinity}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140: 1 {O(1)}
Sizebounds
0: n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100, Arg_4: Arg_4 {O(n)}
0: n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100, Arg_5: 8*Arg_4 {O(n)}
0: n_eval_realheapsort_step2_14___101->n_eval_nondet_start___100, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
1: n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99, Arg_4: Arg_4 {O(n)}
1: n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99, Arg_5: 8*Arg_4 {O(n)}
1: n_eval_realheapsort_step2_14___101->n_eval_realheapsort_step2_15___99, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
2: n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118, Arg_4: Arg_4 {O(n)}
2: n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118, Arg_5: 0 {O(1)}
2: n_eval_realheapsort_step2_14___119->n_eval_nondet_start___118, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
3: n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117, Arg_4: Arg_4 {O(n)}
3: n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117, Arg_5: 0 {O(1)}
3: n_eval_realheapsort_step2_14___119->n_eval_realheapsort_step2_15___117, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
4: n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77, Arg_4: Arg_4 {O(n)}
4: n_eval_realheapsort_step2_14___78->n_eval_nondet_start___77, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
5: n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76, Arg_4: Arg_4 {O(n)}
5: n_eval_realheapsort_step2_14___78->n_eval_realheapsort_step2_15___76, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
6: n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118, Arg_4: Arg_4 {O(n)}
6: n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118, Arg_5: 0 {O(1)}
6: n_eval_realheapsort_step2_15___117->n_eval_nondet_start___118, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
7: n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116, Arg_4: Arg_4 {O(n)}
7: n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116, Arg_5: 0 {O(1)}
7: n_eval_realheapsort_step2_15___117->n_eval_realheapsort_step2_16___116, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
8: n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77, Arg_4: Arg_4 {O(n)}
8: n_eval_realheapsort_step2_15___76->n_eval_nondet_start___77, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
9: n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75, Arg_4: Arg_4 {O(n)}
9: n_eval_realheapsort_step2_15___76->n_eval_realheapsort_step2_16___75, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
10: n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100, Arg_4: Arg_4 {O(n)}
10: n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100, Arg_5: 8*Arg_4 {O(n)}
10: n_eval_realheapsort_step2_15___99->n_eval_nondet_start___100, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
11: n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98, Arg_4: Arg_4 {O(n)}
11: n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98, Arg_5: 8*Arg_4 {O(n)}
11: n_eval_realheapsort_step2_15___99->n_eval_realheapsort_step2_16___98, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
12: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115, Arg_4: Arg_4 {O(n)}
12: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115, Arg_5: 0 {O(1)}
12: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb6_in___115, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
13: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114, Arg_4: Arg_4 {O(n)}
13: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114, Arg_5: 0 {O(1)}
13: n_eval_realheapsort_step2_16___116->n_eval_realheapsort_step2_bb7_in___114, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
14: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74, Arg_4: Arg_4 {O(n)}
14: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb6_in___74, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
15: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73, Arg_4: Arg_4 {O(n)}
15: n_eval_realheapsort_step2_16___75->n_eval_realheapsort_step2_bb7_in___73, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
16: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97, Arg_4: Arg_4 {O(n)}
16: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97, Arg_5: 8*Arg_4 {O(n)}
16: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb6_in___97, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
17: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96, Arg_4: Arg_4 {O(n)}
17: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96, Arg_5: 8*Arg_4 {O(n)}
17: n_eval_realheapsort_step2_16___98->n_eval_realheapsort_step2_bb7_in___96, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9, Arg_4: Arg_4 {O(n)}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9, Arg_5: 0 {O(1)}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9, Arg_6: Arg_4+3 {O(n)}
18: n_eval_realheapsort_step2_23___10->n_eval_nondet_start___9, Arg_7: 1 {O(1)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8, Arg_4: Arg_4 {O(n)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8, Arg_5: 0 {O(1)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8, Arg_6: Arg_4+3 {O(n)}
19: n_eval_realheapsort_step2_23___10->n_eval_realheapsort_step2_24___8, Arg_7: 1 {O(1)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111, Arg_4: Arg_4 {O(n)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111, Arg_5: 0 {O(1)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
20: n_eval_realheapsort_step2_23___112->n_eval_nondet_start___111, Arg_7: 1 {O(1)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110, Arg_4: Arg_4 {O(n)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110, Arg_5: 0 {O(1)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
21: n_eval_realheapsort_step2_23___112->n_eval_realheapsort_step2_24___110, Arg_7: 1 {O(1)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18, Arg_4: Arg_4 {O(n)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18, Arg_5: 0 {O(1)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
22: n_eval_realheapsort_step2_23___19->n_eval_nondet_start___18, Arg_7: 2 {O(1)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17, Arg_4: Arg_4 {O(n)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17, Arg_5: 0 {O(1)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
23: n_eval_realheapsort_step2_23___19->n_eval_realheapsort_step2_24___17, Arg_7: 2 {O(1)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33, Arg_4: Arg_4 {O(n)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33, Arg_5: 7*Arg_4 {O(n)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33, Arg_6: 2*Arg_4+6 {O(n)}
24: n_eval_realheapsort_step2_23___34->n_eval_nondet_start___33, Arg_7: 14*Arg_4+4 {O(n)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32, Arg_4: Arg_4 {O(n)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32, Arg_5: 7*Arg_4 {O(n)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32, Arg_6: 2*Arg_4+6 {O(n)}
25: n_eval_realheapsort_step2_23___34->n_eval_realheapsort_step2_24___32, Arg_7: 14*Arg_4+4 {O(n)}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43, Arg_4: Arg_4 {O(n)}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43, Arg_5: 8*Arg_4 {O(n)}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
26: n_eval_realheapsort_step2_23___44->n_eval_nondet_start___43, Arg_7: 16*Arg_4+2 {O(n)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42, Arg_4: Arg_4 {O(n)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42, Arg_5: 8*Arg_4 {O(n)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
27: n_eval_realheapsort_step2_23___44->n_eval_realheapsort_step2_24___42, Arg_7: 16*Arg_4+2 {O(n)}
28: n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52, Arg_4: Arg_4 {O(n)}
28: n_eval_realheapsort_step2_23___53->n_eval_nondet_start___52, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
29: n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51, Arg_4: Arg_4 {O(n)}
29: n_eval_realheapsort_step2_23___53->n_eval_realheapsort_step2_24___51, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
30: n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61, Arg_4: Arg_4 {O(n)}
30: n_eval_realheapsort_step2_23___62->n_eval_nondet_start___61, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
31: n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60, Arg_4: Arg_4 {O(n)}
31: n_eval_realheapsort_step2_23___62->n_eval_realheapsort_step2_24___60, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
32: n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70, Arg_4: Arg_4 {O(n)}
32: n_eval_realheapsort_step2_23___71->n_eval_nondet_start___70, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
33: n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69, Arg_4: Arg_4 {O(n)}
33: n_eval_realheapsort_step2_23___71->n_eval_realheapsort_step2_24___69, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93, Arg_4: Arg_4 {O(n)}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93, Arg_5: 8*Arg_4 {O(n)}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
34: n_eval_realheapsort_step2_23___94->n_eval_nondet_start___93, Arg_7: 16*Arg_4+2 {O(n)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92, Arg_4: Arg_4 {O(n)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92, Arg_5: 8*Arg_4 {O(n)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
35: n_eval_realheapsort_step2_23___94->n_eval_realheapsort_step2_24___92, Arg_7: 16*Arg_4+2 {O(n)}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111, Arg_4: Arg_4 {O(n)}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111, Arg_5: 0 {O(1)}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
36: n_eval_realheapsort_step2_24___110->n_eval_nondet_start___111, Arg_7: 1 {O(1)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109, Arg_4: Arg_4 {O(n)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109, Arg_5: 0 {O(1)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
37: n_eval_realheapsort_step2_24___110->n_eval_realheapsort_step2_25___109, Arg_7: 1 {O(1)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18, Arg_4: Arg_4 {O(n)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18, Arg_5: 0 {O(1)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
38: n_eval_realheapsort_step2_24___17->n_eval_nondet_start___18, Arg_7: 2 {O(1)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16, Arg_4: Arg_4 {O(n)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16, Arg_5: 0 {O(1)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
39: n_eval_realheapsort_step2_24___17->n_eval_realheapsort_step2_25___16, Arg_7: 2 {O(1)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31, Arg_4: Arg_4 {O(n)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31, Arg_5: 7*Arg_4 {O(n)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31, Arg_6: 2*Arg_4+6 {O(n)}
40: n_eval_realheapsort_step2_24___32->n_eval_nondet_start___31, Arg_7: 14*Arg_4+4 {O(n)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30, Arg_4: Arg_4 {O(n)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30, Arg_5: 7*Arg_4 {O(n)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30, Arg_6: 2*Arg_4+6 {O(n)}
41: n_eval_realheapsort_step2_24___32->n_eval_realheapsort_step2_25___30, Arg_7: 14*Arg_4+4 {O(n)}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41, Arg_4: Arg_4 {O(n)}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41, Arg_5: 8*Arg_4 {O(n)}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
42: n_eval_realheapsort_step2_24___42->n_eval_nondet_start___41, Arg_7: 16*Arg_4+2 {O(n)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40, Arg_4: Arg_4 {O(n)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40, Arg_5: 8*Arg_4 {O(n)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
43: n_eval_realheapsort_step2_24___42->n_eval_realheapsort_step2_25___40, Arg_7: 16*Arg_4+2 {O(n)}
44: n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52, Arg_4: Arg_4 {O(n)}
44: n_eval_realheapsort_step2_24___51->n_eval_nondet_start___52, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
45: n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50, Arg_4: Arg_4 {O(n)}
45: n_eval_realheapsort_step2_24___51->n_eval_realheapsort_step2_25___50, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
46: n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61, Arg_4: Arg_4 {O(n)}
46: n_eval_realheapsort_step2_24___60->n_eval_nondet_start___61, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
47: n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59, Arg_4: Arg_4 {O(n)}
47: n_eval_realheapsort_step2_24___60->n_eval_realheapsort_step2_25___59, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
48: n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70, Arg_4: Arg_4 {O(n)}
48: n_eval_realheapsort_step2_24___69->n_eval_nondet_start___70, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
49: n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68, Arg_4: Arg_4 {O(n)}
49: n_eval_realheapsort_step2_24___69->n_eval_realheapsort_step2_25___68, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9, Arg_4: Arg_4 {O(n)}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9, Arg_5: 0 {O(1)}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9, Arg_6: Arg_4+3 {O(n)}
50: n_eval_realheapsort_step2_24___8->n_eval_nondet_start___9, Arg_7: 1 {O(1)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7, Arg_4: Arg_4 {O(n)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7, Arg_5: 0 {O(1)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7, Arg_6: Arg_4+3 {O(n)}
51: n_eval_realheapsort_step2_24___8->n_eval_realheapsort_step2_25___7, Arg_7: 1 {O(1)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91, Arg_4: Arg_4 {O(n)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91, Arg_5: 8*Arg_4 {O(n)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
52: n_eval_realheapsort_step2_24___92->n_eval_nondet_start___91, Arg_7: 16*Arg_4+2 {O(n)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90, Arg_4: Arg_4 {O(n)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90, Arg_5: 8*Arg_4 {O(n)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
53: n_eval_realheapsort_step2_24___92->n_eval_realheapsort_step2_25___90, Arg_7: 16*Arg_4+2 {O(n)}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
54: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb3_in___108, Arg_7: 1 {O(1)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107, Arg_4: Arg_4 {O(n)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107, Arg_5: 0 {O(1)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
55: n_eval_realheapsort_step2_25___109->n_eval_realheapsort_step2_bb9_in___107, Arg_7: 1 {O(1)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
56: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb3_in___108, Arg_7: 2 {O(1)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15, Arg_4: Arg_4 {O(n)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15, Arg_5: 0 {O(1)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
57: n_eval_realheapsort_step2_25___16->n_eval_realheapsort_step2_bb9_in___15, Arg_7: 2 {O(1)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29, Arg_4: Arg_4 {O(n)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29, Arg_5: Arg_4 {O(n)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29, Arg_6: 2*Arg_4+6 {O(n)}
58: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb3_in___29, Arg_7: 14*Arg_4+4 {O(n)}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28, Arg_4: Arg_4 {O(n)}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28, Arg_5: 7*Arg_4 {O(n)}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28, Arg_6: 2*Arg_4+6 {O(n)}
59: n_eval_realheapsort_step2_25___30->n_eval_realheapsort_step2_bb9_in___28, Arg_7: 14*Arg_4+4 {O(n)}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89, Arg_4: Arg_4 {O(n)}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89, Arg_5: Arg_4 {O(n)}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
60: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb3_in___89, Arg_7: 16*Arg_4+2 {O(n)}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39, Arg_4: Arg_4 {O(n)}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39, Arg_5: 8*Arg_4 {O(n)}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
61: n_eval_realheapsort_step2_25___40->n_eval_realheapsort_step2_bb9_in___39, Arg_7: 16*Arg_4+2 {O(n)}
62: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
62: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
62: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb3_in___108, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
63: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49, Arg_4: Arg_4 {O(n)}
63: n_eval_realheapsort_step2_25___50->n_eval_realheapsort_step2_bb9_in___49, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
64: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
64: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
64: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb3_in___108, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
65: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58, Arg_4: Arg_4 {O(n)}
65: n_eval_realheapsort_step2_25___59->n_eval_realheapsort_step2_bb9_in___58, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
66: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
66: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
66: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb3_in___108, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
67: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67, Arg_4: Arg_4 {O(n)}
67: n_eval_realheapsort_step2_25___68->n_eval_realheapsort_step2_bb9_in___67, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108, Arg_4: Arg_4 {O(n)}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108, Arg_5: Arg_4 {O(n)}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108, Arg_6: Arg_4+3 {O(n)}
68: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb3_in___108, Arg_7: 1 {O(1)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6, Arg_4: Arg_4 {O(n)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6, Arg_5: 0 {O(1)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6, Arg_6: Arg_4+3 {O(n)}
69: n_eval_realheapsort_step2_25___7->n_eval_realheapsort_step2_bb9_in___6, Arg_7: 1 {O(1)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89, Arg_4: Arg_4 {O(n)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89, Arg_5: Arg_4 {O(n)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
70: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb3_in___89, Arg_7: 16*Arg_4+2 {O(n)}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88, Arg_4: Arg_4 {O(n)}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88, Arg_5: 8*Arg_4 {O(n)}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
71: n_eval_realheapsort_step2_25___90->n_eval_realheapsort_step2_bb9_in___88, Arg_7: 16*Arg_4+2 {O(n)}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13, Arg_4: Arg_4 {O(n)}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13, Arg_5: 0 {O(1)}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
72: n_eval_realheapsort_step2_26___14->n_eval_nondet_start___13, Arg_7: 2 {O(1)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12, Arg_4: Arg_4 {O(n)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12, Arg_5: 0 {O(1)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
73: n_eval_realheapsort_step2_26___14->n_eval_realheapsort_step2_27___12, Arg_7: 2 {O(1)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22, Arg_4: Arg_4 {O(n)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22, Arg_5: 0 {O(1)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
74: n_eval_realheapsort_step2_26___23->n_eval_nondet_start___22, Arg_7: 1 {O(1)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21, Arg_4: Arg_4 {O(n)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21, Arg_5: 0 {O(1)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
75: n_eval_realheapsort_step2_26___23->n_eval_realheapsort_step2_27___21, Arg_7: 1 {O(1)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25, Arg_4: Arg_4 {O(n)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25, Arg_5: 7*Arg_4 {O(n)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25, Arg_6: 2*Arg_4+6 {O(n)}
76: n_eval_realheapsort_step2_26___26->n_eval_nondet_start___25, Arg_7: 14*Arg_4+4 {O(n)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24, Arg_4: Arg_4 {O(n)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24, Arg_5: 7*Arg_4 {O(n)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24, Arg_6: 2*Arg_4+6 {O(n)}
77: n_eval_realheapsort_step2_26___26->n_eval_realheapsort_step2_27___24, Arg_7: 14*Arg_4+4 {O(n)}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37, Arg_4: Arg_4 {O(n)}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37, Arg_5: 8*Arg_4 {O(n)}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
78: n_eval_realheapsort_step2_26___38->n_eval_nondet_start___37, Arg_7: 16*Arg_4+2 {O(n)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36, Arg_4: Arg_4 {O(n)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36, Arg_5: 8*Arg_4 {O(n)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
79: n_eval_realheapsort_step2_26___38->n_eval_realheapsort_step2_27___36, Arg_7: 16*Arg_4+2 {O(n)}
80: n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47, Arg_4: Arg_4 {O(n)}
80: n_eval_realheapsort_step2_26___48->n_eval_nondet_start___47, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
81: n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46, Arg_4: Arg_4 {O(n)}
81: n_eval_realheapsort_step2_26___48->n_eval_realheapsort_step2_27___46, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4, Arg_4: Arg_4 {O(n)}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4, Arg_5: 0 {O(1)}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4, Arg_6: Arg_4+3 {O(n)}
82: n_eval_realheapsort_step2_26___5->n_eval_nondet_start___4, Arg_7: 1 {O(1)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3, Arg_4: Arg_4 {O(n)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3, Arg_5: 0 {O(1)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3, Arg_6: Arg_4+3 {O(n)}
83: n_eval_realheapsort_step2_26___5->n_eval_realheapsort_step2_27___3, Arg_7: 1 {O(1)}
84: n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56, Arg_4: Arg_4 {O(n)}
84: n_eval_realheapsort_step2_26___57->n_eval_nondet_start___56, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
85: n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55, Arg_4: Arg_4 {O(n)}
85: n_eval_realheapsort_step2_26___57->n_eval_realheapsort_step2_27___55, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
86: n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65, Arg_4: Arg_4 {O(n)}
86: n_eval_realheapsort_step2_26___66->n_eval_nondet_start___65, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
87: n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64, Arg_4: Arg_4 {O(n)}
87: n_eval_realheapsort_step2_26___66->n_eval_realheapsort_step2_27___64, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85, Arg_4: Arg_4 {O(n)}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85, Arg_5: 8*Arg_4 {O(n)}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
88: n_eval_realheapsort_step2_26___86->n_eval_nondet_start___85, Arg_7: 16*Arg_4+2 {O(n)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84, Arg_4: Arg_4 {O(n)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84, Arg_5: 8*Arg_4 {O(n)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
89: n_eval_realheapsort_step2_26___86->n_eval_realheapsort_step2_27___84, Arg_7: 16*Arg_4+2 {O(n)}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83, Arg_5: 2 {O(1)}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
90: n_eval_realheapsort_step2_27___12->n_eval_realheapsort_step2_bb3_in___83, Arg_7: 2 {O(1)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83, Arg_5: 1 {O(1)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
91: n_eval_realheapsort_step2_27___21->n_eval_realheapsort_step2_bb3_in___83, Arg_7: 1 {O(1)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83, Arg_5: 14*Arg_4+4 {O(n)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4+6 {O(n)}
92: n_eval_realheapsort_step2_27___24->n_eval_realheapsort_step2_bb3_in___83, Arg_7: 14*Arg_4+4 {O(n)}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2, Arg_4: Arg_4 {O(n)}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2, Arg_5: 1 {O(1)}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2, Arg_6: Arg_4+3 {O(n)}
93: n_eval_realheapsort_step2_27___3->n_eval_realheapsort_step2_bb3_in___2, Arg_7: 1 {O(1)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83, Arg_5: 16*Arg_4+2 {O(n)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
94: n_eval_realheapsort_step2_27___36->n_eval_realheapsort_step2_bb3_in___83, Arg_7: 16*Arg_4+2 {O(n)}
95: n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
95: n_eval_realheapsort_step2_27___46->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
96: n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
96: n_eval_realheapsort_step2_27___55->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
97: n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
97: n_eval_realheapsort_step2_27___64->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83, Arg_4: Arg_4 {O(n)}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83, Arg_5: 16*Arg_4+2 {O(n)}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
98: n_eval_realheapsort_step2_27___84->n_eval_realheapsort_step2_bb3_in___83, Arg_7: 16*Arg_4+2 {O(n)}
101: n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134, Arg_4: Arg_4 {O(n)}
101: n_eval_realheapsort_step2_2___135->n_eval_nondet_start___134, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
102: n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133, Arg_4: Arg_4 {O(n)}
102: n_eval_realheapsort_step2_2___135->n_eval_realheapsort_step2_3___133, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
104: n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132, Arg_4: Arg_4 {O(n)}
104: n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132, Arg_5: 0 {O(1)}
104: n_eval_realheapsort_step2_3___133->n_eval_realheapsort_step2_bb3_in___132, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_0: Arg_0 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_1: Arg_1 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_2: Arg_2 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_3: Arg_3 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_4: Arg_4 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_5: Arg_5 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_6: Arg_6 {O(n)}
105: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb11_in___139, Arg_7: Arg_7 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_0: Arg_0 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_1: Arg_1 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_2: Arg_2 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_3: Arg_3 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_4: Arg_4 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_5: Arg_5 {O(n)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_6: 0 {O(1)}
106: n_eval_realheapsort_step2_bb0_in___140->n_eval_realheapsort_step2_bb1_in___138, Arg_7: Arg_7 {O(n)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104, Arg_4: Arg_4 {O(n)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104, Arg_5: 1 {O(1)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104, Arg_6: Arg_4+4 {O(n)}
107: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb1_in___104, Arg_7: 1 {O(1)}
108: n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104, Arg_4: Arg_4 {O(n)}
108: n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104, Arg_5: 6*Arg_4 {O(n)}
108: n_eval_realheapsort_step2_bb10_in___106->n_eval_realheapsort_step2_bb1_in___104, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
109: n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129, Arg_4: Arg_4 {O(n)}
109: n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129, Arg_5: 0 {O(1)}
109: n_eval_realheapsort_step2_bb10_in___131->n_eval_realheapsort_step2_bb1_in___129, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+65 {O(n^2)}
110: n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104, Arg_4: Arg_4 {O(n)}
110: n_eval_realheapsort_step2_bb10_in___82->n_eval_realheapsort_step2_bb1_in___104, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
111: n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126, Arg_4: 3*Arg_4 {O(n)}
111: n_eval_realheapsort_step2_bb11_in___128->n_eval_realheapsort_step2_stop___126, Arg_6: 6*Arg_4*Arg_4+87*Arg_4+193 {O(n^2)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_0: Arg_0 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_1: Arg_1 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_2: Arg_2 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_3: Arg_3 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_4: Arg_4 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_5: Arg_5 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_6: Arg_6 {O(n)}
112: n_eval_realheapsort_step2_bb11_in___139->n_eval_realheapsort_step2_stop___137, Arg_7: Arg_7 {O(n)}
113: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128, Arg_4: 2*Arg_4 {O(n)}
113: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb11_in___128, Arg_6: 4*Arg_4*Arg_4+58*Arg_4+128 {O(n^2)}
114: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136, Arg_4: Arg_4 {O(n)}
114: n_eval_realheapsort_step2_bb1_in___104->n_eval_realheapsort_step2_bb2_in___136, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
115: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128, Arg_4: Arg_4 {O(n)}
115: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128, Arg_5: 0 {O(1)}
115: n_eval_realheapsort_step2_bb1_in___129->n_eval_realheapsort_step2_bb11_in___128, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+65 {O(n^2)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_0: Arg_0 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_1: Arg_1 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_2: Arg_2 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_3: Arg_3 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_4: Arg_4 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_5: Arg_5 {O(n)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_6: 0 {O(1)}
117: n_eval_realheapsort_step2_bb1_in___138->n_eval_realheapsort_step2_bb2_in___136, Arg_7: Arg_7 {O(n)}
119: n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135, Arg_4: Arg_4 {O(n)}
119: n_eval_realheapsort_step2_bb2_in___136->n_eval_realheapsort_step2_2___135, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
120: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106, Arg_4: Arg_4 {O(n)}
120: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106, Arg_5: 6*Arg_4 {O(n)}
120: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb10_in___106, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
121: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105, Arg_4: Arg_4 {O(n)}
121: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105, Arg_5: 6*Arg_4 {O(n)}
121: n_eval_realheapsort_step2_bb3_in___108->n_eval_realheapsort_step2_bb4_in___105, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
123: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131, Arg_4: Arg_4 {O(n)}
123: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131, Arg_5: 0 {O(1)}
123: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb10_in___131, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
124: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130, Arg_4: Arg_4 {O(n)}
124: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130, Arg_5: 0 {O(1)}
124: n_eval_realheapsort_step2_bb3_in___132->n_eval_realheapsort_step2_bb4_in___130, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_4: Arg_4 {O(n)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_5: 1 {O(1)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_6: Arg_4+3 {O(n)}
125: n_eval_realheapsort_step2_bb3_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_7: 1 {O(1)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27, Arg_4: Arg_4 {O(n)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27, Arg_5: Arg_4 {O(n)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27, Arg_6: 2*Arg_4+6 {O(n)}
126: n_eval_realheapsort_step2_bb3_in___29->n_eval_realheapsort_step2_bb4_in___27, Arg_7: 14*Arg_4+4 {O(n)}
127: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82, Arg_4: Arg_4 {O(n)}
127: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb10_in___82, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
128: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81, Arg_4: Arg_4 {O(n)}
128: n_eval_realheapsort_step2_bb3_in___83->n_eval_realheapsort_step2_bb4_in___81, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87, Arg_4: Arg_4 {O(n)}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87, Arg_5: 2*Arg_4 {O(n)}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
129: n_eval_realheapsort_step2_bb3_in___89->n_eval_realheapsort_step2_bb4_in___87, Arg_7: 32*Arg_4+4 {O(n)}
130: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103, Arg_4: Arg_4 {O(n)}
130: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103, Arg_5: 6*Arg_4 {O(n)}
130: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb5_in___103, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
131: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102, Arg_4: Arg_4 {O(n)}
131: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102, Arg_5: 6*Arg_4 {O(n)}
131: n_eval_realheapsort_step2_bb4_in___105->n_eval_realheapsort_step2_bb6_in___102, Arg_6: Arg_4+3 {O(n)}
132: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121, Arg_4: Arg_4 {O(n)}
132: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121, Arg_5: 0 {O(1)}
132: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb5_in___121, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
133: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120, Arg_4: Arg_4 {O(n)}
133: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120, Arg_5: 0 {O(1)}
133: n_eval_realheapsort_step2_bb4_in___130->n_eval_realheapsort_step2_bb6_in___120, Arg_6: Arg_4+3 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102, Arg_4: Arg_4 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102, Arg_5: Arg_4 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102, Arg_6: Arg_4+3 {O(n)}
134: n_eval_realheapsort_step2_bb4_in___27->n_eval_realheapsort_step2_bb6_in___102, Arg_7: 14*Arg_4+4 {O(n)}
135: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80, Arg_4: Arg_4 {O(n)}
135: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb5_in___80, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
136: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79, Arg_4: Arg_4 {O(n)}
136: n_eval_realheapsort_step2_bb4_in___81->n_eval_realheapsort_step2_bb6_in___79, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103, Arg_4: Arg_4 {O(n)}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103, Arg_5: 2*Arg_4 {O(n)}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
137: n_eval_realheapsort_step2_bb4_in___87->n_eval_realheapsort_step2_bb5_in___103, Arg_7: 32*Arg_4+4 {O(n)}
138: n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101, Arg_4: Arg_4 {O(n)}
138: n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101, Arg_5: 8*Arg_4 {O(n)}
138: n_eval_realheapsort_step2_bb5_in___103->n_eval_realheapsort_step2_14___101, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
139: n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119, Arg_4: Arg_4 {O(n)}
139: n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119, Arg_5: 0 {O(1)}
139: n_eval_realheapsort_step2_bb5_in___121->n_eval_realheapsort_step2_14___119, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
140: n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78, Arg_4: Arg_4 {O(n)}
140: n_eval_realheapsort_step2_bb5_in___80->n_eval_realheapsort_step2_14___78, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35, Arg_4: Arg_4 {O(n)}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35, Arg_5: 7*Arg_4 {O(n)}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35, Arg_6: 2*Arg_4+6 {O(n)}
141: n_eval_realheapsort_step2_bb6_in___102->n_eval_realheapsort_step2_bb8_in___35, Arg_7: 14*Arg_4+4 {O(n)}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113, Arg_4: Arg_4 {O(n)}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113, Arg_5: 0 {O(1)}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
142: n_eval_realheapsort_step2_bb6_in___115->n_eval_realheapsort_step2_bb8_in___113, Arg_7: 1 {O(1)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11, Arg_4: Arg_4 {O(n)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11, Arg_5: 0 {O(1)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11, Arg_6: Arg_4+3 {O(n)}
143: n_eval_realheapsort_step2_bb6_in___120->n_eval_realheapsort_step2_bb8_in___11, Arg_7: 1 {O(1)}
144: n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72, Arg_4: Arg_4 {O(n)}
144: n_eval_realheapsort_step2_bb6_in___74->n_eval_realheapsort_step2_bb8_in___72, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
145: n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54, Arg_4: Arg_4 {O(n)}
145: n_eval_realheapsort_step2_bb6_in___79->n_eval_realheapsort_step2_bb8_in___54, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95, Arg_4: Arg_4 {O(n)}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95, Arg_5: 8*Arg_4 {O(n)}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
146: n_eval_realheapsort_step2_bb6_in___97->n_eval_realheapsort_step2_bb8_in___95, Arg_7: 16*Arg_4+2 {O(n)}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20, Arg_4: Arg_4 {O(n)}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20, Arg_5: 0 {O(1)}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
147: n_eval_realheapsort_step2_bb7_in___114->n_eval_realheapsort_step2_bb8_in___20, Arg_7: 2 {O(1)}
148: n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63, Arg_4: Arg_4 {O(n)}
148: n_eval_realheapsort_step2_bb7_in___73->n_eval_realheapsort_step2_bb8_in___63, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45, Arg_4: Arg_4 {O(n)}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45, Arg_5: 8*Arg_4 {O(n)}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
149: n_eval_realheapsort_step2_bb7_in___96->n_eval_realheapsort_step2_bb8_in___45, Arg_7: 16*Arg_4+2 {O(n)}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10, Arg_4: Arg_4 {O(n)}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10, Arg_5: 0 {O(1)}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10, Arg_6: Arg_4+3 {O(n)}
150: n_eval_realheapsort_step2_bb8_in___11->n_eval_realheapsort_step2_23___10, Arg_7: 1 {O(1)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112, Arg_4: Arg_4 {O(n)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112, Arg_5: 0 {O(1)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
151: n_eval_realheapsort_step2_bb8_in___113->n_eval_realheapsort_step2_23___112, Arg_7: 1 {O(1)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19, Arg_4: Arg_4 {O(n)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19, Arg_5: 0 {O(1)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
152: n_eval_realheapsort_step2_bb8_in___20->n_eval_realheapsort_step2_23___19, Arg_7: 2 {O(1)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34, Arg_4: Arg_4 {O(n)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34, Arg_5: 7*Arg_4 {O(n)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34, Arg_6: 2*Arg_4+6 {O(n)}
153: n_eval_realheapsort_step2_bb8_in___35->n_eval_realheapsort_step2_23___34, Arg_7: 14*Arg_4+4 {O(n)}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44, Arg_4: Arg_4 {O(n)}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44, Arg_5: 8*Arg_4 {O(n)}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
154: n_eval_realheapsort_step2_bb8_in___45->n_eval_realheapsort_step2_23___44, Arg_7: 16*Arg_4+2 {O(n)}
155: n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53, Arg_4: Arg_4 {O(n)}
155: n_eval_realheapsort_step2_bb8_in___54->n_eval_realheapsort_step2_23___53, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
156: n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62, Arg_4: Arg_4 {O(n)}
156: n_eval_realheapsort_step2_bb8_in___63->n_eval_realheapsort_step2_23___62, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
157: n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71, Arg_4: Arg_4 {O(n)}
157: n_eval_realheapsort_step2_bb8_in___72->n_eval_realheapsort_step2_23___71, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94, Arg_4: Arg_4 {O(n)}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94, Arg_5: 8*Arg_4 {O(n)}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
158: n_eval_realheapsort_step2_bb8_in___95->n_eval_realheapsort_step2_23___94, Arg_7: 16*Arg_4+2 {O(n)}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23, Arg_4: Arg_4 {O(n)}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23, Arg_5: 0 {O(1)}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
159: n_eval_realheapsort_step2_bb9_in___107->n_eval_realheapsort_step2_26___23, Arg_7: 1 {O(1)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14, Arg_4: Arg_4 {O(n)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14, Arg_5: 0 {O(1)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
160: n_eval_realheapsort_step2_bb9_in___15->n_eval_realheapsort_step2_26___14, Arg_7: 2 {O(1)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26, Arg_4: Arg_4 {O(n)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26, Arg_5: 7*Arg_4 {O(n)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26, Arg_6: 2*Arg_4+6 {O(n)}
161: n_eval_realheapsort_step2_bb9_in___28->n_eval_realheapsort_step2_26___26, Arg_7: 14*Arg_4+4 {O(n)}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38, Arg_4: Arg_4 {O(n)}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38, Arg_5: 8*Arg_4 {O(n)}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
162: n_eval_realheapsort_step2_bb9_in___39->n_eval_realheapsort_step2_26___38, Arg_7: 16*Arg_4+2 {O(n)}
163: n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48, Arg_4: Arg_4 {O(n)}
163: n_eval_realheapsort_step2_bb9_in___49->n_eval_realheapsort_step2_26___48, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
164: n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57, Arg_4: Arg_4 {O(n)}
164: n_eval_realheapsort_step2_bb9_in___58->n_eval_realheapsort_step2_26___57, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5, Arg_4: Arg_4 {O(n)}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5, Arg_5: 0 {O(1)}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5, Arg_6: Arg_4+3 {O(n)}
165: n_eval_realheapsort_step2_bb9_in___6->n_eval_realheapsort_step2_26___5, Arg_7: 1 {O(1)}
166: n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66, Arg_4: Arg_4 {O(n)}
166: n_eval_realheapsort_step2_bb9_in___67->n_eval_realheapsort_step2_26___66, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86, Arg_4: Arg_4 {O(n)}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86, Arg_5: 8*Arg_4 {O(n)}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86, Arg_6: 2*Arg_4*Arg_4+29*Arg_4+64 {O(n^2)}
167: n_eval_realheapsort_step2_bb9_in___88->n_eval_realheapsort_step2_26___86, Arg_7: 16*Arg_4+2 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_0: Arg_0 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_1: Arg_1 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_2: Arg_2 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_3: Arg_3 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_4: Arg_4 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_5: Arg_5 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_6: Arg_6 {O(n)}
168: n_eval_realheapsort_step2_start->n_eval_realheapsort_step2_bb0_in___140, Arg_7: Arg_7 {O(n)}